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Equilibrium notions in IIEFG

• Can extend the subgame perfection of PIEFG, but since the nodes/histories are uncertain, we
need to extend to mixed strategies

• Because of the information sets, best response cannot be defined without the belief of each
player

Belief

It is the conditional probability distribution over the histories in an information set - conditioned
on reaching the information set.
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Example: An IIEFG with perfect recall

EX 7.38 MSZ: An IIEFG with perfect recall, i.e., mixed and behavioral strategies are equivalent.
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Consider the behavioral strategy profile: σ1, at I1
1(L{5/12}, M{4/12}, R{3/12})
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Consider the behavioral strategy profile: σ2, at I1
2(l{1}, m{0}, r{0}) choose l



4

Example: An IIEFG with perfect recall

EX 7.38 MSZ: An IIEFG with perfect recall, i.e., mixed and behavioral strategies are equivalent.

L{5/12}
M{4/12}

R{3/12}

2, 0

1 x1I1
1

l

2, 1

m r l m r

3, 2

x2 x3I1
2

L1

0, 2

R1

3, 0

L1

2, 2

R1

0, 0

x4 x5I2
1

L2

2, 2

R2

0, 3

L2

0,−1

R2

5, 3

x6 x7I3
1

Consider the behavioral strategy profile: σ1, at I2
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Consider the behavioral strategy profile: σ1, at I3
1(L2{1}, R2{0}) choose L2
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Example: An IIEFG with perfect recall
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Question

Is this an equilibrium?
which implies

• Are the Bayesian beliefs consistent with Pσ - that visits vertex x with probability Pσ(x)?
• The actions and beliefs are consistent for every player, i.e., maximizes their expected utility?
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Sequential rationality

Choose an action maximizing expected utility at each information set.

The strategy vector σ induces the following probabilities to the vertices.

Pσ(x2) = 5/12, Pσ(x3) = 4/12, Pσ(x4) = 0, Pσ(x5) = 0, Pσ(x6) = 4/12, Pσ(x7) = 0
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Example: An IIEFG with perfect recall

L{5/12}
M{4/12}

R{3/12}

2, 0

1 x1I1
1

l

2, 1

m r l m r

3, 2

x2 x3I1
2

L1

0, 2

R1

3, 0

L1

2, 2

R1

0, 0

x4 x5I2
1

L2

2, 2

R2

0, 3

L2

0,−1

R2

5, 3

x6 x7I3
1

• Player 1 at information set I3
1, believes that x6 is reached with probability 1.

• If the belief was > 2/7 in favor of x7, player 1 should have chosen R2
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Example: An IIEFG with perfect recall
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• Player 2 at I1
2 believes the x3 is reached w.p. Pσ(x3|I1

2) = Pσ(x3)/(Pσ(x2) + Pσ(x3)) = 4/9

• Similarly Pσ(x2|I1
2) = 5/9
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Example: An IIEFG with perfect recall
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Question

Is the action of player 2 sequentially rational w.r.t.her belief?

Answer

By picking l, expected utility=5/9 × 1 + 4/9 × 2 = 13/9, larger than any other choice of action.
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Example: An IIEFG with perfect recall
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Question

Given all information, what is the sequentially rational strategy for player 1 at I1
1

Answer

L, M, R all give the same expected utility for player 1 (utility = 2).
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Example: An IIEFG with perfect recall
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Thus, mixed/behavioral strategy profile σ is sequentially rational for all players.
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Formal definitions

Belief

Let the information sets of player i be Ii = {I1
i , I2

i , I3
i , ..., Ik(i)

i }.

