

भारतीय प्रौद्योगिकी संस्थान मुंबई

Indian Institute of Technology Bombay

CS 6001: Game Theory and Algorithmic Mechanism Design

Week 6

Swaprava Nath

Slide preparation acknowledgments: Ramsundar Anandanarayanan and Harshvardhan Agarwal

ज्ञानम् परमम् ध्येयम् Knowledge is the supreme goal

Contents

- ► Equilibrium in IIEFGs
- ▶ Game Theory in Practice: P2P File Sharing
- ► Bayesian Games
- ▶ Strategy, Utility in Bayesian Games
- Equilibrium in Bayesian Games
- ▶ Examples in Bayesian Equilibrium

• Can extend the subgame perfection of PIEFG, but since the nodes/histories are uncertain, we need to extend to mixed strategies

- Can extend the subgame perfection of PIEFG, but since the nodes/histories are uncertain, we need to extend to mixed strategies
- Because of the information sets, best response cannot be defined without the belief of each player

- Can extend the subgame perfection of PIEFG, but since the nodes/histories are uncertain, we need to extend to mixed strategies
- Because of the information sets, best response cannot be defined without the belief of each player

- Can extend the subgame perfection of PIEFG, but since the nodes/histories are uncertain, we need to extend to mixed strategies
- Because of the information sets, best response cannot be defined without the belief of each player

Belief

It is the conditional probability distribution over the histories in an information set - conditioned on reaching the information set.

Consider the behavioral strategy profile: σ_1 , at $I_1^1(L\{5/12\}, M\{4/12\}, R\{3/12\})$

Consider the behavioral strategy profile: σ_2 , at $I_2^1(l\{1\}, m\{0\}, r\{0\})$ choose l

Consider the behavioral strategy profile: σ_1 , at $I_1^2(L_1\{0\}, R_1\{1\})$ choose R_1

Consider the behavioral strategy profile: σ_1 , at $I_1^3(L_2\{1\}, R_2\{0\})$ choose L_2

Question

Is this an equilibrium? which implies

- Are the Bayesian beliefs consistent with P_{σ} that visits vertex *x* with probability $P_{\sigma}(x)$?
- The actions and beliefs are consistent for every player, i.e., maximizes their expected utility?

Sequential rationality

Choose an action maximizing expected utility at each information set.

The strategy vector σ induces the following probabilities to the vertices. $P_{\sigma}(x_2) = 5/12, P_{\sigma}(x_3) = 4/12, P_{\sigma}(x_4) = 0, P_{\sigma}(x_5) = 0, P_{\sigma}(x_6) = 4/12, P_{\sigma}(x_7) = 0$

- Player 1 at information set I_1^3 , believes that x_6 is reached with probability 1.
- If the belief was > 2/7 in favor of x_7 , player 1 should have chosen R_2

- Player 2 at I_2^1 believes the x_3 is reached w.p. $P_{\sigma}(x_3|I_2^1) = P_{\sigma}(x_3)/(P_{\sigma}(x_2) + P_{\sigma}(x_3)) = 4/9$
- Similarly $P_{\sigma}(x_2|I_2^1) = 5/9$

Question

Is the action of player 2 sequentially rational w.r.t. her belief?

Answer

By picking *l*, expected utility = $5/9 \times 1 + 4/9 \times 2 = 13/9$, larger than any other choice of action.

Question

Given all information, what is the sequentially rational strategy for player 1 at I_1^1

Answer

L, M, R all give the same expected utility for player 1 (utility = 2).

Thus, mixed/behavioral strategy profile σ is sequentially rational for all players.

Belief Let the information sets of player *i* be $I_i = \{I_i^1, I_i^2, I_i^3, ..., I_i^{k(i)}\}$. The belief of player *i* is a mapping $\mu_i^j : I_i^j \to [0, 1]$ s.t., $\sum_{x \in I_i^j} \mu_i^j(x) = 1$

Belief

Let the information sets of player *i* be $I_i = \{I_i^1, I_i^2, I_i^3, ..., I_i^{k(i)}\}$. The belief of player *i* is a mapping $\mu_i^j : I_i^j \to [0, 1]$ s.t., $\sum_{x \in I_i^j} \mu_i^j(x) = 1$

Bayesian Belief

A **belief** $\mu_i = {\mu_i^1, \mu_i^2, ..., \mu_i^{k(i)}}$ of player *i* is **Bayesian** w.r.t. to the behavioral strategy σ , if it is derived from σ using Bayes rule, i.e.,

$$\mu_{i}^{j}(x) = P_{\sigma}(x) / \sum_{y \in I_{i}^{j}} P_{\sigma}(y), \forall x \in I_{i}^{j}, \forall j = 1, 2, 3, ..., k(i)$$

A strategy σ_i of player i at an information set l_i^j is **sequentially rational** given σ_{-i} and partial belief μ_i^j if

$$\sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i, \sigma_{-i} | x) \ge \sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i', \sigma_{-i} | x)$$

A strategy σ_i of player i at an information set I_i^j is **sequentially rational** given σ_{-i} and partial belief μ_i^j if

$$\sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i, \sigma_{-i} | x) \ge \sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i', \sigma_{-i} | x)$$

• The tuple (*σ*, *μ*) is sequentially rational if it is sequentially rational for every player at every information set.

A strategy σ_i of player i at an information set I_i^j is **sequentially rational** given σ_{-i} and partial belief μ_i^j if

$$\sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i, \sigma_{-i} | x) \ge \sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i', \sigma_{-i} | x)$$

- The tuple (*σ*, *μ*) is sequentially rational if it is sequentially rational for every player at every information set.
- The tuple (σ, μ) is also called an assessment.

A strategy σ_i of player i at an information set I_i^j is **sequentially rational** given σ_{-i} and partial belief μ_i^j if

$$\sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i, \sigma_{-i} | x) \ge \sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i', \sigma_{-i} | x)$$

- The tuple (*σ*, *μ*) is sequentially rational if it is sequentially rational for every player at every information set.
- The tuple (σ, μ) is also called an assessment.
- Sequential rationality is a refinement of Nash Equilibrium.

A strategy σ_i of player i at an information set I_i^j is **sequentially rational** given σ_{-i} and partial belief μ_i^j if

$$\sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i, \sigma_{-i} | x) \ge \sum_{x \in I_i^j} \mu_i^j(x) u_i(\sigma_i', \sigma_{-i} | x)$$

- The tuple (*σ*, *μ*) is sequentially rational if it is sequentially rational for every player at every information set.
- The tuple (σ, μ) is also called an assessment.
- Sequential rationality is a refinement of Nash Equilibrium.
- The notion coincides with SPNE when applied to PIEFGs

In a PIEFG, a behavioral strategy profile σ is an SPNE iff the tuple $(\sigma, \hat{\mu})$ is sequentially rational.

