Indian Institute of Technology Bombay

CS 6001: Game Theory and Algorithmic Mechanism Design

Week 3

Swaprava Nath

Slide preparation acknowledgments: Onkar Borade and Rounak Dalmia

ज्ञानम् परमम् ध्येयम्
Knowledge is the supreme goal

Contents

- Matrix games
- Relation between maxmin and PSNE
- Mixed Strategies
- Mixed Strategy Nash Equilibrium
- Find MSNE
- MSNE Characterization Theorem Proof
- Algorithm to find MSNE
- Existence of MSNE

Matrix games: two player zero-sum games

A special class with certain nice security and stability properties

Matrix games: two player zero-sum games

A special class with certain nice security and stability properties

Definition (Two player zero-sum games)

A NFG $\left\langle N,\left(S_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right\rangle$ with $N=\{1,2\}$ and $u_{1}+u_{2} \equiv 0$

Matrix games: two player zero-sum games

A special class with certain nice security and stability properties

Definition (Two player zero-sum games)

A NFG $\left\langle N,\left(S_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right\rangle$ with $N=\{1,2\}$ and $u_{1}+u_{2} \equiv 0$

Question

Why called matrix game?

Matrix games: two player zero-sum games

A special class with certain nice security and stability properties

Definition (Two player zero-sum games)

A NFG $\left\langle N,\left(S_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right\rangle$ with $N=\{1,2\}$ and $u_{1}+u_{2} \equiv 0$

Question

Why called matrix game?

Answer

Possible to represent the game with only one matrix considering the utilities of player 1; player 2's utilities are negative of this matrix

Example: Penalty shoot game

Player 2

Example: Penalty shoot game

Player 2

$\begin{gathered} \text { İ } \\ \stackrel{0}{0} \\ \stackrel{\rightharpoonup}{i} \end{gathered}$		R maxmin		
		-1	1	-1
	R	1	-1	-1
	minmax	1	1	

Example: Penalty shoot game

Player 2

$$
\quad \Longrightarrow \quad\left(\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right)=: u
$$

Player 2's maxmin value is the minmax value of this matrix

	L	L		axm
		-1	1	-1
	R	1	-1	-1
	minmax	1	1	

Another example

	Player 2		
	L	C	R
\checkmark T	3, -3	-5,5	-2,2
這 M	1,-1	4,-4	1,-1
A B	6,-6	-3,3	-5,5

Another example

	Player 2				T		L C	R maxmin	
	L	C	R	$\begin{aligned} & \frac{\rightharpoonup}{0} \\ & \frac{0}{\mathrm{C}} \end{aligned}$		3	-5	-2	-5
\checkmark T	3,-3	-5,5	-2,2		M	1	4	1	1
号 M	1,-1	4,-4	1,-1		B	6	-3	-5	-5
	6,-6	-3,3	$-5,5$		nmax	6	4	1	

	L	R maxmin		$\begin{gathered} \overrightarrow{0} \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{a} \end{gathered}$	T	L C		R maxmin	
				3		-5	-2	-5	
				M	1	4	1	1	
	-1 1	1 -1	-1 -1		B	6	-3	-5	-5
$\stackrel{\text { minmax }}{ }$	1	1			max	6	4	1	

Two examples together

		R maxmin		$\begin{aligned} & \vec{y} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$	T	L C		R maxmin	
				3		-5	-2	-5	
	L			M	1	4	1	1	
$\begin{array}{ll} \mathrm{L} & \mathrm{~L} \\ \mathrm{~S} \end{array}$	-1	-1	-1		B	6	-3	-5	-5
\sim minmax	1	1				6	4	1	

Question

What are the PSNEs for the above games?

Two examples together

		R maxmin		$\begin{aligned} & \overrightarrow{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{a} \end{aligned}$	T	L C		R maxmin	
				3		-5	-2	-5	
	L			M	1	4	1	1	
\ni	-1	1	-1		B	6	-3	-5	-5
ส R	1	-1	-1						
$\stackrel{\text { minmax }}{ }$	1	1			nmax	6	4	1	

Question

What are the PSNEs for the above games?

Answer

Left: no PSNE; Right: (M,R)

Saddle point

Saddle point of a matrix

The value is simultaneously the maximum in its column and minimum in its row i.e., maximum for player 1 and minimum for player 2

Saddle point

Saddle point of a matrix

The value is simultaneously the maximum in its column and minimum in its row i.e., maximum for player 1 and minimum for player 2

Question

What are the saddle points for the above games?

Saddle point

Saddle point of a matrix

The value is simultaneously the maximum in its column and minimum in its row i.e., maximum for player 1 and minimum for player 2

Question

What are the saddle points for the above games?

Answer

For the first example: no saddle point, for the second: (M, R)

Saddle point

Saddle point of a matrix

The value is simultaneously the maximum in its column and minimum in its row i.e., maximum for player 1 and minimum for player 2

Question

What are the saddle points for the above games?

Answer

For the first example: no saddle point, for the second: (M, R)

Theorem

In a matrix game with utility matrix $u,\left(s_{1}^{*}, s_{2}^{*}\right)$ is a saddle point iff it is a PSNE.

Saddle point and PSNE

Proof.

Consider (s_{1}^{*}, s_{2}^{*}) to be a saddle point. By definition of saddle point, this happens iff $u\left(s_{1}^{*}, s_{2}^{*}\right) \geqslant u\left(s_{1}, s_{2}^{*}\right), \forall s_{1} \in S_{1}$ and $u\left(s_{1}^{*}, s_{2}^{*}\right) \leqslant u\left(s_{1}^{*}, s_{2}\right), \forall s_{2} \in S_{2}$. Since, $u \equiv u_{1} \equiv-u_{2}$, the above is equivalent to $u_{1}\left(s_{1}^{*}, s_{2}^{*}\right) \geqslant u_{1}\left(s_{1}, s_{2}^{*}\right), \forall s_{1} \in S_{1}$ and $u_{2}\left(s_{1}^{*}, s_{2}^{*}\right) \geqslant u_{2}\left(s_{1}^{*}, s_{2}\right), \forall s_{2} \in S_{2} \Leftrightarrow\left(s_{1}^{*}, s_{2}^{*}\right)$ is a PSNE.

Saddle point and PSNE

Proof.

Consider (s_{1}^{*}, s_{2}^{*}) to be a saddle point. By definition of saddle point, this happens iff $u\left(s_{1}^{*}, s_{2}^{*}\right) \geqslant u\left(s_{1}, s_{2}^{*}\right), \forall s_{1} \in S_{1}$ and $u\left(s_{1}^{*}, s_{2}^{*}\right) \leqslant u\left(s_{1}^{*}, s_{2}\right), \forall s_{2} \in S_{2}$. Since, $u \equiv u_{1} \equiv-u_{2}$, the above is equivalent to $u_{1}\left(s_{1}^{*}, s_{2}^{*}\right) \geqslant u_{1}\left(s_{1}, s_{2}^{*}\right), \forall s_{1} \in S_{1}$ and $u_{2}\left(s_{1}^{*}, s_{2}^{*}\right) \geqslant u_{2}\left(s_{1}^{*}, s_{2}\right), \forall s_{2} \in S_{2} \Leftrightarrow\left(s_{1}^{*}, s_{2}^{*}\right)$ is a PSNE.

Consider maxmin and minmax values

$$
\begin{aligned}
& \underline{v}=\max _{s_{1} \in S_{1} \min _{2} \in S_{2}} u\left(s_{1}, s_{2}\right) \\
& \bar{v}=\min _{s_{2} \in S_{2}} \max _{s_{1} \in S_{1}} u\left(s_{1}, s_{2}\right)
\end{aligned}
$$

maxmin

 minmax
Saddle point and PSNE

Proof.

Consider (s_{1}^{*}, s_{2}^{*}) to be a saddle point. By definition of saddle point, this happens iff $u\left(s_{1}^{*}, s_{2}^{*}\right) \geqslant u\left(s_{1}, s_{2}^{*}\right), \forall s_{1} \in S_{1}$ and $u\left(s_{1}^{*}, s_{2}^{*}\right) \leqslant u\left(s_{1}^{*}, s_{2}\right), \forall s_{2} \in S_{2}$. Since, $u \equiv u_{1} \equiv-u_{2}$, the above is equivalent to $u_{1}\left(s_{1}^{*}, s_{2}^{*}\right) \geqslant u_{1}\left(s_{1}, s_{2}^{*}\right), \forall s_{1} \in S_{1}$ and $u_{2}\left(s_{1}^{*}, s_{2}^{*}\right) \geqslant u_{2}\left(s_{1}^{*}, s_{2}\right), \forall s_{2} \in S_{2} \Leftrightarrow\left(s_{1}^{*}, s_{2}^{*}\right)$ is a PSNE.