The belief of player i is a mapping µ
j
i : Ij

i → [0, 1] s.t., ∑x∈Ij
i
µ

j
i(x) = 1

Bayesian belief

A belief µi = {µ1
i , µ2

i , ..., µ
k(i)
i } of player i is Bayesian w.r.t.to the behavioral strategy σ, if it is

derived from σ using Bayes rule, i.e.,

µ
j
i(x) = Pσ(x)/ ∑

y∈Ij
i

Pσ(y), ∀x ∈ Ij
i, ∀j = 1, 2, 3, ..., k(i)
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Formal definitions

Sequential rationality

A strategy σi of player i at an information set Ij
i is sequentially rational given σ−i and partial belief

µ
j
i if

∑
x∈Ij

i

µ
j
i(x)ui(σi, σ−i|x) ⩾ ∑

x∈Ij
i

µ
j
i(x)ui(σ

′
i , σ−i|x)

• The tuple (σ, µ) is sequentially rational if it is sequentially rational for every player at every
information set.

• The tuple (σ, µ) is also called an assessment.
• Sequential rationality is a refinement of Nash Equilibrium.
• The notion coincides with SPNE when applied to PIEFGs
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Formal definitions

Theorem

In a PIEFG, a behavioral strategy profile σ is an SPNE iff the tuple (σ, µ̂) is sequentially rational.

In a PIEFG, every information set is a singleton, µ̂ is the degenerate distribution at that singleton.

Equilibrium with Sequential rationality

Perfect Bayesian Equilibrium: An assessment (σ, µ) is PBE if ∀i ∈ N
• µi is Bayesian w.r.t.σ
• σi is sequentially rational given σ−i and µi

• Often represented only with σ, since µ is obtained from σ

• Self-enforcing (like the SPNE) in a Bayesian way.
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Peer to Peer1

1Slides of this section are adapted from CS186, Harvard
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Desired Properties and Terminology

• Scalability

• Failure resilience

Terminology:

• Protocol: messages that can be sent, actions that can be taken over the network

• Client: a particular process for sending messages, taking actions

• Reference client: particular implementation

• Peer
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Early P2P Technologies

Napster (1999 - 2001)

• Centralized database
• Users download music from each other

Gnutella (2000 - )

• Get list of IP addresses of peers from set of known peers (no server)
• To get a file: Query message broadcast by peer A to known peers
• Query response: sent by B if B has the desired file (routed back to requestor)
• A can then download directly from B
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The File Sharing Game

2, 2 −1, 3,−1 0, 0

Share Free-ride

(Gnutella) File Sharing Game

Pl
ay

er
1

Player 2
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The File Sharing Game (Contd.)

Image courtesy: Adar and Huberman (2000)
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Incentives for Client Developers

• Client developers can ensure file sharing
• But competition among the developers

• 85% peers free-riding by 2005; Gnutella less than 1% of ww P2P traffic by 2013
• Few other P2P systems met the same fate
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New Protocol

BitTorrent (2001 - )

• Approx 85% of P2P traffic in US
• File sharing
• Also used for S/W distribution (e.g., Linux)

Key innovations

• Break file into pieces: A repeated game!
• “If you let me download, I’ll reciprocate.”
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BitTorrent Schematic

Image courtesy: Parkes and Seuken (2017)
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BitTorrent Optimistic Unchoking Algorithm

Tracker is a centralized entity that controls the traffic, tracks the connection between peers and
their speed of upload, download etc.

Reference Client Protocol:

• Set a threshold r of uploading speed (typically the third maximum speed in the recent past)
• If a peer j uploaded to i at a rate ⩾ r, unchoke j in the next period
• If a peer j uploaded to i at a rate < r, choke j in the next period
• Every three time periods, optimistically unchoke a random peer from the neighborhood who

is currently choked, and leave that peer unchoked for three time periods.

Forcing a repeated game by fragmenting the files

The leecher-seeder game is a repeated Prisoners’ Dilemma

Strategy of the seeder is tit-for-tat
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• Set a threshold r of uploading speed (typically the third maximum speed in the recent past)
• If a peer j uploaded to i at a rate ⩾ r, unchoke j in the next period
• If a peer j uploaded to i at a rate < r, choke j in the next period
• Every three time periods, optimistically unchoke a random peer from the neighborhood who

is currently choked, and leave that peer unchoked for three time periods.

