
Nash theorem and its proof

Theorem 1 (Nash (1951)) Every finite game has a (mixed) Nash equilib-
rium.

Proof: Define simplex to be

∆k = {x ∈ Rk+1
≥0 : Σk+1

i=1 xi = 1}.

Clearly, this is a convex and compact set in Rk+1. Consider two players (the
case with n players is an extension of this idea). Say, player 1 has m strategies
labeled 1, . . . ,m and player 2 has n strategies labeled 1, . . . , n. So, player 1’s
mixed strategy is a point in ∆m−1 and player 2’s mixed strategy is a point in
∆n−1. The set of mixed strategy profiles is a point in ∆m−1 ×∆n−1. Since we
are in a two player game, the utilities can be expressed in terms of two matrices
A and B, both in Rm×n, denoting the utilities of players 1 and 2 respectively at
the pure strategy profiles given by the rows and columns of the matrices. For
mixed strategies p ∈ ∆m−1 and q ∈ ∆n−1 for players 1 and 2 respectively

u1(p, q) = p>Aq, u2(p, q) = p>Bq.

Define the following quantities,

ci(p, q) = max{Aiq − p>Aq, 0}, where Ai is the ith row of A, i ∈ {1, . . . ,m}.
dj(p, q) = max{p>Bj − p>Bq, 0},where Bj is the jth column of B, j ∈ {1, . . . , n}.

Clearly, both quantities are non-negative for all i, j.
Now, we define two functions P and Q as follows

Pi(p, q) =
pi + ci(p, q)

1 +
∑m

k=1 ck(p, q)
, i ∈ {1, . . . ,m};

Qj(p, q) =
qj + dj(p, q)

1 +
∑n

k=1 dk(p, q)
, j ∈ {1, . . . , n}.

Clearly, Pi(p, q) ≥ 0,∀i and
∑m

i=1 Pi(p, q) = 1. Hence P (p, q) ∈ ∆m−1 and
similarly we see that Q(p, q) ∈ ∆n−1. Define the transformation function

T (p, q) = (P (p, q), Q(p, q)).

We see that, T : ∆m−1 ×∆n−1 7→ ∆m−1 ×∆n−1, and maps a convex and
compact set onto itself. From the definitions it is clear that ci and dj ’s are
continuous in (p, q), therefore, Pi’s and Qj ’s are also continuous which implies
that T is continuous. Hence, by Brouwer’s fixed point theorem,

∃ (p∗, q∗) s.t. T (p∗, q∗) = (p∗, q∗).
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Claim 2
m∑

k=1

ck(p∗, q∗) = 0;

n∑
k=1

dk(p∗, q∗) = 0.

Proof:[of Claim] Suppose the claim is false, i.e.,
∑m

k=1 ck(p∗, q∗) > 0. Since
(p∗, q∗) is a fixed point of T

p∗i =
p∗i + ci(p

∗, q∗)

1 +
∑m

k=1 ck(p∗, q∗)
⇒ p∗i

(
m∑

k=1

ck(p∗, q∗)

)
= ci(p

∗, q∗). (1)

Define a subset of indices as I = {i : p∗i > 0}. We see that

I = {i : p∗i > 0} = {i : ci(p
∗, q∗) > 0} = {i : Aiq

∗ > p∗>Aq∗}. (2)

The first equality follows from eq. (1) and our assumption that
∑m

k=1 ck(p, q) >
0. The second equality come from the definition of ci. Define u∗i := p∗>Aq∗.

Now we see

u∗1 =

m∑
i=1

p∗iAiq
∗ =

∑
i∈I

p∗i (Aiq
∗) >

(∑
i∈I

p∗i

)
u∗1 = u∗1.

The first equality is by definition, the second inequality holds since p∗i is positive
only on I (by definition), the inequality holds from eq. (2), and the last equality
holds since u∗i is a scalar and comes out of the summation. The inequality above
is a contradiction. Similarly we can prove the claim for

∑
k dk. Hence our claim

is proved.
By this claim,

∑m
k=1 ck(p∗, q∗) = 0. Since ck(p∗, q∗) ≥ 0,∀k = 1, . . . ,m, it

implies that ck(p∗, q∗) = 0∀k = 1, . . . ,m. By definition of ci’s, we then have

Aiq∗ ≤ p∗>Aq∗

⇒
m∑
i=1

p′iAiq
∗ ≤ p∗>Aq∗.

The implication holds for any arbitrary mixed strategy p′ of player 1. Similarly
we can show that q∗ is a best response for player 2 against the mixed strategy
p∗ played by player 1. Therefore (p∗, q∗) is a MSNE.
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