In a PIEFG, a behavioral strategy profile σ is an SPNE iff the tuple $(\sigma, \hat{\mu})$ is sequentially rational.

In a PIEFG, every information set is a singleton, $\hat{\mu}$ is the degenerate distribution at that singleton.

In a PIEFG, a behavioral strategy profile σ is an SPNE iff the tuple $(\sigma, \hat{\mu})$ is sequentially rational.

In a PIEFG, every information set is a singleton, $\hat{\mu}$ is the degenerate distribution at that singleton.

Equilibrium with Sequential Rationality

Perfect Bayesian Equilibrium: An assessment (σ , μ) is PBE if $\forall i \in N$

- μ_i is Bayesian w.r.t. σ
- σ_i is sequentially rational given σ_{-i} and μ_i

In a PIEFG, a behavioral strategy profile σ is an SPNE iff the tuple $(\sigma, \hat{\mu})$ is sequentially rational.

In a PIEFG, every information set is a singleton, $\hat{\mu}$ is the degenerate distribution at that singleton.

Equilibrium with Sequential Rationality

Perfect Bayesian Equilibrium: An assessment (σ , μ) is PBE if $\forall i \in N$

- μ_i is Bayesian w.r.t. σ
- σ_i is sequentially rational given σ_{-i} and μ_i
- Often represented only with σ , since μ is obtained from σ

In a PIEFG, a behavioral strategy profile σ is an SPNE iff the tuple $(\sigma, \hat{\mu})$ is sequentially rational.

In a PIEFG, every information set is a singleton, $\hat{\mu}$ is the degenerate distribution at that singleton.

Equilibrium with Sequential Rationality

Perfect Bayesian Equilibrium: An assessment (σ , μ) is PBE if $\forall i \in N$

- μ_i is Bayesian w.r.t. σ
- σ_i is sequentially rational given σ_{-i} and μ_i
- Often represented only with σ , since μ is obtained from σ
- Self-enforcing (like the SPNE) in a Bayesian way.

- ▶ Equilibrium in IIEFGs
- ▶ Game Theory in Practice: P2P File Sharing
- ► Bayesian Games
- Strategy, Utility in Bayesian Games
- Equilibrium in Bayesian Games
- ► Examples in Bayesian Equilibrium

Peer to Peer¹

¹Slides of this section are adapted from CS186, Harvard

• Scalability

Terminology:

- Scalability
- Failure resilience

Terminology:

- Scalability
- Failure resilience

Terminology:

• **Protocol:** messages that can be sent, actions that can be taken over the network

- Scalability
- Failure resilience

Terminology:

- **Protocol:** messages that can be sent, actions that can be taken over the network
- Client: a particular process for sending messages, taking actions
Desired Properties and Terminology

- Scalability
- Failure resilience

Terminology:

- **Protocol:** messages that can be sent, actions that can be taken over the network
- Client: a particular process for sending messages, taking actions
- **Reference client:** particular implementation

Desired Properties and Terminology

- Scalability
- Failure resilience

Terminology:

- **Protocol:** messages that can be sent, actions that can be taken over the network
- Client: a particular process for sending messages, taking actions
- **Reference client:** particular implementation
- Peer

Napster (1999 - 2001)

- Centralized database
- Users download music from each other

Napster (1999 - 2001)

- Centralized database
- Users download music from each other

```
Gnutella (2000 - )
```

- Get list of IP addresses of peers from set of known peers (no server)
- To get a file: Query message broadcast by peer A to known peers
- Query response: sent by B if B has the desired file (routed back to requestor)
- A can then download directly from B

The File Sharing Game

(Gnutella) File Sharing Game

Rank Ordering of Peers by Number of Files Shared

Image courtesy: Adar and Huberman (2000)

- Client developers can ensure file sharing
- But competition among the developers

- Client developers can ensure file sharing
- But competition among the developers
- 85% peers free-riding by 2005; Gnutella less than 1% of ww P2P traffic by 2013
- Few other P2P systems met the same fate

BitTorrent (2001 -)

- Approx 85% of P2P traffic in US
- File sharing
- Also used for S/W distribution (e.g., Linux)

BitTorrent (2001 -)

- Approx 85% of P2P traffic in US
- File sharing
- Also used for S/W distribution (e.g., Linux)

Key innovations

- Break file into pieces: A repeated game!
- "If you let me download, I'll reciprocate."

BitTorrent Schematic

Figure 5.4.: Starting a download process in the BitTorrent protocol: 1) A user goes to a searchable directory to find a link to a .torrent file corresponding to the desired content; 2) the .torrent file contains metadata about the content, in particular the URL of a tracker; 3) the tracker provides a list of peers participating in the swarm for the content (i.e., their IP address and port); 4) the user's BitTorrent client can now contact all these peers and download content.

Image courtesy: Parkes and Seuken (2017)

Reference Client Protocol:

• Set a threshold *r* of uploading speed (typically the third maximum speed in the recent past)

Reference Client Protocol:

- Set a threshold *r* of uploading speed (typically the third maximum speed in the recent past)
- If a peer *j* uploaded to *i* at a rate $\ge r$, unchoke *j* in the next period

Reference Client Protocol:

- Set a threshold *r* of uploading speed (typically the third maximum speed in the recent past)
- If a peer *j* uploaded to *i* at a rate $\ge r$, unchoke *j* in the next period
- If a peer *j* uploaded to *i* at a rate < *r*, choke *j* in the next period

Reference Client Protocol:

- Set a threshold *r* of uploading speed (typically the third maximum speed in the recent past)
- If a peer *j* uploaded to *i* at a rate $\ge r$, unchoke *j* in the next period
- If a peer *j* uploaded to *i* at a rate < r, choke *j* in the next period
- Every three time periods, optimistically unchoke a random peer from the neighborhood who is currently choked, and leave that peer unchoked for three time periods.

Reference Client Protocol:

- Set a threshold *r* of uploading speed (typically the third maximum speed in the recent past)
- If a peer *j* uploaded to *i* at a rate $\ge r$, unchoke *j* in the next period
- If a peer *j* uploaded to *i* at a rate < r, choke *j* in the next period
- Every three time periods, optimistically unchoke a random peer from the neighborhood who is currently choked, and leave that peer unchoked for three time periods.

Forcing a repeated game by fragmenting the files

Reference Client Protocol:

- Set a threshold *r* of uploading speed (typically the third maximum speed in the recent past)
- If a peer *j* uploaded to *i* at a rate $\ge r$, unchoke *j* in the next period
- If a peer *j* uploaded to *i* at a rate < r, choke *j* in the next period
- Every three time periods, optimistically unchoke a random peer from the neighborhood who is currently choked, and leave that peer unchoked for three time periods.