Forcing a repeated game by fragmenting the files

The leecher-seeder game is a repeated Prisoners’ Dilemma

Strategy of the seeder is tit-for-tat
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Illustration

Illustration

http://mg8.org/processing/bt.html
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Strategic Behaviors

• How often to contact tracker?
• Which pieces to reveal?
• How many upload slots, which peers to unchoke, at what speed?
• What data to allow others to download?
• Possible goals: min upload, max download speed, some balance
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Attacks on BitTorrent

• BitThief
• Strategic piece revealer
• BitTyrant
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BitThief

• Goal: download files without uploading
• Keep asking for peers from tracker, grow neighborhood quickly
• Exploit the optimistic unchoking part
• Never upload!

• Fix: modify the tracker (block same IP address within 30 minutes).

Ref: Locher et al., “Free Riding in BitTorrent is Cheap”, HotNets 2006
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Strategic Piece Revealer

• Reference client: tell neighbors about new pieces, use “rarest-first” to request
• Manipulator strategy: reveal most common piece that reciprocating peer does not have!
• Try to protect a monopoly, keep others interested

Ref: Levin et al., “BitTorrent is an Auction: Analyzing and Improving BitTorrent’s Incentives”, SIGCOMM
2008



24

Strategic Piece Revealer
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Summary

• P2P demonstrates importance of game-theory in computer systems
• Early systems were easily manipulated
• BitTorrent’s innovation was to break files into pieces, enabling TitForTat.
• Still some vulnerabilities, but generally very successful example of incentive-based protocol

design.
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Classification of Games

Games

• Non-cooperative games

— Complete information - Players deterministically know which game they are playing

◦ Normal form games
Appropriate for simultaneous move single-stage games
Equilibrium notions: SDSE, WDSE, PSNE, MSNE, Correlated

◦ Extensive form games
Appropriate for multi-stage games
Equilibrium notions: SPNE (PIEFG), mixed and behavioral strategies (IIEFG), PBE

— Incomplete information - Players do not deterministically know which game they are playing

• Cooperative games - Players form coalitions and utilities are defined over coalitions

• Other types of games - repeated, stochastic etc.
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Games with Incomplete Information

Games with Complete Information

• Players deterministically know the game they are playing
• There can be some chance moves but probabilities are known

Games with Incomplete information

• Players do not know deterministically know which game they are playing

• they receive private signals / types
• To discuss: a special subclass called games with incomplete information with common

priors (Harsanyi 1967)
• Also called Bayesian games
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Bayesian Games: Example

Football game (two competing teams)

• Each can choose a gameplan: aim to win (W) or aim to draw (D)
• We will call the gameplan as their type which are private signals to them, often caused by

external factors, e.g., weather conditions, player injuries, ground conditions etc.
• There are four possible type profiles in this example WW, WD, DW, DD.
• The payoff matrices differ as follows (payoff for DW is symmetrically opposite to WD).

1, 1 2, 0

0, 2 0, 0

ATT

DEF

ATT DEF

WW profile

A
R

G

FRA

2, 0 2, 1

0, 1 1, 0

ATT

DEF

ATT DEF

WD profile

A
R

G

FRA

0, 0 1, 0

0, 1 −1,−1

ATT

DEF

ATT DEF

DD profile

A
R

G

FRA
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Bayesian Games

Assumptions

• The probabilities of choosing different games (or type profiles) come from a common prior
distribution.

