
1

CS 6001: Game Theory and Algorithmic
Mechanism Design
Week 9

Swaprava Nath

Slide preparation acknowledgments: Rounak Dalmia

2

Contents

▶ Task Allocation Domain

▶ The Uniform Rule

▶ Mechanism Design with Transfers

▶ Quasi Linear Preferences

▶ Pareto Optimality and Groves Payments

3

Task Allocation Domain

• Unit amount of task to be shared among n agents

• Agent i gets a share si ∈ [0, 1] of the job, ∑i∈N si = 1
• Agent payoff: every agent has a most preferred share of work.
• Example:

— The task has rewards, e.g., wages per unit time = w
— if agent i works for ti time then gets w · ti
— The task also has costs, e.g., physical tiredness/less free time, etc. Let the cost be quadratic = cit2

i
— Net payoff = wti − cit2

i =⇒ maximized at ti = w/2ci,
and monotone decreasing on both sides

3

Task Allocation Domain

• Unit amount of task to be shared among n agents
• Agent i gets a share si ∈ [0, 1] of the job, ∑i∈N si = 1

• Agent payoff: every agent has a most preferred share of work.
• Example:

— The task has rewards, e.g., wages per unit time = w
— if agent i works for ti time then gets w · ti
— The task also has costs, e.g., physical tiredness/less free time, etc. Let the cost be quadratic = cit2

i
— Net payoff = wti − cit2

i =⇒ maximized at ti = w/2ci,
and monotone decreasing on both sides

3

Task Allocation Domain

• Unit amount of task to be shared among n agents
• Agent i gets a share si ∈ [0, 1] of the job, ∑i∈N si = 1
• Agent payoff: every agent has a most preferred share of work.

• Example:

— The task has rewards, e.g., wages per unit time = w
— if agent i works for ti time then gets w · ti
— The task also has costs, e.g., physical tiredness/less free time, etc. Let the cost be quadratic = cit2

i
— Net payoff = wti − cit2

i =⇒ maximized at ti = w/2ci,
and monotone decreasing on both sides

3

Task Allocation Domain

• Unit amount of task to be shared among n agents
• Agent i gets a share si ∈ [0, 1] of the job, ∑i∈N si = 1
• Agent payoff: every agent has a most preferred share of work.
• Example:

— The task has rewards, e.g., wages per unit time = w
— if agent i works for ti time then gets w · ti
— The task also has costs, e.g., physical tiredness/less free time, etc. Let the cost be quadratic = cit2

i
— Net payoff = wti − cit2

i =⇒ maximized at ti = w/2ci,
and monotone decreasing on both sides

3

Task Allocation Domain

• Unit amount of task to be shared among n agents
• Agent i gets a share si ∈ [0, 1] of the job, ∑i∈N si = 1
• Agent payoff: every agent has a most preferred share of work.
• Example:

— The task has rewards, e.g., wages per unit time = w

— if agent i works for ti time then gets w · ti
— The task also has costs, e.g., physical tiredness/less free time, etc. Let the cost be quadratic = cit2

i
— Net payoff = wti − cit2

i =⇒ maximized at ti = w/2ci,
and monotone decreasing on both sides

3

Task Allocation Domain

• Unit amount of task to be shared among n agents
• Agent i gets a share si ∈ [0, 1] of the job, ∑i∈N si = 1
• Agent payoff: every agent has a most preferred share of work.
• Example:

— The task has rewards, e.g., wages per unit time = w
— if agent i works for ti time then gets w · ti

— The task also has costs, e.g., physical tiredness/less free time, etc. Let the cost be quadratic = cit2
i

— Net payoff = wti − cit2
i =⇒ maximized at ti = w/2ci,

and monotone decreasing on both sides

3

Task Allocation Domain

• Unit amount of task to be shared among n agents
• Agent i gets a share si ∈ [0, 1] of the job, ∑i∈N si = 1
• Agent payoff: every agent has a most preferred share of work.
• Example:

— The task has rewards, e.g., wages per unit time = w
— if agent i works for ti time then gets w · ti
— The task also has costs, e.g., physical tiredness/less free time, etc. Let the cost be quadratic = cit2

i

— Net payoff = wti − cit2
i =⇒ maximized at ti = w/2ci,

and monotone decreasing on both sides

3

Task Allocation Domain

• Unit amount of task to be shared among n agents
• Agent i gets a share si ∈ [0, 1] of the job, ∑i∈N si = 1
• Agent payoff: every agent has a most preferred share of work.
• Example:

— The task has rewards, e.g., wages per unit time = w
— if agent i works for ti time then gets w · ti
— The task also has costs, e.g., physical tiredness/less free time, etc. Let the cost be quadratic = cit2

i
— Net payoff = wti − cit2

i =⇒ maximized at ti = w/2ci,
and monotone decreasing on both sides

4

Task Allocation Domain

• Net payoff = wti - cit2
i =⇒ maximized at ti = w/2ci

• Important: This is single peaked over the share of the task and not over the alternatives
• Suppose, two alternatives are (0.2, 0.4, 0.4) and (0.2, 0.6, 0.2): player 1 likes both of them

equally
• For 3 players, the set of alternatives is a simplex
• There cannot be a single common order over the alternatives s.t. the preferences are

single-peaked for all agents

4

Task Allocation Domain

• Net payoff = wti - cit2
i =⇒ maximized at ti = w/2ci

• Important: This is single peaked over the share of the task and not over the alternatives

• Suppose, two alternatives are (0.2, 0.4, 0.4) and (0.2, 0.6, 0.2): player 1 likes both of them
equally

• For 3 players, the set of alternatives is a simplex
• There cannot be a single common order over the alternatives s.t. the preferences are

single-peaked for all agents

4

Task Allocation Domain

• Net payoff = wti - cit2
i =⇒ maximized at ti = w/2ci

• Important: This is single peaked over the share of the task and not over the alternatives
• Suppose, two alternatives are (0.2, 0.4, 0.4) and (0.2, 0.6, 0.2): player 1 likes both of them

equally

• For 3 players, the set of alternatives is a simplex
• There cannot be a single common order over the alternatives s.t. the preferences are

single-peaked for all agents

4

Task Allocation Domain

• Net payoff = wti - cit2
i =⇒ maximized at ti = w/2ci

• Important: This is single peaked over the share of the task and not over the alternatives
• Suppose, two alternatives are (0.2, 0.4, 0.4) and (0.2, 0.6, 0.2): player 1 likes both of them

equally
• For 3 players, the set of alternatives is a simplex

• There cannot be a single common order over the alternatives s.t. the preferences are
single-peaked for all agents

4

Task Allocation Domain

• Net payoff = wti - cit2
i =⇒ maximized at ti = w/2ci

• Important: This is single peaked over the share of the task and not over the alternatives
• Suppose, two alternatives are (0.2, 0.4, 0.4) and (0.2, 0.6, 0.2): player 1 likes both of them

equally
• For 3 players, the set of alternatives is a simplex
• There cannot be a single common order over the alternatives s.t. the preferences are

single-peaked for all agents

5

Task Allocation Domain and Pareto Efficiency

• Denote this domain of task allocation with T

• An allocation of the task is a = (ai ∈ [0, 1], i ∈ N), set of all task allocations is A
• SCF: f : Tn → A
• Let P ∈ Tn

— f (P) = (f1(P), f2(P), . . . , fn(P))
— fi(P) ∈ [0, 1], ∀i ∈ N
— ∑i∈N fi(P) = 1

• Player i has a peak pi over the shares of the task

Definition (Pareto Efficiency)

An SCF f is Pareto efficient (PE) if there does not exist any profile P where there exists a task
allocation a ∈ A such that it is weakly preferred over f (P) by all agents and strictly preferred by
at least one. Mathematically,

∄a ∈ A s.t.
a Ri f (P) ∀i ∈ N,
a Pj f (P) ∃j ∈ N

5

Task Allocation Domain and Pareto Efficiency

• Denote this domain of task allocation with T
• An allocation of the task is a = (ai ∈ [0, 1], i ∈ N), set of all task allocations is A

• SCF: f : Tn → A
• Let P ∈ Tn

— f (P) = (f1(P), f2(P), . . . , fn(P))
— fi(P) ∈ [0, 1], ∀i ∈ N
— ∑i∈N fi(P) = 1

• Player i has a peak pi over the shares of the task

Definition (Pareto Efficiency)

An SCF f is Pareto efficient (PE) if there does not exist any profile P where there exists a task
allocation a ∈ A such that it is weakly preferred over f (P) by all agents and strictly preferred by
at least one. Mathematically,

∄a ∈ A s.t.
a Ri f (P) ∀i ∈ N,
a Pj f (P) ∃j ∈ N

5

Task Allocation Domain and Pareto Efficiency

• Denote this domain of task allocation with T
• An allocation of the task is a = (ai ∈ [0, 1], i ∈ N), set of all task allocations is A
• SCF: f : Tn → A

• Let P ∈ Tn

— f (P) = (f1(P), f2(P), . . . , fn(P))
— fi(P) ∈ [0, 1], ∀i ∈ N
— ∑i∈N fi(P) = 1

• Player i has a peak pi over the shares of the task

Definition (Pareto Efficiency)

An SCF f is Pareto efficient (PE) if there does not exist any profile P where there exists a task
allocation a ∈ A such that it is weakly preferred over f (P) by all agents and strictly preferred by
at least one. Mathematically,

∄a ∈ A s.t.
a Ri f (P) ∀i ∈ N,
a Pj f (P) ∃j ∈ N

5

Task Allocation Domain and Pareto Efficiency

• Denote this domain of task allocation with T
• An allocation of the task is a = (ai ∈ [0, 1], i ∈ N), set of all task allocations is A
• SCF: f : Tn → A
• Let P ∈ Tn

— f (P) = (f1(P), f2(P), . . . , fn(P))
— fi(P) ∈ [0, 1], ∀i ∈ N
— ∑i∈N fi(P) = 1

• Player i has a peak pi over the shares of the task

Definition (Pareto Efficiency)

An SCF f is Pareto efficient (PE) if there does not exist any profile P where there exists a task
allocation a ∈ A such that it is weakly preferred over f (P) by all agents and strictly preferred by
at least one. Mathematically,

∄a ∈ A s.t.
a Ri f (P) ∀i ∈ N,
a Pj f (P) ∃j ∈ N

5

Task Allocation Domain and Pareto Efficiency

• Denote this domain of task allocation with T
• An allocation of the task is a = (ai ∈ [0, 1], i ∈ N), set of all task allocations is A
• SCF: f : Tn → A
• Let P ∈ Tn

— f (P) = (f1(P), f2(P), . . . , fn(P))

— fi(P) ∈ [0, 1], ∀i ∈ N
— ∑i∈N fi(P) = 1

• Player i has a peak pi over the shares of the task

Definition (Pareto Efficiency)

An SCF f is Pareto efficient (PE) if there does not exist any profile P where there exists a task
allocation a ∈ A such that it is weakly preferred over f (P) by all agents and strictly preferred by
at least one. Mathematically,

∄a ∈ A s.t.
a Ri f (P) ∀i ∈ N,
a Pj f (P) ∃j ∈ N

5

Task Allocation Domain and Pareto Efficiency

• Denote this domain of task allocation with T
• An allocation of the task is a = (ai ∈ [0, 1], i ∈ N), set of all task allocations is A
• SCF: f : Tn → A
• Let P ∈ Tn

— f (P) = (f1(P), f2(P), . . . , fn(P))
— fi(P) ∈ [0, 1], ∀i ∈ N

— ∑i∈N fi(P) = 1
• Player i has a peak pi over the shares of the task

Definition (Pareto Efficiency)

An SCF f is Pareto efficient (PE) if there does not exist any profile P where there exists a task
allocation a ∈ A such that it is weakly preferred over f (P) by all agents and strictly preferred by
at least one. Mathematically,

∄a ∈ A s.t.
a Ri f (P) ∀i ∈ N,
a Pj f (P) ∃j ∈ N

5

Task Allocation Domain and Pareto Efficiency

• Denote this domain of task allocation with T
• An allocation of the task is a = (ai ∈ [0, 1], i ∈ N), set of all task allocations is A
• SCF: f : Tn → A
• Let P ∈ Tn

— f (P) = (f1(P), f2(P), . . . , fn(P))
— fi(P) ∈ [0, 1], ∀i ∈ N
— ∑i∈N fi(P) = 1

• Player i has a peak pi over the shares of the task

Definition (Pareto Efficiency)

An SCF f is Pareto efficient (PE) if there does not exist any profile P where there exists a task
allocation a ∈ A such that it is weakly preferred over f (P) by all agents and strictly preferred by
at least one. Mathematically,

∄a ∈ A s.t.
a Ri f (P) ∀i ∈ N,
a Pj f (P) ∃j ∈ N

5

Task Allocation Domain and Pareto Efficiency

• Denote this domain of task allocation with T
• An allocation of the task is a = (ai ∈ [0, 1], i ∈ N), set of all task allocations is A
• SCF: f : Tn → A
• Let P ∈ Tn

— f (P) = (f1(P), f2(P), . . . , fn(P))
— fi(P) ∈ [0, 1], ∀i ∈ N
— ∑i∈N fi(P) = 1