Forcing a repeated game by fragmenting the files

The leecher-seeder game is a repeated Prisoners' Dilemma

Reference Client Protocol:

- Set a threshold *r* of uploading speed (typically the third maximum speed in the recent past)
- If a peer *j* uploaded to *i* at a rate $\ge r$, unchoke *j* in the next period
- If a peer *j* uploaded to *i* at a rate < r, choke *j* in the next period
- Every three time periods, optimistically unchoke a random peer from the neighborhood who is currently choked, and leave that peer unchoked for three time periods.

Forcing a repeated game by fragmenting the files

The leecher-seeder game is a repeated Prisoners' Dilemma

Strategy of the seeder is tit-for-tat

Illustration

Illustration

- How often to contact tracker?
- Which pieces to reveal?
- How many upload slots, which peers to unchoke, at what speed?
- What data to allow others to download?
- Possible goals: min *upload*, *maxdownloadspeed*, *somebalance*

Attacks on BitTorrent

- BitThief
- Strategic piece revealer
- BitTyrant

- Goal: download files without uploading
- Keep asking for peers from tracker, grow neighborhood quickly
- Exploit the optimistic unchoking part
- Never upload!

- Goal: download files without uploading
- Keep asking for peers from tracker, grow neighborhood quickly
- Exploit the optimistic unchoking part
- Never upload!
- Fix: modify the tracker (block same IP address within 30).

Ref: Locher et al., "Free Riding in BitTorrent is Cheap", HotNets 2006

- Reference client: tell neighbors about new pieces, use "rarest-first" to request
- Manipulator strategy: reveal most common piece that reciprocating peer does not have!
- Try to protect a monopoly, keep others interested

Ref: Levin et al., "BitTorrent is an Auction: Analyzing and Improving BitTorrent's Incentives", SIGCOMM 2008

Strategic Piece Revealer

• P2P demonstrates importance of game-theory in computer systems

- P2P demonstrates importance of game-theory in computer systems
- Early systems were easily manipulated

- P2P demonstrates importance of game-theory in computer systems
- Early systems were easily manipulated
- BitTorrent's innovation was to break files into pieces, enabling TitForTat.

- P2P demonstrates importance of game-theory in computer systems
- Early systems were easily manipulated
- BitTorrent's innovation was to break files into pieces, enabling TitForTat.
- Still some vulnerabilities, but generally very successful example of incentive-based protocol design.

- ▶ Equilibrium in IIEFGs
- ▶ Game Theory in Practice: P2P File Sharing
- ► Bayesian Games
- Strategy, Utility in Bayesian Games
- Equilibrium in Bayesian Games
- ▶ Examples in Bayesian Equilibrium

Games

• Non-cooperative games

Games

• Non-cooperative games

- Complete information - Players deterministically know which game they are playing

Games

- Non-cooperative games
 - Complete information Players **deterministically** know which game they are playing
 - Normal form games Appropriate for simultaneous move single-stage games Equilibrium notions: SDSE, WDSE, PSNE, MSNE, Correlated

Games

Non-cooperative games

- Complete information Players deterministically know which game they are playing
 - Normal form games Appropriate for simultaneous move single-stage games Equilibrium notions: SDSE, WDSE, PSNE, MSNE, Correlated
 - Extensive form games
 Appropriate for multi-stage games
 Equilibrium notions: SPNE (PIEFG), mixed and behavioral strategies (IIEFG), PBE

Games

- Non-cooperative games
 - Complete information Players deterministically know which game they are playing
 - Normal form games Appropriate for simultaneous move single-stage games Equilibrium notions: SDSE, WDSE, PSNE, MSNE, Correlated
 - Extensive form games
 Appropriate for multi-stage games
 Equilibrium notions: SPNE (PIEFG), mixed and behavioral strategies (IIEFG), PBE
 - Incomplete information Players do not deterministically know which game they are playing

Games

- Non-cooperative games
 - Complete information Players deterministically know which game they are playing
 - Normal form games Appropriate for simultaneous move single-stage games Equilibrium notions: SDSE, WDSE, PSNE, MSNE, Correlated
 - Extensive form games
 Appropriate for multi-stage games
 Equilibrium notions: SPNE (PIEFG), mixed and behavioral strategies (IIEFG), PBE
 - Incomplete information Players do not deterministically know which game they are playing
- Cooperative games Players form coalitions and utilities are defined over coalitions

Games

- Non-cooperative games
 - Complete information Players deterministically know which game they are playing
 - Normal form games Appropriate for simultaneous move single-stage games Equilibrium notions: SDSE, WDSE, PSNE, MSNE, Correlated
 - Extensive form games
 Appropriate for multi-stage games
 Equilibrium notions: SPNE (PIEFG), mixed and behavioral strategies (IIEFG), PBE
 - Incomplete information Players do not deterministically know which game they are playing
- Cooperative games Players form coalitions and utilities are defined over coalitions
- Other types of games repeated, stochastic etc.

Games with Complete Information

- Players deterministically know the game they are playing
- There can be some chance moves but probabilities are known

Games with Incomplete information

Games with Complete Information

- Players deterministically know the game they are playing
- There can be some chance moves but probabilities are known

Games with Incomplete information

- Players do not know deterministically know which game they are playing
- They receive **private signals / types**
- To discuss: a special subclass called games with incomplete information with **common priors** (Harsanyi 1967)
- Also called **Bayesian games**

Bayesian Games: Example

• Each can choose a gameplan: aim to win (W) or aim to draw (D)

- Each can choose a gameplan: aim to win (W) or aim to draw (D)
- We will call the gameplan as their **type** which are private signals to them, often caused by external factors, e.g., weather conditions, player injuries, ground conditions etc.

- Each can choose a gameplan: aim to win (W) or aim to draw (D)
- We will call the gameplan as their **type** which are private signals to them, often caused by external factors, e.g., weather conditions, player injuries, ground conditions etc.
- There are four possible type profiles in this example WW, WD, DW, DD.

- Each can choose a gameplan: aim to win (W) or aim to draw (D)
- We will call the gameplan as their **type** which are private signals to them, often caused by external factors, e.g., weather conditions, player injuries, ground conditions etc.
- There are four possible type profiles in this example WW, WD, DW, DD.
- The payoff matrices differ as follows (payoff for DW is symmetrically opposite to WD).

- Each can choose a gameplan: aim to win (W) or aim to draw (D)
- We will call the gameplan as their **type** which are private signals to them, often caused by external factors, e.g., weather conditions, player injuries, ground conditions etc.
- There are four possible type profiles in this example WW, WD, DW, DD.
- The payoff matrices differ as follows (payoff for DW is symmetrically opposite to WD).

- Each can choose a gameplan: aim to win (W) or aim to draw (D)
- We will call the gameplan as their **type** which are private signals to them, often caused by external factors, e.g., weather conditions, player injuries, ground conditions etc.
- There are four possible type profiles in this example WW, WD, DW, DD.
- The payoff matrices differ as follows (payoff for DW is symmetrically opposite to WD).