Consider maxmin and minmax values

$$
\begin{aligned}
& \underline{v}=\max _{s_{1} \in S_{1}} \min _{s_{2} \in S_{2}} u\left(s_{1}, s_{2}\right) \\
& \bar{v}=\min _{s_{2} \in S_{2}} \max _{s_{1} \in S_{1}} u\left(s_{1}, s_{2}\right)
\end{aligned}
$$

maxmin

 minmaxHow are the maxmin and minmax values related?

Relationship of the security values

Lemma
For matrix games $\bar{v} \geqslant \underline{v}$.

Relationship of the security values

Lemma

For matrix games $\bar{v} \geqslant \underline{v}$.

Proof.

$$
u\left(s_{1}, s_{2}\right) \geqslant \min _{t_{2} \in S_{2}} u\left(s_{1}, t_{2}\right), \forall s_{1}, s_{2},
$$

definition of min

Relationship of the security values

Lemma

For matrix games $\bar{v} \geqslant \underline{v}$.

Proof.

$$
\begin{gathered}
u\left(s_{1}, s_{2}\right) \geqslant \min _{t_{2} \in S_{2}} u\left(s_{1}, t_{2}\right), \forall s_{1}, s_{2} \\
\Rightarrow \max _{t_{1} \in S_{1}} u\left(t_{1}, s_{2}\right) \geqslant \max _{t_{1} \in S_{1}} \min _{t_{2} \in S_{2}} u\left(t_{1}, t_{2}\right), \forall s_{2} \in S_{2}
\end{gathered}
$$

definition of min

RHS was dominated for each s_{1}

Relationship of the security values

Lemma

For matrix games $\bar{v} \geqslant \underline{v}$.

Proof.

$$
\begin{aligned}
u\left(s_{1}, s_{2}\right) & \geqslant \min _{t_{2} \in S_{2}} u\left(s_{1}, t_{2}\right), \forall s_{1}, s_{2}, \\
\Rightarrow \max _{t_{1} \in S_{1}} u\left(t_{1}, s_{2}\right) & \geqslant \max _{t_{1} \in S_{1}} \min _{t_{2} \in S_{2}} u\left(t_{1}, t_{2}\right), \forall s_{2} \in S_{2} \\
\Rightarrow \min _{t_{2} \in S_{2}} \max _{t_{1} \in S_{1}} u\left(t_{1}, t_{2}\right) & \geqslant \max _{t_{1} \in S_{1} t_{2} \in S_{2}} u\left(t_{1}, t_{2}\right)
\end{aligned}
$$

definition of min
RHS was dominated for each s_{1}

RHS was a constant

Contents

```
- Matrix games
```

- Relation between maxmin and PSNE
- Mixed Strategies
- Mixed Strategy Nash Equilibrium
- Find MSNE
- MSNE Characterization Theorem Proof
- Algorithm to find MSNE
- Existence of MSNE

Earlier examples and security values

	L	R	maxmin
L	-1	1	-1
苞 R	1	-1	-1
minmax	1	1	

Earlier examples and security values

	L	R	maxmin
L	-1	1	-1
- P	1	-1	-1
minmax	1	1	

$$
\bar{v}=1>-1=\underline{v}
$$

Earlier examples and security values

	L	R	maxmin
L	-1	1	-1
芯 R	1	-1	-1
minmax	1	1	

$$
\begin{gathered}
\bar{v}=1>-1=\underline{v} \\
\text { PSNE does not exist }
\end{gathered}
$$

Earlier examples and security values (contd.)

T	L	C	R	maxmin
	3	-5	-2	-5
$F \quad \mathrm{M}$	1	4	1	1
A B	6	-3	-5	-5
minmax	6	4	1	

Earlier examples and security values (contd.)

T	L	C	R	maxmin
	3	-5	-2	-5
$\Rightarrow \quad \mathrm{M}$	1	4	1	1
$\cdots \quad B$	6	-3	-5	-5
minmax	6	4	1	

$$
\bar{v}=1=\underline{v}
$$

Earlier examples and security values (contd.)

T		L	C	R	axmin
		3	-5	-2	-5
$\begin{gathered} \overrightarrow{4} \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{心}{a} \end{gathered}$	M	1	4	1	1
	B	6	-3	-5	-5
minmax		6	4	1	

$$
\bar{v}=1=\underline{v}
$$

PSNE exists

PSNE Theorem

Define the following strategies

$$
\begin{aligned}
& s_{1}^{*} \in \arg \max _{s_{1} \in S_{1} s_{2} \in S_{2}} u\left(s_{1}, s_{2}\right), \\
& s_{2}^{*} \in \arg \min _{s_{2} \in S_{2}} \max _{1} \in S_{1} u\left(s_{1}, s_{2}\right),
\end{aligned}
$$

maxmin strategy of player 1 minmax strategy of player 2

PSNE Theorem

Define the following strategies

$$
\begin{aligned}
& s_{1}^{*} \in \arg \max _{s_{1} \in S_{1} s_{2} \in S_{2}} u\left(s_{1}, s_{2}\right), \\
& s_{2}^{*} \in \arg \min _{s_{2} \in S_{2}} \max _{1} \in S_{1} u\left(s_{1}, s_{2}\right),
\end{aligned}
$$

maxmin strategy of player 1 minmax strategy of player 2

Theorem

A game has a PSNE (equivalently, a saddle point) if and only if $\bar{v}=\underline{v}=u\left(s_{1}^{*}, s_{2}^{*}\right)$, where s_{1}^{*} and s_{2}^{*} are maxmin and minmax strategies for players 1 and 2 respectively.

Observation: $\left(s_{1}^{*}, s_{2}^{*}\right)$ is a PSNE

Proof of the PSNE Theorem

Proof
(\Longrightarrow) i.e., if $\left(s_{1}^{*}, s_{2}^{*}\right)$ is a PSNE $\Longrightarrow \bar{v}=\underline{v}=u\left(s_{1}^{*}, s_{2}^{*}\right)$

Proof of the PSNE Theorem

Proof

(\Longrightarrow) i.e., if $\left(s_{1}^{*}, s_{2}^{*}\right)$ is a PSNE $\Longrightarrow \bar{v}=\underline{v}=u\left(s_{1}^{*}, s_{2}^{*}\right)$
Since $\left(s_{1}^{*}, s_{2}^{*}\right)$ is a PSNE, $u\left(s_{1}^{*}, s_{2}^{*}\right) \geqslant u\left(s_{1}, s_{2}^{*}\right), \forall s_{1} \in S_{1}$.

$$
\begin{aligned}
\Longrightarrow u\left(s_{1}^{*}, s_{2}^{*}\right) & \geqslant \max _{t_{1} \in S_{1}} u\left(t_{1}, s_{2}^{*}\right) \\
& \geqslant \min _{t_{2} \in S_{2}} \max _{t_{1} \in S_{1}} u\left(t_{1}, t_{2}\right), \text { since } s_{2}^{*} \text { is a specific strategy } \\
& =\bar{v}
\end{aligned}
$$

Proof of the PSNE Theorem

Proof

(\Longrightarrow) i.e., if $\left(s_{1}^{*}, s_{2}^{*}\right)$ is a PSNE $\Longrightarrow \bar{v}=\underline{v}=u\left(s_{1}^{*}, s_{2}^{*}\right)$
Since $\left(s_{1}^{*}, s_{2}^{*}\right)$ is a PSNE, $u\left(s_{1}^{*}, s_{2}^{*}\right) \geqslant u\left(s_{1}, s_{2}^{*}\right), \forall s_{1} \in S_{1}$.

$$
\begin{aligned}
\Longrightarrow u\left(s_{1}^{*}, s_{2}^{*}\right) & \geqslant \max _{t_{1} \in S_{1}} u\left(t_{1}, s_{2}^{*}\right) \\
& \geqslant \min _{t_{2} \in S_{2}} \max _{t_{1} \in S_{1}} u\left(t_{1}, t_{2}\right), \text { since } s_{2}^{*} \text { is a specific strategy } \\
& =\bar{v}
\end{aligned}
$$

