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Matrix games: two player zero-sum games

A special class with certain nice security and stability properties

Definition (Two player zero-sum games)

A NFG <N, (Si)iEN/ (ui)iem with N = {1,2} and uq +up =0

Question

Why called matrix game?

Answer

Possible to represent the game with only one matrix considering the utilities of player 1; player
2’s utilities are negative of this matrix
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Example: Penalty shoot game

Player 2
L R
i
5 L[LI[L 1 = ( _} _1 ) e
2 R[Lo1-1L1
[al

Player 2’s maxmin value is the minmax value of this matrix

L R maxmin
L -1 1 -1
-1 -1

Player 1
~

minmax 1 1




Another example
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L C R

3,-3[-55]-2,2
1,-1(4,—4(1,-1
6,—6|-3,3]1-5,5

Player 1
w £ A




Another example
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Two examples together

Player 1
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L

R maxmin
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Two examples together

L C R maxmin
T 3 -5 -2 -5
L R maxmin — N 1 . ] .
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Question

What are the PSNEs for the above games?




Two examples together

T
L R maxmin —
- M
” L -1 1 -1 v
(]
S R 1 | 11| = B
. minmax | 1 1 minmax
Question
What are the PSNEs for the above games?
Answer

Left: no PSNE; Right: (M,R)

L C R maxmin
3 -5 -2 -5

1 4 1 1

6 -3 | -5 -5

6 4 1
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Saddle point

Saddle point of a matrix

The value is simultaneously the maximum in its column and minimum in its row i.e., maximum
for player 1 and minimum for player 2

Question

What are the saddle points for the above games?

Answer

For the first example: no saddle point, for the second: (M,R)

Theorem

In a matrix game with utility matrix u, (s],s;) is a saddle point iff it is a PSNE.



Saddle point and PSNE

Proof.

Consider (s7, s3) to be a saddle point. By definition of saddle point, this happens iff

u(sy,s5) > u(sy,s3),Vs1 € Sy and u(sy,s3) < u(sj,sz),Vsy € Sy. Since, u = u; = —up, the above is
equivalent to uq(s],s5) > u1(s1,55),Vs1 € Sy and up(s],s5) > ua(s],s2),Vs2 € Sy < (s7,53) is a
PSNE. O
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Saddle point and PSNE

Proof.

Consider (s7, s3) to be a saddle point. By definition of saddle point, this happens iff

u(sy,s5) > u(sy,s3),Vs1 € Sy and u(sy,s3) < u(sj,sz),Vsy € Sy. Since, u = u; = —up, the above is
equivalent to uq(s],s5) > u1(s1,55),Vs1 € Sy and up(s],s5) > ua(s],s2),Vs2 € Sy < (s7,53) is a
PSNE. O

Consider maxmin and minmax values
v = max min u(s1,52) maxmin
51E€51 52€5)

7 = min max u(sy,s) minmax
5p€57 51€57

Question

How are the maxmin and minmax values related?
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Relationship of the security values

Lemma

For matrix games 0 > v.

Proof.

u(sy,sp) = min u(sy, t), Vs, o,
thEeSy
= maxu(ty,sp) = max min u(fy,tp), Vs, € Sp
HES] HEST hhES)

= min maxu(ty, tp) > max min u(ty, tp)
th €Sy t1 €Sy €S HHES)

definition of min
RHS was dominated for each s;

RHS was a constant



Contents

» Relation between maxmin and PSNE



Earlier examples and security values

Player 1

minmax

maxmin

-1

-1




Earlier examples and

security values

maxmin

-1

Player 1

-1




Earlier examples and security values

Player 1

minmax

L R maxmin
-1 1 -1

1 -1 -1

1 1

PSNE does not exist



Earlier examples and security values (contd.)

L C R maxmin
T 3 -5 -2 -5
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Earlier examples and security values (contd.)

L C R maxmin
T 3 -5 -2 -5
E M 1 4 1 1
7
= B 6 -3 -5 -5
minmax 6 4 1
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Earlier examples and security values (contd.)

