

भारतीय प्रौद्योगिकी संस्थान मुंबई

Indian Institute of Technology Bombay

# CS 6001: Game Theory and Algorithmic Mechanism Design

Week 10

Swaprava Nath

Slide preparation acknowledgments: Onkar Borade

ज्ञानम् परमम् ध्येयम् Knowledge is the supreme goal



- ► Introduction to VCG Mechanism
- ► VCG in Combinatorial Allocations
- ► Applications to Internet Advertising
- ▶ Slot Allocation and Payments in Position Auctions
- Pros and Cons of VCG Mechanism

## The Vickrey-Clarke-Groves Mechanism (VCG)



• The most popular mechanism in the Groves class

# The Vickrey-Clarke-Groves Mechanism (VCG)

- The most popular mechanism in the Groves class
- Also known as the pivotal mechanism (V'61, C'71, G'73)

# The Vickrey-Clarke-Groves Mechanism (VCG)

- The most popular mechanism in the Groves class
- Also known as the pivotal mechanism (V'61, C'71, G'73)
- Given by a unique  $h_i(\theta_{-i})$  function in the Groves class

$$\begin{split} h_i(\theta_{-i}) &= \max_{a \in A} \sum_{j \neq i} v_j(a, \theta_j) \\ p_i^{VCG}(\theta_i, \theta_{-i}) &= \max_{a \in A} \sum_{j \neq i} v_j(a, \theta_j) - \sum_{j \neq i} v_j(f^{AE}(\theta_i, \theta_{-i}), \theta_j) \end{split}$$

- The most popular mechanism in the Groves class
- Also known as the pivotal mechanism (V'61, C'71, G'73)
- Given by a unique  $h_i(\theta_{-i})$  function in the Groves class

$$h_i(\theta_{-i}) = \max_{a \in A} \sum_{j \neq i} v_j(a, \theta_j)$$
$$p_i^{VCG}(\theta_i, \theta_{-i}) = \max_{a \in A} \sum_{j \neq i} v_j(a, \theta_j) - \sum_{j \neq i} v_j(f^{AE}(\theta_i, \theta_{-i}), \theta_j)$$

• Interpretation of the **payment**: sum value of others (in absence of i - in presence of i)



**Utility** under VCG mechanism:

$$v_i(f^{AE}(\theta_i, \theta_{-i}), \theta_i) - p_i^{VCG}(\theta_i, \theta_{-i}) = \sum_{j \in N} v_j(f^{AE}(\theta_i, \theta_{-i}), \theta_j) - \max_{a \in A} \sum_{j \neq i} v_j(a, \theta_j)$$

• Interpretation of the **utility** under VCG mechanism: marginal contribution of *i* in the social welfare



## • Single Object Allocation

Type = value of the object if allocated, the agent get this value and zero otherwise

$$p_i^{VCG}(\theta_i, \theta_{-i}) = \max_{a \in A} \sum_{j \neq i} v_j(a, \theta_j) - \sum_{j \neq i} v_j(f^{AE}(\theta_i, \theta_{-i}), \theta_j)$$
(1)

Efficient allocation would give the object to the allocation whose reported type is highest



## Single Object Allocation

Type = value of the object if allocated, the agent get this value and zero otherwise

$$p_i^{VCG}(\theta_i, \theta_{-i}) = \max_{a \in A} \sum_{j \neq i} v_j(a, \theta_j) - \sum_{j \neq i} v_j(f^{AE}(\theta_i, \theta_{-i}), \theta_j)$$
(1)

Efficient allocation would give the object to the allocation whose reported type is highest — Consider 4 players, types  $\{10, 8, 9, 5\} \implies$  item is given to player 1, and payments are:  $\{9, 0, 0, 0\}$ 



## Single Object Allocation

Type = value of the object if allocated, the agent get this value and zero otherwise

$$p_i^{VCG}(\theta_i, \theta_{-i}) = \max_{a \in A} \sum_{j \neq i} v_j(a, \theta_j) - \sum_{j \neq i} v_j(f^{AE}(\theta_i, \theta_{-i}), \theta_j)$$
(1)

Efficient allocation would give the object to the allocation whose reported type is highest

- Consider 4 players , types  $\{10, 8, 9, 5\} \implies$  item is given to player 1, and payments are:  $\{9, 0, 0, 0\}$
- This is second price auction



