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Mechanism Design (Inverse Game Theory)

The objective/desired are set - the task is to set the rules of the game. Examples : Election, license
scarce resource (spectrum, cloud), matching students to universities.

General Model

• N: set of players
• X: set of outcomes, e.g, winner in an election, which resource allocated to whom etc.
• Θi : set of private information of agent i (type). A type θi ∈ Θi.
• The type may manifest in the preferences over the outcomes in different ways

1 Ordinal : θi defines an ordering over the outcome.
2 Cardinal : an utility function ui maps an (outcome, type) pair to real numbers,

◦ ui : X × Θi → R (private value model)
◦ ui : X × Θi → R (interdependent value model)
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Examples

Voting

• X is the set of candidates.
• θi is a ranking over this candidates, e.g., θi = (a, b, c), i.e., a is preferred more than b which is

in turn more preferred than c.

Single Object allocation: an outcome is x = (a, p) ∈ X

• a = (a1, a2, . . . , an), ai ∈ {0, 1}, ∑i∈N ai ⩽ 1, allocations.
• p = (p1, p2, . . . , pn), pi is the payment charged to i.

• θi : value of i for the object.
• ui(x, θi) = aiθi − pi
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Social Choice Function

• The designer has an objective and this is captured through a Social Choice Function(SCF).

f : Θ1 × Θ2 × . . . × Θn → X

Examples

• in voting, if there is a candidate who beats everyone else in pairwise contests the he/she
must be chosen as a winner.

• in public project choice, where θi : X → R, value for each project pick,
f (θ) ∈ arg maxa∈X ∑i∈N θi(a)

Question

How can we create a game where f (θ) emerges as an outcome of an equilibrium?

Answer

We need mechanisms
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Mechanisms

Definition

An indirect mechanism is a collection of message spaces and a decision rule ⟨M1, M2, . . . , Mn, g⟩
• Mi is the message space of agent i
• g : M1 × M2 × . . . × Mn → X

A direct mechanism is the same as above with Mi = Θi, ∀i ∈ N, g ≡ f . The message space is
similar to equipping every agent with a card deck and asking to pick some.

Question

Why these are not so commonplace?

Answer

Due to a result that will follow.
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Weakly Dominant

Definition

In a mechanism ⟨M1, M2, . . . , Mn, g⟩, a message mi is weakly dominant for player i at θi if

ui(g(mi, m̃−i), θi) ⩾ ui(g(m′
i , m̃−i), θi), ∀m̃−i, ∀m′

i

All subsequent definitions assume cardinal preferences, however they can be replaced with
ordinal, e.g., the above one could be defined as

ui(g(mi, m̃−i), θi) θi ui(g(m′
i , m̃−i), θi), ∀m̃−i, ∀m′

i
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Dominant Strategy Implementable (DSI)

Definition

An SCF f : Θ → X is implemented in dominant strategies by ⟨M1, M2, . . . , Mn, g⟩ if
• ∃ message mappings si : Θi → Mi, s.t, si(θi) is a dominant strategy for agent i at θi, ∀θi ∈ Θi,

∀i ∈ N .
• g(s1(θ1), . . . , sn(θn)) = f (θ), ∀θ ∈ Θ

We call this an indirect implementation, i.e., SCF f is dominant strategy implementable (DSI) by
⟨M1, M2, . . . , Mn, g⟩.
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Dominant Strategy Incentive Compatible DSIC)

Definition

A direct mechanism ⟨Θ1, Θ2, . . . , Θn, f ⟩ is dominant strategy incentive compatible (DSIC) if

ui(g(θi, θ̃−i), θi) ⩾ ui(g(θ′i , θ̃−i), θi), ∀θ̃−i, θ′i , θi, ∀i ∈ N

To find if an SCF f is dominant strategy implementable, we need to search over all possible
indirect mechanisms ⟨M1, M2, . . . , Mn, g⟩. But luckily, there is a result that reduces the search
space.
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Relationship between DSI and DSIC

Revelation Principle (for DSI SCFs)

If there exists an indirect mechanism that implements f in dominant strategies, then f is DSIC.
Implication: Can focus on DSIC mechanisms WLOG.

