Indian Institute of Technology Bombay

CS 6001: Game Theory and Algorithmic Mechanism Design

Week 1

Swaprava Nath

Slide preparation acknowledgments: Ramsundar Anandanarayanan and Harshvardhan Agarwal

ज्ञानम् परमम् ध्येयम्
Knowledge is the supreme goal

Contents

- Relation between Game Theory and Mechanism Design

Typical Engineering Courses

- Circuit analysis and synthesis

synthesis

Similarly ...

- Social analysis and synthesis

Contents

- Relation between Game Theory and Mechanism Design
- What is a Game?
- An Example Game: Chess
- Theory of The Game of Chess

Game: Neighboring Kingdom's Dilemma

	Rashtrakuta	
	Agri	War
© Agri	5,5	0,6
\sim War	6,0	1,1

Question

What is a reasonable outcome of this game?

Game

	Rashtrakuta	
	Agri	War
๘ Agri	5,5	0,6
A War	6,0	1,1

- A Game is a formal representation of the strategic interaction between players
- The choices available to the players are called actions
- The mapping from the state of the game to actions: strategy
- In single-state games, strategy and action are equivalent
- Not in multi-state games
- Games can be of many kinds and representations:

Normal form, Extensive form, Static, Dynamic, Repeated, Stochastic, ...

Game Theory

Definition

Game theory is the formal study of strategic interaction between players, who are rational and intelligent.

- A player is rational if she picks an action to achieve her most desired outcome, i.e., maximize her happiness
- A player is intelligent if she knows the rules of the game perfectly and can pick (i.e., has that computational ability) the best action considering that there are other rational and intelligent players in the game
- Goal of game theory: predict the outcomes of a game (refer to the dilemma game)

Assumptions of Game Theory

This course is an axiomatic analysis of multi-agent behavior - and the axioms are as follows

- Rationality: A player is rational if she picks actions to maximize her utility
- Intelligence: A player is intelligent if she knows the rules of the game perfectly and picks actions considering that there are other rational and intelligent players.
- Common Knowledge (CK): A fact is common knowledge if
- all players know the fact
- all players know that all players know the fact
- all players know that all players know that all players know the fact
- ... ad infinitum

Implication of CK: Blue-eyed islander problem

- Location: an isolated island (does not have any reflecting device)
- Three men live on this island (their eye colors can be either blue or black - but they never talk about their eye colors)
- One day an all knowing sage ${ }^{1}$ comes in and says: "Blue-eyed people are bad for the island and must leave. There is at least one blue-eyed person on this island."
- Consequence: if someone realizes if his eye color is blue, he must leave at the end of the day

Question

How does common knowledge percolate?

[^0]
Percolation of Common Knowledge

Let us think in steps

- If there was one blue-eyed man
- he would see the other two have black eyes
- sage is always correct, he must be the only blue-eyed person
- leaves at end of day 1
- seeing him leave, the other two men realize that their eye color is black, stays back
- If there were two blue-eyed men
- each of them would see one blue and one black
- if there was only one, then by the previous argument, he should have left after day 1
- when that does not happen, then on day 2 , both blue-eyed men realizes their eye color, leaves by the end of the day
- If there are three blue-eyed men, use the same argument to conclude that all of them leave at the end of day 3

Assumption in Game Theory

The fact that all players are rational and intelligent is a common knowledge

Contents

- Relation between Game Theory and Mechanism Design

- What is a Game?
- An Example Game: Chess

Game of Chess

Description

- Two-player game: White (W) and Black (B) - 16 pieces each
- Every piece has some legal moves - actions
- Starts with W, players take turns
- Ends in
(1) Win for W : if W captures B king
(2) Win for B: if B captures W king
(3) Draw: everything else, e.g., if nobody has legal moves but kings are not in check, both players agree to a draw, board position is such that nobody can win, ...

Natural Questions from Game Theorist's perspective

Question

Does \mathbf{W} have a winning strategy?
i.e., a plan of moves such that it wins irrespective of the moves of \mathbf{B} ?

Question

Does B have a winning strategy?

Question

Or do either have at least a draw guaranteeing strategy?

- Neither may be possible - not synonymous with the end of the game

What is a strategy?

- In the context of chess, board position is different from game situation
- More than one sequence of moves can bring to the same board position.
- Denote a board position by x_{k}
- Game situation is a finite sequence $\left(x_{0}, x_{1}, x_{2}, \ldots, x_{k}\right)$ of board positions such that:
- x_{0} is the opening board position
$-x_{k} \rightarrow x_{k+1}$
k even - created by a single action of W
k odd - created by a single action of B

What is a strategy? (contd.)