Player 1

M

B

minmax

C R maxmin
-5 -2 -5
4 1 1
-3 =5 =5
4 1
v=1=v

PSNE exists
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PSNE Theorem

Define the following strategies

s] € arg max min u(s1,s2), maxmin strategy of player 1
51€51 52€5)

s, € arg min maxu(sy,s2), minmax strategy of player 2
52€57 51€57

Theorem
A game has a PSNE (equivalently, a saddle point) if and only if 0 = v = u(s},s;), where s and s} are

maxmin and minmax strategies for players 1 and 2 respectively.

Observation: (s],s5) is a PSNE
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(=)ie,if (s],55)isaPSNE — =0 =
Since (s7,s3) is a PSNE, u(s},s3) > u(s1,s3),Vs1 € S1.

= u(s],s3) = maxu(ty,s;)
€S

> min maxu(ty, ty), since s is a specific strategy
tr €Sy t1 €Sy

0

Similarly, using the same argument for player 2, we get v > u(s},s3 ), since for player 2, utility
Up = —U
But v > v (from the previous lemma), hence
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Proof (contd.)
(<=)ie.v=v=u(s],s;) = (s7,55)is a PSNE

u(sy, s2) > mi§1 u(sy, tz), by definition of min
€Sy
= max min u(t, ), since s is the maxmin strategy for player 1
t1€51 1HESy

= v (given)

Similarly, we can show u(s1,s5) < v, Vs; € $1



Proof of the PSNE Theorem (contd.)

Proof (contd.)
(<=)ie.v=v=u(s],s;) = (s7,55)is a PSNE

u(sy, s2) > mi§1 u(sy, tz), by definition of min
12€5

= max min u(t, ), since s is the maxmin strategy for player 1
1 ES) thESy

= v (given)

Similarly, we can show u(s1,s5) < v, Vs; € $1
But v = u(s],s;). Substitute and get that (s],s;) is a PSNE.
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Mixed strategy: probability distribution over the set of strategies of that player
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Mixed Strategies

Mixed strategy: probability distribution over the set of strategies of that player

Player 2
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Mixed Strategies

Mixed strategy: probability distribution over the set of strategies of that player

Player 2

4 1

5L s R
— 2L -1,1 1,-1
o
>
=
~ IR| 1,-1 ~1,1

¢ Consider a finite set A, define
M ={pe[0,1]4:Y p(a) =1}

acA

e Mixed strategy set of player 1: AS; = A{L,R}, (},3) € AS;
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Mixed Strategies (contd.)

* Notation: 0; is a mixed strategy of player i

e g, € AS;,ie. ,0;:5 — [0, 1] s.t. ZS,ESI- O'Z'(Si) =1

* We are discussing non-cooperative games, the players choose their strategies independently
¢ The joint probability of player 1 picking s; and player 2 picking s, = 07(s1)02(s2)

Utility of player i at a mixed strategy profile (0;, 0_;) is

ui(U’l’,O’,l’) = Z Z Z (71(51)'(72(52)"'(7;1(514) ui(sl,sz,...,sn)
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* Notation: 0; is a mixed strategy of player i

e g, € AS;,ie. ,0;:5 — [0, 1] s.t. ZS,ESI- O'Z'(Si) =1

* We are discussing non-cooperative games, the players choose their strategies independently
¢ The joint probability of player 1 picking s; and player 2 picking s, = 07(s1)02(s2)

e Utility of player i at a mixed strategy profile (0;,0_;) is
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Mixed Strategies (contd.)