• The common prior is common knowledge

Definition

A Bayesian game is represented by ⟨N, (Θi)i∈N, P, (Γθ)θ∈(×i∈NΘi)
⟩

• N: set of players
• Θi: set of types of player i
• P: common prior distribution over Θ = ×i∈NΘi

s.t. ∑θ−i∈Θ−i
P(θi, θ−i) > 0, ∀θi ∈ Θi, ∀i ∈ N

i.e., marginals for every type is positive (otherwise we can prune the type set)
• Γθ : NFG for the type profile θ ∈ Θ i.e., Γθ = ⟨N, (Ai(θ))i∈N, (ui(θ))i∈N⟩

ui : A × Θ → R, A = ×i∈NAi [We assume Ai(θ) = Ai, ∀θ]
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Bayesian games

Stages of a Bayesian game

• θ = (θi, θ−i) is chosen randomly according to the common prior P

• Each player observes her own type θi

• Player i picks action ai ∈ Ai, ∀i ∈ N
• Player i realizes a payoff of ui(ai, a−i; θi, θ−i)
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Strategy and Utilities

Definition

Strategy is a plan to map type to action.

si : Θi → Ai Pure
σi : Θi → ∆Ai Mixed

The player can experience its utility in two stages for Bayesian games (depending on the
realization of θi).

• Ex-ante utility
• Ex-interim utility
• Ex-post utility (for complete information game)
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Ex-ante Utility

Definition (Ex-ante utility)

Expected utility before observing own type.

ui(σ) = ∑
θ∈Θ

P(θ)ui(σ(θ); θ)

= ∑
θ∈Θ

P(θ) ∑
(a1,a2,...,an)∈A

∏
j∈N

σj(θj)[aj]ui(a1, ...an; θ1, ...θn)

The belief of player i over others’ types changes after observing her own type θi according to
Bayes rule on P.

P(θ−i|θi) =
P(θi, θ−i)

∑θ̃−i∈Θ−i
P(θi, θ̃−i)

This is why we needed every marginal to be positive – otherwise that type can be removed from
its type set



34

Ex-ante Utility

Definition (Ex-ante utility)

Expected utility before observing own type.

ui(σ) = ∑
θ∈Θ

P(θ)ui(σ(θ); θ)

= ∑
θ∈Θ

P(θ) ∑
(a1,a2,...,an)∈A

∏
j∈N

σj(θj)[aj]ui(a1, ...an; θ1, ...θn)

The belief of player i over others’ types changes after observing her own type θi according to
Bayes rule on P.

P(θ−i|θi) =
P(θi, θ−i)

∑θ̃−i∈Θ−i
P(θi, θ̃−i)

This is why we needed every marginal to be positive – otherwise that type can be removed from
its type set



34

Ex-ante Utility

Definition (Ex-ante utility)

Expected utility before observing own type.

ui(σ) = ∑
θ∈Θ

P(θ)ui(σ(θ); θ)

= ∑
θ∈Θ

P(θ) ∑
(a1,a2,...,an)∈A

∏
j∈N

σj(θj)[aj]ui(a1, ...an; θ1, ...θn)

The belief of player i over others’ types changes after observing her own type θi according to
Bayes rule on P.

P(θ−i|θi) =
P(θi, θ−i)

∑θ̃−i∈Θ−i
P(θi, θ̃−i)

This is why we needed every marginal to be positive – otherwise that type can be removed from
its type set



35

Ex-interim utility

Definition (Ex-interim utility)

Expected utility after observing one’s own type.

ui(σ|θi) = ∑
θ−i∈Θ−i

P(θ−i|θi)ui(σ(θ); θ)

Special Case : for independent types, observing θi does not give any information on θ−i. Both
utilities are the same.

Relation between the two utilities is given by

ui(σ) = ∑
θi∈Θi

P(θi)ui(σ|θi)
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Example 1: Two Player Bargaining Game

• Player 1 : seller, type : price at which he is willing to sell

• Player 2 : buyer, type : price at which he is willing to buy
• Θ1 = Θ2 = {1, 2, . . . , 100}, A1 = A2 = {1, 2, . . . , 100}
• If the bid of the seller is smaller or equal to that of the buyer, trade happens at a price

average of the two bids. Else, trade does not happen.
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Example 1: Two Player Bargaining Game