• Player i has a peak pi over the shares of the task

Definition (Pareto Efficiency)

An SCF f is Pareto efficient (PE) if there does not exist any profile P where there exists a task
allocation a ∈ A such that it is weakly preferred over f (P) by all agents and strictly preferred by
at least one. Mathematically,

∄a ∈ A s.t.
a Ri f (P) ∀i ∈ N,
a Pj f (P) ∃j ∈ N

5

Task Allocation Domain and Pareto Efficiency

• Denote this domain of task allocation with T
• An allocation of the task is a = (ai ∈ [0, 1], i ∈ N), set of all task allocations is A
• SCF: f : Tn → A
• Let P ∈ Tn

— f (P) = (f1(P), f2(P), . . . , fn(P))
— fi(P) ∈ [0, 1], ∀i ∈ N
— ∑i∈N fi(P) = 1

• Player i has a peak pi over the shares of the task

Definition (Pareto Efficiency)

An SCF f is Pareto efficient (PE) if there does not exist any profile P where there exists a task
allocation a ∈ A such that it is weakly preferred over f (P) by all agents and strictly preferred by
at least one. Mathematically,

∄a ∈ A s.t.
a Ri f (P) ∀i ∈ N,
a Pj f (P) ∃j ∈ N

5

Task Allocation Domain and Pareto Efficiency

• Denote this domain of task allocation with T
• An allocation of the task is a = (ai ∈ [0, 1], i ∈ N), set of all task allocations is A
• SCF: f : Tn → A
• Let P ∈ Tn

— f (P) = (f1(P), f2(P), . . . , fn(P))
— fi(P) ∈ [0, 1], ∀i ∈ N
— ∑i∈N fi(P) = 1

• Player i has a peak pi over the shares of the task

Definition (Pareto Efficiency)

An SCF f is Pareto efficient (PE) if there does not exist any profile P where there exists a task
allocation a ∈ A such that it is weakly preferred over f (P) by all agents and strictly preferred by
at least one. Mathematically,

∄a ∈ A s.t.
a Ri f (P) ∀i ∈ N,
a Pj f (P) ∃j ∈ N

6

Implications of Pareto Efficiency

1 If ∑i∈N pi = 1, allocate tasks according to the peaks of the agents This is the unique PE
allocation

2 If ∑i∈N pi > 1, there must exist k ∈ N, s.t. fk(P) < pk

Question

Can there be an agent j s.t. fj(P) > pj if f is PE?

Answer

No. If such a j exists, increasing k’s share of task and reducing j’s makes both players strictly
better off
Therefore, ∀j ∈ N, fj(P) ⩽ pj

3 If ∑i∈N pi < 1, by a similar argument, we conclude that ∀j ∈ N, fj(P) ⩾ pj

6

Implications of Pareto Efficiency

1 If ∑i∈N pi = 1, allocate tasks according to the peaks of the agents This is the unique PE
allocation

2 If ∑i∈N pi > 1, there must exist k ∈ N, s.t. fk(P) < pk

Question

Can there be an agent j s.t. fj(P) > pj if f is PE?

Answer

No. If such a j exists, increasing k’s share of task and reducing j’s makes both players strictly
better off
Therefore, ∀j ∈ N, fj(P) ⩽ pj

3 If ∑i∈N pi < 1, by a similar argument, we conclude that ∀j ∈ N, fj(P) ⩾ pj

6

Implications of Pareto Efficiency

1 If ∑i∈N pi = 1, allocate tasks according to the peaks of the agents This is the unique PE
allocation

2 If ∑i∈N pi > 1, there must exist k ∈ N, s.t. fk(P) < pk

Question

Can there be an agent j s.t. fj(P) > pj if f is PE?

Answer

No. If such a j exists, increasing k’s share of task and reducing j’s makes both players strictly
better off
Therefore, ∀j ∈ N, fj(P) ⩽ pj

3 If ∑i∈N pi < 1, by a similar argument, we conclude that ∀j ∈ N, fj(P) ⩾ pj

6

Implications of Pareto Efficiency

1 If ∑i∈N pi = 1, allocate tasks according to the peaks of the agents This is the unique PE
allocation

2 If ∑i∈N pi > 1, there must exist k ∈ N, s.t. fk(P) < pk

Question

Can there be an agent j s.t. fj(P) > pj if f is PE?

Answer

No. If such a j exists, increasing k’s share of task and reducing j’s makes both players strictly
better off
Therefore, ∀j ∈ N, fj(P) ⩽ pj

3 If ∑i∈N pi < 1, by a similar argument, we conclude that ∀j ∈ N, fj(P) ⩾ pj

7

Task Allocation Domain and Anonymity

Definition (Anonymity)

An SCF f is anonymous (ANON) if for every agent permutation ∑i∈N : N → N, the task shares get
permuted accordingly, i.e.,

∀σ, fσ(j)(P
σ) = fj(P)

Example:

• N = {1, 2, 3}, σ(1) = 2, σ(2) = 3, σ(3) = 1
• P = (0.7, 0.4, 0.3) =⇒ Pσ = (0.3, 0.7, 0.4)
• f1(0.7, 0.4, 0.3) = f2(0.3, 0.7, 0.4)

7

Task Allocation Domain and Anonymity

Definition (Anonymity)

An SCF f is anonymous (ANON) if for every agent permutation ∑i∈N : N → N, the task shares get
permuted accordingly, i.e.,

∀σ, fσ(j)(P
σ) = fj(P)

Example:

• N = {1, 2, 3}, σ(1) = 2, σ(2) = 3, σ(3) = 1
• P = (0.7, 0.4, 0.3) =⇒ Pσ = (0.3, 0.7, 0.4)
• f1(0.7, 0.4, 0.3) = f2(0.3, 0.7, 0.4)

8

Task Allocation Domain: Some Candidate SCFs

Definition (Serial Dictatorship)

A predetermined sequence of the agents is fixed. Each agent is given either her peak share or the
leftover share of the task. If ∑i∈N pi < 1, then the last agent is given the leftover share.

Question

PE, SP, ANON?

Answer

Not ANON. Also quite unfair to the last agent.

8

Task Allocation Domain: Some Candidate SCFs

Definition (Serial Dictatorship)

A predetermined sequence of the agents is fixed. Each agent is given either her peak share or the
leftover share of the task. If ∑i∈N pi < 1, then the last agent is given the leftover share.

Question

PE, SP, ANON?

Answer

Not ANON. Also quite unfair to the last agent.

8

Task Allocation Domain: Some Candidate SCFs

Definition (Serial Dictatorship)

A predetermined sequence of the agents is fixed. Each agent is given either her peak share or the
leftover share of the task. If ∑i∈N pi < 1, then the last agent is given the leftover share.

Question

PE, SP, ANON?

Answer

Not ANON. Also quite unfair to the last agent.

9

Task Allocation Domain: Some Candidate SCFs

Definition (Proportional)

Every player is assigned a share that is c times their peaks, s.t. c ∑i∈N pi = 1

Question

PE, ANON, SP?

Answer

Not SP.
Suppose peaks are 0.2, 0.3, 0.1 for 3 players, c = 1/0.6
Player 1 gets 1/3 (more than its peak 0.2)
if the report is 0.1, 0.3, 0.1, c = 1/0.5, player 1 gets 0.2

9

Task Allocation Domain: Some Candidate SCFs

Definition (Proportional)

Every player is assigned a share that is c times their peaks, s.t. c ∑i∈N pi = 1

Question

PE, ANON, SP?

Answer

Not SP.
Suppose peaks are 0.2, 0.3, 0.1 for 3 players, c = 1/0.6
Player 1 gets 1/3 (more than its peak 0.2)
if the report is 0.1, 0.3, 0.1, c = 1/0.5, player 1 gets 0.2

9

Task Allocation Domain: Some Candidate SCFs

Definition (Proportional)

Every player is assigned a share that is c times their peaks, s.t. c ∑i∈N pi = 1

Question

PE, ANON, SP?

Answer

Not SP.
Suppose peaks are 0.2, 0.3, 0.1 for 3 players, c = 1/0.6

Player 1 gets 1/3 (more than its peak 0.2)
if the report is 0.1, 0.3, 0.1, c = 1/0.5, player 1 gets 0.2

9

Task Allocation Domain: Some Candidate SCFs

Definition (Proportional)

Every player is assigned a share that is c times their peaks, s.t. c ∑i∈N pi = 1

Question

PE, ANON, SP?

Answer

Not SP.
Suppose peaks are 0.2, 0.3, 0.1 for 3 players, c = 1/0.6
Player 1 gets 1/3 (more than its peak 0.2)

if the report is 0.1, 0.3, 0.1, c = 1/0.5, player 1 gets 0.2

9

Task Allocation Domain: Some Candidate SCFs

Definition (Proportional)

Every player is assigned a share that is c times their peaks, s.t. c ∑i∈N pi = 1

Question

PE, ANON, SP?

Answer

Not SP.
Suppose peaks are 0.2, 0.3, 0.1 for 3 players, c = 1/0.6
Player 1 gets 1/3 (more than its peak 0.2)
if the report is 0.1, 0.3, 0.1, c = 1/0.5, player 1 gets 0.2

10

Contents

▶ Task Allocation Domain

▶ The Uniform Rule

▶ Mechanism Design with Transfers

▶ Quasi Linear Preferences

▶ Pareto Optimality and Groves Payments

11

PE, ANON, and SP?

Question

How to ensure PE, ANON, and SP in task allocation domain?

Uniform Rule (Sprumont 1991)

• Suppose, ∑i∈N pi < 1
• Begin with everyone’s allocation being 1 (infeasible)
• Keep reducing until ∑i∈N fi = 1
• On this path, if some agent’s peak is reached, set the allocation for that agent to be its peak
• Symmetric for ∑i∈N pi > 1

Definition

1 Case ∑i∈N pi = 1: f u
i (P) = pi

2 Case ∑i∈N pi < 1: f u
i (P) = max{pi, µ(P)}, where µ(P) solves ∑i∈N max{pi, µ} = 1

3 Case ∑i∈N pi > 1: f u
i (P) = min{pi, λ(P)} , where λ(P) solves ∑i∈N min{pi, λ} = 1

11

PE, ANON, and SP?

Question

How to ensure PE, ANON, and SP in task allocation domain?

Uniform Rule (Sprumont 1991)

• Suppose, ∑i∈N pi < 1
• Begin with everyone’s allocation being 1 (infeasible)
• Keep reducing until ∑i∈N fi = 1
• On this path, if some agent’s peak is reached, set the allocation for that agent to be its peak
• Symmetric for ∑i∈N pi > 1

Definition

1 Case ∑i∈N pi = 1: f u
i (P) = pi

2 Case ∑i∈N pi < 1: f u
i (P) = max{pi, µ(P)}, where µ(P) solves ∑i∈N max{pi, µ} = 1

3 Case ∑i∈N pi > 1: f u
i (P) = min{pi, λ(P)} , where λ(P) solves ∑i∈N min{pi, λ} = 1

11

PE, ANON, and SP?

Question

How to ensure PE, ANON, and SP in task allocation domain?

Uniform Rule (Sprumont 1991)

• Suppose, ∑i∈N pi < 1
• Begin with everyone’s allocation being 1 (infeasible)
• Keep reducing until ∑i∈N fi = 1
• On this path, if some agent’s peak is reached, set the allocation for that agent to be its peak
• Symmetric for ∑i∈N pi > 1

Definition

1 Case ∑i∈N pi = 1: f u
i (P) = pi

2 Case ∑i∈N pi < 1: f u
i (P) = max{pi, µ(P)}, where µ(P) solves ∑i∈N max{pi, µ} = 1

3 Case ∑i∈N pi > 1: f u
i (P) = min{pi, λ(P)} , where λ(P) solves ∑i∈N min{pi, λ} = 1

11

PE, ANON, and SP?

Question

How to ensure PE, ANON, and SP in task allocation domain?

Uniform Rule (Sprumont 1991)

• Suppose, ∑i∈N pi < 1
• Begin with everyone’s allocation being 1 (infeasible)
• Keep reducing until ∑i∈N fi = 1
• On this path, if some agent’s peak is reached, set the allocation for that agent to be its peak
• Symmetric for ∑i∈N pi > 1

Definition

1 Case ∑i∈N pi = 1: f u
i (P) = pi

2 Case ∑i∈N pi < 1: f u
i (P) = max{pi, µ(P)}, where µ(P) solves ∑i∈N max{pi, µ} = 1

3 Case ∑i∈N pi > 1: f u
i (P) = min{pi, λ(P)} , where λ(P) solves ∑i∈N min{pi, λ} = 1

11

PE, ANON, and SP?

Question

How to ensure PE, ANON, and SP in task allocation domain?