Similarly, using the same argument for player 2 , we get $\underline{v} \geqslant u\left(s_{1}^{*}, s_{2}^{*}\right)$, since for player 2 , utility $u_{2} \equiv-u$

Proof of the PSNE Theorem

Proof

(\Longrightarrow) i.e., if $\left(s_{1}^{*}, s_{2}^{*}\right)$ is a PSNE $\Longrightarrow \bar{v}=\underline{v}=u\left(s_{1}^{*}, s_{2}^{*}\right)$
Since $\left(s_{1}^{*}, s_{2}^{*}\right)$ is a PSNE, $u\left(s_{1}^{*}, s_{2}^{*}\right) \geqslant u\left(s_{1}, s_{2}^{*}\right), \forall s_{1} \in S_{1}$.

$$
\begin{aligned}
\Longrightarrow u\left(s_{1}^{*}, s_{2}^{*}\right) & \geqslant \max _{t_{1} \in S_{1}} u\left(t_{1}, s_{2}^{*}\right) \\
& \geqslant \min _{t_{2} \in S_{2}} \max _{t_{1} \in S_{1}} u\left(t_{1}, t_{2}\right), \text { since } s_{2}^{*} \text { is a specific strategy } \\
& =\bar{v}
\end{aligned}
$$

Similarly, using the same argument for player 2 , we get $\underline{v} \geqslant u\left(s_{1}^{*}, s_{2}^{*}\right)$, since for player 2 , utility $u_{2} \equiv-u$
But $\bar{v} \geqslant \underline{v}$ (from the previous lemma), hence

Proof of the PSNE Theorem

Proof

(\Longrightarrow) i.e., if $\left(s_{1}^{*}, s_{2}^{*}\right)$ is a PSNE $\Longrightarrow \bar{v}=\underline{v}=u\left(s_{1}^{*}, s_{2}^{*}\right)$
Since $\left(s_{1}^{*}, s_{2}^{*}\right)$ is a PSNE, $u\left(s_{1}^{*}, s_{2}^{*}\right) \geqslant u\left(s_{1}, s_{2}^{*}\right), \forall s_{1} \in S_{1}$.

$$
\begin{aligned}
\Longrightarrow u\left(s_{1}^{*}, s_{2}^{*}\right) & \geqslant \max _{t_{1} \in S_{1}} u\left(t_{1}, s_{2}^{*}\right) \\
& \geqslant \min _{t_{2} \in S_{2}} \max _{t_{1} \in S_{1}} u\left(t_{1}, t_{2}\right), \text { since } s_{2}^{*} \text { is a specific strategy } \\
& =\bar{v}
\end{aligned}
$$

Similarly, using the same argument for player 2 , we get $\underline{v} \geqslant u\left(s_{1}^{*}, s_{2}^{*}\right)$, since for player 2 , utility $u_{2} \equiv-u$
But $\bar{v} \geqslant \underline{v}$ (from the previous lemma), hence

$$
\begin{aligned}
& u\left(s_{1}^{*}, s_{2}^{*}\right) \geqslant \bar{v} \geqslant \underline{v} \geqslant u\left(s_{1}^{*}, s_{2}^{*}\right) \\
\Longrightarrow & u\left(s_{1}^{*}, s_{2}^{*}\right)=\bar{v}=\underline{v}
\end{aligned}
$$

Proof of the PSNE Theorem (contd.)

Proof (contd.)
(\Longleftarrow) i.e. $\bar{v}=\underline{v}=u\left(s_{1}^{*}, s_{2}^{*}\right) \Longrightarrow\left(s_{1}^{*}, s_{2}^{*}\right)$ is a PSNE

Proof of the PSNE Theorem (contd.)

Proof (contd.)

(\Longleftarrow) i.e. $\bar{v}=\underline{v}=u\left(s_{1}^{*}, s_{2}^{*}\right) \Longrightarrow\left(s_{1}^{*}, s_{2}^{*}\right)$ is a PSNE
$u\left(s_{1}^{*}, s_{2}\right) \geqslant \min _{t_{2} \in S_{2}} u\left(s_{1}^{*}, t_{2}\right)$, by definition of \min
$=\max _{t_{1} \in S_{1} \min _{2} \in S_{2}} u\left(t_{1}, t_{2}\right)$, since s_{1}^{*} is the maxmin strategy for player 1
$=v$ (given)

Proof of the PSNE Theorem (contd.)

Proof (contd.)

$$
(\Longleftarrow) \text { i.e. } \bar{v}=\underline{v}=u\left(s_{1}^{*}, s_{2}^{*}\right) \Longrightarrow\left(s_{1}^{*}, s_{2}^{*}\right) \text { is a PSNE }
$$

$$
\begin{aligned}
u\left(s_{1}^{*}, s_{2}\right) & \geqslant \min _{t_{2} \in S_{2}} u\left(s_{1}^{*}, t_{2}\right), \text { by definition of min } \\
& =\max _{t_{1} \in S_{1} t_{2} \in S_{2}} u\left(t_{1}, t_{2}\right), \text { since } s_{1}^{*} \text { is the maxmin strategy for player } 1 \\
& =v \text { (given) }
\end{aligned}
$$

Similarly, we can show $u\left(s_{1}, s_{2}^{*}\right) \leqslant v, \forall s_{1} \in S_{1}$

Proof of the PSNE Theorem (contd.)

Proof (contd.)

$$
(\Longleftarrow) \text { i.e. } \bar{v}=\underline{v}=u\left(s_{1}^{*}, s_{2}^{*}\right) \Longrightarrow\left(s_{1}^{*}, s_{2}^{*}\right) \text { is a PSNE }
$$

$$
\begin{aligned}
u\left(s_{1}^{*}, s_{2}\right) & \geqslant \min _{t_{2} \in S_{2}} u\left(s_{1}^{*}, t_{2}\right), \text { by definition of min } \\
& =\max _{t_{1} \in S_{1} t_{2} \in S_{2}} u\left(t_{1}, t_{2}\right), \text { since } s_{1}^{*} \text { is the maxmin strategy for player } 1 \\
& =v \text { (given) }
\end{aligned}
$$

Similarly, we can show $u\left(s_{1}, s_{2}^{*}\right) \leqslant v, \forall s_{1} \in S_{1}$
But $v=u\left(s_{1}^{*}, s_{2}^{*}\right)$. Substitute and get that $\left(s_{1}^{*}, s_{2}^{*}\right)$ is a PSNE.

Contents

- Matrix games
- Relation between maxmin and PSNE
- Mixed Strategies
- Mixed Strategy Nash Equilibrium
- Find MSNE
- MSNE Characterization Theorem Proof
- Algorithm to find MSNE
- Existence of MSNE

Mixed Strategies

Mixed strategy: probability distribution over the set of strategies of that player

		Player 2	
		L	R
	L	-1,1	1,-1
	R	1, -1	-1,1

Mixed Strategies

Mixed strategy: probability distribution over the set of strategies of that player

	Player 2	
	L	
	$\frac{2}{3} \mathrm{R}$	
$\frac{\mathrm{J}}{3} \mathrm{~L}$	$-1,1$	$1,-1$
	$\frac{1}{3} \mathrm{R}$	$1,-1$

Mixed Strategies

Mixed strategy: probability distribution over the set of strategies of that player

Mixed Strategies

Mixed strategy: probability distribution over the set of strategies of that player

	Player 2	
	$\frac{4}{5} \mathrm{~L}$	
	$\frac{1}{5} \mathrm{R}$	
	$\frac{2}{3} \mathrm{~L}$	$-1,1$
	$1,-1$	
	$\frac{1}{3} \mathrm{R}$	$1,-1$

- Consider a finite set A, define

$$
\Delta A=\left\{p \in[0,1]^{|A|}: \sum_{a \in A} p(a)=1\right\}
$$

Mixed Strategies

Mixed strategy: probability distribution over the set of strategies of that player

	Player 2	
	$\frac{4}{5} \mathrm{~L}$	$\frac{1}{5} \mathrm{R}$
${ }_{y}{ }^{3} \frac{2}{3} \mathrm{~L}$	$-1,1$	1,-1
二 $\frac{1}{3} \mathrm{R}$	1, -1	-1,1

- Consider a finite set A, define

$$
\Delta A=\left\{p \in[0,1]^{|A|}: \sum_{a \in A} p(a)=1\right\}
$$

- Mixed strategy set of player 1: $\Delta S_{1}=\Delta\{L, R\},\left(\frac{2}{3}, \frac{1}{3}\right) \in \Delta S_{1}$

Mixed Strategies (contd.)

