Indian Institute of Technology Bombay

CS 6001: Game Theory and Algorithmic Mechanism Design

Week 2

Swaprava Nath

Slide preparation acknowledgments: Ramsundar Anandanarayanan and Harshvardhan Agarwal

ज्ञानम् परमम् ध्येयम्
Knowledge is the supreme goal

Contents

- Formal Representation of Games
- Dominance
- Nash Equilibrium
- Max-Min Strategies
- Elimination of dominated strategies
- Preservation of PSNE
- Matrix games

Normal Form Games

- It is a representation technique for games - particularly suitable for static games
- In a static game, the players interact only once with each other

Notation

- $N=\{1,2,3, \ldots, n\}$, set of players
- S_{i} : set of strategies for player $i, s_{i} \in S_{i}$
- Set of strategy profiles $S=\times_{i \in N} S_{i}$
- A strategy profile $s=\left(s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right) \in S$
- Strategy profile without player $i: s_{-i}=\left(s_{1}, s_{2}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right)$
- $u_{i}: S \rightarrow \mathbb{R}$, utility function of player i
- Normal form representation is a tuple $\left\langle N,\left(S_{i}\right)_{i \in N^{\prime}}\left(u_{i}\right)_{i \in N}\right\rangle$
- If S_{i} is finite $\forall i \in N$, this is called a finite game.

Example: Penalty Shoot Game

Goalkeeper

$\begin{aligned} & \text { 山ँ } \\ & \stackrel{0}{0} \\ & \text { ऊे } \end{aligned}$	L	C	R
	-1,1	1,-1	1, -1
	1,-1	-1,1	1, -1
R	1,-1	1,-1	-1,1

- $N=\{1,2\}, 1=$ Shooter, $2=$ Goalkeeper
- $S_{1}=S_{2}=\{L, C, R\}$
- $u_{1}(L, L)=-1, u_{1}(L, C)=u_{1}(L, R)=1$
- $u_{2}(L, L)=1, u_{2}(L, C)=u_{2}(L, R)=-1$
- (loosely) $u_{1}(X, X)=-1=-u_{2}(X, X), u_{1}(X, Y)=-u_{2}(X, Y)=1$

Contents

- Formal Representation of Games
- Dominance
- Nash Equilibrium
- Max-Min Strategies
- Elimination of dominated strategies
- Preservation of PSNE
- Matrix games

Domination in NFGs

Question

Will a rational Player 2 ever play R?

Dominated Strategy

Definition (Strictly Dominated Strategy)

A strategy $s_{i}^{\prime} \in S_{i}$ of player i is strictly dominated if there exists another strategy $s_{i} \in S_{i}$ such that for every strategy profile $s_{-i} \in S_{-i}$ of the other players, $u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$.

Definition (Weakly Dominated Strategy)

A strategy $s_{i}^{\prime} \in S_{i}$ of player i is weakly dominated if there exists another strategy $s_{i} \in S_{i}$ such that for every strategy profile $s_{-i} \in S_{-i}$ of the other players $u_{i}\left(s_{i}, s_{-i}\right) \geqslant u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ and there exists some $\tilde{s}_{-i} \in S_{-i}$ such that $u_{i}\left(s_{i}, \tilde{s}_{-i}\right)>u_{i}\left(s_{i}^{\prime}, \tilde{s}_{-i}\right)$.

Example: R is strictly dominated (by C) while D is weakly dominated (by U)

Dominant Strategy

A strategy s_{i}^{\prime} can be dominated by s_{i}, and a different strategy $s_{i}^{\prime \prime}$ can be dominated by \tilde{s}_{i}

Definition (Dominant Strategy)

A strategy s_{i} is strictly(weakly) dominant strategy for player i if s_{i} strictly(weakly) dominates all other strategies $s_{i}^{\prime} \in S_{i} \backslash\left\{s_{i}\right\}$.

Examples of dominant strategy

- Neighbouring kingdom's dilemma
- Indivisible item for sale

Neighbouring Kingdom's Dilemma

त		Rashtrakuta	
		Agri	War
	Agri	5,5	0,6
	War	6,0	1,1

Question

Is there a dominant strategy in this game? Which kind?

