Nash theorem and its proof

Theorem 1 (Nash (1951)) Every finite game has a (mixed) Nash equilibrium.

Proof: Define simplex to be

$$
\Delta_{k}=\left\{x \in \mathbb{R}_{\geq 0}^{k+1}: \Sigma_{i=1}^{k+1} x_{i}=1\right\}
$$

Clearly, this is a convex and compact set in \mathbb{R}^{k+1}. Consider two players (the case with n players is an extension of this idea). Say, player 1 has m strategies labeled $1, \ldots, m$ and player 2 has n strategies labeled $1, \ldots, n$. So, player 1 's mixed strategy is a point in Δ_{m-1} and player 2's mixed strategy is a point in Δ_{n-1}. The set of mixed strategy profiles is a point in $\Delta_{m-1} \times \Delta_{n-1}$. Since we are in a two player game, the utilities can be expressed in terms of two matrices A and B, both in $\mathbb{R}^{m \times n}$, denoting the utilities of players 1 and 2 respectively at the pure strategy profiles given by the rows and columns of the matrices. For mixed strategies $p \in \Delta_{m-1}$ and $q \in \Delta_{n-1}$ for players 1 and 2 respectively

$$
u_{1}(p, q)=p^{\top} A q, u_{2}(p, q)=p^{\top} B q .
$$

Define the following quantities,
$c_{i}(p, q)=\max \left\{A_{i} q-p^{\top} A q, 0\right\}$, where A_{i} is the $i^{\text {th }}$ row of $A, i \in\{1, \ldots, m\}$.
$d_{j}(p, q)=\max \left\{p^{\top} B_{j}-p^{\top} B q, 0\right\}$, where B_{j} is the $j^{\text {th }}$ column of $B, j \in\{1, \ldots, n\}$.
Clearly, both quantities are non-negative for all i, j.
Now, we define two functions P and Q as follows

$$
\begin{aligned}
P_{i}(p, q) & =\frac{p_{i}+c_{i}(p, q)}{1+\sum_{k=1}^{m} c_{k}(p, q)}, i \in\{1, \ldots, m\} \\
Q_{j}(p, q) & =\frac{q_{j}+d_{j}(p, q)}{1+\sum_{k=1}^{n} d_{k}(p, q)}, j \in\{1, \ldots, n\} .
\end{aligned}
$$

Clearly, $P_{i}(p, q) \geq 0, \forall i$ and $\sum_{i=1}^{m} P_{i}(p, q)=1$. Hence $P(p, q) \in \Delta_{m-1}$ and similarly we see that $Q(p, q) \in \Delta_{n-1}$. Define the transformation function

$$
T(p, q)=(P(p, q), Q(p, q)) .
$$

We see that, $T: \Delta_{m-1} \times \Delta_{n-1} \mapsto \Delta_{m-1} \times \Delta_{n-1}$, and maps a convex and compact set onto itself. From the definitions it is clear that c_{i} and d_{j} 's are continuous in (p, q), therefore, P_{i} 's and Q_{j} 's are also continuous which implies that T is continuous. Hence, by Brouwer's fixed point theorem,

$$
\exists\left(p^{*}, q^{*}\right) \text { s.t. } T\left(p^{*}, q^{*}\right)=\left(p^{*}, q^{*}\right) .
$$

Claim 2

$$
\sum_{k=1}^{m} c_{k}\left(p^{*}, q^{*}\right)=0 ; \quad \sum_{k=1}^{n} d_{k}\left(p^{*}, q^{*}\right)=0
$$

Proof:[of Claim] Suppose the claim is false, i.e., $\sum_{k=1}^{m} c_{k}\left(p^{*}, q^{*}\right)>0$. Since $\left(p^{*}, q^{*}\right)$ is a fixed point of T

$$
\begin{equation*}
p_{i}^{*}=\frac{p_{i}^{*}+c_{i}\left(p^{*}, q^{*}\right)}{1+\sum_{k=1}^{m} c_{k}\left(p^{*}, q^{*}\right)} \Rightarrow p_{i}^{*}\left(\sum_{k=1}^{m} c_{k}\left(p^{*}, q^{*}\right)\right)=c_{i}\left(p^{*}, q^{*}\right) \tag{1}
\end{equation*}
$$

Define a subset of indices as $I=\left\{i: p_{i}^{*}>0\right\}$. We see that

$$
\begin{equation*}
I=\left\{i: p_{i}^{*}>0\right\}=\left\{i: c_{i}\left(p^{*}, q^{*}\right)>0\right\}=\left\{i: A_{i} q^{*}>p^{* \top} A q^{*}\right\} . \tag{2}
\end{equation*}
$$

The first equality follows from eq. (1) and our assumption that $\sum_{k=1}^{m} c_{k}(p, q)>$ 0 . The second equality come from the definition of c_{i}. Define $u_{i}^{*}:=p^{* \top} A q^{*}$.

Now we see

$$
u_{1}^{*}=\sum_{i=1}^{m} p_{i}^{*} A_{i} q^{*}=\sum_{i \in I} p_{i}^{*}\left(A_{i} q^{*}\right)>\left(\sum_{i \in I} p_{i}^{*}\right) u_{1}^{*}=u_{1}^{*} .
$$

The first equality is by definition, the second inequality holds since p_{i}^{*} is positive only on I (by definition), the inequality holds from eq. (2), and the last equality holds since u_{i}^{*} is a scalar and comes out of the summation. The inequality above is a contradiction. Similarly we can prove the claim for $\sum_{k} d_{k}$. Hence our claim is proved.

By this claim, $\sum_{k=1}^{m} c_{k}\left(p^{*}, q^{*}\right)=0$. Since $c_{k}\left(p^{*}, q^{*}\right) \geq 0, \forall k=1, \ldots, m$, it implies that $c_{k}\left(p^{*}, q^{*}\right)=0 \forall k=1, \ldots, m$. By definition of c_{i} 's, we then have

$$
\begin{aligned}
A_{i} q * & \leq p^{* \top} A q^{*} \\
\Rightarrow \sum_{i=1}^{m} p_{i}^{\prime} A_{i} q^{*} & \leq p^{* \top} A q^{*} .
\end{aligned}
$$

The implication holds for any arbitrary mixed strategy p^{\prime} of player 1. Similarly we can show that q^{*} is a best response for player 2 against the mixed strategy p^{*} played by player 1 . Therefore $\left(p^{*}, q^{*}\right)$ is a MSNE.