- Notation: σ_{i} is a mixed strategy of player i

Mixed Strategies (contd.)

- Notation: σ_{i} is a mixed strategy of player i
- $\sigma_{i} \in \Delta S_{i}$, i.e. , $\sigma_{i}: S_{i} \rightarrow[0,1]$ s.t. $\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right)=1$

Mixed Strategies (contd.)

- Notation: σ_{i} is a mixed strategy of player i
- $\sigma_{i} \in \Delta S_{i}$, i.e. , $\sigma_{i}: S_{i} \rightarrow[0,1]$ s.t. $\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right)=1$
- We are discussing non-cooperative games, the players choose their strategies independently

Mixed Strategies (contd.)

- Notation: σ_{i} is a mixed strategy of player i
- $\sigma_{i} \in \Delta S_{i}$, i.e. , $\sigma_{i}: S_{i} \rightarrow[0,1]$ s.t. $\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right)=1$
- We are discussing non-cooperative games, the players choose their strategies independently
- The joint probability of player 1 picking s_{1} and player 2 picking $s_{2}=\sigma_{1}\left(s_{1}\right) \sigma_{2}\left(s_{2}\right)$

Mixed Strategies (contd.)

- Notation: σ_{i} is a mixed strategy of player i
- $\sigma_{i} \in \Delta S_{i}$, i.e. , $\sigma_{i}: S_{i} \rightarrow[0,1]$ s.t. $\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right)=1$
- We are discussing non-cooperative games, the players choose their strategies independently
- The joint probability of player 1 picking s_{1} and player 2 picking $s_{2}=\sigma_{1}\left(s_{1}\right) \sigma_{2}\left(s_{2}\right)$
- Utility of player i at a mixed strategy profile $\left(\sigma_{i}, \sigma_{-i}\right)$ is

$$
u_{i}\left(\sigma_{i}, \sigma_{-i}\right)=\sum_{s_{1} \in S_{1}} \sum_{s_{2} \in S_{2}} \cdots \sum_{s_{n} \in S_{n}} \sigma_{1}\left(s_{1}\right) \cdot \sigma_{2}\left(s_{2}\right) \cdots \sigma_{n}\left(s_{n}\right) u_{i}\left(s_{1}, s_{2}, \ldots, s_{n}\right)
$$

Mixed Strategies (contd.)

- Notation: σ_{i} is a mixed strategy of player i
- $\sigma_{i} \in \Delta S_{i}$, i.e. , $\sigma_{i}: S_{i} \rightarrow[0,1]$ s.t. $\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right)=1$
- We are discussing non-cooperative games, the players choose their strategies independently
- The joint probability of player 1 picking s_{1} and player 2 picking $s_{2}=\sigma_{1}\left(s_{1}\right) \sigma_{2}\left(s_{2}\right)$
- Utility of player i at a mixed strategy profile $\left(\sigma_{i}, \sigma_{-i}\right)$ is

$$
u_{i}\left(\sigma_{i}, \sigma_{-i}\right)=\sum_{s_{1} \in S_{1}} \sum_{s_{2} \in S_{2}} \cdots \sum_{s_{n} \in S_{n}} \sigma_{1}\left(s_{1}\right) \cdot \sigma_{2}\left(s_{2}\right) \cdots \sigma_{n}\left(s_{n}\right) u_{i}\left(s_{1}, s_{2}, \ldots, s_{n}\right)
$$

- We are overloading u_{i} to denote the utility at pure and mixed strategies

Mixed Strategies (contd.)

- Notation: σ_{i} is a mixed strategy of player i
- $\sigma_{i} \in \Delta S_{i}$, i.e. , $\sigma_{i}: S_{i} \rightarrow[0,1]$ s.t. $\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right)=1$
- We are discussing non-cooperative games, the players choose their strategies independently
- The joint probability of player 1 picking s_{1} and player 2 picking $s_{2}=\sigma_{1}\left(s_{1}\right) \sigma_{2}\left(s_{2}\right)$
- Utility of player i at a mixed strategy profile $\left(\sigma_{i}, \sigma_{-i}\right)$ is

$$
u_{i}\left(\sigma_{i}, \sigma_{-i}\right)=\sum_{s_{1} \in S_{1}} \sum_{s_{2} \in S_{2}} \cdots \sum_{s_{n} \in S_{n}} \sigma_{1}\left(s_{1}\right) \cdot \sigma_{2}\left(s_{2}\right) \cdots \sigma_{n}\left(s_{n}\right) u_{i}\left(s_{1}, s_{2}, \ldots, s_{n}\right)
$$

- We are overloading u_{i} to denote the utility at pure and mixed strategies
- Utility at a mixed strategy is the expectation of the utilities at pure strategies; all the rules of expectation hold, e.g., linearity, conditional expectation, etc.

Example

Example

$$
u_{1}\left(\sigma_{1}, \sigma_{2}\right)=\frac{2}{3} \cdot \frac{4}{5} \cdot(-1)+\frac{2}{3} \cdot \frac{1}{5} \cdot(1)+\frac{1}{3} \cdot \frac{4}{5} \cdot(1)+\frac{1}{3} \cdot \frac{1}{5} \cdot(-1)
$$

Contents

- Matrix games
- Relation between maxmin and PSNE
- Mixed Strategies
- Mixed Strategy Nash Equilibrium
- Find MSNE
- MSNE Characterization Theorem Proof
- Algorithm to find MSNE
- Existence of MSNE

Mixed Strategies Nash Equilibrium

Definition (Mixed Strategy Nash Equilibrium)

A mixed strategy Nash equilibrium (MSNE) is a mixed strategy profile $\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)$, s.t.

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geqslant u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right), \forall \sigma_{i} \in \Delta S_{i} \text { and } \forall i \in N .
$$

Mixed Strategies Nash Equilibrium

Definition (Mixed Strategy Nash Equilibrium)

A mixed strategy Nash equilibrium (MSNE) is a mixed strategy profile $\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)$, s.t.

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geqslant u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right), \forall \sigma_{i} \in \Delta S_{i} \text { and } \forall i \in N .
$$

Question

Relation between PSNE and MSNE?

Mixed Strategies Nash Equilibrium

Definition (Mixed Strategy Nash Equilibrium)

A mixed strategy Nash equilibrium (MSNE) is a mixed strategy profile $\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)$, s.t.

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geqslant u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right), \forall \sigma_{i} \in \Delta S_{i} \text { and } \forall i \in N .
$$

Question

Relation between PSNE and MSNE?

Answer

PSNE \Longrightarrow MSNE

An Alternative Definition

Theorem

A mixed strategy profile $\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)$, is an MSNE if and only if $\forall s_{i} \in S_{i}$ and $\forall i \in N$

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geqslant u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) .
$$

An Alternative Definition

Theorem

A mixed strategy profile $\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)$, is an MSNE if and only if $\forall s_{i} \in S_{i}$ and $\forall i \in N$

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geqslant u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) .
$$

Proof.

(\Rightarrow) : The pure strategy s_{i} is a special case of the mixed strategy, the mixed strategy with s_{i} having probability 1 . Inequality holds by definition of MSNE

An Alternative Definition

Theorem

A mixed strategy profile $\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)$, is an MSNE if and only if $\forall s_{i} \in S_{i}$ and $\forall i \in N$

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geqslant u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) .
$$

Proof.

(\Rightarrow) : The pure strategy s_{i} is a special case of the mixed strategy, the mixed strategy with s_{i} having probability 1 . Inequality holds by definition of MSNE (\Leftarrow) Pick an arbitrary mixed strategy σ_{i} of player i

$$
u_{i}\left(\sigma_{i}, \sigma_{i}^{*}\right)=\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right) \cdot u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)
$$

An Alternative Definition

Theorem

A mixed strategy profile $\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)$, is an MSNE if and only if $\forall s_{i} \in S_{i}$ and $\forall i \in N$

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geqslant u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) .
$$

Proof.