Indivisible Item for Sale

- Two players value an indivisible item as v_{1} and v_{2} respectively
- Each player's action: a number in $[0, M], M \gg v_{1}, v_{2}$
- Player quoting the larger number wins the object (ties broken in favour of player 1) and pays the losing player's chosen number
- utility of winning player $=$ her true value - other player's chosen number
- utility of losing player $=0$

Indivisible Item for Sale

Normal form representation of the game

- $N=\{1,2\}, S_{1}=S_{2}=[0, M]$
- Agents pick s_{i}, while their real value for the item is v_{i}, and s_{i} may not be the same as v_{i}

$$
\begin{align*}
& u_{1}\left(s_{1}, s_{2}\right)= \begin{cases}v_{1}-s_{2} & \text { if } s_{1} \geqslant s_{2} \\
0 & \text { otherwise }\end{cases} \tag{1}\\
& u_{2}\left(s_{1}, s_{2}\right)= \begin{cases}v_{2}-s_{1} & \text { if } s_{1}<s_{2} \\
0 & \text { otherwise }\end{cases} \tag{2}
\end{align*}
$$

Question

Is there a dominant strategy in this game? Which kind?

Dominant Strategy Equilibrium

Definition (Dominant Strategy Equilibrium)

A strategy profile $\left(s_{1}^{*}, s_{2}^{*}, \ldots, s_{n}^{*}\right)$ is a strictly (weakly) dominant strategy equilibrium (SDSE/WDSE) if s_{i}^{*} is strictly (weakly) dominant strategy $\forall i \in N$.

Example of dominant strategy equilibrium

Player 2

	D	E
A	5,5	0,5
芯 B	5,0	1,1
C	4,0	1,1

Question

What kind of equilibrium in this game?

How to find equilibrium?

- Rational players do not play dominated strategies
- To obtain rational outcomes eliminate dominated strategies
- For strictly dominated strategies the order of elimination does not matter
- It matters for weakly dominated strategies - some reasonable outcomes are also eliminated

Player 2

	L	C	R
$\because \mathrm{T}$	1,2	2,3	0,3
\% M	2,2	2,1	3,2
二 B	2,1	0,0	1,0

- Order T, R, B, C $\rightarrow(M, L):(2,2)$
- Order B, L, C, T $\rightarrow(M, R):(3,2)$

Existence of Dominant Strategies

Not guaranteed!

If dominance cannot explain a reasonable outcome - refine equilibrium concept

Contents

- Formal Representation of Games
- Dominance
- Nash Equilibrium
- Max-Min Strategies
- Elimination of dominated strategies
- Preservation of PSNE
- Matrix games

Nash Equilibrium (Nash 1951)

No player gains by a unilateral deviation

Definition (Nash Equilibrium)

A strategy profile $\left(s_{i}^{*}, s_{-i}^{*}\right)$ is a pure strategy Nash equilibrium (PSNE) if $\forall i \in N$ and $\forall s_{i} \in S_{i}$

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geqslant u_{i}\left(s_{i}, s_{-i}^{*}\right) .
$$

Friend 2

Football or Cricket Game

Best Response View

- A best response of a player i against the strategy profile s_{-i} of other players is a strategy that gives the maximum utility i.e.,

$$
B_{i}\left(s_{-i}\right)=\left\{s_{i} \in S_{i}: u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right), \forall s_{i}^{\prime} \in S_{i}\right\}
$$

- PSNE is a strategy profile $\left(s_{i}^{*}, s_{-i}^{*}\right)$ s.t.

$$
s_{i}^{*} \in B_{i}\left(s_{-i}^{*}\right), \forall i \in N
$$

- PSNE gives stability - once there, no rational player unilaterally deviates

Question

Relationship between SDSE, WDSE, PSNE?