What is pivotal in the VCG payment?3 players having the following valuations :

|   | Football | Library | Museum |
|---|----------|---------|--------|
| Α | 0        | 70      | 50     |
| В | 95       | 10      | 50     |
| С | 10       | 50      | 50     |



What is pivotal in the VCG payment?3 players having the following valuations :

|   | Football | Library | Museum |
|---|----------|---------|--------|
| Α | 0        | 70      | 50     |
| В | 95       | 10      | 50     |
| С | 10       | 50      | 50     |

— VCG allocation: M (maximizes social welfare)



What is pivotal in the VCG payment?3 players having the following valuations :

|   | Football | Library | Museum |
|---|----------|---------|--------|
| A | 0        | 70      | 50     |
| В | 95       | 10      | 50     |
| С | 10       | 50      | 50     |

T (1 11 Library M

— VCG allocation: M (maximizes social welfare)

- Payments

A pays = 
$$105 - 100 = 5$$
  
B pays =  $120 - 100 = 20$   
C pays =  $100 - 100 = 0 \leftarrow$ **non-pivotal agent**



What is pivotal in the VCG payment? 3 players having the following valuations :

|   | Football | Library | Museum |
|---|----------|---------|--------|
| A | 0        | 70      | 50     |
| В | 95       | 10      | 50     |
| С | 10       | 50      | 50     |

## E-- 11 - 11 Library Margaret

- VCG allocation: M (maximizes social welfare)
- Payments
  - A pays = 105 100 = 5
  - B pays = 120 100 = 20
  - C pays =  $100 100 = 0 \leftarrow$  non-pivotal agent
- The agent whose presence *changes the outcome* is charged money They are the **pivotal** players



|            | Ø | $\{1\}$ | {2} | {1&2} |
|------------|---|---------|-----|-------|
| $	heta_1$  | 0 | 8       | 6   | 12    |
| $\theta_2$ | 0 | 9       | 4   | 14    |



|            | Ø | $\{1\}$ | {2} | {1&2} |
|------------|---|---------|-----|-------|
| $\theta_1$ | 0 | 8       | 6   | 12    |
| $\theta_2$ | 0 | 9       | 4   | 14    |

— Efficient allocation :  $\{1\} \rightarrow 2 \& \{2\} \rightarrow 1$  : **Call this**  $a^*$ 



|            | Ø | $\{1\}$ | {2} | {1&2} |
|------------|---|---------|-----|-------|
| $\theta_1$ | 0 | 8       | 6   | 12    |
| $\theta_2$ | 0 | 9       | 4   | 14    |

- Efficient allocation :  $\{1\} \rightarrow 2 \& \{2\} \rightarrow 1$  : **Call this**  $a^*$
- $p_1^{VCG}(\theta_1, \theta_2) = \max_{a \in A} \sum_{j \neq 1} \theta_j(a) \sum_{j \neq 1} \theta_j(a^*) = 14 9 = 5, \text{ payoff} = 6 5 = 1$



|            | Ø | $\{1\}$ | {2} | {1&2} |
|------------|---|---------|-----|-------|
| $\theta_1$ | 0 | 8       | 6   | 12    |
| $\theta_2$ | 0 | 9       | 4   | 14    |

 $\begin{array}{l} - & \text{Efficient allocation}: \{1\} \to 2 \& \{2\} \to 1: \textbf{Call this } a^* \\ - & p_1^{VCG}(\theta_1, \theta_2) = \max_{a \in A} \sum_{j \neq 1} \theta_j(a) - \sum_{j \neq 1} \theta_j(a^*) = 14 - 9 = 5, \text{payoff} = 6 - 5 = 1 \\ - & p_2^{VCG}(\theta_1, \theta_2) = 12 - 6 = 6, \text{payoff} = 9 - 6 = 3 \end{array}$ 



- Introduction to VCG Mechanism
- ► VCG in Combinatorial Allocations
- ► Applications to Internet Advertising
- ▶ Slot Allocation and Payments in Position Auctions
- Pros and Cons of VCG Mechanism

# **VCG Mechanism in Combinatorial Allocations**



•  $M = \{1, \ldots, m\}$ : set of objects

# **VCG Mechanism in Combinatorial Allocations**



- $M = \{1, \ldots, m\}$ : set of objects
- $\Omega = \{S : S \subseteq M\}$ : set of bundles



- $M = \{1, \ldots, m\}$ : set of objects
- $\Omega = \{S : S \subseteq M\}$ : set of bundles
- $\theta_i : \Omega \to \mathbb{R}$ : type/value of agent *i*