(\Rightarrow) : The pure strategy s_{i} is a special case of the mixed strategy, the mixed strategy with s_{i} having probability 1 . Inequality holds by definition of MSNE
(\Leftarrow) Pick an arbitrary mixed strategy σ_{i} of player i

$$
u_{i}\left(\sigma_{i}, \sigma_{i}^{*}\right)=\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right) \cdot \underbrace{\substack{\text { (given) } \\\left(s_{i}, \sigma_{-i}^{*}\right)}}_{\leqslant u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)}
$$

An Alternative Definition

Theorem

A mixed strategy profile $\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)$, is an MSNE if and only if $\forall s_{i} \in S_{i}$ and $\forall i \in N$

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geqslant u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) .
$$

Proof.

(\Rightarrow) : The pure strategy s_{i} is a special case of the mixed strategy, the mixed strategy with s_{i} having probability 1 . Inequality holds by definition of MSNE (\Leftarrow) Pick an arbitrary mixed strategy σ_{i} of player i

$$
\begin{aligned}
u_{i}\left(\sigma_{i}, \sigma_{i}^{*}\right) & =\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right) \cdot u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \\
& \leqslant \sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right) \cdot u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)
\end{aligned}
$$

An Alternative Definition

Theorem

A mixed strategy profile $\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)$, is an MSNE if and only if $\forall s_{i} \in S_{i}$ and $\forall i \in N$

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geqslant u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) .
$$

Proof.

(\Rightarrow) : The pure strategy s_{i} is a special case of the mixed strategy, the mixed strategy with s_{i} having probability 1 . Inequality holds by definition of MSNE
(\Leftarrow) Pick an arbitrary mixed strategy σ_{i} of player i

$$
\begin{aligned}
u_{i}\left(\sigma_{i}, \sigma_{i}^{*}\right) & =\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right) \cdot u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \\
& \leqslant \sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right) \cdot u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \\
& =u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \cdot \sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right)=u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)
\end{aligned}
$$

Examples of MSNE

Question

Is the mixed strategy profile an MSNE?

Player 2

- To answer this, we need to show that there does not exist any better mixed strategy for the player

Examples of MSNE

Question

Is the mixed strategy profile an MSNE?

Player 2

- To answer this, we need to show that there does not exist any better mixed strategy for the player
- Expected utility of player 2 from $L=2 / 3 \cdot 1+1 / 3 \cdot(-1)=1 / 3$

Examples of MSNE

Question

Is the mixed strategy profile an MSNE?

Player 2

- To answer this, we need to show that there does not exist any better mixed strategy for the player
- Expected utility of player 2 from $L=2 / 3 \cdot 1+1 / 3 \cdot(-1)=1 / 3$
- Expected utility of player 2 from $R=2 / 3 \cdot(-1)+1 / 3 \cdot 1=-1 / 3$

Examples of MSNE

Question

Is the mixed strategy profile an MSNE?

- Expected utility will increase if some probability is transferred from R to L

Examples of MSNE

Question

Is the mixed strategy profile an MSNE?

Player 2

- Expected utility will increase if some probability is transferred from R to L
- \Rightarrow the current profile is not an MSNE

Examples of MSNE

Question

Is the mixed strategy profile an MSNE?

Player 2

- Expected utility will increase if some probability is transferred from R to L
- \Rightarrow the current profile is not an MSNE
- Some balance in the utilities is needed

Examples of MSNE

Question

Is the mixed strategy profile an MSNE?

Player 2

- Expected utility will increase if some probability is transferred from R to L
- \Rightarrow the current profile is not an MSNE
- Some balance in the utilities is needed
- Does there exist any improving mixed strategy?

Contents

- Matrix games
- Relation between maxmin and PSNE
- Mixed Strategies
- Mixed Strategy Nash Equilibrium
- Find MSNE
- MSNE Characterization Theorem Proof
- Algorithm to find MSNE
- Existence of MSNE

How to find an MSNE

Definition (Support of mixed strategy/probability distribution)

For mixed strategy σ_{i}, the subset of strategy set of i on which σ_{i} has a positive mass is called the support of σ_{i} and is denoted by $\delta\left(\sigma_{i}\right)$. Formally, $\delta\left(\sigma_{i}\right)=\left\{s_{i} \in S_{i}: \sigma_{i}\left(s_{i}\right)>0\right\}$.

How to find an MSNE

Definition (Support of mixed strategy/probability distribution)

For mixed strategy σ_{i}, the subset of strategy set of i on which σ_{i} has a positive mass is called the support of σ_{i} and is denoted by $\delta\left(\sigma_{i}\right)$. Formally, $\delta\left(\sigma_{i}\right)=\left\{s_{i} \in S_{i}: \sigma_{i}\left(s_{i}\right)>0\right\}$.

Using the definition of support, here is a characterization of MSNE

Theorem

A mixed strategy profile is an MSNE iff ${ }^{a} \forall i \in N$
${ }^{a}$ This is a shorthand for 'if and only if'.

How to find an MSNE

Definition (Support of mixed strategy/probability distribution)

For mixed strategy σ_{i}, the subset of strategy set of i on which σ_{i} has a positive mass is called the support of σ_{i} and is denoted by $\delta\left(\sigma_{i}\right)$. Formally, $\delta\left(\sigma_{i}\right)=\left\{s_{i} \in S_{i}: \sigma_{i}\left(s_{i}\right)>0\right\}$.

Using the definition of support, here is a characterization of MSNE

Theorem

A mixed strategy profile is an MSNE iff ${ }^{a} \forall i \in N$
(1) $u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)$ is identical $\forall s_{i} \in \delta\left(\sigma_{i}^{*}\right)$,

[^0]
How to find an MSNE

Definition (Support of mixed strategy/probability distribution)

For mixed strategy σ_{i}, the subset of strategy set of i on which σ_{i} has a positive mass is called the support of σ_{i} and is denoted by $\delta\left(\sigma_{i}\right)$. Formally, $\delta\left(\sigma_{i}\right)=\left\{s_{i} \in S_{i}: \sigma_{i}\left(s_{i}\right)>0\right\}$.

Using the definition of support, here is a characterization of MSNE

Theorem

A mixed strategy profile is an MSNE iff ${ }^{a} \forall i \in N$
(1) $u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)$ is identical $\forall s_{i} \in \delta\left(\sigma_{i}^{*}\right)$,
(2) $u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \geqslant u_{i}\left(s_{i}^{\prime}, \sigma_{-i}^{*}\right), \forall s_{i} \subseteq \delta\left(\sigma_{i}^{*}\right), s_{i}^{\prime} \notin \delta\left(\sigma_{i}^{*}\right)$.

[^1]
Implication

Consider Penalty Shoot Game

\#\%¢お	Goalkeeper	
	L	R
	$-1,1$	1,-1
	1,-1	-1,1

Implication

Consider Penalty Shoot Game

\#\%¢お	Goalkeeper	
	L	R
	$-1,1$	1,-1
	1,-1	-1,1

Case 1: support profile $(\{L\},\{L\})$: for player $1, s_{1}^{\prime}=R$ - violates condition 2

Implication

Consider Penalty Shoot Game

Case 1: support profile $(\{L\},\{L\})$: for player $1, s_{1}^{\prime}=R$ - violates condition 2
Case 2: support profile $(\{L, R\},\{L\})$ - symmetric for the other case
For Player 1, the expected utility has to be the same for L and R - not possible - violates condition 1

Implication

Case 3: support profile $(\{L, R\},\{L, R\})$: condition 2 is vacuously satisfied

Implication

Case 3: support profile $(\{L, R\},\{L, R\})$: condition 2 is vacuously satisfied
For condition 1, let player 1 chooses L w.p. p and player 2 choose L w.p. q

Implication

Case 3: support profile $(\{L, R\},\{L, R\})$: condition 2 is vacuously satisfied
For condition 1, let player 1 chooses L w.p. p and player 2 choose L w.p. q
For player 1:

$$
u_{1}(L,(q, 1-q))=u_{1}(R,(q, 1-q)) \Rightarrow(-1) q+1 \cdot(1-q)=1 \cdot q+(-1)(1-q) \Rightarrow q=\frac{1}{2}
$$

Implication

Case 3: support profile $(\{L, R\},\{L, R\})$: condition 2 is vacuously satisfied
For condition 1, let player 1 chooses L w.p. p and player 2 choose L w.p. q
For player 1:

$$
u_{1}(L,(q, 1-q))=u_{1}(R,(q, 1-q)) \Rightarrow(-1) q+1 \cdot(1-q)=1 \cdot q+(-1)(1-q) \Rightarrow q=\frac{1}{2}
$$