Contents

- Formal Representation of Games
- Dominance
- Nash Equilibrium
- Max-Min Strategies
- Elimination of dominated strategies
- Preservation of PSNE
- Matrix games

Risk Aversion of Players

Question

What if the other player does not pick an equilibrium action (Nash)?
Picking T is less risky for player 1

Max-min Strategy

Definition

The worst case optimal choice is max-min strategy

$$
s_{i}^{\max \min } \in \arg \max _{s_{i} \in S_{i}} \min _{s_{-i} \in S_{-i}} u_{i}\left(s_{i}, s_{-i}\right)
$$

Note: $s_{-i}^{\min }\left(s_{i}\right) \in \arg \min _{s_{-i} \in S_{-i}} u_{i}\left(s_{i}, s_{-i}\right)$ is indeed a function of s_{i}; as s_{i} changes the minimizer keeps on changing

Max-min value (utility at the max-min strategy) of player i is given by

$$
\begin{aligned}
\underline{v}_{i} & =\max _{s_{i} \in S_{i}} \min _{s_{-i} \in S_{-i}} u_{i}\left(s_{i}, s_{-i}\right) \\
u_{i}\left(s_{i}^{\max \min }, t_{-i}\right) & \geqslant \underline{v}_{i}, \quad \forall t_{-i} \in S_{-i}
\end{aligned}
$$

Max-min and Dominant Strategies

Theorem

If s_{i}^{*} is dominant strategy for player i, then it is a max-min strategy for player i as well.

Proof.

Let s_{i}^{*} be dominant strategy for player i

$$
\begin{equation*}
u_{i}\left(s_{i}^{*}, s_{-i}\right) \geqslant u_{i}\left(s_{i}^{\prime}, s_{-i}\right), \forall s_{-i} \in S_{-i}, \forall s_{i}^{\prime} \in S_{i} \backslash\left\{s_{i}^{*}\right\} \tag{3}
\end{equation*}
$$

Define $s_{-i}^{\min }\left(s_{i}^{\prime}\right) \in \arg \min _{s_{-i} \in S_{-i}} u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$: the worst choice of strategies of the other players for the action s_{i}^{\prime} of agent i
But Equation (3) holds for every s_{-i}, in particular $s_{-i}^{\min }\left(s_{i}^{\prime}\right)$

$$
\begin{aligned}
u_{i}\left(s_{i}^{*}, s_{-i}^{\min }\left(s_{i}^{\prime}\right)\right) & \geqslant u_{i}\left(s_{i}^{\prime}, s_{-i}^{\min }\left(s_{i}^{\prime}\right)\right), \forall s_{i}^{\prime} \in S_{i} \backslash\left\{s_{i}^{*}\right\} \\
s_{i}^{*} & \in \arg \max _{s_{i} \in S_{i}} \min _{s_{-i} \in S_{-i}} u_{i}\left(s_{i}, s_{-i}\right)
\end{aligned}
$$

Max-min and PSNE

Theorem

Every PSNE $s^{*}=\left(s_{1}^{*}, s_{2}^{*}, \ldots, s_{n}^{*}\right)$ of a normal form game satisfies $u_{i}\left(s^{*}\right) \geqslant \underline{v}_{i}, \forall i \in N$.

Proof.

$$
\begin{aligned}
& u_{i}\left(s_{i}, s_{-i}^{*}\right) \geqslant \min _{s_{-i} \in S_{-i}} u_{i}\left(s_{i}, s_{-i}\right), \forall s_{i} \in S_{i} \\
& u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geqslant u_{i}\left(s_{i}, s_{-i}^{*}\right), \forall s_{i} \in S_{i}, \\
& u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right)=\max _{s_{i} \in S_{i}} u_{i}\left(s_{i}, s_{-i}^{*}\right) \geqslant \max _{s_{i} \in S_{i}} \min _{s_{-i} \in S_{-i}} u_{i}\left(s_{i}, s_{-i}\right)=\underline{v}_{i}
\end{aligned}
$$

by definition of min
by definition of PSNE

Contents

- Formal Representation of Games

- Dominance
- Nash Equilibrium
- Max-Min Strategies
- Elimination of dominated strategies
- Preservation of PSNE
- Matrix games

Iterated elimination of dominated strategies

The story so far

- Dominance cannot explain all outcomes; games may not have dominant strategies
- PSNE: unilateral deviation; gives stability
- Maxmin: rationality for risk-aversion; gives security

Question
What happens to stability and security when some strategies are eliminated?