Suppose type generation is independent and uniform over Θ1, Θ2 respectively,

P(θ2|θ1) = P(θ2) =
1

100
, ∀θ1, θ2

P(θ1|θ2) = P(θ1) =
1

100
, ∀θ1, θ2

u1(a1, a2; θ1, θ2) =

{
a1+a2

2 − θ1 if a2 ⩾ a1

0 otherwise

u2(a1, a2; θ1, θ2) =

{
θ2 − a1+a2

2 if a2 ⩾ a1

0 otherwise

Common Prior : P(θ1, θ2) =
1

1000 , ∀θ1, θ2
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Example 2: Sealed Bid Auction

Two players, both willing to buy an object. Their values and bids lie in [0,1].

Allocation Function:

O1(b1, b2) =

{
1 if b1 ⩾ b2

0 ow
O2(b1, b2) =

{
1 if b2 > b1

0 ow

Beliefs

f (θ2|θ1) = 1, ∀θ1, θ2

f (θ1|θ2) = 1, ∀θ1, θ2

f (θ1, θ2) = 1, ∀θ1, θ2

ui(b1, b2; θ1, θ2) = Oi(b1, b2)(θi − bi)

Winner pays for his bid.
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Equilibrium concepts in Bayesian games

Ex-ante: before observing her own type

Nash Equilibrium (σ∗, P): ui(σ
∗
i , σ∗

−i) ⩾ ui(σ
′
i , σ∗

−i), ∀σ′
i , ∀i ∈ N

ui(σ) = ∑
θ∈Θ

P(θ)ui(σ(θ); θ)

Ex-interim: after observing her own type

Bayesian Equilibrium (σ∗, P): ui(σ
∗
i (θi), σ∗

−i|θi) ⩾ ui(σ
′
i (θi), σ∗

−i|θi), ∀σ′
i , ∀θi ∈ Θi, ∀i ∈ N

• The RHS of the definition can be replaced by a pure strategy ai, ∀ai ∈ Ai. The reason is
exactly the same as that of MSNE (these definitions are equivalent)

• NE takes expectation over P(θ)
• BE takes expectation over P(θ−i|θi)
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Equivalence of equilibrium concepts

Theorem

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

For the forward direction, suppose (σ∗, P) is a Bayesian equilibrium, consider

ui(σ
′
i , σ∗

−i) = ∑
θi∈Θi

P(θi)ui(σ
′
i (θi), σ∗

−i|θi)

⩽ ∑
θi∈Θi

P(θi)ui(σ
∗
i (θi), σ∗

−i|θi), since (σ∗, P) is a BE

= ui(σ
∗
i , σ∗

−i)
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Equivalence of equilibrium concepts

Theorem

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

For the reverse direction, proof by contradiction. Suppose (σ∗, P) is not a Bayesian equilibrium
i.e., there exists some i ∈ N, some θi ∈ Θi, some ai ∈ Ai, s.t.

ui(ai, σ∗
−i|θi) > ui(σ

∗
i (θi), σ∗

−i|θi)

Construct the strategy σ̂i s.t.,
σ̂i(θ

′
i) = σ∗

i (θ
′
i), ∀θ′i ∈ Θi \ {θi}

σ̂i(θi)[ai] = 1, σ̂i(θi)[bi] = 0, ∀bi ∈ Ai \ {ai}
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Equivalence of equilibrium concepts

Theorem

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

Reverse direction proof continued ...

ui(σ̂i, σ∗
−i) = ∑

θ̃i∈Θi

P(θ̃i)ui(σ̂i(θ̃i), σ∗
−i|θ̃i)

= ∑
θ̃i∈Θi\{θi}

P(θ̃i)ui(σ̂i(θ̃i), σ∗
−i|θ̃i) + P(θi)ui(σ̂i(θi), σ∗

−i|θi)

> ∑
θ̃i∈Θi\{θi}

P(θ̃i)ui(σ
∗
i (θ̃i), σ∗

−i|θ̃i) + P(θi)ui(σ
∗
i (θi), σ∗

−i|θi) = ui(σ
∗
i , σ∗

−i)

Hence, (σ∗
i , σ∗

−i) is not a Nash equilibrium
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Existence of Bayesian Equilibrium

Theorem

Every finite Bayesian game has a Bayesian equilibrium.