• The probabilities of choosing different games (or type profiles) come from a **common prior** distribution.

- The probabilities of choosing different games (or type profiles) come from a **common prior** distribution.
- The common prior is common knowledge

- The probabilities of choosing different games (or type profiles) come from a **common prior** distribution.
- The common prior is common knowledge

- The probabilities of choosing different games (or type profiles) come from a **common prior** distribution.
- The common prior is common knowledge

Definition

A Bayesian game is represented by $\langle N, (\Theta_i)_{i \in N}, P, (\Gamma_{\theta})_{\theta \in (\times_{i \in N} \Theta_i)} \rangle$

• *N*: set of players

- The probabilities of choosing different games (or type profiles) come from a **common prior** distribution.
- The common prior is common knowledge

Definition

A Bayesian game is represented by $\langle N, (\Theta_i)_{i \in N}, P, (\Gamma_{\theta})_{\theta \in (\times_{i \in N} \Theta_i)} \rangle$

- *N*: set of players
- Θ_i : set of types of player *i*

Bayesian Games

Assumptions

- The probabilities of choosing different games (or type profiles) come from a **common prior** distribution.
- The common prior is common knowledge

Definition

A Bayesian game is represented by $\langle N, (\Theta_i)_{i \in N}, P, (\Gamma_{\theta})_{\theta \in (\times_{i \in N} \Theta_i)} \rangle$

- *N*: set of players
- Θ_i : set of types of player *i*
- *P*: common prior distribution over $\Theta = \times_{i \in N} \Theta_i$ s.t. $\sum_{\theta_{-i} \in \Theta_{-i}} P(\theta_i, \theta_{-i}) > 0$, $\forall \theta_i \in \Theta_i, \forall i \in N$ i.e., marginals for every type is positive (otherwise we can prune the type set)

Bayesian Games

Assumptions

- The probabilities of choosing different games (or type profiles) come from a **common prior** distribution.
- The common prior is common knowledge

Definition

A Bayesian game is represented by $\langle N, (\Theta_i)_{i \in N}, P, (\Gamma_{\theta})_{\theta \in (\times_{i \in N} \Theta_i)} \rangle$

- *N*: set of players
- Θ_i : set of types of player *i*
- *P*: common prior distribution over $\Theta = \times_{i \in N} \Theta_i$ s.t. $\sum_{\theta_{-i} \in \Theta_{-i}} P(\theta_i, \theta_{-i}) > 0$, $\forall \theta_i \in \Theta_i, \forall i \in N$ i.e., marginals for every type is positive (otherwise we can prune the type set)
- Γ_{θ} : NFG for the type profile $\theta \in \Theta$ i.e., $\Gamma_{\theta} = \langle N, (A_i(\theta))_{i \in N}, (u_i(\theta))_{i \in N} \rangle$ $u_i : A \times \Theta \to \mathbb{R}, A = \times_{i \in N} A_i$ [We assume $A_i(\theta) = A_i, \forall \theta$]

• $\theta = (\theta_i, \theta_{-i})$ is chosen randomly according to the common prior *P*

- $\theta = (\theta_i, \theta_{-i})$ is chosen randomly according to the common prior *P*
- Each player observes her own type θ_i

- $\theta = (\theta_i, \theta_{-i})$ is chosen randomly according to the common prior *P*
- Each player observes her own type θ_i
- Player *i* picks action $a_i \in A_i, \forall i \in N$

- $\theta = (\theta_i, \theta_{-i})$ is chosen randomly according to the common prior *P*
- Each player observes her own type θ_i
- Player *i* picks action $a_i \in A_i, \forall i \in N$
- Player *i* realizes a payoff of $u_i(a_i, a_{-i}; \theta_i, \theta_{-i})$

- ▶ Equilibrium in IIEFGs
- ▶ Game Theory in Practice: P2P File Sharing
- ► Bayesian Games
- Strategy, Utility in Bayesian Games
- ▶ Equilibrium in Bayesian Games
- ► Examples in Bayesian Equilibrium

	Definition	
Strategy is a plan to map type to action.		
$s_i: \Theta_i \to A_i$	Pure	
$\sigma_i: \Theta_i \to \Delta A_i$	Mixed	

	Definition
Strategy is a plan to map type to action.	
$s_i: \Theta_i o A_i$	Pure
$\sigma_i: \Theta_i o \Delta A_i$	Mixed

The player can experience its utility in two stages for Bayesian games (depending on the realization of θ_i).

• Ex-ante utility

	Definition	
Strategy is a plan to map type to action.		
$s_i: \Theta_i o A_i$	Pure	
$\sigma_i: \Theta_i \to \Delta A_i$	Mixed	

The player can experience its utility in two stages for Bayesian games (depending on the realization of θ_i).

- Ex-ante utility
- Ex-interim utility

	Definition	
Strategy is a plan to map type to action.		
$s_i: \Theta_i o A_i$	Pure	
$\sigma_i: \Theta_i \to \Delta A_i$	Mixed	

The player can experience its utility in two stages for Bayesian games (depending on the realization of θ_i).

- Ex-ante utility
- Ex-interim utility
- Ex-post utility (for complete information game)

Ex-ante Utility

Definition (Ex-ante utility)

Expected utility **before** observing own type.

$$u_i(\sigma) = \sum_{\theta \in \Theta} \frac{P(\theta)u_i(\sigma(\theta); \theta)}{\sum_{\substack{\theta \in \Theta}} P(\theta) \sum_{(a_1, a_2, \dots, a_n) \in A} \prod_{j \in N} \sigma_j(\theta_j)[a_j]u_i(a_1, \dots, a_n; \theta_1, \dots, \theta_n)}$$

Ex-ante Utility

Definition (Ex-ante utility)

Expected utility **before** observing own type.

$$u_i(\sigma) = \sum_{\theta \in \Theta} \frac{P(\theta)u_i(\sigma(\theta); \theta)}{\sum_{\substack{\theta \in \Theta}} P(\theta) \sum_{(a_1, a_2, \dots, a_n) \in A} \prod_{j \in N} \sigma_j(\theta_j)[a_j]u_i(a_1, \dots, a_n; \theta_1, \dots, \theta_n)}$$

The **belief** of player *i* over others' types changes after observing her own type θ_i :

$$P(\theta_{-i}|\theta_i) = \frac{P(\theta_i, \theta_{-i})}{\sum_{\tilde{\theta}_{-i} \in \Theta_{-i}} P(\theta_i, \tilde{\theta}_{-i})} \qquad \text{Bayes rule}$$

Definition (Ex-ante utility)

Expected utility **before** observing own type.