- $M = \{1, \ldots, m\}$ : set of objects
- $\Omega = \{S : S \subseteq M\}$ : set of bundles
- $\theta_i : \Omega \to \mathbb{R}$ : type/value of agent *i*
- We assume  $\theta_i(S \cup \{j\}) \theta_i(S) \ge 0, \forall S \in \Omega \text{ s.t. } j \notin S$ , for all i, j, objects are **goods**



- $M = \{1, \ldots, m\}$ : set of objects
- $\Omega = \{S : S \subseteq M\}$ : set of bundles
- $\theta_i : \Omega \to \mathbb{R}$ : type/value of agent *i*
- We assume  $\theta_i(S \cup \{j\}) \theta_i(S) \ge 0, \forall S \in \Omega \text{ s.t. } j \notin S$ , for all i, j, objects are **goods**
- An allocation in this case is a partition of the objects, i.e.,

$$a = \{a_0, a_1, a_2, \dots, a_n\}, a_i \in \Omega, a_i \cap a_j = \emptyset, \forall i \neq j$$
  
$$a_0: \text{ set of unallocated objects}, \cup_{i=0}^n a_i = M$$

Let *A* be the set of all such allocations



- $M = \{1, \ldots, m\}$ : set of objects
- $\Omega = \{S : S \subseteq M\}$ : set of bundles
- $\theta_i : \Omega \to \mathbb{R}$ : type/value of agent *i*
- We assume  $\theta_i(S \cup \{j\}) \theta_i(S) \ge 0, \forall S \in \Omega \text{ s.t. } j \notin S$ , for all i, j, objects are **goods**
- An allocation in this case is a partition of the objects, i.e.,

 $a = \{a_0, a_1, a_2, \dots, a_n\}, a_i \in \Omega, a_i \cap a_j = \emptyset, \forall i \neq j$  $a_0: \text{ set of unallocated objects}, \cup_{i=0}^n a_i = M$ 

Let *A* be the set of all such allocations

• Also assume **selfish valuations**, i.e.,  $\theta_i(a) = \theta_i(a_i)$ , agent *i*'s valuation does *not* depend on the allocations of others

# **VCG** Mechanism in Combinatorial Allocations



#### Claim

*In the allocation of goods, the VCG payment for an agent, that gets no object in this efficient allocation, is zero* 



*In the allocation of goods, the VCG payment for an agent, that gets no object in this efficient allocation, is zero* 

**Proof sketch:** 

$$a^* \in \arg \max_{a \in A} \sum_{j \in N} \theta_j(a), a_i^* = \emptyset$$
  
 $a_{-i}^* \in \arg \max_{b \in A_{-i}} \sum_{j \in N \setminus \{i\}} \theta_j(b)$ 

• Note,  $p_i^{VCG}(\theta) \ge 0$ , also  $p_i^{VCG}(\theta) = \sum_{j \ne i} \theta_j(a_{-i}^*) - \sum_{j \ne i} \theta_j(a^*)$ 



*In the allocation of goods, the VCG payment for an agent, that gets no object in this efficient allocation, is zero* 

**Proof sketch:** 

$$a^* \in \arg \max_{a \in A} \sum_{j \in N} \theta_j(a), a_i^* = \emptyset$$
  
 $a_{-i}^* \in \arg \max_{b \in A_{-i}} \sum_{j \in N \setminus \{i\}} \theta_j(b)$ 

• Note,  $p_i^{VCG}(\theta) \ge 0$ , also  $p_i^{VCG}(\theta) = \sum_{j \ne i} \theta_j(a_{-i}^*) - \sum_{j \ne i} \theta_j(a^*)$ 

• Note:  $\theta_i(a_{-i}^*) = 0$ , and  $\theta_i(a^*) = \theta_i(a_i^*) = 0$ 



*In the allocation of goods, the VCG payment for an agent, that gets no object in this efficient allocation, is zero* 

**Proof sketch:** 

$$a^* \in rg \max_{a \in A} \sum_{j \in N} heta_j(a), a_i^* = \emptyset$$
  
 $a_{-i}^* \in rg \max_{b \in A_{-i}} \sum_{j \in N \setminus \{i\}} heta_j(b)$ 

- Note,  $p_i^{VCG}(\theta) \ge 0$ , also  $p_i^{VCG}(\theta) = \sum_{j \neq i} \theta_j(a_{-i}^*) \sum_{j \neq i} \theta_j(a^*)$
- Note:  $\theta_i(a_{-i}^*) = 0$ , and  $\theta_i(a^*) = \theta_i(a_i^*) = 0$
- Add the first to the first term and subtract the second from the second term above