Proof.

Let f is implemented by ⟨M1, M2, . . . , Mn, g⟩, hence ∃si : Θi → Mi s.t., ∀i ∈ N , ∀m̃−i, mi, θi,

ui(g(si(θi), m̃−i), θi) ⩾ ui(g(m′
i , m̃−i), θi) (1)

g(si(θi), s−i(θ−i) = f (θi, θ−i) (2)

Eq. 1 holds for all m′
i , m̃−i, in particular, m′

i = si(θ
′
i), m̃−i = s−i(θ−i) where θ′i and θ̃−i are arbitrary.

Hence,

ui(g(si(θi), s−i(θ−i)), θi) ⩾ ui(g(si(θ
′
i), s−i(θ−i)), θi) ⇒ ui(f (θi, θ̃−i), θi) ⩾ ui(f (θ′i , θ̃−i), θi)

⇒ f is DSIC.
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Bayesian extension

• Agents may have probabilistic information about other’s types.
• Types are generated from a common prior (common knowledge) and are revealed only to the

respective agents.
• Recall : Bayesian games ⟨N, (Mi)i∈N, (Θi)i∈N, P, (Γθ)θ∈Θ⟩
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Bayesian extension

Definition

An (indirect) mechanism ⟨M1, M2, . . . , Mn, g⟩ implements an SCF f in a Bayesian equilibrium if
• ∃ a message mapping profile (s1, . . . , sn), s.t., si(θi) maximizes the ex-interim utility of agent

i, ∀θi, ∀i ∈ N, i.e.,

Eθ−i|θi
[ui(g(si(θi), s−i(θ−i)), θi)] ⩾ Eθ−i|θi

[ui(g(m′
i , s−i(θ−i)), θi)] ∀m′

i , ∀θi, ∀i ∈ N

• g(si(θi), s−i(θ−i)) = f (θi, θ−i), ∀θ

We call f is Bayesian implementable via ⟨M1, M2, . . . , Mn, g⟩ under the prior P.

Lemma

If an SCF f dominant strategy implementable, then it is Bayesian implementable.

Proof : Homework
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Bayesian Incentive Compatible

Definition

A direct mechanism ⟨Θ1, Θ2, . . . , Θn, f ⟩ is Bayesian Incentive Compatible (BIC) if ∀θi, θ′i , ∀i ∈ N

Eθ−i|θi
[ui(f (θi, θ−i), θ−i), θi] ⩾ Eθ−i|θi

[ui(f (θ′i , θ−i), θ−i), θi]
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Revelation Principle for BI SCFs

Revelation Principle (for BI SCFs)

If an SCF f is implementable in Bayesian equilibrium, then f is BIC.

• Proof idea is similar to the DSI, with expected utilities at appropriate places.
• For truthfulness of these two kinds, we will only consider incentive compatibility.
• These results hold even for ordinal preferences and mechanisms.
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Arrow’s Social Welfare Function Setup

Question

Ignoring the truthful revelation for a moment, can we reasonably aggregate opinions for a
general setup?

Objective: create social preferences from individual preferences

• Finite set of alternatives A = {a1, a2, . . . , am}

• Finite set of players N = {1, 2, . . . , n}
• Each player i has a preference order Ri over A (A binary relation over A, aRib means

alternative a is at least as good as b to i
• Properties of Ri

1 Completeness: for every pair of alternatives a, b ∈ A, either aRib or bRia or both
2 Reflexivity: ∀a ∈ A, aRia
3 Transitivity: if aRib and bRic, then aRic, ∀a, b, c ∈ A and i ∈ N
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Arrow’s Social Welfare Function Setup

• Set of all preference ordering is denoted by R

• An ordering Ri is linear if for every a, b ∈ A s.t. aRib and bRia implies a = b (Antisymmetric)
• Set of all linear preference ordering is denoted by P
• Any arbitrary ordering Ri can be decomposed into its

(a) asymmetric part Pi
(b) symmetric part Ii

• Example:

Ri =

 a
b, c
d

 = {(a, b), (a, c), (a, d), (b, c), (c, b), (b, d), (c, d)}

⇒ Pi =

 a a
b c
d d

 = {(a, b), (a, c), (a, d), (b, d), (c, d)}, Ii = {(b, c), (c, b)}
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Arrovian Social Welfare Function (ASWF)