For player 2:

$$
u_{2}((p, 1-p), L)=u_{2}((p, 1-p), R) \Rightarrow p=\frac{1}{2}
$$

Implication

Case 3: support profile $(\{L, R\},\{L, R\})$: condition 2 is vacuously satisfied
For condition 1, let player 1 chooses L w.p. p and player 2 choose L w.p. q
For player 1:

$$
u_{1}(L,(q, 1-q))=u_{1}(R,(q, 1-q)) \Rightarrow(-1) q+1 \cdot(1-q)=1 \cdot q+(-1)(1-q) \Rightarrow q=\frac{1}{2}
$$

For player 2:

$$
u_{2}((p, 1-p), L)=u_{2}((p, 1-p), R) \Rightarrow p=\frac{1}{2}
$$

MSNE =

$$
\left(\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2}\right)\right)
$$

Exercises

Player 2

Player 2

	F	C	D
FF	2,1	0,0	1,1
$\stackrel{\sim}{\sim}$	0,0	1,2	2,0

Contents

```
- Matrix games
| Relation between maxmin and PSNE
- Mixed Strategies
- Mixed Strategy Nash Equilibrium
* Find MSNE
```

- MSNE Characterization Theorem Proof
- Algorithm to find MSNE
- Existence of MSNE

MSNE Characterization Theorem

Theorem

A mixed strategy profile is an MSNE iff $\forall i \in N$
(1) $u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)$ is identical $\forall s_{i} \in \delta\left(\sigma_{i}^{*}\right)$,
(2) $u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \geqslant u_{i}\left(s_{i}^{\prime}, \sigma_{-i}^{*}\right), \forall s_{i} \subseteq \delta\left(\sigma_{i}^{*}\right), s_{i}^{\prime} \notin \delta\left(\sigma_{i}^{*}\right)$.

MSNE Characterization Theorem

Theorem

A mixed strategy profile is an MSNE iff $\forall i \in N$
(1) $u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)$ is identical $\forall s_{i} \in \delta\left(\sigma_{i}^{*}\right)$,
(2) $u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \geqslant u_{i}\left(s_{i}^{\prime}, \sigma_{-i}^{*}\right), \forall s_{i} \subseteq \delta\left(\sigma_{i}^{*}\right), s_{i}^{\prime} \notin \delta\left(\sigma_{i}^{*}\right)$.

Observations:

- $\max _{\sigma_{i} \in \Delta S_{i}} u_{i}\left(\sigma_{i}, \sigma_{-i}\right)=\max _{s_{i} \in S_{i}} u_{i}\left(s_{i}, \sigma_{-i}\right)$ maximizing w.r.t. a distribution \Leftrightarrow whole probability mass at max

MSNE Characterization Theorem

Theorem

A mixed strategy profile is an MSNE iff $\forall i \in N$
(1) $u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)$ is identical $\forall s_{i} \in \delta\left(\sigma_{i}^{*}\right)$,
(2) $u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \geqslant u_{i}\left(s_{i}^{\prime}, \sigma_{-i}^{*}\right), \forall s_{i} \subseteq \delta\left(\sigma_{i}^{*}\right), s_{i}^{\prime} \notin \delta\left(\sigma_{i}^{*}\right)$.

Observations:

- $\max _{\sigma_{i} \in \Delta S_{i}} u_{i}\left(\sigma_{i}, \sigma_{-i}\right)=\max _{s_{i} \in S_{i}} u_{i}\left(s_{i}, \sigma_{-i}\right)$
maximizing w.r.t. a distribution \Leftrightarrow whole probability mass at max
- If $\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)$ is an MSNE, then

$$
\max _{\sigma_{i} \in \Delta S_{i}} u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right)=\max _{s_{i} \in S_{i}} u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)=\max _{s_{i} \in \delta\left(\sigma_{i}^{*}\right)} u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)
$$

the maximizer must lie in $\delta\left(\sigma_{i}^{*}\right)$ - if not, then put all probability mass on that $s_{i}^{\prime} \notin \delta\left(\sigma_{i}^{*}\right)$ that has the maximum value of the utility $-\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)$ is not a MSNE

Proof of MSNE Characterization Theorem

(\Rightarrow) Given $\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)$ is an MSNE

$$
\begin{equation*}
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)=\max _{\sigma_{i} \in \Delta S_{i}} u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right)=\max _{s_{i} \in S_{i}} u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)=\max _{s_{i} \in \delta\left(\sigma_{i}^{*}\right)} u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \tag{1}
\end{equation*}
$$

Proof of MSNE Characterization Theorem

(\Rightarrow) Given $\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)$ is an MSNE

$$
\begin{equation*}
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)=\max _{\sigma_{i} \in \Delta S_{i}} u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right)=\max _{s_{i} \in S_{i}} u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)=\max _{s_{i} \in \delta\left(\sigma_{i}^{*}\right)} u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \tag{1}
\end{equation*}
$$

By definition of expected utility

$$
\begin{equation*}
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)=\sum_{s_{i} \in S_{i}} \sigma_{i}^{*}\left(s_{i}\right) u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)=\sum_{s_{i} \in \delta\left(\sigma_{i}^{*}\right)} \sigma_{i}^{*}\left(s_{i}\right) u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \tag{2}
\end{equation*}
$$

Proof of MSNE Characterization Theorem

(\Rightarrow) Given $\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)$ is an MSNE

$$
\begin{equation*}
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)=\max _{\sigma_{i} \in \Delta S_{i}} u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right)=\max _{s_{i} \in S_{i}} u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)=\max _{s_{i} \in \delta\left(\sigma_{i}^{*}\right)} u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \tag{1}
\end{equation*}
$$

By definition of expected utility

$$
\begin{equation*}
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)=\sum_{s_{i} \in S_{i}} \sigma_{i}^{*}\left(s_{i}\right) u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)=\sum_{s_{i} \in \delta\left(\sigma_{i}^{*}\right)} \sigma_{i}^{*}\left(s_{i}\right) u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \tag{2}
\end{equation*}
$$

Equations (1) and (2) are equal, i.e., max is equal to positive weighted average - can happen only when all values are same: proves condition 1

Proof (contd.)

For condition 2: Suppose for contradiction, there exists $s_{i} \in \delta\left(\sigma_{i}^{*}\right)$ and $s_{i}^{\prime} \notin \delta\left(\sigma_{i}^{*}\right)$ s.t. $u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)<u_{i}\left(s_{i}^{\prime}, \sigma_{-i}^{*}\right)$

Proof (contd.)

For condition 2: Suppose for contradiction, there exists $s_{i} \in \delta\left(\sigma_{i}^{*}\right)$ and $s_{i}^{\prime} \notin \delta\left(\sigma_{i}^{*}\right)$ s.t. $u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)<u_{i}\left(s_{i}^{\prime}, \sigma_{-i}^{*}\right)$

We can shift the probability mass $\sigma^{*}\left(s_{i}\right)$ to s_{i}^{\prime}, this new mixed strategy gives a strict higher utility to player i : contradicts MSNE

Proof (contd.)

For condition 2: Suppose for contradiction, there exists $s_{i} \in \delta\left(\sigma_{i}^{*}\right)$ and $s_{i}^{\prime} \notin \delta\left(\sigma_{i}^{*}\right)$ s.t. $u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)<u_{i}\left(s_{i}^{\prime}, \sigma_{-i}^{*}\right)$

We can shift the probability mass $\sigma^{*}\left(s_{i}\right)$ to s_{i}^{\prime}, this new mixed strategy gives a strict higher utility to player i : contradicts MSNE

This completes the proof of the necessary direction.

Proof (contd.)

For condition 2: Suppose for contradiction, there exists $s_{i} \in \delta\left(\sigma_{i}^{*}\right)$ and $s_{i}^{\prime} \notin \delta\left(\sigma_{i}^{*}\right)$ s.t. $u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)<u_{i}\left(s_{i}^{\prime}, \sigma_{-i}^{*}\right)$

We can shift the probability mass $\sigma^{*}\left(s_{i}\right)$ to s_{i}^{\prime}, this new mixed strategy gives a strict higher utility to player i : contradicts MSNE

This completes the proof of the necessary direction.
(\Leftarrow) Given the 2 conditions of the theorem, need to show that $\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)$ is an MSNE

Proof (contd.)