Uniform Rule (Sprumont 1991)

• Suppose, ∑i∈N pi < 1
• Begin with everyone’s allocation being 1 (infeasible)
• Keep reducing until ∑i∈N fi = 1
• On this path, if some agent’s peak is reached, set the allocation for that agent to be its peak
• Symmetric for ∑i∈N pi > 1

Definition

1 Case ∑i∈N pi = 1: f u
i (P) = pi

2 Case ∑i∈N pi < 1: f u
i (P) = max{pi, µ(P)}, where µ(P) solves ∑i∈N max{pi, µ} = 1

3 Case ∑i∈N pi > 1: f u
i (P) = min{pi, λ(P)} , where λ(P) solves ∑i∈N min{pi, λ} = 1

11

PE, ANON, and SP?

Question

How to ensure PE, ANON, and SP in task allocation domain?

Uniform Rule (Sprumont 1991)

• Suppose, ∑i∈N pi < 1
• Begin with everyone’s allocation being 1 (infeasible)
• Keep reducing until ∑i∈N fi = 1
• On this path, if some agent’s peak is reached, set the allocation for that agent to be its peak
• Symmetric for ∑i∈N pi > 1

Definition

1 Case ∑i∈N pi = 1: f u
i (P) = pi

2 Case ∑i∈N pi < 1: f u
i (P) = max{pi, µ(P)}, where µ(P) solves ∑i∈N max{pi, µ} = 1

3 Case ∑i∈N pi > 1: f u
i (P) = min{pi, λ(P)} , where λ(P) solves ∑i∈N min{pi, λ} = 1

12

The Uniform Rule

Theorem (Sprumont 1991)

The uniform rule SCF is ANON, PE, and SP

• ANON is obvious: only the peaks matter and not their owners
• PE: the allocation is s.t.

— f u
i (P) = pi, ∀i ∈ N, if ∑i∈N pi = 1

— f u
i (P) ⩾ pi, ∀i ∈ N, if ∑i∈N pi < 1

— f u
i (P) ⩽ pi, ∀i ∈ N, if ∑i∈N pi > 1

• This is PE from our previous observation on PE: allocations should stay on the same side of the
peaks for every agent

12

The Uniform Rule

Theorem (Sprumont 1991)

The uniform rule SCF is ANON, PE, and SP

• ANON is obvious: only the peaks matter and not their owners

• PE: the allocation is s.t.

— f u
i (P) = pi, ∀i ∈ N, if ∑i∈N pi = 1

— f u
i (P) ⩾ pi, ∀i ∈ N, if ∑i∈N pi < 1

— f u
i (P) ⩽ pi, ∀i ∈ N, if ∑i∈N pi > 1

• This is PE from our previous observation on PE: allocations should stay on the same side of the
peaks for every agent

12

The Uniform Rule

Theorem (Sprumont 1991)

The uniform rule SCF is ANON, PE, and SP

• ANON is obvious: only the peaks matter and not their owners
• PE: the allocation is s.t.

— f u
i (P) = pi, ∀i ∈ N, if ∑i∈N pi = 1

— f u
i (P) ⩾ pi, ∀i ∈ N, if ∑i∈N pi < 1

— f u
i (P) ⩽ pi, ∀i ∈ N, if ∑i∈N pi > 1

• This is PE from our previous observation on PE: allocations should stay on the same side of the
peaks for every agent

12

The Uniform Rule

Theorem (Sprumont 1991)

The uniform rule SCF is ANON, PE, and SP

• ANON is obvious: only the peaks matter and not their owners
• PE: the allocation is s.t.

— f u
i (P) = pi, ∀i ∈ N, if ∑i∈N pi = 1

— f u
i (P) ⩾ pi, ∀i ∈ N, if ∑i∈N pi < 1

— f u
i (P) ⩽ pi, ∀i ∈ N, if ∑i∈N pi > 1

• This is PE from our previous observation on PE: allocations should stay on the same side of the
peaks for every agent

12

The Uniform Rule

Theorem (Sprumont 1991)

The uniform rule SCF is ANON, PE, and SP

• ANON is obvious: only the peaks matter and not their owners
• PE: the allocation is s.t.

— f u
i (P) = pi, ∀i ∈ N, if ∑i∈N pi = 1

— f u
i (P) ⩾ pi, ∀i ∈ N, if ∑i∈N pi < 1

— f u
i (P) ⩽ pi, ∀i ∈ N, if ∑i∈N pi > 1

• This is PE from our previous observation on PE: allocations should stay on the same side of the
peaks for every agent

12

The Uniform Rule

Theorem (Sprumont 1991)

The uniform rule SCF is ANON, PE, and SP

• ANON is obvious: only the peaks matter and not their owners
• PE: the allocation is s.t.

— f u
i (P) = pi, ∀i ∈ N, if ∑i∈N pi = 1

— f u
i (P) ⩾ pi, ∀i ∈ N, if ∑i∈N pi < 1

— f u
i (P) ⩽ pi, ∀i ∈ N, if ∑i∈N pi > 1

• This is PE from our previous observation on PE: allocations should stay on the same side of the
peaks for every agent

12

The Uniform Rule

Theorem (Sprumont 1991)

The uniform rule SCF is ANON, PE, and SP

• ANON is obvious: only the peaks matter and not their owners
• PE: the allocation is s.t.

— f u
i (P) = pi, ∀i ∈ N, if ∑i∈N pi = 1

— f u
i (P) ⩾ pi, ∀i ∈ N, if ∑i∈N pi < 1

— f u
i (P) ⩽ pi, ∀i ∈ N, if ∑i∈N pi > 1

• This is PE from our previous observation on PE: allocations should stay on the same side of the
peaks for every agent

13

The Uniform Rule: Strategyproofness

• Case ∑i∈N pi = 1: each agent gets her peak, no reason to deviate

• Case ∑i∈N pi < 1: then f u
i (P) ⩾ pi, ∀i ∈ N

• Manipulation, only for i ∈ N s.t. f u
i (P) > pi =⇒ µ(P) > pi

• The only way i can change the allocation is by reporting p′i > µ(P) > pi
• Leads to an worse outcome for i than µ(P)
• A similar argument for case ∑i∈N pi > 1

The converse is also true, i.e.,

Theorem

An SCF in the task allocation domain is SP, PE, and ANON iff it is the uniform rule.

• See Sprumont (1991) : Division problem with single-peaked preferences
• Envy-free (EF): Agents do not envy each other’s shares – also holds for uniform rule
• SP, PE, ANON, EF, polynomial-time computable

13

The Uniform Rule: Strategyproofness

• Case ∑i∈N pi = 1: each agent gets her peak, no reason to deviate
• Case ∑i∈N pi < 1: then f u

i (P) ⩾ pi, ∀i ∈ N

• Manipulation, only for i ∈ N s.t. f u
i (P) > pi =⇒ µ(P) > pi

• The only way i can change the allocation is by reporting p′i > µ(P) > pi
• Leads to an worse outcome for i than µ(P)
• A similar argument for case ∑i∈N pi > 1

The converse is also true, i.e.,

Theorem

An SCF in the task allocation domain is SP, PE, and ANON iff it is the uniform rule.

• See Sprumont (1991) : Division problem with single-peaked preferences
• Envy-free (EF): Agents do not envy each other’s shares – also holds for uniform rule
• SP, PE, ANON, EF, polynomial-time computable

13

The Uniform Rule: Strategyproofness

• Case ∑i∈N pi = 1: each agent gets her peak, no reason to deviate
• Case ∑i∈N pi < 1: then f u

i (P) ⩾ pi, ∀i ∈ N
• Manipulation, only for i ∈ N s.t. f u

i (P) > pi =⇒ µ(P) > pi

• The only way i can change the allocation is by reporting p′i > µ(P) > pi
• Leads to an worse outcome for i than µ(P)
• A similar argument for case ∑i∈N pi > 1

The converse is also true, i.e.,

Theorem

An SCF in the task allocation domain is SP, PE, and ANON iff it is the uniform rule.

• See Sprumont (1991) : Division problem with single-peaked preferences
• Envy-free (EF): Agents do not envy each other’s shares – also holds for uniform rule
• SP, PE, ANON, EF, polynomial-time computable

13

The Uniform Rule: Strategyproofness

• Case ∑i∈N pi = 1: each agent gets her peak, no reason to deviate
• Case ∑i∈N pi < 1: then f u

i (P) ⩾ pi, ∀i ∈ N
• Manipulation, only for i ∈ N s.t. f u

i (P) > pi =⇒ µ(P) > pi
• The only way i can change the allocation is by reporting p′i > µ(P) > pi

• Leads to an worse outcome for i than µ(P)
• A similar argument for case ∑i∈N pi > 1

The converse is also true, i.e.,

Theorem

An SCF in the task allocation domain is SP, PE, and ANON iff it is the uniform rule.

• See Sprumont (1991) : Division problem with single-peaked preferences
• Envy-free (EF): Agents do not envy each other’s shares – also holds for uniform rule
• SP, PE, ANON, EF, polynomial-time computable

13

The Uniform Rule: Strategyproofness

• Case ∑i∈N pi = 1: each agent gets her peak, no reason to deviate
• Case ∑i∈N pi < 1: then f u

i (P) ⩾ pi, ∀i ∈ N
• Manipulation, only for i ∈ N s.t. f u

i (P) > pi =⇒ µ(P) > pi
• The only way i can change the allocation is by reporting p′i > µ(P) > pi
• Leads to an worse outcome for i than µ(P)

• A similar argument for case ∑i∈N pi > 1

The converse is also true, i.e.,

Theorem

An SCF in the task allocation domain is SP, PE, and ANON iff it is the uniform rule.

• See Sprumont (1991) : Division problem with single-peaked preferences
• Envy-free (EF): Agents do not envy each other’s shares – also holds for uniform rule
• SP, PE, ANON, EF, polynomial-time computable

13

The Uniform Rule: Strategyproofness

• Case ∑i∈N pi = 1: each agent gets her peak, no reason to deviate
• Case ∑i∈N pi < 1: then f u

i (P) ⩾ pi, ∀i ∈ N
• Manipulation, only for i ∈ N s.t. f u

i (P) > pi =⇒ µ(P) > pi
• The only way i can change the allocation is by reporting p′i > µ(P) > pi
• Leads to an worse outcome for i than µ(P)
• A similar argument for case ∑i∈N pi > 1

The converse is also true, i.e.,

Theorem

An SCF in the task allocation domain is SP, PE, and ANON iff it is the uniform rule.

• See Sprumont (1991) : Division problem with single-peaked preferences
• Envy-free (EF): Agents do not envy each other’s shares – also holds for uniform rule
• SP, PE, ANON, EF, polynomial-time computable

13

The Uniform Rule: Strategyproofness

• Case ∑i∈N pi = 1: each agent gets her peak, no reason to deviate
• Case ∑i∈N pi < 1: then f u

i (P) ⩾ pi, ∀i ∈ N
• Manipulation, only for i ∈ N s.t. f u

i (P) > pi =⇒ µ(P) > pi
• The only way i can change the allocation is by reporting p′i > µ(P) > pi
• Leads to an worse outcome for i than µ(P)
• A similar argument for case ∑i∈N pi > 1

The converse is also true, i.e.,

Theorem

An SCF in the task allocation domain is SP, PE, and ANON iff it is the uniform rule.

• See Sprumont (1991) : Division problem with single-peaked preferences
• Envy-free (EF): Agents do not envy each other’s shares – also holds for uniform rule
• SP, PE, ANON, EF, polynomial-time computable

13

The Uniform Rule: Strategyproofness

• Case ∑i∈N pi = 1: each agent gets her peak, no reason to deviate
• Case ∑i∈N pi < 1: then f u

i (P) ⩾ pi, ∀i ∈ N
• Manipulation, only for i ∈ N s.t. f u

i (P) > pi =⇒ µ(P) > pi
• The only way i can change the allocation is by reporting p′i > µ(P) > pi
• Leads to an worse outcome for i than µ(P)
• A similar argument for case ∑i∈N pi > 1

The converse is also true, i.e.,

Theorem

An SCF in the task allocation domain is SP, PE, and ANON iff it is the uniform rule.

• See Sprumont (1991) : Division problem with single-peaked preferences

• Envy-free (EF): Agents do not envy each other’s shares – also holds for uniform rule
• SP, PE, ANON, EF, polynomial-time computable

13

The Uniform Rule: Strategyproofness

• Case ∑i∈N pi = 1: each agent gets her peak, no reason to deviate
• Case ∑i∈N pi < 1: then f u

i (P) ⩾ pi, ∀i ∈ N
• Manipulation, only for i ∈ N s.t. f u

i (P) > pi =⇒ µ(P) > pi
• The only way i can change the allocation is by reporting p′i > µ(P) > pi
• Leads to an worse outcome for i than µ(P)
• A similar argument for case ∑i∈N pi > 1

The converse is also true, i.e.,

Theorem

An SCF in the task allocation domain is SP, PE, and ANON iff it is the uniform rule.

• See Sprumont (1991) : Division problem with single-peaked preferences
• Envy-free (EF): Agents do not envy each other’s shares – also holds for uniform rule

• SP, PE, ANON, EF, polynomial-time computable

13

The Uniform Rule: Strategyproofness

• Case ∑i∈N pi = 1: each agent gets her peak, no reason to deviate
• Case ∑i∈N pi < 1: then f u

i (P) ⩾ pi, ∀i ∈ N
• Manipulation, only for i ∈ N s.t. f u

i (P) > pi =⇒ µ(P) > pi
• The only way i can change the allocation is by reporting p′i > µ(P) > pi
• Leads to an worse outcome for i than µ(P)
• A similar argument for case ∑i∈N pi > 1

The converse is also true, i.e.,

Theorem

An SCF in the task allocation domain is SP, PE, and ANON iff it is the uniform rule.