Iterated elimination of dominated strategies (contd.)

	Player 2		
	L	C	R
$\checkmark \mathrm{T}$	1,2	2,3	0,3
M	2,2	2,1	3,2
二 B	2,1	0,0	1,0

- Order T, R, B, C $\rightarrow(M, L):(2,2)$
- Order B, L, C, T $\rightarrow(M, R):(3,2)$

Question

Does it change the maxmin value?

Iterated elimination of dominated strategies (contd.)

Consider in the above example: elimination of dominated strategy B for player 1

Maxmin values	Player 1	Player 2
Before	2	0
After	2	2

Maxmin value is not affected for the player whose dominated strategy is removed

A Result for Iterated Elimination

Theorem

Consider an NFG $G=\left\langle N,\left(S_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right\rangle$, and let $s_{j}^{\prime} \in S_{j}$ be a dominated strategy. Let G^{\prime} be the residual game after removing s_{j}^{\prime}. Then, the maxmin value of j in G^{\prime} is equal to her maxmin value in G.

Intuition

- Maxmin is the 'max' of all 'min's
- Elimination affects one 'min'
- But that does not affect the 'max' since the strategy was dominated

Proof

Maxmin value of player j in G
Maxmin value of player j in G^{\prime}

$$
\begin{aligned}
& \underline{\mathrm{v}}_{j}=\max _{s_{j} \in S_{j}} \min _{-j} \in S_{-j} u_{j}\left(s_{j}, s_{-j}\right) \\
& \underline{\mathrm{v}}_{j}^{\prime}=\max _{s_{j} \in S_{j} \backslash\left\{s_{j}\right\}} \min _{-j} \in S_{-j} \\
& u_{j}\left(s_{j}, s_{-j}\right) \\
& u_{j}\left(t_{j}, s_{-j}\right) \geqslant u_{j}\left(s_{j}^{\prime}, s_{-j}\right), \forall s_{-j} \in S_{-j}
\end{aligned}
$$

Suppose t_{j} dominates s_{j}^{\prime} in $G, t_{j} \in S_{j} \backslash\left\{s_{j}^{\prime}\right\}$, then,

Therefore,

$$
\begin{aligned}
& \min _{s_{-j} \in S_{-j}} u_{j}\left(t_{j}, s_{-j}\right)=u_{j}\left(t_{j}, \tilde{s}_{-j}\right) \geqslant u_{j}\left(s_{j}^{\prime}, \tilde{s}_{-j}\right) \geqslant \min _{s_{-j} \in S_{-j}} u_{j}\left(s_{j}^{\prime}, s_{-j}\right) \\
& \max _{s_{j} \in S_{j} \backslash\left\{s_{j}^{\prime}\right\}} \min _{s_{-j} \in S_{-j}} u_{j}\left(s_{j}, s_{-j}\right) \geqslant \min _{s_{-j} \in S_{-j}} u_{j}\left(t_{j}, s_{-j}\right) \geqslant \min _{s_{-j} \in S_{-j}} u_{j}\left(s_{j}^{\prime}, s_{-j}\right)
\end{aligned}
$$

Proof (contd.)

$\underline{\mathrm{v}}_{j} \quad$ [maxmin value of j in G]
$=\max _{s_{j} \in S_{j} s_{-j} \in S_{-j}} \min _{j}\left(s_{j}, s_{-j}\right)$
$=\max \left\{\max _{s_{j} \in S_{j} \backslash\left\{s_{j}^{\prime}\right\}} \min _{s_{-j} \in S_{-j}} u_{j}\left(s_{j}, s_{-j}\right), \min _{s_{-j} \in S_{-j}} u_{j}\left(s_{j}^{\prime}, s_{-j}\right)\right\}$
$=\max _{s_{j} \in S_{j} \backslash\left\{s_{j}^{\prime}\right\}} \min _{s_{-j} \in S_{-j}} u_{j}\left(s_{j}, s_{-j}\right)$, because of the previous inequality
$=\underline{\mathrm{v}}_{j}^{\prime} \quad\left[\right.$ maxmin value of j in $\left.G^{\prime}\right]$

Contents

- Formal Representation of Games
- Dominance
- Nash Equilibrium
- Max-Min Strategies
- Elimination of dominated strategies
- Preservation of PSNE
- Matrix games

Preservation of PSNE

Question

What happens to existing equilibrium after iterated elimination?