F : Rn → R domain and co-domain are both rankings

• Motivation: the function F captures the collective ordering of the society, if the most
preferred is not feasible, the society can move to the next and so on

• F(R) = F(R1, R2, . . . , Rn) is an ordering over the alternatives
• F̂(R) is the asymmetric part of F(R)
• F(R) is the symmetric part of F(R)
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Pareto or Unanimity

Definition (Weak Pareto)

An ASWF F satisfies weak Pareto if ∀a, b ∈ A and for every strict preference profile P, if aPib
forall i ∈ N, then aF̂(R)b.

Important: there can be P’s where the ‘if’ condition does not hold, then the implication is
vacuously true

Definition (Strong Pareto)

An ASWF F satisfies strong Pareto if ∀a, b ∈ A and for every preference profile R, if aRib forall
i ∈ N and aPjb for some j ∈ N, then aF̂(R)b.

Question

Which property implies the other?
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Independence of Irrelevant Alternatives

• We say Ri, R′
i ∈ R agree on {a, b} for agent i if

aPib ⇔ aP′
ib, bPia ⇔ bP′

ia, aIib ⇔ aI′ib

• We use the shorthand Ri|a,b = R′
i |a,b to denote this for agent i

• If this holds for every i ∈ N, R|a,b = R′|a,b

Definition (Independence of Irrelevant Alternatives)

An ASWF F satisfies independence of irrelevant alternatives (IIA) if for all a, b ∈ A, and for
every pair of preference profiles R and R′, if R|a,b = R′|a,b, then F(R)|a,b = F(R′)|a,b.

If the relative positions of two alternatives are the same in two different preference profiles, then
the aggregate should also match the relative positions of those two alternatives
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Example

If the relative positions of two alternatives are the same in two different preference profiles, then
the aggregate should also match the relative positions of those two alternatives

R
a a c d
b c b c
c b a b
d d d a

R′

d c b b
a a c a
b b a d
c d d c

• IIA says F(R)|a,b = F(R′)|a,b

• Simple aggregation rules, e.g., scoring rules: each position of each agent gets a score
(s1, s2, . . . , sm), si ⩾ si+1, i = 1, 2, . . . , m − 1, the final ordering is in the decreasing order of the
scores

• One special scoring rule: plurality, s1 = 1, si = 0, i = 2, . . . , m.
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Satisfaction of IIA

Question

Does plurality satisfy IIA?

R
a a c d
b c b c
c b a b
d d d a

R′

d c b b
a a c a
b b a d
c d d c

Check: aFplu(R)b, but bFplu(R′)a, even though R|a,b = R′|a,b

Question

Does dictatorship satisfy IIA?

A dictatorship ASWF is where there exists a pre-determined agent d and Fd(R) = Rd
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Arrow’s impossibility result

Theorem (Arrow 1951)

For |A| ⩾ 3, if an ASWF F satisfies WP and IIA, then it must be dictatorial.

We cannot aggregate reasonably even when there is no truthfulness constraint
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Decisiveness

Definition

Let F : Rn → R be given, G ⊆ N, G ̸= ∅.
1 G is almost decisive over {a, b} if for every R satisfying

aPib, ∀i ∈ G, bPja, ∀j ∈ N \ G

we have aF̂(R)b.
We will write this with the shorthand DG(a, b): G is almost decisive over {a, b} w.r.t. F.

2 G is decisive over {a, b} if for every R satisfying

aPib, ∀i ∈ G

we have aF̂(R)b.
We will write this with the shorthand DG(a, b): G is almost decisive over {a, b} w.r.t. F.

Observation: DG(a, b) ⇒ DG(a, b)
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Proof of Arrow’s theorem

The proof proceeds in two parts:

Part 1 Field expansion lemma: If a group is almost decisive over a pair of alternatives, it is
decisive over all pairs of alternatives

Part 2 Group contraction lemma: If a group is decisive, then a strict non-empty subset of that
group is also decisive.