• See Sprumont (1991) : Division problem with single-peaked preferences
• Envy-free (EF): Agents do not envy each other’s shares – also holds for uniform rule
• SP, PE, ANON, EF, polynomial-time computable

14

Contents

▶ Task Allocation Domain

▶ The Uniform Rule

▶ Mechanism Design with Transfers

▶ Quasi Linear Preferences

▶ Pareto Optimality and Groves Payments

15

Mechanism Design with Transfers

• Social Choice Function F : Θ → X

• X: space of all outcomes
• In this domain, an outcome x ∈ X has two components:

— allocation a
— payment π = (π1, · · · , πn), πi ∈ R

• Examples of allocations:

1 A public decision to build a bridge, park, or museum. a = {park, bridge, · · · }
2 Allocation of a divisible good, e.g., a shared spectrum, a = (a1, a2, · · · , an), ai ∈ [0, 1], ∑i∈N ai = 1,

here ai : fraction of the resource i gets
3 Single indivisible object allocation, e.g., a painting to be auctioned, a = (a1, a2, · · · , an), ai ∈ {0, 1},

∑i∈N ai ⩽ 1
4 Partitioning indivisible objects, S = set of objects,

A = {(A1, · · · , An) : Ai ⊆ S, ∀i ∈ N, Ai ∩ Aj = ∅, ∀i ̸= j}

15

Mechanism Design with Transfers

• Social Choice Function F : Θ → X
• X: space of all outcomes

• In this domain, an outcome x ∈ X has two components:

— allocation a
— payment π = (π1, · · · , πn), πi ∈ R

• Examples of allocations:

1 A public decision to build a bridge, park, or museum. a = {park, bridge, · · · }
2 Allocation of a divisible good, e.g., a shared spectrum, a = (a1, a2, · · · , an), ai ∈ [0, 1], ∑i∈N ai = 1,

here ai : fraction of the resource i gets
3 Single indivisible object allocation, e.g., a painting to be auctioned, a = (a1, a2, · · · , an), ai ∈ {0, 1},

∑i∈N ai ⩽ 1
4 Partitioning indivisible objects, S = set of objects,

A = {(A1, · · · , An) : Ai ⊆ S, ∀i ∈ N, Ai ∩ Aj = ∅, ∀i ̸= j}

15

Mechanism Design with Transfers

• Social Choice Function F : Θ → X
• X: space of all outcomes
• In this domain, an outcome x ∈ X has two components:

— allocation a
— payment π = (π1, · · · , πn), πi ∈ R

• Examples of allocations:

1 A public decision to build a bridge, park, or museum. a = {park, bridge, · · · }
2 Allocation of a divisible good, e.g., a shared spectrum, a = (a1, a2, · · · , an), ai ∈ [0, 1], ∑i∈N ai = 1,

here ai : fraction of the resource i gets
3 Single indivisible object allocation, e.g., a painting to be auctioned, a = (a1, a2, · · · , an), ai ∈ {0, 1},

∑i∈N ai ⩽ 1
4 Partitioning indivisible objects, S = set of objects,

A = {(A1, · · · , An) : Ai ⊆ S, ∀i ∈ N, Ai ∩ Aj = ∅, ∀i ̸= j}

15

Mechanism Design with Transfers

• Social Choice Function F : Θ → X
• X: space of all outcomes
• In this domain, an outcome x ∈ X has two components:

— allocation a

— payment π = (π1, · · · , πn), πi ∈ R

• Examples of allocations:

1 A public decision to build a bridge, park, or museum. a = {park, bridge, · · · }
2 Allocation of a divisible good, e.g., a shared spectrum, a = (a1, a2, · · · , an), ai ∈ [0, 1], ∑i∈N ai = 1,

here ai : fraction of the resource i gets
3 Single indivisible object allocation, e.g., a painting to be auctioned, a = (a1, a2, · · · , an), ai ∈ {0, 1},

∑i∈N ai ⩽ 1
4 Partitioning indivisible objects, S = set of objects,

A = {(A1, · · · , An) : Ai ⊆ S, ∀i ∈ N, Ai ∩ Aj = ∅, ∀i ̸= j}

15

Mechanism Design with Transfers

• Social Choice Function F : Θ → X
• X: space of all outcomes
• In this domain, an outcome x ∈ X has two components:

— allocation a
— payment π = (π1, · · · , πn), πi ∈ R

• Examples of allocations:

1 A public decision to build a bridge, park, or museum. a = {park, bridge, · · · }
2 Allocation of a divisible good, e.g., a shared spectrum, a = (a1, a2, · · · , an), ai ∈ [0, 1], ∑i∈N ai = 1,

here ai : fraction of the resource i gets
3 Single indivisible object allocation, e.g., a painting to be auctioned, a = (a1, a2, · · · , an), ai ∈ {0, 1},

∑i∈N ai ⩽ 1
4 Partitioning indivisible objects, S = set of objects,

A = {(A1, · · · , An) : Ai ⊆ S, ∀i ∈ N, Ai ∩ Aj = ∅, ∀i ̸= j}

15

Mechanism Design with Transfers

• Social Choice Function F : Θ → X
• X: space of all outcomes
• In this domain, an outcome x ∈ X has two components:

— allocation a
— payment π = (π1, · · · , πn), πi ∈ R

• Examples of allocations:

1 A public decision to build a bridge, park, or museum. a = {park, bridge, · · · }
2 Allocation of a divisible good, e.g., a shared spectrum, a = (a1, a2, · · · , an), ai ∈ [0, 1], ∑i∈N ai = 1,

here ai : fraction of the resource i gets
3 Single indivisible object allocation, e.g., a painting to be auctioned, a = (a1, a2, · · · , an), ai ∈ {0, 1},

∑i∈N ai ⩽ 1
4 Partitioning indivisible objects, S = set of objects,

A = {(A1, · · · , An) : Ai ⊆ S, ∀i ∈ N, Ai ∩ Aj = ∅, ∀i ̸= j}

15

Mechanism Design with Transfers

• Social Choice Function F : Θ → X
• X: space of all outcomes
• In this domain, an outcome x ∈ X has two components:

— allocation a
— payment π = (π1, · · · , πn), πi ∈ R

• Examples of allocations:
1 A public decision to build a bridge, park, or museum. a = {park, bridge, · · · }

2 Allocation of a divisible good, e.g., a shared spectrum, a = (a1, a2, · · · , an), ai ∈ [0, 1], ∑i∈N ai = 1,
here ai : fraction of the resource i gets

3 Single indivisible object allocation, e.g., a painting to be auctioned, a = (a1, a2, · · · , an), ai ∈ {0, 1},
∑i∈N ai ⩽ 1

4 Partitioning indivisible objects, S = set of objects,
A = {(A1, · · · , An) : Ai ⊆ S, ∀i ∈ N, Ai ∩ Aj = ∅, ∀i ̸= j}

15

Mechanism Design with Transfers

• Social Choice Function F : Θ → X
• X: space of all outcomes
• In this domain, an outcome x ∈ X has two components:

— allocation a
— payment π = (π1, · · · , πn), πi ∈ R

• Examples of allocations:
1 A public decision to build a bridge, park, or museum. a = {park, bridge, · · · }
2 Allocation of a divisible good, e.g., a shared spectrum, a = (a1, a2, · · · , an), ai ∈ [0, 1], ∑i∈N ai = 1,

here ai : fraction of the resource i gets

3 Single indivisible object allocation, e.g., a painting to be auctioned, a = (a1, a2, · · · , an), ai ∈ {0, 1},
∑i∈N ai ⩽ 1

4 Partitioning indivisible objects, S = set of objects,
A = {(A1, · · · , An) : Ai ⊆ S, ∀i ∈ N, Ai ∩ Aj = ∅, ∀i ̸= j}

15

Mechanism Design with Transfers

• Social Choice Function F : Θ → X
• X: space of all outcomes
• In this domain, an outcome x ∈ X has two components:

— allocation a
— payment π = (π1, · · · , πn), πi ∈ R

• Examples of allocations:
1 A public decision to build a bridge, park, or museum. a = {park, bridge, · · · }
2 Allocation of a divisible good, e.g., a shared spectrum, a = (a1, a2, · · · , an), ai ∈ [0, 1], ∑i∈N ai = 1,

here ai : fraction of the resource i gets
3 Single indivisible object allocation, e.g., a painting to be auctioned, a = (a1, a2, · · · , an), ai ∈ {0, 1},

∑i∈N ai ⩽ 1

4 Partitioning indivisible objects, S = set of objects,
A = {(A1, · · · , An) : Ai ⊆ S, ∀i ∈ N, Ai ∩ Aj = ∅, ∀i ̸= j}

15

Mechanism Design with Transfers

• Social Choice Function F : Θ → X
• X: space of all outcomes
• In this domain, an outcome x ∈ X has two components:

— allocation a
— payment π = (π1, · · · , πn), πi ∈ R

• Examples of allocations:
1 A public decision to build a bridge, park, or museum. a = {park, bridge, · · · }
2 Allocation of a divisible good, e.g., a shared spectrum, a = (a1, a2, · · · , an), ai ∈ [0, 1], ∑i∈N ai = 1,

here ai : fraction of the resource i gets
3 Single indivisible object allocation, e.g., a painting to be auctioned, a = (a1, a2, · · · , an), ai ∈ {0, 1},

∑i∈N ai ⩽ 1
4 Partitioning indivisible objects, S = set of objects,

A = {(A1, · · · , An) : Ai ⊆ S, ∀i ∈ N, Ai ∩ Aj = ∅, ∀i ̸= j}

16

Mechanism Design with Transfers

• Type of an agent i is θi ∈ Θi this is a private information of i

• Agent’s benefit from an allocation is defined via the valuation function
• Valuation depends on the allocation and the type of the player

vi : A × Θi → R (independent private values)

• Examples:

— if i has a type ‘environmentalist’ θenv
i , and a ∈ {Bridge, Park}, then vi(B, θenv

i) < vi(P, θenv
i)

— if type changes to ‘business’ θbus
i , vi(B, θbus

i) > vi(P, θbus
i)

16

Mechanism Design with Transfers

• Type of an agent i is θi ∈ Θi this is a private information of i
• Agent’s benefit from an allocation is defined via the valuation function

• Valuation depends on the allocation and the type of the player

vi : A × Θi → R (independent private values)

• Examples:

— if i has a type ‘environmentalist’ θenv
i , and a ∈ {Bridge, Park}, then vi(B, θenv

i) < vi(P, θenv
i)

— if type changes to ‘business’ θbus
i , vi(B, θbus

i) > vi(P, θbus
i)

16

Mechanism Design with Transfers

• Type of an agent i is θi ∈ Θi this is a private information of i
• Agent’s benefit from an allocation is defined via the valuation function
• Valuation depends on the allocation and the type of the player

vi : A × Θi → R (independent private values)

• Examples:

— if i has a type ‘environmentalist’ θenv
i , and a ∈ {Bridge, Park}, then vi(B, θenv

i) < vi(P, θenv
i)

— if type changes to ‘business’ θbus
i , vi(B, θbus

i) > vi(P, θbus
i)

16

Mechanism Design with Transfers

• Type of an agent i is θi ∈ Θi this is a private information of i
• Agent’s benefit from an allocation is defined via the valuation function
• Valuation depends on the allocation and the type of the player

vi : A × Θi → R (independent private values)

• Examples:

— if i has a type ‘environmentalist’ θenv
i , and a ∈ {Bridge, Park}, then vi(B, θenv

i) < vi(P, θenv
i)

— if type changes to ‘business’ θbus
i , vi(B, θbus

i) > vi(P, θbus
i)

16

Mechanism Design with Transfers

• Type of an agent i is θi ∈ Θi this is a private information of i
• Agent’s benefit from an allocation is defined via the valuation function
• Valuation depends on the allocation and the type of the player

vi : A × Θi → R (independent private values)

• Examples:
— if i has a type ‘environmentalist’ θenv

i , and a ∈ {Bridge, Park}, then vi(B, θenv
i) < vi(P, θenv

i)

— if type changes to ‘business’ θbus
i , vi(B, θbus

i) > vi(P, θbus
i)

16

Mechanism Design with Transfers

• Type of an agent i is θi ∈ Θi this is a private information of i
• Agent’s benefit from an allocation is defined via the valuation function
• Valuation depends on the allocation and the type of the player

vi : A × Θi → R (independent private values)

• Examples:
— if i has a type ‘environmentalist’ θenv

i , and a ∈ {Bridge, Park}, then vi(B, θenv
i) < vi(P, θenv

i)

— if type changes to ‘business’ θbus
i , vi(B, θbus

i) > vi(P, θbus
i)

17

Payments = Monetary Transfers

• Unlike other domains, here we have an ‘instrument’ called money (also called payment or
transfers)

• Payments πi ∈ R, ∀i ∈ N
• Payment vector π = (π1, π2, . . . , πn)

• Utility of player i, when its type is θi, and the outcome is x = (a, π) is given by

ui((a, π), θi) = vi(a, θi)− πi (quasi-linear payoff)

17

Payments = Monetary Transfers

• Unlike other domains, here we have an ‘instrument’ called money (also called payment or
transfers)

• Payments πi ∈ R, ∀i ∈ N

• Payment vector π = (π1, π2, . . . , πn)

• Utility of player i, when its type is θi, and the outcome is x = (a, π) is given by

ui((a, π), θi) = vi(a, θi)− πi (quasi-linear payoff)

17

Payments = Monetary Transfers

• Unlike other domains, here we have an ‘instrument’ called money (also called payment or
transfers)

• Payments πi ∈ R, ∀i ∈ N
• Payment vector π = (π1, π2, . . . , πn)

• Utility of player i, when its type is θi, and the outcome is x = (a, π) is given by

ui((a, π), θi) = vi(a, θi)− πi (quasi-linear payoff)

17

Payments = Monetary Transfers

• Unlike other domains, here we have an ‘instrument’ called money (also called payment or
transfers)

• Payments πi ∈ R, ∀i ∈ N
• Payment vector π = (π1, π2, . . . , πn)

• Utility of player i, when its type is θi, and the outcome is x = (a, π) is given by

ui((a, π), θi) = vi(a, θi)− πi (quasi-linear payoff)

18

Quasi Linear Domain

• Types θi that depend on the outcome x = (a, π) this way belongs to the quasi-linear domain

ui((a, π), θi) = vi(a, θi)− πi (quasi-linear payoff)

Question

Why is this a domain restriction?