$$u_i(\sigma) = \sum_{\theta \in \Theta} \frac{P(\theta)u_i(\sigma(\theta); \theta)}{\sum_{\substack{\theta \in \Theta}} P(\theta) \sum_{(a_1, a_2, \dots, a_n) \in A} \prod_{j \in N} \sigma_j(\theta_j)[a_j]u_i(a_1, \dots, a_n; \theta_1, \dots, \theta_n)}$$

The **belief** of player *i* over others' types changes after observing her own type θ_i :

$$P(\theta_{-i}|\theta_i) = \frac{P(\theta_i, \theta_{-i})}{\sum_{\tilde{\theta}_{-i} \in \Theta_{-i}} P(\theta_i, \tilde{\theta}_{-i})} \qquad \text{Bayes rule}$$

This is why we needed every marginal to be positive

Definition (Ex-interim utility)

Expected utility after observing one's own type.

$$u_i(\sigma|\theta_i) = \sum_{\theta_{-i}\in\Theta_{-i}} P(\theta_{-i}|\theta_i) u_i(\sigma(\theta);\theta)$$

Definition (Ex-interim utility)

Expected utility after observing one's own type.

$$u_i(\sigma|\theta_i) = \sum_{\theta_{-i} \in \Theta_{-i}} P(\theta_{-i}|\theta_i) u_i(\sigma(\theta);\theta)$$

Special Case: for independent types, observing θ_i does not give any information on θ_{-i}

Definition (Ex-interim utility)

Expected utility after observing one's own type.

$$u_i(\sigma|\theta_i) = \sum_{\theta_{-i}\in\Theta_{-i}} \frac{P(\theta_{-i}|\theta_i)u_i(\sigma(\theta);\theta)}{\Phi_i(\sigma(\theta);\theta)}$$

Special Case: for independent types, observing θ_i does not give any information on θ_{-i}

Relation between the two utilities is given by

$$u_i(\sigma) = \sum_{\theta_i \in \Theta_i} P(\theta_i) u_i(\sigma | \theta_i)$$

Example 1: Two Player Bargaining Game

• Player 1 : seller, type : price at which he is willing to sell

Example 1: Two Player Bargaining Game

- Player 1 : seller, type : price at which he is willing to sell
- Player 2 : buyer, type : price at which he is willing to buy

- Player 1 : seller, type : price at which he is willing to sell
- Player 2 : buyer, type : price at which he is willing to buy
- $\Theta_1 = \Theta_2 = \{1, 2, \dots, 100\}, A_1 = A_2 = \{1, 2, \dots, 100\}$

- Player 1 : seller, type : price at which he is willing to sell
- Player 2 : buyer, type : price at which he is willing to buy
- $\Theta_1 = \Theta_2 = \{1, 2, \dots, 100\}, A_1 = A_2 = \{1, 2, \dots, 100\}$
- If the bid of the seller is smaller or equal to that of the buyer, trade happens at a price average of the two bids. Else, trade does not happen.

Suppose type generation is independent and uniform over Θ_1, Θ_2 respectively,

$$P(\theta_2|\theta_1) = P(\theta_2) = \frac{1}{100}, \forall \theta_1, \theta_2$$
$$P(\theta_1|\theta_2) = P(\theta_1) = \frac{1}{100}, \forall \theta_1, \theta_2$$

Suppose type generation is independent and uniform over Θ_1, Θ_2 respectively,

$$P(\theta_2|\theta_1) = P(\theta_2) = \frac{1}{100}, \forall \theta_1, \theta_2$$
$$P(\theta_1|\theta_2) = P(\theta_1) = \frac{1}{100}, \forall \theta_1, \theta_2$$

$$u_{1}(a_{1}, a_{2}; \theta_{1}, \theta_{2}) = \begin{cases} \frac{a_{1}+a_{2}}{2} - \theta_{1} & \text{if } a_{2} \ge a_{1} \\ 0 & \text{otherwise} \end{cases}$$
$$u_{2}(a_{1}, a_{2}; \theta_{1}, \theta_{2}) = \begin{cases} \theta_{2} - \frac{a_{1}+a_{2}}{2} & \text{if } a_{2} \ge a_{1} \\ 0 & \text{otherwise} \end{cases}$$

Suppose type generation is independent and uniform over Θ_1, Θ_2 respectively,

$$P(\theta_2|\theta_1) = P(\theta_2) = \frac{1}{100}, \forall \theta_1, \theta_2$$
$$P(\theta_1|\theta_2) = P(\theta_1) = \frac{1}{100}, \forall \theta_1, \theta_2$$

$$u_{1}(a_{1}, a_{2}; \theta_{1}, \theta_{2}) = \begin{cases} \frac{a_{1}+a_{2}}{2} - \theta_{1} & \text{if } a_{2} \ge a_{1} \\ 0 & \text{otherwise} \end{cases}$$
$$u_{2}(a_{1}, a_{2}; \theta_{1}, \theta_{2}) = \begin{cases} \theta_{2} - \frac{a_{1}+a_{2}}{2} & \text{if } a_{2} \ge a_{1} \\ 0 & \text{otherwise} \end{cases}$$

Common Prior : $P(\theta_1, \theta_2) = \frac{1}{10000}, \forall \theta_1, \theta_2$

Allocation Function:

$$O_1(b_1, b_2) = \begin{cases} 1 & \text{if } b_1 \ge b_2 \\ 0 & \text{ow} \end{cases} \qquad O_2(b_1, b_2) = \begin{cases} 1 & \text{if } b_2 > b_1 \\ 0 & \text{ow} \end{cases}$$

Allocation Function:

$$O_1(b_1, b_2) = \begin{cases} 1 & \text{if } b_1 \ge b_2 \\ 0 & \text{ow} \end{cases} \qquad O_2(b_1, b_2) = \begin{cases} 1 & \text{if } b_2 > b_1 \\ 0 & \text{ow} \end{cases}$$

Beliefs:

$$\begin{split} f(\theta_2|\theta_1) &= 1, \forall \theta_1, \theta_2 \\ f(\theta_1|\theta_2) &= 1, \forall \theta_1, \theta_2 \\ f(\theta_1, \theta_2) &= 1, \forall \theta_1, \theta_2 \end{split}$$

Allocation Function:

$$O_1(b_1, b_2) = \begin{cases} 1 & \text{if } b_1 \ge b_2 \\ 0 & \text{ow} \end{cases} \qquad O_2(b_1, b_2) = \begin{cases} 1 & \text{if } b_2 > b_1 \\ 0 & \text{ow} \end{cases}$$

Beliefs:

$$f(\theta_2|\theta_1) = 1, \forall \theta_1, \theta_2$$

$$f(\theta_1|\theta_2) = 1, \forall \theta_1, \theta_2$$

$$f(\theta_1, \theta_2) = 1, \forall \theta_1, \theta_2$$

$$u_i(b_1, b_2; \theta_1, \theta_2) = O_i(b_1, b_2)(\theta_i - b_i)$$

Winner pays his/her bid.