Theorem

Consider G and \hat{G} are games before and after elimination of a strategy (not necessarily dominated). If s* is a PSNE in G and survives in \hat{G}, then s^{*} is a PSNE in \hat{G} too.

Intuition

PSNE was a maxima of utility of i among the strategies of i. Removing other strategies does not affect maximality.
Proof: exercise.

Can new equilibrium be generated?

Theorem

Consider NFG G. Let \hat{s}_{j} be a weakly dominated strategy of j. If \hat{G} is obtained from G eliminating \hat{s}_{j}, then every PSNE of \hat{G} is a PSNE of G.

No new PSNE if the eliminated strategy is dominated
But old PSNEs could be killed: saw in the previous example

Proof

In the game \hat{G}, modified strategy sets are $\hat{S}_{j}=S_{j} \backslash\left\{\hat{S}_{j}\right\}, \hat{S}_{i}=S_{i}, \forall i \neq j$
Need to show: if $s^{*}=\left(s_{j}^{*}, s_{-j}^{*}\right)$ is a PSNE in \hat{G}, it is a PSNE in G.

Given

$$
\begin{aligned}
& u_{i}\left(s^{*}\right) \geqslant u_{i}\left(s_{i}, s_{-i}^{*}\right), \forall i \neq j, \forall s_{i} \in \hat{S}_{i}=S_{i} \\
& u_{j}\left(s^{*}\right) \geqslant u_{j}\left(s_{j}, s_{-j}^{*}\right), \forall s_{j} \in \hat{S}_{j}
\end{aligned}
$$

Need to show: no profitable deviation for any player in G. For $i \neq j$, this is immediate since no strategy is removed.

For j, no profitable deviation from s^{*} for any strategy $s_{j} \neq \hat{s}_{j}$
Since \hat{s}_{j} is dominated, $\exists t_{j}$ such that

$$
u_{j}\left(t_{j}, s_{-j}\right) \geqslant u_{j}\left(\hat{s}_{j}, s_{-j}\right), \forall s_{-j} \in S_{-j}
$$

$$
\text { In particular, } \quad u_{j}\left(t_{j}, s_{-j}^{*}\right) \geqslant u_{j}\left(\hat{s}_{j}, s_{-j}^{*}\right)
$$

Since s^{*} is a PSNE in \hat{G} and $t_{j} \in \hat{S}_{j}$

$$
u_{j}\left(s_{j}^{*}, s_{-j}^{*}\right) \geqslant u_{j}\left(t_{j}, s_{-j}^{*}\right) \geqslant u_{j}\left(\hat{s}_{j}, s_{-j}^{*}\right)
$$

Summary

- Elimination of strictly dominated strategy have no effect on PSNE
- Elimination of weakly dominated strategy may reduce the set of PSNEs, but never adds new
- The maxmin values of the player whose strictly or weakly dominated strategies are remove remain unaffected

Contents

- Formal Representation of Games
- Dominance
- Nash Equilibrium
- Max-Min Strategies
- Elimination of dominated strategies
- Preservation of PSNE
- Matrix games

Matrix games: two player zero-sum games

A special class with certain nice security and stability properties

Definition (Two player zero-sum games)

A NFG $\left\langle N,\left(S_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right\rangle$ with $N=\{1,2\}$ and $u_{1}+u_{2} \equiv 0$

Question

Why called matrix game?

Answer

Possible to represent the game with only one matrix considering the utilities of player 1; player 2's utilities are negative of this matrix

Example: Penalty shoot game

Player 2

$$
\left(\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right)=: u
$$

Player 2's maxmin value is the minmax value of this matrix

	$L \quad R$ maxmin		
L	-1	1	-1
$\stackrel{\sim}{\square}$	1	-1	-1
I. minmax	1	1	

भारतीय प्रौद्योगिकी संस्थान मुंबई

Indian Institute of Technology Bombay