Answer

• Consider two alternatives (a, π) and (a, π′), allocation is the same but payments are different
• Suppose π′

i < πi for some i ∈ N
• There cannot be any preference profile in the quasi-linear domain where (a, π) is more

preferred than (a, π′) for agent i
• Because vi(a, θi) - π′

i > vi(a, θi)− πi, ∀θi ∈ Θi

• In the complete domain, both preference orders would have been feasible
• This restriction opens up possibilities of several non-dictatorial mechanisms

18

Quasi Linear Domain

• Types θi that depend on the outcome x = (a, π) this way belongs to the quasi-linear domain

ui((a, π), θi) = vi(a, θi)− πi (quasi-linear payoff)

Question

Why is this a domain restriction?

Answer

• Consider two alternatives (a, π) and (a, π′), allocation is the same but payments are different
• Suppose π′

i < πi for some i ∈ N
• There cannot be any preference profile in the quasi-linear domain where (a, π) is more

preferred than (a, π′) for agent i
• Because vi(a, θi) - π′

i > vi(a, θi)− πi, ∀θi ∈ Θi

• In the complete domain, both preference orders would have been feasible
• This restriction opens up possibilities of several non-dictatorial mechanisms

18

Quasi Linear Domain

• Types θi that depend on the outcome x = (a, π) this way belongs to the quasi-linear domain

ui((a, π), θi) = vi(a, θi)− πi (quasi-linear payoff)

Question

Why is this a domain restriction?

Answer

• Consider two alternatives (a, π) and (a, π′), allocation is the same but payments are different

• Suppose π′
i < πi for some i ∈ N

• There cannot be any preference profile in the quasi-linear domain where (a, π) is more
preferred than (a, π′) for agent i

• Because vi(a, θi) - π′
i > vi(a, θi)− πi, ∀θi ∈ Θi

• In the complete domain, both preference orders would have been feasible
• This restriction opens up possibilities of several non-dictatorial mechanisms

18

Quasi Linear Domain

• Types θi that depend on the outcome x = (a, π) this way belongs to the quasi-linear domain

ui((a, π), θi) = vi(a, θi)− πi (quasi-linear payoff)

Question

Why is this a domain restriction?

Answer

• Consider two alternatives (a, π) and (a, π′), allocation is the same but payments are different
• Suppose π′

i < πi for some i ∈ N

• There cannot be any preference profile in the quasi-linear domain where (a, π) is more
preferred than (a, π′) for agent i

• Because vi(a, θi) - π′
i > vi(a, θi)− πi, ∀θi ∈ Θi

• In the complete domain, both preference orders would have been feasible
• This restriction opens up possibilities of several non-dictatorial mechanisms

18

Quasi Linear Domain

• Types θi that depend on the outcome x = (a, π) this way belongs to the quasi-linear domain

ui((a, π), θi) = vi(a, θi)− πi (quasi-linear payoff)

Question

Why is this a domain restriction?

Answer

• Consider two alternatives (a, π) and (a, π′), allocation is the same but payments are different
• Suppose π′

i < πi for some i ∈ N
• There cannot be any preference profile in the quasi-linear domain where (a, π) is more

preferred than (a, π′) for agent i

• Because vi(a, θi) - π′
i > vi(a, θi)− πi, ∀θi ∈ Θi

• In the complete domain, both preference orders would have been feasible
• This restriction opens up possibilities of several non-dictatorial mechanisms

18

Quasi Linear Domain

• Types θi that depend on the outcome x = (a, π) this way belongs to the quasi-linear domain

ui((a, π), θi) = vi(a, θi)− πi (quasi-linear payoff)

Question

Why is this a domain restriction?

Answer

• Consider two alternatives (a, π) and (a, π′), allocation is the same but payments are different
• Suppose π′

i < πi for some i ∈ N
• There cannot be any preference profile in the quasi-linear domain where (a, π) is more

preferred than (a, π′) for agent i
• Because vi(a, θi) - π′

i > vi(a, θi)− πi, ∀θi ∈ Θi

• In the complete domain, both preference orders would have been feasible
• This restriction opens up possibilities of several non-dictatorial mechanisms

18

Quasi Linear Domain

• Types θi that depend on the outcome x = (a, π) this way belongs to the quasi-linear domain

ui((a, π), θi) = vi(a, θi)− πi (quasi-linear payoff)

Question

Why is this a domain restriction?

Answer

• Consider two alternatives (a, π) and (a, π′), allocation is the same but payments are different
• Suppose π′

i < πi for some i ∈ N
• There cannot be any preference profile in the quasi-linear domain where (a, π) is more

preferred than (a, π′) for agent i
• Because vi(a, θi) - π′

i > vi(a, θi)− πi, ∀θi ∈ Θi

• In the complete domain, both preference orders would have been feasible

• This restriction opens up possibilities of several non-dictatorial mechanisms

18

Quasi Linear Domain

• Types θi that depend on the outcome x = (a, π) this way belongs to the quasi-linear domain

ui((a, π), θi) = vi(a, θi)− πi (quasi-linear payoff)

Question

Why is this a domain restriction?

Answer

• Consider two alternatives (a, π) and (a, π′), allocation is the same but payments are different
• Suppose π′

i < πi for some i ∈ N
• There cannot be any preference profile in the quasi-linear domain where (a, π) is more

preferred than (a, π′) for agent i
• Because vi(a, θi) - π′

i > vi(a, θi)− πi, ∀θi ∈ Θi

• In the complete domain, both preference orders would have been feasible
• This restriction opens up possibilities of several non-dictatorial mechanisms

19

Contents

▶ Task Allocation Domain

▶ The Uniform Rule

▶ Mechanism Design with Transfers

▶ Quasi Linear Preferences

▶ Pareto Optimality and Groves Payments

20

Quasi Linear preferences

• The SCF F ≡ (f , (p1, p2, . . . , pn)) ≡ (f , p) is decomposed into two components

• Allocation rule component
f : Θ1 × Θ2 × · · ·Θn → A

When the types are θi, i ∈ N, f (θ1, · · · , θn) = a ∈ A
• Payment function

pi : Θ1 × Θ2 × · · ·Θn → R, ∀i ∈ N

When the types are θi, i ∈ N, pi(θ1, · · · , θn) = πi ∈ R

20

Quasi Linear preferences

• The SCF F ≡ (f , (p1, p2, . . . , pn)) ≡ (f , p) is decomposed into two components
• Allocation rule component

f : Θ1 × Θ2 × · · ·Θn → A

When the types are θi, i ∈ N, f (θ1, · · · , θn) = a ∈ A

• Payment function
pi : Θ1 × Θ2 × · · ·Θn → R, ∀i ∈ N

When the types are θi, i ∈ N, pi(θ1, · · · , θn) = πi ∈ R

20

Quasi Linear preferences

• The SCF F ≡ (f , (p1, p2, . . . , pn)) ≡ (f , p) is decomposed into two components
• Allocation rule component

f : Θ1 × Θ2 × · · ·Θn → A

When the types are θi, i ∈ N, f (θ1, · · · , θn) = a ∈ A
• Payment function

pi : Θ1 × Θ2 × · · ·Θn → R, ∀i ∈ N

When the types are θi, i ∈ N, pi(θ1, · · · , θn) = πi ∈ R

21

Example Allocation Rules

1 Constant rule, f c(θ) = a, ∀θ ∈ Θ

2 Dictatorial rule, f D(θ) ∈ arg maxa∈A vd(a, θd), ∀θ ∈ Θ, for some d ∈ N
3 Allocatively efficient rule / utilitarian rule

f AE(θ) ∈ arg max
a∈A

∑
i∈N

vi(a, θi)

Note: This is different from Pareto efficiency (PE is a property defined for the outcome
which also considers the payment)

4 Affine maximizer rule:

f AM(θ) ∈ arg max
a∈A

(∑
i∈N

λivi(a, θi) + κ(a)), where λi ⩾ 0, not all zero

— λi = 1, ∀i ∈ N, κ ≡ 0: allocatively efficient; λd = 1, λj = 0, ∀j ∈ N \ {d}, κ ≡ 0: dictatorial

5 Max-min/egalitarian
f MM(θ) ∈ arg max

a∈A
min
i∈N

vi(a, θi)

21

Example Allocation Rules

1 Constant rule, f c(θ) = a, ∀θ ∈ Θ
2 Dictatorial rule, f D(θ) ∈ arg maxa∈A vd(a, θd), ∀θ ∈ Θ, for some d ∈ N

3 Allocatively efficient rule / utilitarian rule

f AE(θ) ∈ arg max
a∈A

∑
i∈N

vi(a, θi)

Note: This is different from Pareto efficiency (PE is a property defined for the outcome
which also considers the payment)

4 Affine maximizer rule:

f AM(θ) ∈ arg max
a∈A

(∑
i∈N

λivi(a, θi) + κ(a)), where λi ⩾ 0, not all zero

— λi = 1, ∀i ∈ N, κ ≡ 0: allocatively efficient; λd = 1, λj = 0, ∀j ∈ N \ {d}, κ ≡ 0: dictatorial

5 Max-min/egalitarian
f MM(θ) ∈ arg max

a∈A
min
i∈N

vi(a, θi)

21

Example Allocation Rules

1 Constant rule, f c(θ) = a, ∀θ ∈ Θ
2 Dictatorial rule, f D(θ) ∈ arg maxa∈A vd(a, θd), ∀θ ∈ Θ, for some d ∈ N
3 Allocatively efficient rule / utilitarian rule

f AE(θ) ∈ arg max
a∈A

∑
i∈N

vi(a, θi)

Note: This is different from Pareto efficiency (PE is a property defined for the outcome
which also considers the payment)

4 Affine maximizer rule:

f AM(θ) ∈ arg max
a∈A

(∑
i∈N

λivi(a, θi) + κ(a)), where λi ⩾ 0, not all zero

— λi = 1, ∀i ∈ N, κ ≡ 0: allocatively efficient; λd = 1, λj = 0, ∀j ∈ N \ {d}, κ ≡ 0: dictatorial

5 Max-min/egalitarian
f MM(θ) ∈ arg max

a∈A
min
i∈N

vi(a, θi)

21

Example Allocation Rules

1 Constant rule, f c(θ) = a, ∀θ ∈ Θ
2 Dictatorial rule, f D(θ) ∈ arg maxa∈A vd(a, θd), ∀θ ∈ Θ, for some d ∈ N
3 Allocatively efficient rule / utilitarian rule

f AE(θ) ∈ arg max
a∈A

∑
i∈N

vi(a, θi)

Note: This is different from Pareto efficiency (PE is a property defined for the outcome
which also considers the payment)

4 Affine maximizer rule:

f AM(θ) ∈ arg max
a∈A

(∑
i∈N

λivi(a, θi) + κ(a)), where λi ⩾ 0, not all zero

— λi = 1, ∀i ∈ N, κ ≡ 0: allocatively efficient; λd = 1, λj = 0, ∀j ∈ N \ {d}, κ ≡ 0: dictatorial
5 Max-min/egalitarian

f MM(θ) ∈ arg max
a∈A

min
i∈N

vi(a, θi)

21

Example Allocation Rules

1 Constant rule, f c(θ) = a, ∀θ ∈ Θ
2 Dictatorial rule, f D(θ) ∈ arg maxa∈A vd(a, θd), ∀θ ∈ Θ, for some d ∈ N
3 Allocatively efficient rule / utilitarian rule

f AE(θ) ∈ arg max
a∈A

∑
i∈N

vi(a, θi)