Note: these two lemmas immediately proves the theorem
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Field expansion lemma

Lemma

Let F satisfy WP and IIA, then ∀a, b, x, y, G ⊆ N, G ̸= ∅, a ̸= b, x ̸= y

DG(a, b) ⇒ DG(x, y).

It implies that under WP and IIA, the two notions of decisiveness are equivalent.

Cases to consider (ordered for the convenience of the proof):

1 DG(a, b) ⇒ DG(a, y), y ̸= a, b
2 DG(a, b) ⇒ DG(x, b), x ̸= a, b
3 DG(a, b) ⇒ DG(x, y), x, y ̸= a, b
4 DG(a, b) ⇒ DG(x, a), x ̸= a, b
5 DG(a, b) ⇒ DG(b, y), y ̸= a, b
6 DG(a, b) ⇒ DG(a, b)
7 DG(a, b) ⇒ DG(b, a)
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Proof of FEL

• Case 1: DG(a, b) ⇒ DG(a, y), y ̸= a, b

• Pick an arbitrary R ∈ Rn, s.t., aPiy, ∀i ∈ G
• Need to show: aF̂(R)y
• Construct R′ s.t.

G N \ G
a a b b
...

...
...

...
b b a y
...

...
...

...
y y y a

positions of a and y in N \ G s.t. R′|a,y = R|a,y

• DG(a, b) ⇒ aF̂(R′)b
• WP over b, y, ⇒ bF̂(R′)y, transitivity ⇒ aF̂(R′)y
• IIA ⇒ aF̂(R)y. Hence, DG(a, y)



29

Proof of FEL

• Case 1: DG(a, b) ⇒ DG(a, y), y ̸= a, b
• Pick an arbitrary R ∈ Rn, s.t., aPiy, ∀i ∈ G

• Need to show: aF̂(R)y
• Construct R′ s.t.

G N \ G
a a b b
...

...
...

...
b b a y
...

...
...

...
y y y a

positions of a and y in N \ G s.t. R′|a,y = R|a,y

• DG(a, b) ⇒ aF̂(R′)b
• WP over b, y, ⇒ bF̂(R′)y, transitivity ⇒ aF̂(R′)y
• IIA ⇒ aF̂(R)y. Hence, DG(a, y)



29

Proof of FEL

• Case 1: DG(a, b) ⇒ DG(a, y), y ̸= a, b
• Pick an arbitrary R ∈ Rn, s.t., aPiy, ∀i ∈ G
• Need to show: aF̂(R)y

• Construct R′ s.t.

G N \ G
a a b b
...

...
...

...
b b a y
...

...
...

...
y y y a

positions of a and y in N \ G s.t. R′|a,y = R|a,y

• DG(a, b) ⇒ aF̂(R′)b
• WP over b, y, ⇒ bF̂(R′)y, transitivity ⇒ aF̂(R′)y
• IIA ⇒ aF̂(R)y. Hence, DG(a, y)



29

Proof of FEL

• Case 1: DG(a, b) ⇒ DG(a, y), y ̸= a, b
• Pick an arbitrary R ∈ Rn, s.t., aPiy, ∀i ∈ G
• Need to show: aF̂(R)y
• Construct R′ s.t.

G N \ G
a a b b
...

...
...

...
b b a y
...

...
...

...
y y y a

positions of a and y in N \ G s.t. R′|a,y = R|a,y

• DG(a, b) ⇒ aF̂(R′)b
• WP over b, y, ⇒ bF̂(R′)y, transitivity ⇒ aF̂(R′)y
• IIA ⇒ aF̂(R)y. Hence, DG(a, y)



29

Proof of FEL

• Case 1: DG(a, b) ⇒ DG(a, y), y ̸= a, b
• Pick an arbitrary R ∈ Rn, s.t., aPiy, ∀i ∈ G
• Need to show: aF̂(R)y
• Construct R′ s.t.

G N \ G
a a b b
...

...
...

...
b b a y
...

...
...