*In the allocation of goods, the VCG payment for an agent, that gets no object in this efficient allocation, is zero* 

**Proof sketch:** 

$$a^* \in rg \max_{a \in A} \sum_{j \in N} heta_j(a), a_i^* = \emptyset$$
  
 $a_{-i}^* \in rg \max_{b \in A_{-i}} \sum_{j \in N \setminus \{i\}} heta_j(b)$ 

- Note,  $p_i^{VCG}(\theta) \ge 0$ , also  $p_i^{VCG}(\theta) = \sum_{j \neq i} \theta_j(a_{-i}^*) \sum_{j \neq i} \theta_j(a^*)$
- Note:  $\theta_i(a_{-i}^*) = 0$ , and  $\theta_i(a^*) = \theta_i(a_i^*) = 0$
- Add the first to the first term and subtract the second from the second term above

• 
$$p_i^{VCG}(\theta) = \sum_{j \in N} \theta_j(a_{-i}^*) - \sum_{j \in N} \theta_j(a^*) \le 0 \implies p_i^{VCG}(\theta) = 0$$



A mechanism (f, p) is *ex-post individually rational* (ex-post IR) if  $v_i(f(\theta), \theta_i) - p_i(\theta) \ge 0, \forall \theta \in \Theta, \forall i \in N$ 

• Agents have incentive to participate



A mechanism (f, p) is *ex-post individually rational* (ex-post IR) if  $v_i(f(\theta), \theta_i) - p_i(\theta) \ge 0, \forall \theta \in \Theta, \forall i \in N$ 

- Agents have incentive to participate
- The following properties give a sufficient condition for ex-post IR.



A mechanism (f, p) is *ex-post individually rational* (ex-post IR) if  $v_i(f(\theta), \theta_i) - p_i(\theta) \ge 0, \forall \theta \in \Theta, \forall i \in N$ 

- Agents have incentive to participate
- The following properties give a sufficient condition for ex-post IR.



A mechanism (f, p) is *ex-post individually rational* (ex-post IR) if  $v_i(f(\theta), \theta_i) - p_i(\theta) \ge 0, \forall \theta \in \Theta, \forall i \in N$ 

- Agents have incentive to participate
- The following properties give a sufficient condition for ex-post IR.

Definition (Choice Set Monotonicity)

For all  $i \in N$ ,  $A_{-i} \subseteq A$ .

addition of agents weakly increases choices



A mechanism (f, p) is *ex-post individually rational* (ex-post IR) if  $v_i(f(\theta), \theta_i) - p_i(\theta) \ge 0, \forall \theta \in \Theta, \forall i \in N$ 

- Agents have incentive to participate
- The following properties give a sufficient condition for ex-post IR.

Definition (Choice Set Monotonicity)

For all  $i \in N$ ,  $A_{-i} \subseteq A$ .

addition of agents weakly increases choices

Definition (No Negative Externality)

For all  $i \in N, \theta \in \Theta$ ,  $v_i(a^*_{-i}(\theta_{-i}), \theta_i) \ge 0$ .

efficient allocation without an agent yields non-negative value to that agent





*If the allocations satisfy* choice set monotonicity *and the valuations have* no negative externality, *then the VCG mechanism is individually rational.* 



#### Claim

utility of player 
$$i = v_i(f^{AE}(\theta_i, \theta_{-i}), \theta_i) - p_i^{VCG}(\theta_i, \theta_{-i})$$



#### Claim

utility of player 
$$i = v_i(f^{AE}(\theta_i, \theta_{-i}), \theta_i) - p_i^{VCG}(\theta_i, \theta_{-i})$$
  
[by defn of VCG payment]  $= \sum_{j \in N} v_j(a^*(\theta_i, \theta_{-i}), \theta_j) - \sum_{j \neq i} v_j(a^*_{-i}(\theta_{-i}), \theta_j)$ 



#### Claim

utility of player 
$$i = v_i(f^{AE}(\theta_i, \theta_{-i}), \theta_i) - p_i^{VCG}(\theta_i, \theta_{-i})$$
  