Note: This is different from Pareto efficiency (PE is a property defined for the outcome
which also considers the payment)

4 Affine maximizer rule:

f AM(θ) ∈ arg max
a∈A

(∑
i∈N

λivi(a, θi) + κ(a)), where λi ⩾ 0, not all zero

— λi = 1, ∀i ∈ N, κ ≡ 0: allocatively efficient; λd = 1, λj = 0, ∀j ∈ N \ {d}, κ ≡ 0: dictatorial

5 Max-min/egalitarian
f MM(θ) ∈ arg max

a∈A
min
i∈N

vi(a, θi)

21

Example Allocation Rules

1 Constant rule, f c(θ) = a, ∀θ ∈ Θ
2 Dictatorial rule, f D(θ) ∈ arg maxa∈A vd(a, θd), ∀θ ∈ Θ, for some d ∈ N
3 Allocatively efficient rule / utilitarian rule

f AE(θ) ∈ arg max
a∈A

∑
i∈N

vi(a, θi)

Note: This is different from Pareto efficiency (PE is a property defined for the outcome
which also considers the payment)

4 Affine maximizer rule:

f AM(θ) ∈ arg max
a∈A

(∑
i∈N

λivi(a, θi) + κ(a)), where λi ⩾ 0, not all zero

— λi = 1, ∀i ∈ N, κ ≡ 0: allocatively efficient; λd = 1, λj = 0, ∀j ∈ N \ {d}, κ ≡ 0: dictatorial
5 Max-min/egalitarian

f MM(θ) ∈ arg max
a∈A

min
i∈N

vi(a, θi)

22

Example Payment Rules

1 No deficit: ∑i∈N pi(θ) ⩾ 0, ∀θ ∈ Θ

2 No subsidy: pi(θ) ⩾ 0, ∀θ ∈ Θ, ∀i ∈ N
3 Budget balanced: ∑i∈N pi(θ) = 0, ∀θ ∈ Θ

Definition (DSIC)

A mechanism (f , p) is dominant strategy incentive compatible (DSIC) if

vi(f (θi, θ̃−i), θi)− pi(θi, θ̃−i) ⩾ vi(f (θ′i , θ̃−i), θi)− pi(θ
′
i , θ̃−i), ∀θ̃−i ∈ Θ−i, θ′i , θi ∈ Θi, ∀i ∈ N

22

Example Payment Rules

1 No deficit: ∑i∈N pi(θ) ⩾ 0, ∀θ ∈ Θ
2 No subsidy: pi(θ) ⩾ 0, ∀θ ∈ Θ, ∀i ∈ N

3 Budget balanced: ∑i∈N pi(θ) = 0, ∀θ ∈ Θ

Definition (DSIC)

A mechanism (f , p) is dominant strategy incentive compatible (DSIC) if

vi(f (θi, θ̃−i), θi)− pi(θi, θ̃−i) ⩾ vi(f (θ′i , θ̃−i), θi)− pi(θ
′
i , θ̃−i), ∀θ̃−i ∈ Θ−i, θ′i , θi ∈ Θi, ∀i ∈ N

22

Example Payment Rules

1 No deficit: ∑i∈N pi(θ) ⩾ 0, ∀θ ∈ Θ
2 No subsidy: pi(θ) ⩾ 0, ∀θ ∈ Θ, ∀i ∈ N
3 Budget balanced: ∑i∈N pi(θ) = 0, ∀θ ∈ Θ

Definition (DSIC)

A mechanism (f , p) is dominant strategy incentive compatible (DSIC) if

vi(f (θi, θ̃−i), θi)− pi(θi, θ̃−i) ⩾ vi(f (θ′i , θ̃−i), θi)− pi(θ
′
i , θ̃−i), ∀θ̃−i ∈ Θ−i, θ′i , θi ∈ Θi, ∀i ∈ N

22

Example Payment Rules

1 No deficit: ∑i∈N pi(θ) ⩾ 0, ∀θ ∈ Θ
2 No subsidy: pi(θ) ⩾ 0, ∀θ ∈ Θ, ∀i ∈ N
3 Budget balanced: ∑i∈N pi(θ) = 0, ∀θ ∈ Θ

Definition (DSIC)

A mechanism (f , p) is dominant strategy incentive compatible (DSIC) if

vi(f (θi, θ̃−i), θi)− pi(θi, θ̃−i) ⩾ vi(f (θ′i , θ̃−i), θi)− pi(θ
′
i , θ̃−i), ∀θ̃−i ∈ Θ−i, θ′i , θi ∈ Θi, ∀i ∈ N

22

Example Payment Rules

1 No deficit: ∑i∈N pi(θ) ⩾ 0, ∀θ ∈ Θ
2 No subsidy: pi(θ) ⩾ 0, ∀θ ∈ Θ, ∀i ∈ N
3 Budget balanced: ∑i∈N pi(θ) = 0, ∀θ ∈ Θ

Definition (DSIC)

A mechanism (f , p) is dominant strategy incentive compatible (DSIC) if

vi(f (θi, θ̃−i), θi)− pi(θi, θ̃−i) ⩾ vi(f (θ′i , θ̃−i), θi)− pi(θ
′
i , θ̃−i), ∀θ̃−i ∈ Θ−i, θ′i , θi ∈ Θi, ∀i ∈ N

23

DSIC

• DSIC means truthtelling is a weakly DSE

• We say that the payment rule p implements an allocation rule f in dominant strategies (OR) f
is implementable in dominant strategies (by a payment rule)

• In QL domain, we are often more interested in the allocation rule than the whole SCF (which
also includes payment)

Question

What needs to be satisfied for a DSIC mechanism (f , p)?

23

DSIC

• DSIC means truthtelling is a weakly DSE
• We say that the payment rule p implements an allocation rule f in dominant strategies (OR) f

is implementable in dominant strategies (by a payment rule)

• In QL domain, we are often more interested in the allocation rule than the whole SCF (which
also includes payment)

Question

What needs to be satisfied for a DSIC mechanism (f , p)?

23

DSIC

• DSIC means truthtelling is a weakly DSE
• We say that the payment rule p implements an allocation rule f in dominant strategies (OR) f

is implementable in dominant strategies (by a payment rule)
• In QL domain, we are often more interested in the allocation rule than the whole SCF (which

also includes payment)

Question

What needs to be satisfied for a DSIC mechanism (f , p)?

23

DSIC

• DSIC means truthtelling is a weakly DSE
• We say that the payment rule p implements an allocation rule f in dominant strategies (OR) f

is implementable in dominant strategies (by a payment rule)
• In QL domain, we are often more interested in the allocation rule than the whole SCF (which

also includes payment)

Question

What needs to be satisfied for a DSIC mechanism (f , p)?

23

DSIC

• DSIC means truthtelling is a weakly DSE
• We say that the payment rule p implements an allocation rule f in dominant strategies (OR) f

is implementable in dominant strategies (by a payment rule)
• In QL domain, we are often more interested in the allocation rule than the whole SCF (which

also includes payment)

Question

What needs to be satisfied for a DSIC mechanism (f , p)?

24

Implications of DSIC

Question

What needs to be satisfied for a DSIC mechanism (f , p)?

Example

N = {1, 2}, Θ1 = Θ2 = {θH, θL}, f : Θ1 × Θ2 → A. The following conditions must hold
Player 1:

v1(f (θH, θ2), θH)− p1(θ
H, θ2) ⩾ v1(f (θL, θ2), θH)− p1(θ

L, θ2), ∀θ2 ∈ Θ2 (1)

v1(f (θL, θ2), θL)− p1(θ
L, θ2) ⩾ v1(f (θH, θ2), θL)− p1(θ

H, θ2), ∀θ2 ∈ Θ2 (2)

Player 2:

v2(f (θH, θ1), θH)− p2(θ
H, θ1) ⩾ v2(f (θL, θ1), θH)− p2(θ

L, θ1), ∀θ1 ∈ Θ1 (3)

v2(f (θL, θ1), θL)− p2(θ
L, θ1) ⩾ v2(f (θH, θ1), θL)− p2(θ

H, θ1), ∀θ1 ∈ Θ1 (4)

24

Implications of DSIC

Question

What needs to be satisfied for a DSIC mechanism (f , p)?

Example

N = {1, 2}, Θ1 = Θ2 = {θH, θL}, f : Θ1 × Θ2 → A. The following conditions must hold

Player 1:

v1(f (θH, θ2), θH)− p1(θ
H, θ2) ⩾ v1(f (θL, θ2), θH)− p1(θ

L, θ2), ∀θ2 ∈ Θ2 (1)

v1(f (θL, θ2), θL)− p1(θ
L, θ2) ⩾ v1(f (θH, θ2), θL)− p1(θ

H, θ2), ∀θ2 ∈ Θ2 (2)

Player 2:

v2(f (θH, θ1), θH)− p2(θ
H, θ1) ⩾ v2(f (θL, θ1), θH)− p2(θ

L, θ1), ∀θ1 ∈ Θ1 (3)

v2(f (θL, θ1), θL)− p2(θ
L, θ1) ⩾ v2(f (θH, θ1), θL)− p2(θ

H, θ1), ∀θ1 ∈ Θ1 (4)

24

Implications of DSIC

Question

What needs to be satisfied for a DSIC mechanism (f , p)?

Example

N = {1, 2}, Θ1 = Θ2 = {θH, θL}, f : Θ1 × Θ2 → A. The following conditions must hold
Player 1:

v1(f (θH, θ2), θH)− p1(θ
H, θ2) ⩾ v1(f (θL, θ2), θH)− p1(θ

L, θ2), ∀θ2 ∈ Θ2 (1)

v1(f (θL, θ2), θL)− p1(θ
L, θ2) ⩾ v1(f (θH, θ2), θL)− p1(θ

H, θ2), ∀θ2 ∈ Θ2 (2)

Player 2:

v2(f (θH, θ1), θH)− p2(θ
H, θ1) ⩾ v2(f (θL, θ1), θH)− p2(θ

L, θ1), ∀θ1 ∈ Θ1 (3)

v2(f (θL, θ1), θL)− p2(θ
L, θ1) ⩾ v2(f (θH, θ1), θL)− p2(θ

H, θ1), ∀θ1 ∈ Θ1 (4)

24

Implications of DSIC

Question

What needs to be satisfied for a DSIC mechanism (f , p)?

Example

N = {1, 2}, Θ1 = Θ2 = {θH, θL}, f : Θ1 × Θ2 → A. The following conditions must hold
Player 1:

v1(f (θH, θ2), θH)− p1(θ
H, θ2) ⩾ v1(f (θL, θ2), θH)− p1(θ

L, θ2), ∀θ2 ∈ Θ2 (1)

v1(f (θL, θ2), θL)− p1(θ
L, θ2) ⩾ v1(f (θH, θ2), θL)− p1(θ

H, θ2), ∀θ2 ∈ Θ2 (2)

Player 2:

v2(f (θH, θ1), θH)− p2(θ
H, θ1) ⩾ v2(f (θL, θ1), θH)− p2(θ

L, θ1), ∀θ1 ∈ Θ1 (3)

v2(f (θL, θ1), θL)− p2(θ
L, θ1) ⩾ v2(f (θH, θ1), θL)− p2(θ

H, θ1), ∀θ1 ∈ Θ1 (4)

25

Properties of the Payment

• Say (f , p) is incentive compatible, i.e., p implements f

• Consider another payment

qi(θi, θ−i) = pi(θi, θ−i) + hi(θ−i), ∀θ, ∀i ∈ N

• Question: Is (f , q) DSIC?

vi(f (θi, θ̃−i), θi)− pi(θi, θ̃−i)− hi(θ̃−i) ⩾ vi(f (θ′i , θ̃−i), θi)− pi(θ
′
i , θ̃−i)− hi(θ̃−i), ∀θi, θ′i , θ̃−i, ∀i ∈ N

• If we can find a payment that implements an allocation rule, there exists uncountably many
payments that can implement it

• The converse question: when do the payments that implement f differ only by a factor
hi(θ−i)?

25

Properties of the Payment

• Say (f , p) is incentive compatible, i.e., p implements f
• Consider another payment

qi(θi, θ−i) = pi(θi, θ−i) + hi(θ−i), ∀θ, ∀i ∈ N

• Question: Is (f , q) DSIC?

vi(f (θi, θ̃−i), θi)− pi(θi, θ̃−i)− hi(θ̃−i) ⩾ vi(f (θ′i , θ̃−i), θi)− pi(θ
′
i , θ̃−i)− hi(θ̃−i), ∀θi, θ′i , θ̃−i, ∀i ∈ N

• If we can find a payment that implements an allocation rule, there exists uncountably many
payments that can implement it

• The converse question: when do the payments that implement f differ only by a factor
hi(θ−i)?

25

Properties of the Payment

• Say (f , p) is incentive compatible, i.e., p implements f
• Consider another payment

qi(θi, θ−i) = pi(θi, θ−i) + hi(θ−i), ∀θ, ∀i ∈ N

• Question: Is (f , q) DSIC?

vi(f (θi, θ̃−i), θi)− pi(θi, θ̃−i)− hi(θ̃−i) ⩾ vi(f (θ′i , θ̃−i), θi)− pi(θ
′
i , θ̃−i)− hi(θ̃−i), ∀θi, θ′i , θ̃−i, ∀i ∈ N

• If we can find a payment that implements an allocation rule, there exists uncountably many
payments that can implement it

• The converse question: when do the payments that implement f differ only by a factor
hi(θ−i)?