* Notation: 0; is a mixed strategy of player i
e g, € AS;,ie. ,0;:5 — [0, 1] s.t. ZS,ESI- O'Z'(Si) =1
* We are discussing non-cooperative games, the players choose their strategies independently
¢ The joint probability of player 1 picking s; and player 2 picking s, = 07(s1)02(s2)
e Utility of player i at a mixed strategy profile (0;,0_;) is
ui(oj,0_) =Y, Y. - Y ou(s1) - 0a(s2) - - Oulsn) ui(s1,52,. .. ,5n)

$1€51 52€S5) 51 €Sy

* We are overloading u; to denote the utility at pure and mixed strategies

o Utility at a mixed strategy is the expectation of the utilities at pure strategies; all the rules of
expectation hold, e.g., linearity, conditional expectation, etc.
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Mixed Strategies Nash Equilibrium

Definition (Mixed Strategy Nash Equilibrium)
A mixed strategy Nash equilibrium (MSNE) is a mixed strategy profile (c;*,c*,), s.t.

ui(c¥,0*;) > ui(0;,0*;), Vo; € AS; and Vi € N.

Question

Relation between PSNE and MSNE?

Answer

PSNE — MSNE
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An Alternative Definition

Theorem

A mixed strategy profile (o,0* ), is an MSNE if and only if Vs; € S; and Vi € N
ui(o7,0%;) = ui(si, 0%y).

Proof.

(=): The pure strategy s; is a special case of the mixed strategy, the mixed strategy with s;
having probability 1. Inequality holds by definition of MSNE
(«<=) Pick an arbitrary mixed strategy o; of player i

(given)
ui(oy,0) = Y oilsi) - ui(si, 07 ;)
5;€ES; —

<”i(‘71‘*r0’i,’)



An Alternative Definition

Theorem

A mixed strategy profile (o,0* ), is an MSNE if and only if Vs; € S; and Vi € N
ui(o7,0%;) = ui(si, 0%y).

Proof.

(=): The pure strategy s; is a special case of the mixed strategy, the mixed strategy with s;
having probability 1. Inequality holds by definition of MSNE
(«<=) Pick an arbitrary mixed strategy o; of player i

i(oi, 0, 2 ‘7—1 z i(si,0 )

5;€S;
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An Alternative Definition

Theorem

A mixed strategy profile (o,0* ), is an MSNE if and only if Vs; € S; and Vi € N
ui(o7,0%;) = ui(si, 0%y).

Proof.

(=): The pure strategy s; is a special case of the mixed strategy, the mixed strategy with s;
having probability 1. Inequality holds by definition of MSNE
(«<=) Pick an arbitrary mixed strategy o; of player i

i(oi, 0, 2 ‘7—1 z i(si,0 )
5;€S;
< ) oilsi) - ui(of, 0%y)
$;€S;
= u;(0},0Z;) - Z oi(si) = ui(oj, 0%))

s,-eS,—
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Examples of MSNE

Question
Is the mixed strategy profile an MSNE?
Player 2

4 1

5 L 5 R
— 2Ll -1,1 1,-1
)
>
= 1
~ o3 R 1,-1 —1,1

* To answer this, we need to show that there does not exist any better mixed strategy for the
player

* Expected utility of player 2 from L =2/3-1+1/3-(-1) =1/3

* Expected utility of player 2 from R =2/3-(-1)+1/3-1=-1/3
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Examples of MSNE

Question
Is the mixed strategy profile an MSNE?
Player 2

1 1

2 L 2 R
— L] —1,1 1,-1
)
>
=
~ 7 R 1,-1 -1,1

e Expected utility will increase if some probability is transferred from R to L
* = the current profile is not an MSNE

* Some balance in the utilities is needed

* Does there exist any improving mixed strategy?
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Definition (Support of mixed strategy/probability distribution)

For mixed strategy o;, the subset of strategy set of i on which ¢; has a positive mass is called the
support of 0; and is denoted by d(c;). Formally, 6(0;) = {s; € S; : 0;(s;) > 0}.
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How to find an MSNE

Definition (Support of mixed strategy/probability distribution)

For mixed strategy o;, the subset of strategy set of i on which ¢; has a positive mass is called the
support of 0; and is denoted by d(c;). Formally, 6(0;) = {s; € S; : 0;(s;) > 0}.