...
y y y a

positions of a and y in N \ G s.t. R′|a,y = R|a,y

• DG(a, b) ⇒ aF̂(R′)b

• WP over b, y, ⇒ bF̂(R′)y, transitivity ⇒ aF̂(R′)y
• IIA ⇒ aF̂(R)y. Hence, DG(a, y)



29

Proof of FEL

• Case 1: DG(a, b) ⇒ DG(a, y), y ̸= a, b
• Pick an arbitrary R ∈ Rn, s.t., aPiy, ∀i ∈ G
• Need to show: aF̂(R)y
• Construct R′ s.t.

G N \ G
a a b b
...

...
...

...
b b a y
...

...
...

...
y y y a

positions of a and y in N \ G s.t. R′|a,y = R|a,y

• DG(a, b) ⇒ aF̂(R′)b
• WP over b, y, ⇒ bF̂(R′)y, transitivity ⇒ aF̂(R′)y

• IIA ⇒ aF̂(R)y. Hence, DG(a, y)



29

Proof of FEL

• Case 1: DG(a, b) ⇒ DG(a, y), y ̸= a, b
• Pick an arbitrary R ∈ Rn, s.t., aPiy, ∀i ∈ G
• Need to show: aF̂(R)y
• Construct R′ s.t.

G N \ G
a a b b
...

...
...

...
b b a y
...

...
...

...
y y y a

positions of a and y in N \ G s.t. R′|a,y = R|a,y

• DG(a, b) ⇒ aF̂(R′)b
• WP over b, y, ⇒ bF̂(R′)y, transitivity ⇒ aF̂(R′)y
• IIA ⇒ aF̂(R)y. Hence, DG(a, y)



30

Proof of FEL (contd.)

• Case 2: DG(a, b) ⇒ DG(x, b), x ̸= a, b
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Proof of FEL (other cases)

• Case 3: DG(a, b)
(case 1)
=⇒ DG(a, y) (y ̸= a, b)

(definition)
=⇒ DG(a, y)

(case 2)
=⇒ DG(x, y) (x ̸= a, y)

• Case 4: DG(a, b)
(case 2)
=⇒ DG(x, b) (x ̸= a, b)

(definition)
=⇒ DG(x, b)

(case 1)
=⇒ DG(x, a) (x ̸= a, b)

• Case 5: DG(a, b)
(case 1)
=⇒ DG(a, y) (y ̸= a, b)

(definition)
=⇒ DG(a, y)

(case 2)
=⇒ DG(b, y) (y ̸= a, b)

• Case 6: DG(a, b)
(case 2)
=⇒ DG(x, b) (x ̸= a, b)

(definition)
=⇒ DG(x, b)

(case 2)
=⇒ DG(a, b)

• Case 7: DG(a, b)
(case 5)
=⇒ DG(b, y) (y ̸= a, b)

(definition)
=⇒ DG(b, y)

(case 1)
=⇒ DG(b, a)
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Group contraction lemma

Lemma

Let F satisfy WP and IIA, and let G ⊆ N, G ̸= ∅, |G| ⩾ 2 be decisive. Then ∃G′ ⊂ G, G′ ̸= ∅ which is
also decisive.

Proof:

• G, |G| ⩾ 2 is given. Let G1 ⊂ G, G2 = G \ G1, G1, G2 ̸= ∅, arbitrary.

• Construct R

G1 G2 N \ G
a c b
b a c
c b a

aPib, ∀i ∈ G and G decisive ⇒ aF̂(R)b

• Where can c stand in F(R) w.r.t. a? We will show in every possible case, either G1 or G2 will
be decisive
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Proof of GCL

Case 1: aF̂(R)c

G1 G2 N \ G
a c b
b a c
c b a

have seen ⇒ aF̂(R)b

• Consider G1

• aPic, ∀i ∈ G1, cPia, ∀i ∈ N \ G1

• Consider each R′ where the above
relation holds

• by IIA aF̂(R′)c

• Hence DG1(a, c)
(FEL)
=⇒ DG1
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Proof of GCL (contd.)

Case 2: ¬(aF̂(R)c) =⇒ cF(R)a

G1 G2 N \ G
a c b
b a c
c b a

have seen ⇒ aF̂(R)b
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• Consider each R′ where the above
relation holds

• by IIA cF̂(R′)b

• Hence DG2(c, b)
(FEL)
=⇒ DG2
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