[Finite Bayesian game: set of players, action set and type set are finite]

Proof.

Proof idea: Transform the Bayesian game into a complete information game treating each type as
a player, and invoke Nash Theorem for the existence of equilibrium - which is a BE in the original
game. [See addendum for details]
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Example 2 : Sealed Bid Auction

Two players, both willing to buy an object. Their values and bids lie in [0,1].
Allocation Function

O1(b1, b2) = I{b1 ⩾ b2}
O2(b1, b2) = I{b2 > b1}

Beliefs

f (θ2|θ1) = 1, ∀θ1, θ2

f (θ1|θ2) = 1, ∀θ1, θ2

f (θ1, θ2) = 1, ∀θ1, θ2
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First Price Auction

• If b1 ⩾ b2 payer 1 wins and pays her bid otherwise, player 2 wins and pays her bid.

u1(b1, b2, θ1, θ2) = (θ1 − b1)T{b1 ⩾ b2}
u2(b1, b2, θ1, θ2) = (θ2 − b2)T{b1 < b2}

• b1 = s1(θ1), b2 = s2(θ2)
Assume si(θi) = αiθi, αi > 0, i = 1, 2
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First Price Auction

To find the BE, we need to find the s∗i (or α∗i ) that maximizes the ex-interim utility of player i. i.e.

maxσiui(σi, σ∗
−i|θi)

For player 1, this reduces to

maxσiui(σi, σ∗
−i|θi) = maxb1∈[0,α2]

∫ 1

0
f (θ2|θ1)(θ1 − b1)I{b1 ⩾ α2θ2}dθ2

= maxb1∈[0,α2]
(θ1 − b1)

b1

α2

=⇒ b1 =

{
θ1
2 if α2 > θ1

2
α2otherwise
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First Price Auction

From this we get,

s∗1(θ1) = min{ θ1

2
, α2}

s∗2(θ2) = min{ θ2

2
, α1}

If α1 = α2 = 1
2 , then ( θ1

2 , θ2
2 ) is a BE.

In the Bayesian Game induced by uniform prior on first price auction, bidding half the true
value is a Bayesian equilibrium.
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Second Price Auction

Highest bidder wins but pays the second highest bid.

u1(b1, b2, θ1, θ2) = (θ1 − b2)T{b1 ⩾ b2}
u2(b1, b2, θ1, θ2) = (θ2 − b1)T{b1 < b2}

Player 1 has to maximize

=
∫ 1

0
f (θ2|θ1)(θ1 − s2(θ2))I{b1 ⩾ s2(θ2)}dθ2

=
∫ 1

0
1 · (θ1 − α2θ2)I{θ2 ≤ b1

α2
}dθ2

=
1
α2

(b1θ1 −
θ2

1
2
)

This is maximized when b1 = θ1. Similarly for b2 = θ2.
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Second Price Auction

If the distribution of θ1 and θ2 were arbitrary but independent, the maximization problem would
have been

∫ b1
α2

0
f (θ2)(θ1 − α2θ2)dθ2 = θ1F

(
b1

α2

)
− α2

∫ b1
α2

0
θ2f (θ2)dθ2

Differentiating wrt b1, we get

θ1
1
α2

f
(

b1

α2

)
− α2 ·

b1

α2
f
(

b1

α2

)
1
α2

= 0 =⇒ 1
α2

f
(

b1

α2
(b1 − θ1)

)
= 0 (1)

=⇒ b1 = θ1if f
(

b1

α2

)
> 0 (2)

Similarly for 2.
For any independent positive prior, bidding true type is a BE of the induced Bayesian game in
Second Price Auction.
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