Using the definition of support, here is a characterization of MSNE

Theorem
A mixed strategy profile is an MSNE iff * Vi € N
Q ui(s;,0*;) is identical Vs; € 6(0;),

(2] ui(si/ U'i) 2 ui(sl-,O'i-),VSi C 5(0-'*)15,' ¢ 5(0-*)
1 1 1 1 1 1

“This is a shorthand for ‘if and only if’.
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Implication

Consider Penalty Shoot Game

Goalkeeper
L R
5 L -1,1 1,-1
<)
2
» R 1,-1 -1,1

Case 1: support profile ({L}, {L}): for player 1, s} = R — violates condition 2
Case 2: support profile ({L,R}, {L}) — symmetric for the other case

For Player 1, the expected utility has to be the same for L and R - not possible — violates
condition 1
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Implication

Case 3: support profile ({L, R}, {L,R}): condition 2 is vacuously satisfied
For condition 1, let player 1 chooses L w.p. p and player 2 choose L w.p. g

For player 1:

(L (g1 =) =mR (q1-q) = (-)g+1-1-g)=1q+ (1)1 ~q) =q=3

For player 2:
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Implication

Case 3: support profile ({L, R}, {L,R}): condition 2 is vacuously satisfied
For condition 1, let player 1 chooses L w.p. p and player 2 choose L w.p. g

For player 1:

u (L (q1-9)) =mR (q1-q) = (-)g+1-1-q)=1-g+(-1){1~-q) S q=3

For player 2:
1
u2((p1=p),L) =ua((p, 1 =p),R) =p=3

((2)(3))

MSNE =
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MSNE Characterization Theorem

Theorem
A mixed strategy profile is an MSNE iff Vi € N
Q u;(s;,0*;) is identical Vs; € 6(07),
Q ui(si, 0*;) > ui(s},0*;),Vs; C 6(07),s; ¢ 6(07}).

Observations:

* maXgeas; 4i(0i, 0-;) = maxes, U(Si, 0—;)
maximizing w.r.t. a distribution < whole probability mass at max
e If (0, 0";) is an MSNE, then
max u;(0;, 0" ;) = maxu;(s;,c*;) = max u;(s;, 0" ;
TiEAS; Z( 1 1) s:€5; Z( 1 l) SiE(S((T]-*) l( 1 z)
the maximizer must lie in 6(¢;°) — if not, then put all probability mass on that s} ¢ J(c;) that
has the maximum value of the utility - (¢}, c* ;) is not a MSNE
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Proof of MSNE Characterization Theorem

(=) Given (¢}, 0*;) is an MSNE

w; (o, 0*;) = max u;(o;, 0" ;) = maxu;(s;,c*;) = max u;(s;,c*; 1
1( i’ —z) FEAS; 1( ir —z) sieS; 1( ir —1) sieé(ai*) 1( ir —z) ()

By definition of expected utility
wi(of,0%) = Y of (sp)ui(si, o) = Y o (si)uilsi, o) 2)

Si€S; s;€6(c})

1

Equations (1) and (2) are equal, i.e., max is equal to positive weighted average — can happen only
when all values are same: proves condition 1
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Proof (contd.)

For condition 2: Suppose for contradiction, there exists s; € d(0}') and s, & 5(0}°) s.t.
ui(si, o) < ui(s;, 0*;)

We can shift the probability mass ¢*(s;) to s/, this new mixed strategy gives a strict higher utility
to player i: contradicts MSNE

This completes the proof of the necessary direction.

(<) Given the 2 conditions of the theorem, need to show that (¢, 0*;) is an MSNE

Let u(s;,0*;) = mi(c*;),Vs; € 5(07) condition 1

Note m;(c*;) = max u;(si, 0*;) condition 2
S;i€95;



Proof (contd.)

ui(of, o) =Y o (siui(si, 0;), by definition of 6(c)
si€d(o;)
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ui(of, o) =Y o (siui(si, 0;), by definition of 6(c)
si€d(o;)
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Proof (contd.)

ui(of, o) =Y o (siui(si, 0;), by definition of 6(c)
si€d(o;)
mi(c*;) previous conclusion
= maxu;(s;, ;) previous conclusion
5;€S;
= max u;(0;,0";) from the observation
g;EAS;

> ui(oy,0%;), Yo; € AS;