- ▶ Equilibrium in IIEFGs
- ▶ Game Theory in Practice: P2P File Sharing
- ► Bayesian Games
- Strategy, Utility in Bayesian Games
- ► Equilibrium in Bayesian Games
- ► Examples in Bayesian Equilibrium

Equilibrium concepts in Bayesian games

Ex-ante: before observing her own type

Nash Equilibrium (σ^*, P) : $u_i(\sigma^*_i, \sigma^*_{-i}) \ge u_i(\sigma'_i, \sigma^*_{-i}), \forall \sigma'_i, \forall i \in N$

Nash Equilibrium (σ^*, P) : $u_i(\sigma^*_i, \sigma^*_{-i}) \ge u_i(\sigma'_i, \sigma^*_{-i}), \forall \sigma'_i, \forall i \in N$

Ex-interim: after observing her own type

Bayesian Equilibrium (σ^*, P) : $u_i(\sigma_i^*(\theta_i), \sigma_{-i}^*|\theta_i) \ge u_i(\sigma_i'(\theta_i), \sigma_{-i}^*|\theta_i), \forall \sigma_i', \forall \theta_i \in \Theta_i, \forall i \in N$

$$u_i(\sigma) = \sum_{\theta \in \Theta} P(\theta) u_i(\sigma(\theta); \theta), \qquad u_i(\sigma|\theta_i) = \sum_{\theta_{-i} \in \Theta_{-i}} P(\theta_{-i}|\theta_i) u_i(\sigma(\theta); \theta)$$

Nash Equilibrium (σ^*, P) : $u_i(\sigma^*_i, \sigma^*_{-i}) \ge u_i(\sigma'_i, \sigma^*_{-i}), \forall \sigma'_i, \forall i \in N$

Ex-interim: after observing her own type

Bayesian Equilibrium (σ^*, P) : $u_i(\sigma_i^*(\theta_i), \sigma_{-i}^*|\theta_i) \ge u_i(\sigma_i'(\theta_i), \sigma_{-i}^*|\theta_i), \forall \sigma_i', \forall \theta_i \in \Theta_i, \forall i \in N$

$$u_i(\sigma) = \sum_{\theta \in \Theta} P(\theta) u_i(\sigma(\theta); \theta), \qquad u_i(\sigma|\theta_i) = \sum_{\theta_{-i} \in \Theta_{-i}} P(\theta_{-i}|\theta_i) u_i(\sigma(\theta); \theta)$$

• The RHS of the definition can be replaced by a pure strategy *a_i*, ∀*a_i* ∈ *A_i*. The reason is exactly the same as that of MSNE (these definitions are equivalent)

Nash Equilibrium (σ^*, P) : $u_i(\sigma^*_i, \sigma^*_{-i}) \ge u_i(\sigma'_i, \sigma^*_{-i}), \forall \sigma'_i, \forall i \in N$

Ex-interim: after observing her own type

Bayesian Equilibrium (σ^*, P) : $u_i(\sigma_i^*(\theta_i), \sigma_{-i}^*|\theta_i) \ge u_i(\sigma_i'(\theta_i), \sigma_{-i}^*|\theta_i), \forall \sigma_i', \forall \theta_i \in \Theta_i, \forall i \in N$

$$u_i(\sigma) = \sum_{\theta \in \Theta} P(\theta) u_i(\sigma(\theta); \theta), \qquad u_i(\sigma|\theta_i) = \sum_{\theta_{-i} \in \Theta_{-i}} P(\theta_{-i}|\theta_i) u_i(\sigma(\theta); \theta)$$

- The RHS of the definition can be replaced by a pure strategy *a_i*, *∀a_i* ∈ *A_i*. The reason is exactly the same as that of MSNE (these definitions are equivalent)
- NE takes expectation over $P(\theta)$

Nash Equilibrium (σ^*, P) : $u_i(\sigma^*_i, \sigma^*_{-i}) \ge u_i(\sigma'_i, \sigma^*_{-i}), \forall \sigma'_i, \forall i \in N$

Ex-interim: after observing her own type

Bayesian Equilibrium (σ^*, P) : $u_i(\sigma_i^*(\theta_i), \sigma_{-i}^*|\theta_i) \ge u_i(\sigma_i'(\theta_i), \sigma_{-i}^*|\theta_i), \forall \sigma_i', \forall \theta_i \in \Theta_i, \forall i \in N$

$$u_i(\sigma) = \sum_{\theta \in \Theta} P(\theta) u_i(\sigma(\theta); \theta), \qquad u_i(\sigma|\theta_i) = \sum_{\theta_{-i} \in \Theta_{-i}} P(\theta_{-i}|\theta_i) u_i(\sigma(\theta); \theta)$$

- The RHS of the definition can be replaced by a pure strategy *a_i*, *∀a_i* ∈ *A_i*. The reason is exactly the same as that of MSNE (these definitions are equivalent)
- NE takes expectation over $P(\theta)$
- BE takes expectation over $P(\theta_{-i}|\theta_i)$

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

For the forward direction, suppose (σ^*, P) is a Bayesian equilibrium, consider

$$\begin{aligned} u_i(\sigma'_i, \sigma^*_{-i}) &= \sum_{\theta_i \in \Theta_i} P(\theta_i) u_i(\sigma'_i(\theta_i), \sigma^*_{-i} | \theta_i) \\ &\leqslant \sum_{\theta_i \in \Theta_i} P(\theta_i) u_i(\sigma^*_i(\theta_i), \sigma^*_{-i} | \theta_i), \text{ since } (\sigma^*, P) \text{ is a BE} \\ &= u_i(\sigma^*_i, \sigma^*_{-i}) \end{aligned}$$

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

For the reverse direction, proof by contradiction. Suppose (σ^*, P) is not a Bayesian equilibrium i.e., there exists some $i \in N$, some $\theta_i \in \Theta_i$, some $a_i \in A_i$, s.t.

 $u_i(a_i, \sigma^*_{-i}|\theta_i) > u_i(\sigma^*_i(\theta_i), \sigma^*_{-i}|\theta_i)$

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

For the reverse direction, proof by contradiction. Suppose (σ^*, P) is not a Bayesian equilibrium i.e., there exists some $i \in N$, some $\theta_i \in \Theta_i$, some $a_i \in A_i$, s.t.

 $u_i(a_i, \sigma_{-i}^*|\theta_i) > u_i(\sigma_i^*(\theta_i), \sigma_{-i}^*|\theta_i)$

Construct the strategy $\hat{\sigma}_i$ s.t.,

$$\hat{\sigma_i}(heta_i') = \sigma_i^*(heta_i'), orall heta_i' \in \Theta_i \setminus \{ heta_i\}$$

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

For the reverse direction, proof by contradiction. Suppose (σ^*, P) is not a Bayesian equilibrium i.e., there exists some $i \in N$, some $\theta_i \in \Theta_i$, some $a_i \in A_i$, s.t.