25

Properties of the Payment

• Say (f , p) is incentive compatible, i.e., p implements f
• Consider another payment

qi(θi, θ−i) = pi(θi, θ−i) + hi(θ−i), ∀θ, ∀i ∈ N

• Question: Is (f , q) DSIC?

vi(f (θi, θ̃−i), θi)− pi(θi, θ̃−i)− hi(θ̃−i) ⩾ vi(f (θ′i , θ̃−i), θi)− pi(θ
′
i , θ̃−i)− hi(θ̃−i), ∀θi, θ′i , θ̃−i, ∀i ∈ N

• If we can find a payment that implements an allocation rule, there exists uncountably many
payments that can implement it

• The converse question: when do the payments that implement f differ only by a factor
hi(θ−i)?

25

Properties of the Payment

• Say (f , p) is incentive compatible, i.e., p implements f
• Consider another payment

qi(θi, θ−i) = pi(θi, θ−i) + hi(θ−i), ∀θ, ∀i ∈ N

• Question: Is (f , q) DSIC?

vi(f (θi, θ̃−i), θi)− pi(θi, θ̃−i)− hi(θ̃−i) ⩾ vi(f (θ′i , θ̃−i), θi)− pi(θ
′
i , θ̃−i)− hi(θ̃−i), ∀θi, θ′i , θ̃−i, ∀i ∈ N

• If we can find a payment that implements an allocation rule, there exists uncountably many
payments that can implement it

• The converse question: when do the payments that implement f differ only by a factor
hi(θ−i)?

26

Properties of the Payment

• Suppose the allocation is same in two type profiles θ and θ̃ = (θ̃i, θ−i)

• i.e., f (θ) = f (θ̃) = a, then
• if p implements f , then pi(θ) = pi(θ̃) [exercise]

27

Contents

▶ Task Allocation Domain

▶ The Uniform Rule

▶ Mechanism Design with Transfers

▶ Quasi Linear Preferences

▶ Pareto Optimality and Groves Payments

28

Pareto Optimality in Quasi-linear domain

Definition (Pareto Optimal)

A mechanism (f , (p1, . . . , pn)) is Pareto optimal if at any type profile θ ∈ Θ, there does not exist
an allocation b ̸= f (θ) and payments (π1, . . . , πn) with ∑i∈N πi ⩾ ∑i∈N pi(θ) s.t.,

vi(b, θi)− πi ⩾ vi(f (θ), θi)− pi(θ), ∀i ∈ N,

with the inequality being strict for some i ∈ N

• Pareto optimality is meaningless if there is no restriction on the payment
• One can always put excessive subsidy to every agent to make everyone better off
• So, the condition requires to spend at least the same budget

28

Pareto Optimality in Quasi-linear domain

Definition (Pareto Optimal)

A mechanism (f , (p1, . . . , pn)) is Pareto optimal if at any type profile θ ∈ Θ, there does not exist
an allocation b ̸= f (θ) and payments (π1, . . . , πn) with ∑i∈N πi ⩾ ∑i∈N pi(θ) s.t.,

vi(b, θi)− πi ⩾ vi(f (θ), θi)− pi(θ), ∀i ∈ N,

with the inequality being strict for some i ∈ N

• Pareto optimality is meaningless if there is no restriction on the payment
• One can always put excessive subsidy to every agent to make everyone better off
• So, the condition requires to spend at least the same budget

29

Pareto Optimality in Quasi-linear Domain

Theorem

A mechanism (f , (p1, · · · , pn)) is Pareto optimal iff it is allocatively efficient

• (⇐=) we prove ¬PO =⇒ ¬AE
• ¬PO, ∃b, π, θ s.t. ∑i∈N πi ⩾ ∑i∈N pi(θ)

• vi(b, θi)− πi ⩾ vi(f (θ), θi)− pi(θ), ∀i ∈ N, strict for some j ∈ N
• summing over the all these inequalities

∑
i∈N

vi(b, θi)− ∑
i∈N

πi > ∑
i∈N

vi(f (θ), θi)− ∑
i∈N

pi(θ)

∑
i∈N

vi(b, θi)− ∑
i∈N

vi(f (θ), θi) > ∑
i∈N

πi − ∑
i∈N

pi(θ) ⩾ 0

• f is ¬AE

29

Pareto Optimality in Quasi-linear Domain

Theorem

A mechanism (f , (p1, · · · , pn)) is Pareto optimal iff it is allocatively efficient

• (⇐=) we prove ¬PO =⇒ ¬AE

• ¬PO, ∃b, π, θ s.t. ∑i∈N πi ⩾ ∑i∈N pi(θ)

• vi(b, θi)− πi ⩾ vi(f (θ), θi)− pi(θ), ∀i ∈ N, strict for some j ∈ N
• summing over the all these inequalities

∑
i∈N

vi(b, θi)− ∑
i∈N

πi > ∑
i∈N

vi(f (θ), θi)− ∑
i∈N

pi(θ)

∑
i∈N

vi(b, θi)− ∑
i∈N

vi(f (θ), θi) > ∑
i∈N

πi − ∑
i∈N

pi(θ) ⩾ 0

• f is ¬AE

29

Pareto Optimality in Quasi-linear Domain

Theorem

A mechanism (f , (p1, · · · , pn)) is Pareto optimal iff it is allocatively efficient

• (⇐=) we prove ¬PO =⇒ ¬AE
• ¬PO, ∃b, π, θ s.t. ∑i∈N πi ⩾ ∑i∈N pi(θ)

• vi(b, θi)− πi ⩾ vi(f (θ), θi)− pi(θ), ∀i ∈ N, strict for some j ∈ N
• summing over the all these inequalities

∑
i∈N

vi(b, θi)− ∑
i∈N

πi > ∑
i∈N

vi(f (θ), θi)− ∑
i∈N

pi(θ)

∑
i∈N

vi(b, θi)− ∑
i∈N

vi(f (θ), θi) > ∑
i∈N

πi − ∑
i∈N

pi(θ) ⩾ 0

• f is ¬AE

29

Pareto Optimality in Quasi-linear Domain

Theorem

A mechanism (f , (p1, · · · , pn)) is Pareto optimal iff it is allocatively efficient

• (⇐=) we prove ¬PO =⇒ ¬AE
• ¬PO, ∃b, π, θ s.t. ∑i∈N πi ⩾ ∑i∈N pi(θ)

• vi(b, θi)− πi ⩾ vi(f (θ), θi)− pi(θ), ∀i ∈ N, strict for some j ∈ N

• summing over the all these inequalities

∑
i∈N

vi(b, θi)− ∑
i∈N

πi > ∑
i∈N

vi(f (θ), θi)− ∑
i∈N

pi(θ)

∑
i∈N

vi(b, θi)− ∑
i∈N

vi(f (θ), θi) > ∑
i∈N

πi − ∑
i∈N

pi(θ) ⩾ 0

• f is ¬AE

29

Pareto Optimality in Quasi-linear Domain

Theorem

A mechanism (f , (p1, · · · , pn)) is Pareto optimal iff it is allocatively efficient

• (⇐=) we prove ¬PO =⇒ ¬AE
• ¬PO, ∃b, π, θ s.t. ∑i∈N πi ⩾ ∑i∈N pi(θ)

• vi(b, θi)− πi ⩾ vi(f (θ), θi)− pi(θ), ∀i ∈ N, strict for some j ∈ N
• summing over the all these inequalities

∑
i∈N

vi(b, θi)− ∑
i∈N

πi > ∑
i∈N

vi(f (θ), θi)− ∑
i∈N

pi(θ)

∑
i∈N

vi(b, θi)− ∑
i∈N

vi(f (θ), θi) > ∑
i∈N

πi − ∑
i∈N

pi(θ) ⩾ 0

• f is ¬AE

29

Pareto Optimality in Quasi-linear Domain

Theorem

A mechanism (f , (p1, · · · , pn)) is Pareto optimal iff it is allocatively efficient

• (⇐=) we prove ¬PO =⇒ ¬AE
• ¬PO, ∃b, π, θ s.t. ∑i∈N πi ⩾ ∑i∈N pi(θ)

• vi(b, θi)− πi ⩾ vi(f (θ), θi)− pi(θ), ∀i ∈ N, strict for some j ∈ N
• summing over the all these inequalities

∑
i∈N

vi(b, θi)− ∑
i∈N

πi > ∑
i∈N

vi(f (θ), θi)− ∑
i∈N

pi(θ)

∑
i∈N

vi(b, θi)− ∑
i∈N

vi(f (θ), θi) > ∑
i∈N

πi − ∑
i∈N

pi(θ) ⩾ 0

• f is ¬AE

30

Proof (contd.)

• (=⇒) ¬AE =⇒ ¬PO

• ¬AE =⇒ ∃θ, b ̸= f (θ) s.t. ∑i∈N vi(b, θi) > ∑i∈N vi(f (θ), θi)

• Let δ = ∑i∈N vi(b, θi)− ∑i∈N vi(f (θ), θi) > 0
• Consider payment πi = vi(b, θi)− vi(f (θ), θi) + pi(θ)− δ/n, ∀i ∈ N
• Hence, (vi(b, θi)− πi)− (vi(f (θ), θi)− pi(θ)) = δ/n > 0, ∀i ∈ N
• also ∑i∈N πi = ∑i∈N pi(θ)

• Hence f is not PO

30

Proof (contd.)

• (=⇒) ¬AE =⇒ ¬PO
• ¬AE =⇒ ∃θ, b ̸= f (θ) s.t. ∑i∈N vi(b, θi) > ∑i∈N vi(f (θ), θi)

• Let δ = ∑i∈N vi(b, θi)− ∑i∈N vi(f (θ), θi) > 0
• Consider payment πi = vi(b, θi)− vi(f (θ), θi) + pi(θ)− δ/n, ∀i ∈ N
• Hence, (vi(b, θi)− πi)− (vi(f (θ), θi)− pi(θ)) = δ/n > 0, ∀i ∈ N
• also ∑i∈N πi = ∑i∈N pi(θ)

• Hence f is not PO

30

Proof (contd.)

• (=⇒) ¬AE =⇒ ¬PO
• ¬AE =⇒ ∃θ, b ̸= f (θ) s.t. ∑i∈N vi(b, θi) > ∑i∈N vi(f (θ), θi)

• Let δ = ∑i∈N vi(b, θi)− ∑i∈N vi(f (θ), θi) > 0

• Consider payment πi = vi(b, θi)− vi(f (θ), θi) + pi(θ)− δ/n, ∀i ∈ N
• Hence, (vi(b, θi)− πi)− (vi(f (θ), θi)− pi(θ)) = δ/n > 0, ∀i ∈ N
• also ∑i∈N πi = ∑i∈N pi(θ)

• Hence f is not PO

30

Proof (contd.)

• (=⇒) ¬AE =⇒ ¬PO
• ¬AE =⇒ ∃θ, b ̸= f (θ) s.t. ∑i∈N vi(b, θi) > ∑i∈N vi(f (θ), θi)

• Let δ = ∑i∈N vi(b, θi)− ∑i∈N vi(f (θ), θi) > 0
• Consider payment πi = vi(b, θi)− vi(f (θ), θi) + pi(θ)− δ/n, ∀i ∈ N

• Hence, (vi(b, θi)− πi)− (vi(f (θ), θi)− pi(θ)) = δ/n > 0, ∀i ∈ N
• also ∑i∈N πi = ∑i∈N pi(θ)

• Hence f is not PO

30

Proof (contd.)

• (=⇒) ¬AE =⇒ ¬PO
• ¬AE =⇒ ∃θ, b ̸= f (θ) s.t. ∑i∈N vi(b, θi) > ∑i∈N vi(f (θ), θi)

• Let δ = ∑i∈N vi(b, θi)− ∑i∈N vi(f (θ), θi) > 0
• Consider payment πi = vi(b, θi)− vi(f (θ), θi) + pi(θ)− δ/n, ∀i ∈ N
• Hence, (vi(b, θi)− πi)− (vi(f (θ), θi)− pi(θ)) = δ/n > 0, ∀i ∈ N

• also ∑i∈N πi = ∑i∈N pi(θ)

• Hence f is not PO

30

Proof (contd.)

• (=⇒) ¬AE =⇒ ¬PO
• ¬AE =⇒ ∃θ, b ̸= f (θ) s.t. ∑i∈N vi(b, θi) > ∑i∈N vi(f (θ), θi)

• Let δ = ∑i∈N vi(b, θi)− ∑i∈N vi(f (θ), θi) > 0
• Consider payment πi = vi(b, θi)− vi(f (θ), θi) + pi(θ)− δ/n, ∀i ∈ N
• Hence, (vi(b, θi)− πi)− (vi(f (θ), θi)− pi(θ)) = δ/n > 0, ∀i ∈ N
• also ∑i∈N πi = ∑i∈N pi(θ)

• Hence f is not PO

30

Proof (contd.)