[by defn of VCG payment]  $= \sum_{j \in N} v_j(a^*(\theta_i, \theta_{-i}), \theta_j) - \sum_{j \neq i} v_j(a^*_{-i}(\theta_{-i}), \theta_j)$   
[choice set monotonicity]  $\geq \sum_{j \in N} v_j(a^*_{-i}(\theta_{-i}), \theta_j) - \sum_{j \neq i} v_j(a^*_{-i}(\theta_{-i}), \theta_j)$ 



#### Claim

utility of player 
$$i = v_i(f^{AE}(\theta_i, \theta_{-i}), \theta_i) - p_i^{VCG}(\theta_i, \theta_{-i})$$
  
[by defn of VCG payment]  $= \sum_{j \in N} v_j(a^*(\theta_i, \theta_{-i}), \theta_j) - \sum_{j \neq i} v_j(a^*_{-i}(\theta_{-i}), \theta_j)$   
[choice set monotonicity]  $\geq \sum_{j \in N} v_j(a^*_{-i}(\theta_{-i}), \theta_j) - \sum_{j \neq i} v_j(a^*_{-i}(\theta_{-i}), \theta_j)$   
 $= v_i(a^*_{-i}(\theta_{-i}), \theta_i)$ 



#### Claim

utility of player 
$$i = v_i (f^{AE}(\theta_i, \theta_{-i}), \theta_i) - p_i^{VCG}(\theta_i, \theta_{-i})$$
  
[by defn of VCG payment]  $= \sum_{j \in N} v_j (a^*(\theta_i, \theta_{-i}), \theta_j) - \sum_{j \neq i} v_j (a^*_{-i}(\theta_{-i}), \theta_j)$   
[choice set monotonicity]  $\geq \sum_{j \in N} v_j (a^*_{-i}(\theta_{-i}), \theta_j) - \sum_{j \neq i} v_j (a^*_{-i}(\theta_{-i}), \theta_j)$   
 $= v_i (a^*_{-i}(\theta_{-i}), \theta_i) \geq 0$  [no neg externality]



#### Claim

*If the allocations satisfy* choice set monotonicity *and the valuations have* no negative externality, *then the VCG mechanism is individually rational.* 

utility of player 
$$i = v_i (f^{AE}(\theta_i, \theta_{-i}), \theta_i) - p_i^{VCG}(\theta_i, \theta_{-i})$$
  
[by defn of VCG payment]  $= \sum_{j \in N} v_j (a^*(\theta_i, \theta_{-i}), \theta_j) - \sum_{j \neq i} v_j (a^*_{-i}(\theta_{-i}), \theta_j)$   
[choice set monotonicity]  $\geq \sum_{j \in N} v_j (a^*_{-i}(\theta_{-i}), \theta_j) - \sum_{j \neq i} v_j (a^*_{-i}(\theta_{-i}), \theta_j)$   
 $= v_i (a^*_{-i}(\theta_{-i}), \theta_i) \geq 0$  [no neg externality]

#### Corollary

VCG is ex-post IR for combinatorial allocations.



- Introduction to VCG Mechanism
- ► VCG in Combinatorial Allocations
- ► Applications to Internet Advertising
- ▶ Slot Allocation and Payments in Position Auctions
- Pros and Cons of VCG Mechanism



#### User data



#### User data

- Advertisers can gather a lot of data from the user to design targeted products



#### **User data**

- Advertisers can gather a lot of data from the user to design targeted products

#### Measurable Actions



#### **User data**

- Advertisers can gather a lot of data from the user to design targeted products

#### Measurable Actions

- Can classify buyers into categories and measure the interest and take appropriate actions



#### User data

- Advertisers can gather a lot of data from the user to design targeted products

#### Measurable Actions

- Can classify buyers into categories and measure the interest and take appropriate actions

### Low Latency



### User data

- Advertisers can gather a lot of data from the user to design targeted products

### Measurable Actions

- Can classify buyers into categories and measure the interest and take appropriate actions