 $u_i(a_i, \sigma_{-i}^*|\theta_i) > u_i(\sigma_i^*(\theta_i), \sigma_{-i}^*|\theta_i)$

Construct the strategy $\hat{\sigma}_i$ s.t.,

$$\hat{\sigma}_i(heta_i') = \sigma_i^*(heta_i'), orall heta_i' \in \Theta_i \setminus \{ heta_i\}$$

 $\hat{\sigma}_i(\theta_i)[a_i] = 1, \hat{\sigma}_i(\theta_i)[b_i] = 0, \forall b_i \in A_i \setminus \{a_i\}$

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

$$u_i(\hat{\sigma}_i, \sigma_{-i}^*) = \sum_{\tilde{\theta}_i \in \Theta_i} P(\tilde{\theta}_i) u_i(\hat{\sigma}_i(\tilde{\theta}_i), \sigma_{-i}^* | \tilde{\theta}_i)$$

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

$$u_{i}(\hat{\sigma}_{i}, \sigma_{-i}^{*}) = \sum_{\tilde{\theta}_{i} \in \Theta_{i}} P(\tilde{\theta}_{i}) u_{i}(\hat{\sigma}_{i}(\tilde{\theta}_{i}), \sigma_{-i}^{*}|\tilde{\theta}_{i})$$
$$= \sum_{\tilde{\theta}_{i} \in \Theta_{i} \setminus \{\theta_{i}\}} P(\tilde{\theta}_{i}) u_{i}(\hat{\sigma}_{i}(\tilde{\theta}_{i}), \sigma_{-i}^{*}|\tilde{\theta}_{i})$$

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

$$u_{i}(\hat{\sigma}_{i}, \sigma_{-i}^{*}) = \sum_{\tilde{\theta}_{i} \in \Theta_{i}} P(\tilde{\theta}_{i}) u_{i}(\hat{\sigma}_{i}(\tilde{\theta}_{i}), \sigma_{-i}^{*} | \tilde{\theta}_{i})$$

$$= \sum_{\tilde{\theta}_{i} \in \Theta_{i} \setminus \{\theta_{i}\}} P(\tilde{\theta}_{i}) u_{i}(\hat{\sigma}_{i}(\tilde{\theta}_{i}), \sigma_{-i}^{*} | \tilde{\theta}_{i}) + P(\theta_{i}) u_{i}(\hat{\sigma}_{i}(\theta_{i}), \sigma_{-i}^{*} | \theta_{i})$$

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

$$u_{i}(\hat{\sigma}_{i}, \sigma_{-i}^{*}) = \sum_{\tilde{\theta}_{i} \in \Theta_{i}} P(\tilde{\theta}_{i}) u_{i}(\hat{\sigma}_{i}(\tilde{\theta}_{i}), \sigma_{-i}^{*} | \tilde{\theta}_{i})$$

$$= \sum_{\tilde{\theta}_{i} \in \Theta_{i} \setminus \{\theta_{i}\}} P(\tilde{\theta}_{i}) u_{i}(\hat{\sigma}_{i}(\tilde{\theta}_{i}), \sigma_{-i}^{*} | \tilde{\theta}_{i}) + P(\theta_{i}) u_{i}(\hat{\sigma}_{i}(\theta_{i}), \sigma_{-i}^{*} | \theta_{i})$$

$$> \sum_{\tilde{\theta}_{i} \in \Theta_{i} \setminus \{\theta_{i}\}} P(\tilde{\theta}_{i}) u_{i}(\sigma_{i}^{*}(\tilde{\theta}_{i}), \sigma_{-i}^{*} | \tilde{\theta}_{i}) + P(\theta_{i}) u_{i}(\sigma_{i}^{*}(\theta_{i}), \sigma_{-i}^{*} | \theta_{i}) = u_{i}(\sigma_{i}^{*}, \sigma_{-i}^{*})$$

In finite Bayesian games, a strategy profile is Bayesian Equilibrium iff it is a Nash equilibrium

Proof.

Reverse direction proof continued ...

$$\begin{split} u_{i}(\hat{\sigma}_{i},\sigma_{-i}^{*}) &= \sum_{\tilde{\theta}_{i}\in\Theta_{i}} P(\tilde{\theta}_{i})u_{i}(\hat{\sigma}_{i}(\tilde{\theta}_{i}),\sigma_{-i}^{*}|\tilde{\theta}_{i}) \\ &= \sum_{\tilde{\theta}_{i}\in\Theta_{i}\setminus\{\theta_{i}\}} P(\tilde{\theta}_{i})u_{i}(\hat{\sigma}_{i}(\tilde{\theta}_{i}),\sigma_{-i}^{*}|\tilde{\theta}_{i}) + P(\theta_{i})u_{i}(\hat{\sigma}_{i}(\theta_{i}),\sigma_{-i}^{*}|\theta_{i}) \\ &> \sum_{\tilde{\theta}_{i}\in\Theta_{i}\setminus\{\theta_{i}\}} P(\tilde{\theta}_{i})u_{i}(\sigma_{i}^{*}(\tilde{\theta}_{i}),\sigma_{-i}^{*}|\tilde{\theta}_{i}) + P(\theta_{i})u_{i}(\sigma_{i}^{*}(\theta_{i}),\sigma_{-i}^{*}|\theta_{i}) = u_{i}(\sigma_{i}^{*},\sigma_{-i}^{*}) \end{split}$$

Hence, $(\sigma_i^*, \sigma_{-i}^*)$ is not a Nash equilibrium

Every finite Bayesian game has a Bayesian equilibrium.

[Finite Bayesian game: set of players, action set and type set are finite]

Every finite Bayesian game has a Bayesian equilibrium.

[Finite Bayesian game: set of players, action set and type set are finite]

Proof.