Proof (contd.)

ui(of, o) =Y o (siui(si, 0;), by definition of 6(c)
si€5(c7)
=m;(c*;) previous conclusion
= maxu;(s;, ;) previous conclusion
5;€S;
= max u;(0;,0";) from the observation
g;EAS;

= ui(oi,afi), Vo; € AS;

This proves the sufficient direction. The result yields an algorithmic way to find MSNE
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MSNE characterization theorem to algorithm

Consider a NFG G = (N, (S;)ien, (#4i)ieN)

The total number of supports of S; X Sy x S3--- X §; is
K= (251 —1) x 2%/ —1) x ... x (2] — 1)

For every support profile X; x X5 x - -- X;, where X; C §;, solve the following feasibility program

Program

w; = Z (HO'](S])) o ui(si,s_,-),Vsz- S X,‘,Vi EN
5_sES_3 ]751
w; = 2 (H(T](S])) . ui(Sl’,S,i),VS,‘ €S \X;,VieN
5_i€5_; jFi
oj(sj) > 0,Vsj € S;,Vj €N, ) oi(s)=1VjeN

SjGXj



Remarks on the algorithm

Program

w; = Z (HO'](S])) g ui(si,s,i),‘v’si e X;,VieN

S_i€S_; j#i
w; = Z (HU'](S])) ui(si,s_i),Vs; € S;\ X;, Vi €N
§_HES 4 ]7&1
oi(sj) > 0,Vs; € S;,Vj € N, Y oi(s) =1V eN

S]‘EXj

* This is not a linear program unless n = 2

Daskalakis, Goldberg, Papadimitriou, “The Complexity of Computing a Nash Equilibrium” [2009]
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Remarks on the algorithm

Program

w; = Z (HO'](S])) g ui(Si,S,l’),VSl’ e X;,VieN

S_i€S_; j#i
w; = Z (HU'](S])) ui(si,s_i),Vs; € S;\ X;, Vi €N
§_HES 4 ]751
oi(sj) > 0,Vs; € S;,Vj € N, Y oi(s) =1V eN

S]‘EXj

* This is not a linear program unless n = 2
* For general game, there is no poly-time algorithm

e Problem of finding an MSNE is PPAD-complete [Polynomial Parity Argument on Directed
graphs] 1

Daskalakis, Goldberg, Papadimitriou, “The Complexity of Computing a Nash Equilibrium” [2009]



MSNE and Dominance

The previous algorithm can be applied to a smaller set of strategies by removing the dominated
strategies

Is there a dominated strategy in this game? Domination can be via mixed strategies too

Player 2
L R

T 4,1 2,5
—
=
= M 1,3 6,2
=
~

B 2,2 3,3




MSNE and Dominance

Theorem

If a pure strategy s; is strictly dominated by a mixed strategy o; € AS;, then in every MSNE of the game, s;
is chosen with probability zero.

So, We can remove such strategies without loss of equilibrium
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Existence of MSNE

Definition (Finite Games)

A game is said to be finite when the number of players is finite, and each player has a finite set of
strategies.

Theorem (Nash 1951)

Every finite game has a (mixed) Nash equilibrium.

Proof requires a few tools and a result from real analysis. Proof is separately given in the course
webpage.
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Existence of MSNE

Some background for understanding the proof.

* AsetS C RR"is convexif Vx,y € Sand VA € [0,1], Ax+ (1 —A)y € S.

* AsetS C IR"is closed if it contains all its limit points (points whose every neighborhood
contains a point in S). Example of a set that is not closed: [0,1) - every ball of radius € > 0
around 1 has a member of [0,1), but 1 is not in the set [0,1).

* AsetS C R"is bounded if 3xg € R" and R € (0,0) s.t. Vx € S, ||x — x¢||2 < R.
e Aset S C R"is compact if it is closed and bounded.

A result from real analysis (proof omitted):

Brouwer’s fixed point theorem

If S C R" is convex and compact and T : S — S, is continuous then T has a fixed point, i.e.,
Jx* € Sst. T(x*) = x*.
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