Board positions may repeat in this tree, but a vertex is unique - game situation

Strategy: mapping from game situation to action, i.e., what action to take at every vertex of this game tree
a complete contingency plan

What is a strategy? (contd.)

Definition (Strategy)

A strategy for \mathbf{W} is a function s_{W} that associates every game situation $\left(x_{0}, x_{1}, x_{2}, \ldots, x_{k}\right) \in H$ (set of all game situations), k even, with a board position x_{k+1} such that the move $x_{k} \rightarrow x_{k+1}$ is a single valid move for W.

- Similar definition of s_{B} for B.
- Note: A strategy pair $\left(s_{W}, s_{B}\right)$ determines outcome (also called one play of the game) - a path through the game tree.

Question

Is this a finite game? Where does it end?

Can a player guarantee an outcome?

Winning/Drawing Strategies

- A winning strategy for \mathbf{W} is a strategy s_{W}^{*} such that for every $s_{B},\left(s_{W}^{*}, s_{B}\right)$ ends in a win for \mathbf{W}.
- A strategy guaranteeing at least a draw for \mathbf{W} is a strategy s_{W}^{\prime} such that for every $s_{B},\left(s_{W}^{\prime}, s_{B}\right)$ either ends in a draw or a win for \mathbf{W}.
- Analogous definitions of s_{B}^{*} and s_{B}^{\prime} for \mathbf{B}
- Not obvious if such strategies exist.

Contents

- Relation between Game Theory and Mechanism Design

- What is a Game?
- An Example Game: Chess
- Theory of The Game of Chess

An Early Result (von Neumann, 1928)

Theorem

In chess, one and only one of the following statements is true
(1) W has a winning strategy
© B has a winning strategy

- Each player has a draw guaranteeing strategy

Awesome but not enough

- These options are not exhaustive, e.g., nothing could be guaranteed
- The theorem does not say what that strategy is
- It is not known: which one is true and what is that strategy

Chess would have been a boring game if any of these answers were known

Setup of the Proof

- Each vertex in the tree represents a game situation, the edges represent actions
- $\Gamma(x)$: Subtree rooted at x (including itself)
- n_{x} : Number of vertices in subtree $\Gamma(x)$
- In the graph, y is a vertex in $\Gamma(x), y \neq x$.
- $\Gamma(y)$ is a subtree of $\Gamma(x), n_{y}<n_{x}$

Proof of Chess Theorem

The proof is via induction on n_{x}.

Question

Does the Theorem hold for $n_{x}=1$?

- if \mathbf{W} king is removed, B wins
- if \mathbf{B} king is removed, \mathbf{W} wins
- if both kings present, $n_{x}=1$ implies that the game ends in
 a draw

Extend to $n_{x}>1$

Notation

- Suppose x is a vertex with $n_{x}>1$
- Induction hypothesis: for all vertices $y \neq x$ such that $\Gamma(y)$ is a subgame of $\Gamma(x)$, the theorem holds
- Then we show that the theorem holds for x as well
- Let $C(x)$ denote vertices reachable from x in one move

Extend to $n_{x}>1$

WLOG assume \mathbf{W} moves at x

- Case 1: If $\exists y \in C(x)$ s.t. condition 1 of the theorem is true, then condition 1 is true for x
- W picks that move which moves the game to y
- Case 2: If $\forall y \in C(x)$, condition 2 is true, then every move by white leads to \mathbf{B} winning the game. Hence, condition 2 is true for x.
- Case 3: Neither case 1 nor case 2 is true
- Case 1 does not hold
- \mathbf{W} does not have a winning strategy in any $y \in C(x)$, since induction
 hypothesis holds for every $y \in C(x)$, either \mathbf{B} has winning strategy or both have draw-guaranteeing strategy.
- Case 2 does not hold either
- This implies $\exists y^{\prime} \in C(x)$ s.t. B does not have a winning strategy
- Since case 1 does not hold either, \mathbf{W} cannot guarantee a win in y^{\prime}
- Hence \mathbf{W} picks action to go to y^{\prime}, where \mathbf{B} can only guarantee a draw (induction hypothesis)

भारतीय प्रौद्योगिकी संस्थान मुंबई

Indian Institute of Technology Bombay

[^0]: ${ }^{1}$ This person is correct beyond any question. Whatever he says must be true.