Proof idea: Transform the Bayesian game into a complete information game treating each type as a player, and invoke Nash Theorem for the existence of equilibrium - which is a BE in the original game. [See addendum for details]

- ▶ Equilibrium in IIEFGs
- ▶ Game Theory in Practice: P2P File Sharing
- ► Bayesian Games
- Strategy, Utility in Bayesian Games
- Equilibrium in Bayesian Games
- ▶ Examples in Bayesian Equilibrium

Allocation Function

$$O_1(b_1, b_2) = \mathbb{1}\{b_1 \ge b_2\}$$
$$O_2(b_1, b_2) = \mathbb{1}\{b_2 > b_1\}$$

Beliefs

$$f(\theta_2|\theta_1) = 1, \forall \theta_1, \theta_2$$

$$f(\theta_1|\theta_2) = 1, \forall \theta_1, \theta_2$$

$$f(\theta_1, \theta_2) = 1, \forall \theta_1, \theta_2$$

• If $b_1 \ge b_2$, player 1 wins and pays her bid; otherwise, player 2 wins and pays her bid.

$$u_1(b_1, b_2, \theta_1, \theta_2) = (\theta_1 - b_1) \mathbb{1} \{ b_1 \ge b_2 \}$$

$$u_2(b_1, b_2, \theta_1, \theta_2) = (\theta_2 - b_2) \mathbb{1} \{ b_1 < b_2 \}$$

• If $b_1 \ge b_2$, player 1 wins and pays her bid; otherwise, player 2 wins and pays her bid.

$$u_1(b_1, b_2, \theta_1, \theta_2) = (\theta_1 - b_1) \mathbb{1}\{b_1 \ge b_2\}$$

$$u_2(b_1, b_2, \theta_1, \theta_2) = (\theta_2 - b_2) \mathbb{1}\{b_1 < b_2\}$$

• $b_1 = s_1(\theta_1), b_2 = s_2(\theta_2)$ Assume $s_i(\theta_i) = \alpha_i \theta_i, \alpha_i > 0, i = 1, 2$

To find the BE, we need to find the s_i^* (or α_i^*) that maximizes the ex-interim utility of player *i*. i.e.

 $\max_{\sigma_i} u_i(\sigma_i, \sigma_{-i}^* | \theta_i)$

For player 1, this reduces to

$$\max_{\sigma_i} u_i(\sigma_i, \sigma_{-i}^* | \theta_i) = \max_{b_1 \in [0,1]} \int_0^1 f(\theta_2 | \theta_1) (\theta_1 - b_1) \mathbb{1}\{b_1 \ge \alpha_2 \theta_2\} d\theta_2$$
$$= \max_{b_1 \in [0,1]} (\theta_1 - b_1) \frac{b_1}{\alpha_2}$$
$$\implies b_1 = \frac{\theta_1}{2}$$

From this we get,

$$s_1^*(\theta_1) = \frac{\theta_1}{2}$$
$$s_2^*(\theta_2) = \frac{\theta_2}{2}$$

is a BE.

In the Bayesian Game induced by uniform prior on first price auction, bidding half the true value is a Bayesian equilibrium.

Highest bidder wins but pays the second highest bid.

$$u_1(b_1, b_2, \theta_1, \theta_2) = (\theta_1 - b_2) \mathbb{1}\{b_1 \ge b_2\}$$
$$u_2(b_1, b_2, \theta_1, \theta_2) = (\theta_2 - b_1) \mathbb{1}\{b_1 < b_2\}$$

Highest bidder wins but pays the second highest bid.

$$u_1(b_1, b_2, \theta_1, \theta_2) = (\theta_1 - b_2) \mathbb{1}\{b_1 \ge b_2\}$$

$$u_2(b_1, b_2, \theta_1, \theta_2) = (\theta_2 - b_1) \mathbb{1}\{b_1 < b_2\}$$

Player 1 has to maximize

$$= \int_{0}^{1} f(\theta_{2}|\theta_{1})(\theta_{1} - s_{2}(\theta_{2}))\mathbb{1}\{b_{1} \ge s_{2}(\theta_{2})\}d\theta_{2}$$

$$= \int_{0}^{1} \mathbb{1} \cdot (\theta_{1} - \alpha_{2}\theta_{2})\mathbb{1}\{\theta_{2} \le \frac{b_{1}}{\alpha_{2}}\}d\theta_{2}$$

$$= \frac{1}{\alpha_{2}}(b_{1}\theta_{1} - \frac{\theta_{1}^{2}}{2})$$

This is maximized when $b_1 = \theta_1$. Similarly for $b_2 = \theta_2$.

If the distribution of θ_1 and θ_2 were arbitrary but independent, the maximization problem would have been

$$\int_0^{\frac{b_1}{\alpha_2}} f(\theta_2)(\theta_1 - \alpha_2\theta_2)d\theta_2 = \theta_1 F\left(\frac{b_1}{\alpha_2}\right) - \alpha_2 \int_0^{\frac{b_1}{\alpha_2}} \theta_2 f(\theta_2)d\theta_2$$

If the distribution of θ_1 and θ_2 were arbitrary but independent, the maximization problem would have been

$$\int_0^{\frac{b_1}{\alpha_2}} f(\theta_2)(\theta_1 - \alpha_2\theta_2)d\theta_2 = \theta_1 F\left(\frac{b_1}{\alpha_2}\right) - \alpha_2 \int_0^{\frac{b_1}{\alpha_2}} \theta_2 f(\theta_2)d\theta_2$$

Differentiating w.r.t. b_1 , we get

$$\theta_{1} \frac{1}{\alpha_{2}} f\left(\frac{b_{1}}{\alpha_{2}}\right) - \alpha_{2} \cdot \frac{b_{1}}{\alpha_{2}} f\left(\frac{b_{1}}{\alpha_{2}}\right) \frac{1}{\alpha_{2}} = 0 \implies f\left(\frac{b_{1}}{\alpha_{2}}\right) (b_{1} - \theta_{1}) = 0 \tag{1}$$
$$\implies b_{1} = \theta_{1}, \text{ if } f\left(\frac{b_{1}}{\alpha_{2}}\right) > 0 \tag{2}$$

Similarly for player 2.

If the distribution of θ_1 and θ_2 were arbitrary but independent, the maximization problem would have been

$$\int_0^{\frac{b_1}{\alpha_2}} f(\theta_2)(\theta_1 - \alpha_2 \theta_2) d\theta_2 = \theta_1 F\left(\frac{b_1}{\alpha_2}\right) - \alpha_2 \int_0^{\frac{b_1}{\alpha_2}} \theta_2 f(\theta_2) d\theta_2$$

Differentiating w.r.t. b_1 , we get

$$\theta_{1} \frac{1}{\alpha_{2}} f\left(\frac{b_{1}}{\alpha_{2}}\right) - \alpha_{2} \cdot \frac{b_{1}}{\alpha_{2}} f\left(\frac{b_{1}}{\alpha_{2}}\right) \frac{1}{\alpha_{2}} = 0 \implies f\left(\frac{b_{1}}{\alpha_{2}}\right) (b_{1} - \theta_{1}) = 0 \tag{1}$$
$$\implies b_{1} = \theta_{1}, \text{ if } f\left(\frac{b_{1}}{\alpha_{2}}\right) > 0 \tag{2}$$

Similarly for player 2. For any independent positive prior, bidding true type is a BE of the induced Bayesian game in Second Price Auction.

भारतीय प्रौद्योगिकी संस्थान मुंबई Indian Institute of Technology Bombay