For condition 2: Suppose for contradiction, there exists $s_{i} \in \delta\left(\sigma_{i}^{*}\right)$ and $s_{i}^{\prime} \notin \delta\left(\sigma_{i}^{*}\right)$ s.t. $u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)<u_{i}\left(s_{i}^{\prime}, \sigma_{-i}^{*}\right)$

We can shift the probability mass $\sigma^{*}\left(s_{i}\right)$ to s_{i}^{\prime}, this new mixed strategy gives a strict higher utility to player i : contradicts MSNE

This completes the proof of the necessary direction.
(\Leftarrow) Given the 2 conditions of the theorem, need to show that $\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)$ is an MSNE

$$
\begin{aligned}
& \text { Let } \quad u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)=m_{i}\left(\sigma_{-i}^{*}\right), \forall s_{i} \in \delta\left(\sigma_{i}^{*}\right) \\
& \text { Note } \quad m_{i}\left(\sigma_{-i}^{*}\right)=\max _{s_{i} \in S_{i}} u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)
\end{aligned}
$$

condition 1

condition 2

Proof (contd.)

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)=\sum_{s_{i} \in \delta\left(\sigma_{i}^{*}\right)} \sigma_{i}^{*}\left(s_{i}\right) u_{i}\left(s_{i}, \sigma_{-i}^{*}\right),
$$

by definition of $\delta\left(\sigma_{i}^{*}\right)$

Proof (contd.)

$$
\begin{aligned}
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) & =\sum_{s_{i} \in \delta\left(\sigma_{i}^{*}\right)} \sigma_{i}^{*}\left(s_{i}\right) u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \\
& =m_{i}\left(\sigma_{-i}^{*}\right)
\end{aligned}
$$

by definition of $\delta\left(\sigma_{i}^{*}\right)$
previous conclusion

Proof (contd.)

$$
\begin{aligned}
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) & =\sum_{s_{i} \in \delta\left(\sigma_{i}^{*}\right)} \sigma_{i}^{*}\left(s_{i}\right) u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \\
& =m_{i}\left(\sigma_{-i}^{*}\right) \\
& =\max _{s_{i} \in S_{i}} u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)
\end{aligned}
$$

$$
\text { by definition of } \delta\left(\sigma_{i}^{*}\right)
$$

previous conclusion
previous conclusion

Proof (contd.)

$$
\begin{aligned}
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) & =\sum_{s_{i} \in \delta\left(\sigma_{i}^{*}\right)} \sigma_{i}^{*}\left(s_{i}\right) u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \\
& =m_{i}\left(\sigma_{-i}^{*}\right) \\
& =\max _{s_{i} \in S_{i}} u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \\
& =\max _{\sigma_{i} \in \Delta S_{i}} u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right)
\end{aligned}
$$

by definition of $\delta\left(\sigma_{i}^{*}\right)$
previous conclusion previous conclusion
from the observation

Proof (contd.)

$$
\begin{aligned}
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) & =\sum_{s_{i} \in \delta\left(\sigma_{i}^{*}\right)} \sigma_{i}^{*}\left(s_{i}\right) u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \\
& =m_{i}\left(\sigma_{-i}^{*}\right) \\
& =\max _{s_{i} \in S_{i}} u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \\
& =\max _{\sigma_{i} \in \Delta S_{i}} u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right) \\
& \geqslant u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right), \forall \sigma_{i} \in \Delta S_{i}
\end{aligned}
$$

by definition of $\delta\left(\sigma_{i}^{*}\right)$
previous conclusion previous conclusion
from the observation

Proof (contd.)

$$
\begin{array}{rlrl}
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) & =\sum_{s_{i} \in \delta\left(\sigma_{i}^{*}\right)} \sigma_{i}^{*}\left(s_{i}\right) u_{i}\left(s_{i}, \sigma_{-i}^{*}\right), & & \text { by definition of } \delta\left(\sigma_{i}^{*}\right) \\
& =m_{i}\left(\sigma_{-i}^{*}\right) & & \text { previous conclusion } \\
& =\max _{s_{i} \in S_{i}} u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) & & \text { previous conclusion } \\
& =\max _{\sigma_{i} \in \Delta S_{i}} u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right) & & \text { from the observation } \\
& \geqslant u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right), \forall \sigma_{i} \in \Delta S_{i} &
\end{array}
$$

This proves the sufficient direction. The result yields an algorithmic way to find MSNE

Contents

- Matrix games

- Relation between maxmin and PSNE
- Mixed Strategies
- Mixed Strategy Nash Equilibrium
- Find MSNE
- MSNE Characterization Theorem Proof
- Algorithm to find MSNE
- Existence of MSNE

MSNE characterization theorem to algorithm

Consider a NFG $G=\left\langle N,\left(S_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right\rangle$

MSNE characterization theorem to algorithm

Consider a NFG $G=\left\langle N,\left(S_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right\rangle$
The total number of supports of $S_{1} \times S_{2} \times S_{3} \cdots \times S_{n}$ is
$K=\left(2^{\left|S_{1}\right|}-1\right) \times\left(2^{\left|S_{2}\right|}-1\right) \times \cdots \times\left(2^{\left|S_{n}\right|}-1\right)$

MSNE characterization theorem to algorithm

Consider a NFG $G=\left\langle N,\left(S_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right\rangle$
The total number of supports of $S_{1} \times S_{2} \times S_{3} \cdots \times S_{n}$ is
$K=\left(2^{\left|S_{1}\right|}-1\right) \times\left(2^{\left|S_{2}\right|}-1\right) \times \cdots \times\left(2^{\left|S_{n}\right|}-1\right)$
For every support profile $X_{1} \times X_{2} \times \cdots X_{n}$, where $X_{i} \subseteq S_{i}$, solve the following feasibility program

Program

$$
\begin{aligned}
w_{i} & =\sum_{s_{-i} \in S_{-i}}\left(\prod_{j \neq i} \sigma_{j}\left(s_{j}\right)\right) \cdot u_{i}\left(s_{i}, s_{-i}\right), \forall s_{i} \in X_{i}, \forall i \in N \\
w_{i} & \geqslant \sum_{s_{-i} \in S_{-i}}\left(\prod_{j \neq i} \sigma_{j}\left(s_{j}\right)\right) \cdot u_{i}\left(s_{i}, s_{-i}\right), \forall s_{i} \in S_{i} \backslash X_{i}, \forall i \in N \\
\sigma_{j}\left(s_{j}\right) & \geqslant 0, \forall s_{j} \in S_{j}, \forall j \in N, \quad \sum_{s_{j} \in X_{j}} \sigma_{j}\left(s_{j}\right)=1, \forall j \in N
\end{aligned}
$$

Remarks on the algorithm

Program

$$
\begin{aligned}
w_{i} & =\sum_{s_{-i} \in S_{-i}}\left(\prod_{j \neq i} \sigma_{j}\left(s_{j}\right)\right) \cdot u_{i}\left(s_{i}, s_{-i}\right), \forall s_{i} \in X_{i}, \forall i \in N \\
w_{i} & \geqslant \sum_{s_{-i} \in S_{-i}}\left(\prod_{j \neq i} \sigma_{j}\left(s_{j}\right)\right) \cdot u_{i}\left(s_{i}, s_{-i}\right), \forall s_{i} \in S_{i} \backslash X_{i}, \forall i \in N \\
\sigma_{j}\left(s_{j}\right) & \geqslant 0, \forall s_{j} \in S_{j}, \forall j \in N, \quad \sum_{s_{j} \in X_{j}} \sigma_{j}\left(s_{j}\right)=1, \forall j \in N
\end{aligned}
$$

- This is not a linear program unless $n=2$

[^2]
Remarks on the algorithm

Program

$$
\begin{aligned}
w_{i} & =\sum_{s_{-i} \in S_{-i}}\left(\prod_{j \neq i} \sigma_{j}\left(s_{j}\right)\right) \cdot u_{i}\left(s_{i}, s_{-i}\right), \forall s_{i} \in X_{i}, \forall i \in N \\
w_{i} & \geqslant \sum_{s_{-i} \in S_{-i}}\left(\prod_{j \neq i} \sigma_{j}\left(s_{j}\right)\right) \cdot u_{i}\left(s_{i}, s_{-i}\right), \forall s_{i} \in S_{i} \backslash X_{i}, \forall i \in N \\
\sigma_{j}\left(s_{j}\right) & \geqslant 0, \forall s_{j} \in S_{j}, \forall j \in N, \quad \sum_{s_{j} \in X_{j}} \sigma_{j}\left(s_{j}\right)=1, \forall j \in N
\end{aligned}
$$