• (=⇒) ¬AE =⇒ ¬PO
• ¬AE =⇒ ∃θ, b ̸= f (θ) s.t. ∑i∈N vi(b, θi) > ∑i∈N vi(f (θ), θi)

• Let δ = ∑i∈N vi(b, θi)− ∑i∈N vi(f (θ), θi) > 0
• Consider payment πi = vi(b, θi)− vi(f (θ), θi) + pi(θ)− δ/n, ∀i ∈ N
• Hence, (vi(b, θi)− πi)− (vi(f (θ), θi)− pi(θ)) = δ/n > 0, ∀i ∈ N
• also ∑i∈N πi = ∑i∈N pi(θ)

• Hence f is not PO

31

Allocatively Efficient Rule is Implementable

• Consider the following payment: pG
i (θi, θ−i) = hi(θ−i)− ∑j ̸=i vj(f AE(θi, θ−i), θj), where

hi : Θ−i → R is an arbitrary function: Groves payment

Example

• Single indivisible item allocation N = {1, 2, 3, 4}
• θ1 = 10, θ2 = 8, θ3 = 6, θ4 = 4, when they get the object, zero otherwise
• Let hi(θ−i) = min θ−i

• If everyone reports their true type, the values of hi are h1 = 4, h2 = 4, h3 = 4, h4 = 6
• The efficient allocation gives the item to agent 1
• p1 = 4 − 0 = 4, p2 = 4 − 10 = −6, p3 = 4 − 10 = −6, p4 = 6 − 10 = −4, i.e., only player 1

pays, other get paid
• Surprisingly, this is a truthful mechanism

31

Allocatively Efficient Rule is Implementable

• Consider the following payment: pG
i (θi, θ−i) = hi(θ−i)− ∑j ̸=i vj(f AE(θi, θ−i), θj), where

hi : Θ−i → R is an arbitrary function: Groves payment

Example

• Single indivisible item allocation N = {1, 2, 3, 4}

• θ1 = 10, θ2 = 8, θ3 = 6, θ4 = 4, when they get the object, zero otherwise
• Let hi(θ−i) = min θ−i

• If everyone reports their true type, the values of hi are h1 = 4, h2 = 4, h3 = 4, h4 = 6
• The efficient allocation gives the item to agent 1
• p1 = 4 − 0 = 4, p2 = 4 − 10 = −6, p3 = 4 − 10 = −6, p4 = 6 − 10 = −4, i.e., only player 1

pays, other get paid
• Surprisingly, this is a truthful mechanism

31

Allocatively Efficient Rule is Implementable

• Consider the following payment: pG
i (θi, θ−i) = hi(θ−i)− ∑j ̸=i vj(f AE(θi, θ−i), θj), where

hi : Θ−i → R is an arbitrary function: Groves payment

Example

• Single indivisible item allocation N = {1, 2, 3, 4}
• θ1 = 10, θ2 = 8, θ3 = 6, θ4 = 4, when they get the object, zero otherwise

• Let hi(θ−i) = min θ−i

• If everyone reports their true type, the values of hi are h1 = 4, h2 = 4, h3 = 4, h4 = 6
• The efficient allocation gives the item to agent 1
• p1 = 4 − 0 = 4, p2 = 4 − 10 = −6, p3 = 4 − 10 = −6, p4 = 6 − 10 = −4, i.e., only player 1

pays, other get paid
• Surprisingly, this is a truthful mechanism

31

Allocatively Efficient Rule is Implementable

• Consider the following payment: pG
i (θi, θ−i) = hi(θ−i)− ∑j ̸=i vj(f AE(θi, θ−i), θj), where

hi : Θ−i → R is an arbitrary function: Groves payment

Example

• Single indivisible item allocation N = {1, 2, 3, 4}
• θ1 = 10, θ2 = 8, θ3 = 6, θ4 = 4, when they get the object, zero otherwise
• Let hi(θ−i) = min θ−i

• If everyone reports their true type, the values of hi are h1 = 4, h2 = 4, h3 = 4, h4 = 6
• The efficient allocation gives the item to agent 1
• p1 = 4 − 0 = 4, p2 = 4 − 10 = −6, p3 = 4 − 10 = −6, p4 = 6 − 10 = −4, i.e., only player 1

pays, other get paid
• Surprisingly, this is a truthful mechanism

31

Allocatively Efficient Rule is Implementable

• Consider the following payment: pG
i (θi, θ−i) = hi(θ−i)− ∑j ̸=i vj(f AE(θi, θ−i), θj), where

hi : Θ−i → R is an arbitrary function: Groves payment

Example

• Single indivisible item allocation N = {1, 2, 3, 4}
• θ1 = 10, θ2 = 8, θ3 = 6, θ4 = 4, when they get the object, zero otherwise
• Let hi(θ−i) = min θ−i

• If everyone reports their true type, the values of hi are h1 = 4, h2 = 4, h3 = 4, h4 = 6

• The efficient allocation gives the item to agent 1
• p1 = 4 − 0 = 4, p2 = 4 − 10 = −6, p3 = 4 − 10 = −6, p4 = 6 − 10 = −4, i.e., only player 1

pays, other get paid
• Surprisingly, this is a truthful mechanism

31

Allocatively Efficient Rule is Implementable

• Consider the following payment: pG
i (θi, θ−i) = hi(θ−i)− ∑j ̸=i vj(f AE(θi, θ−i), θj), where

hi : Θ−i → R is an arbitrary function: Groves payment

Example

• Single indivisible item allocation N = {1, 2, 3, 4}
• θ1 = 10, θ2 = 8, θ3 = 6, θ4 = 4, when they get the object, zero otherwise
• Let hi(θ−i) = min θ−i

• If everyone reports their true type, the values of hi are h1 = 4, h2 = 4, h3 = 4, h4 = 6
• The efficient allocation gives the item to agent 1

• p1 = 4 − 0 = 4, p2 = 4 − 10 = −6, p3 = 4 − 10 = −6, p4 = 6 − 10 = −4, i.e., only player 1
pays, other get paid

• Surprisingly, this is a truthful mechanism

31

Allocatively Efficient Rule is Implementable

• Consider the following payment: pG
i (θi, θ−i) = hi(θ−i)− ∑j ̸=i vj(f AE(θi, θ−i), θj), where

hi : Θ−i → R is an arbitrary function: Groves payment

Example

• Single indivisible item allocation N = {1, 2, 3, 4}
• θ1 = 10, θ2 = 8, θ3 = 6, θ4 = 4, when they get the object, zero otherwise
• Let hi(θ−i) = min θ−i

• If everyone reports their true type, the values of hi are h1 = 4, h2 = 4, h3 = 4, h4 = 6
• The efficient allocation gives the item to agent 1
• p1 = 4 − 0 = 4, p2 = 4 − 10 = −6, p3 = 4 − 10 = −6, p4 = 6 − 10 = −4, i.e., only player 1

pays, other get paid

• Surprisingly, this is a truthful mechanism

31

Allocatively Efficient Rule is Implementable

• Consider the following payment: pG
i (θi, θ−i) = hi(θ−i)− ∑j ̸=i vj(f AE(θi, θ−i), θj), where

hi : Θ−i → R is an arbitrary function: Groves payment

Example

• Single indivisible item allocation N = {1, 2, 3, 4}
• θ1 = 10, θ2 = 8, θ3 = 6, θ4 = 4, when they get the object, zero otherwise
• Let hi(θ−i) = min θ−i

• If everyone reports their true type, the values of hi are h1 = 4, h2 = 4, h3 = 4, h4 = 6
• The efficient allocation gives the item to agent 1
• p1 = 4 − 0 = 4, p2 = 4 − 10 = −6, p3 = 4 − 10 = −6, p4 = 6 − 10 = −4, i.e., only player 1

pays, other get paid
• Surprisingly, this is a truthful mechanism

32

Groves mechanisms are Truthful

Theorem

Groves mechanisms are DSIC

• Consider player i

• f AE(θi, θ̃−i) = a, and f AE(θ′i , θ̃−i) = b
• By definition, vi(a, θi) + ∑j ̸=i vj(a, θ̃j) ⩾ vi(b, θi) + ∑j ̸=i vj(b, θ̃j)
• utility of player i when he reports θi is

vi(f AE(θi, θ̃−i), θi)− pi(θi, θ̃−i)

= vi(f AE(θi, θ̃−i), θi)− hi(θ̃−i) + ∑
j ̸=i

vj(f AE(θi, θ̃−i), θ̃j)

⩾ vi(f AE(θ′i , θ̃−i), θi)− hi(θ̃−i) + ∑
j ̸=i

vj(f AE(θ′i , θ̃−i), θ̃j)

= vi(f AE(θ′i , θ̃−i), θi)− pi(θ
′
i , θ̃−i)

• Since player i was arbitrary, this holds for all i ∈ N. Hence the claim.

32

Groves mechanisms are Truthful

Theorem

Groves mechanisms are DSIC

• Consider player i
• f AE(θi, θ̃−i) = a, and f AE(θ′i , θ̃−i) = b

• By definition, vi(a, θi) + ∑j ̸=i vj(a, θ̃j) ⩾ vi(b, θi) + ∑j ̸=i vj(b, θ̃j)
• utility of player i when he reports θi is

vi(f AE(θi, θ̃−i), θi)− pi(θi, θ̃−i)

= vi(f AE(θi, θ̃−i), θi)− hi(θ̃−i) + ∑
j ̸=i

vj(f AE(θi, θ̃−i), θ̃j)

⩾ vi(f AE(θ′i , θ̃−i), θi)− hi(θ̃−i) + ∑
j ̸=i

vj(f AE(θ′i , θ̃−i), θ̃j)

= vi(f AE(θ′i , θ̃−i), θi)− pi(θ
′
i , θ̃−i)

• Since player i was arbitrary, this holds for all i ∈ N. Hence the claim.

32

Groves mechanisms are Truthful

Theorem

Groves mechanisms are DSIC

• Consider player i
• f AE(θi, θ̃−i) = a, and f AE(θ′i , θ̃−i) = b
• By definition, vi(a, θi) + ∑j ̸=i vj(a, θ̃j) ⩾ vi(b, θi) + ∑j ̸=i vj(b, θ̃j)

• utility of player i when he reports θi is

vi(f AE(θi, θ̃−i), θi)− pi(θi, θ̃−i)

= vi(f AE(θi, θ̃−i), θi)− hi(θ̃−i) + ∑
j ̸=i

vj(f AE(θi, θ̃−i), θ̃j)

⩾ vi(f AE(θ′i , θ̃−i), θi)− hi(θ̃−i) + ∑
j ̸=i

vj(f AE(θ′i , θ̃−i), θ̃j)

= vi(f AE(θ′i , θ̃−i), θi)− pi(θ
′
i , θ̃−i)

• Since player i was arbitrary, this holds for all i ∈ N. Hence the claim.

32

Groves mechanisms are Truthful

Theorem

Groves mechanisms are DSIC

• Consider player i
• f AE(θi, θ̃−i) = a, and f AE(θ′i , θ̃−i) = b
• By definition, vi(a, θi) + ∑j ̸=i vj(a, θ̃j) ⩾ vi(b, θi) + ∑j ̸=i vj(b, θ̃j)
• utility of player i when he reports θi is

vi(f AE(θi, θ̃−i), θi)− pi(θi, θ̃−i)

= vi(f AE(θi, θ̃−i), θi)− hi(θ̃−i) + ∑
j ̸=i

vj(f AE(θi, θ̃−i), θ̃j)

⩾ vi(f AE(θ′i , θ̃−i), θi)− hi(θ̃−i) + ∑
j ̸=i

vj(f AE(θ′i , θ̃−i), θ̃j)

= vi(f AE(θ′i , θ̃−i), θi)− pi(θ
′
i , θ̃−i)

• Since player i was arbitrary, this holds for all i ∈ N. Hence the claim.

32

Groves mechanisms are Truthful

Theorem

Groves mechanisms are DSIC

• Consider player i
• f AE(θi, θ̃−i) = a, and f AE(θ′i , θ̃−i) = b
• By definition, vi(a, θi) + ∑j ̸=i vj(a, θ̃j) ⩾ vi(b, θi) + ∑j ̸=i vj(b, θ̃j)
• utility of player i when he reports θi is

vi(f AE(θi, θ̃−i), θi)− pi(θi, θ̃−i)

= vi(f AE(θi, θ̃−i), θi)− hi(θ̃−i) + ∑
j ̸=i

vj(f AE(θi, θ̃−i), θ̃j)

⩾ vi(f AE(θ′i , θ̃−i), θi)− hi(θ̃−i) + ∑
j ̸=i

vj(f AE(θ′i , θ̃−i), θ̃j)

= vi(f AE(θ′i , θ̃−i), θi)− pi(θ
′
i , θ̃−i)

• Since player i was arbitrary, this holds for all i ∈ N. Hence the claim.

33

	Task Allocation Domain
	The Uniform Rule
	Mechanism Design with Transfers
	Quasi Linear Preferences
	Pareto Optimality and Groves Payments