- This is not a linear program unless $n=2$
- For general game, there is no poly-time algorithm

[^3]
Remarks on the algorithm

Program

$$
\begin{aligned}
w_{i} & =\sum_{s_{-i} \in S_{-i}}\left(\prod_{j \neq i} \sigma_{j}\left(s_{j}\right)\right) \cdot u_{i}\left(s_{i}, s_{-i}\right), \forall s_{i} \in X_{i}, \forall i \in N \\
w_{i} & \geqslant \sum_{s_{-i} \in S_{-i}}\left(\prod_{j \neq i} \sigma_{j}\left(s_{j}\right)\right) \cdot u_{i}\left(s_{i}, s_{-i}\right), \forall s_{i} \in S_{i} \backslash X_{i}, \forall i \in N \\
\sigma_{j}\left(s_{j}\right) & \geqslant 0, \forall s_{j} \in S_{j}, \forall j \in N, \quad \sum_{s_{j} \in X_{j}} \sigma_{j}\left(s_{j}\right)=1, \forall j \in N
\end{aligned}
$$

- This is not a linear program unless $n=2$
- For general game, there is no poly-time algorithm
- Problem of finding an MSNE is PPAD-complete [Polynomial Parity Argument on Directed graphs] ${ }^{1}$

[^4]
MSNE and Dominance

The previous algorithm can be applied to a smaller set of strategies by removing the dominated strategies

Is there a dominated strategy in this game? Domination can be via mixed strategies too

MSNE and Dominance

Theorem

If a pure strategy s_{i} is strictly dominated by a mixed strategy $\sigma_{i} \in \Delta S_{i}$, then in every MSNE of the game, s_{i} is chosen with probability zero.

So, We can remove such strategies without loss of equilibrium

Contents

- Matrix games
- Relation between maxmin and PSNE
- Mixed Strategies
- Mixed Strategy Nash Equilibrium
- Find MSNE
- MSNE Characterization Theorem Proof
- Algorithm to find MSNE
- Existence of MSNE

Existence of MSNE

Definition (Finite Games)

A game is said to be finite when the number of players is finite, and each player has a finite set of strategies.

Existence of MSNE

Definition (Finite Games)

A game is said to be finite when the number of players is finite, and each player has a finite set of strategies.

Theorem (Nash 1951)

Every finite game has a (mixed) Nash equilibrium.

Existence of MSNE

Definition (Finite Games)

A game is said to be finite when the number of players is finite, and each player has a finite set of strategies.

Theorem (Nash 1951)

Every finite game has a (mixed) Nash equilibrium.

Proof requires a few tools and a result from real analysis. Proof is separately given in the course webpage.

Existence of MSNE

Some background for understanding the proof.

- A set $S \subseteq \mathbb{R}^{n}$ is convex if $\forall x, y \in S$ and $\forall \lambda \in[0,1], \lambda x+(1-\lambda) y \in S$.

Existence of MSNE

Some background for understanding the proof.

- A set $S \subseteq \mathbb{R}^{n}$ is convex if $\forall x, y \in S$ and $\forall \lambda \in[0,1], \lambda x+(1-\lambda) y \in S$.
- A set $S \subseteq \mathbb{R}^{n}$ is closed if it contains all its limit points (points whose every neighborhood contains a point in S). Example of a set that is not closed: $[0,1)$ - every ball of radius $\epsilon>0$ around 1 has a member of $[0,1)$, but 1 is not in the set $[0,1)$.

Existence of MSNE

Some background for understanding the proof.

- A set $S \subseteq \mathbb{R}^{n}$ is convex if $\forall x, y \in S$ and $\forall \lambda \in[0,1], \lambda x+(1-\lambda) y \in S$.
- A set $S \subseteq \mathbb{R}^{n}$ is closed if it contains all its limit points (points whose every neighborhood contains a point in S). Example of a set that is not closed: $[0,1)$ - every ball of radius $\epsilon>0$ around 1 has a member of $[0,1)$, but 1 is not in the set $[0,1)$.
- A set $S \subseteq \mathbb{R}^{n}$ is bounded if $\exists x_{0} \in \mathbb{R}^{n}$ and $R \in(0, \infty)$ s.t. $\forall x \in S,\left\|x-x_{0}\right\|_{2}<R$.

Existence of MSNE

Some background for understanding the proof.

- A set $S \subseteq \mathbb{R}^{n}$ is convex if $\forall x, y \in S$ and $\forall \lambda \in[0,1], \lambda x+(1-\lambda) y \in S$.
- A set $S \subseteq \mathbb{R}^{n}$ is closed if it contains all its limit points (points whose every neighborhood contains a point in S). Example of a set that is not closed: $[0,1)$ - every ball of radius $\epsilon>0$ around 1 has a member of $[0,1)$, but 1 is not in the set $[0,1)$.
- A set $S \subseteq \mathbb{R}^{n}$ is bounded if $\exists x_{0} \in \mathbb{R}^{n}$ and $R \in(0, \infty)$ s.t. $\forall x \in S,\left\|x-x_{0}\right\|_{2}<R$.
- A set $S \subseteq \mathbb{R}^{n}$ is compact if it is closed and bounded.

Existence of MSNE

Some background for understanding the proof.

- A set $S \subseteq \mathbb{R}^{n}$ is convex if $\forall x, y \in S$ and $\forall \lambda \in[0,1], \lambda x+(1-\lambda) y \in S$.
- A set $S \subseteq \mathbb{R}^{n}$ is closed if it contains all its limit points (points whose every neighborhood contains a point in S). Example of a set that is not closed: $[0,1)$ - every ball of radius $\epsilon>0$ around 1 has a member of $[0,1)$, but 1 is not in the set $[0,1)$.
- A set $S \subseteq \mathbb{R}^{n}$ is bounded if $\exists x_{0} \in \mathbb{R}^{n}$ and $R \in(0, \infty)$ s.t. $\forall x \in S,\left\|x-x_{0}\right\|_{2}<R$.
- A set $S \subseteq \mathbb{R}^{n}$ is compact if it is closed and bounded.

Existence of MSNE

Some background for understanding the proof.

- A set $S \subseteq \mathbb{R}^{n}$ is convex if $\forall x, y \in S$ and $\forall \lambda \in[0,1], \lambda x+(1-\lambda) y \in S$.
- A set $S \subseteq \mathbb{R}^{n}$ is closed if it contains all its limit points (points whose every neighborhood contains a point in S). Example of a set that is not closed: $[0,1)$ - every ball of radius $\epsilon>0$ around 1 has a member of $[0,1)$, but 1 is not in the set $[0,1)$.
- A set $S \subseteq \mathbb{R}^{n}$ is bounded if $\exists x_{0} \in \mathbb{R}^{n}$ and $R \in(0, \infty)$ s.t. $\forall x \in S,\left\|x-x_{0}\right\|_{2}<R$.
- A set $S \subseteq \mathbb{R}^{n}$ is compact if it is closed and bounded.

A result from real analysis (proof omitted):

Brouwer's fixed point theorem

If $S \subseteq \mathbb{R}^{n}$ is convex and compact and $T: S \rightarrow S$, is continuous then T has a fixed point, i.e., $\exists x^{*} \in S$ s.t. $T\left(x^{*}\right)=x^{*}$.

भारतीय प्रौद्योगिकी संस्थान मुंबई

Indian Institute of Technology Bombay

[^0]: ${ }^{a}$ This is a shorthand for 'if and only if'.

[^1]: ${ }^{a}$ This is a shorthand for 'if and only if'.

[^2]: ${ }^{1}$ Daskalakis, Goldberg, Papadimitriou, "The Complexity of Computing a Nash Equilibrium" [2009]

[^3]: ${ }^{1}$ Daskalakis, Goldberg, Papadimitriou, "The Complexity of Computing a Nash Equilibrium" [2009]

[^4]: ${ }^{1}$ Daskalakis, Goldberg, Papadimitriou, "The Complexity of Computing a Nash Equilibrium" [2009]