### Low Latency

- Real-time bidding, automated bidding, decisions on the fly possible



Sponsored Search Ads



#### Sponsored Search Ads

- Advertisers bid on the keywords entered by the user during search



#### Sponsored Search Ads

- Advertisers bid on the keywords entered by the user during search

#### Ontextual Ads



#### Sponsored Search Ads

- Advertisers bid on the keywords entered by the user during search

#### Ontextual Ads

- depending on the context of the page, email or post message



#### Sponsored Search Ads

- Advertisers bid on the keywords entered by the user during search

#### Ontextual Ads

- depending on the context of the page, email or post message
- Oisplay Ads



#### Sponsored Search Ads

- Advertisers bid on the keywords entered by the user during search

### Ontextual Ads

- depending on the context of the page, email or post message

## Oisplay Ads

- Traditional modes of advertising, e.g., banner ads in newspapers



#### Sponsored Search Ads

- Advertisers bid on the keywords entered by the user during search

### Ontextual Ads

- depending on the context of the page, email or post message

## Oisplay Ads

- Traditional modes of advertising, e.g., banner ads in newspapers



#### Sponsored Search Ads

- Advertisers bid on the keywords entered by the user during search

#### Ontextual Ads

- depending on the context of the page, email or post message

### Oisplay Ads

- Traditional modes of advertising, e.g., banner ads in newspapers
- Ads are complex modern internet advertising is handled via **ad exchanges**



#### Sponsored Search Ads

- Advertisers bid on the keywords entered by the user during search

### Contextual Ads

- depending on the context of the page, email or post message

## O Display Ads

- Traditional modes of advertising, e.g., banner ads in newspapers
- Ads are complex modern internet advertising is handled via **ad exchanges**
- Small businesses can customize these ads via exchanges



• **Position Auctions:** auctions to sell multiple ad positions on a page



- Position Auctions: auctions to sell multiple ad positions on a page
- Let  $N = \{1, 2, \dots, n\}$ : set of advertisers



- Position Auctions: auctions to sell multiple ad positions on a page
- Let  $N = \{1, 2, \dots, n\}$ : set of advertisers
- Let *M* = {1,2,...,*m*}: set of slots, assume *m* ≥ *n*, i.e., every ad is shown; 1: best position, *m*: worst position



- Position Auctions: auctions to sell multiple ad positions on a page
- Let  $N = \{1, 2, \dots, n\}$ : set of advertisers
- Let *M* = {1, 2, . . . , *m*}: set of slots, assume *m* ≥ *n*, i.e., every ad is shown; 1: best position, *m*: worst position
- Evolution of position auctions:



- Position Auctions: auctions to sell multiple ad positions on a page
- Let  $N = \{1, 2, \dots, n\}$ : set of advertisers
- Let *M* = {1, 2, . . . , *m*}: set of slots, assume *m* ≥ *n*, i.e., every ad is shown; 1: best position, *m*: worst position
- Evolution of position auctions:
  - Early positions auctions ordered the ads via **bid-per-impression**



- Position Auctions: auctions to sell multiple ad positions on a page
- Let  $N = \{1, 2, \dots, n\}$ : set of advertisers
- Let *M* = {1, 2, . . . , *m*}: set of slots, assume *m* ≥ *n*, i.e., every ad is shown; 1: best position, *m*: worst position
- Evolution of position auctions:
  - Early positions auctions ordered the ads via **bid-per-impression** 
    - just for showing the ad, e.g., newspaper ads



- Position Auctions: auctions to sell multiple ad positions on a page
- Let  $N = \{1, 2, \dots, n\}$ : set of advertisers
- Let *M* = {1, 2, . . . , *m*}: set of slots, assume *m* ≥ *n*, i.e., every ad is shown; 1: best position, *m*: worst position
- Evolution of position auctions:
  - Early positions auctions ordered the ads via **bid-per-impression** 
    - just for showing the ad, e.g., newspaper ads
    - all risk on the advertiser



- Position Auctions: auctions to sell multiple ad positions on a page
- Let  $N = \{1, 2, \dots, n\}$ : set of advertisers
- Let *M* = {1, 2, . . . , *m*}: set of slots, assume *m* ≥ *n*, i.e., every ad is shown; 1: best position, *m*: worst position
- Evolution of position auctions:
  - Early positions auctions ordered the ads via **bid-per-impression** 
    - just for showing the ad, e.g., newspaper ads
    - all risk on the advertiser
  - Bids on clicks **pay-per-click model**



- Position Auctions: auctions to sell multiple ad positions on a page
- Let  $N = \{1, 2, \dots, n\}$ : set of advertisers
- Let *M* = {1, 2, . . . , *m*}: set of slots, assume *m* ≥ *n*, i.e., every ad is shown; 1: best position, *m*: worst position
- Evolution of position auctions:
  - Early positions auctions ordered the ads via **bid-per-impression** 
    - just for showing the ad, e.g., newspaper ads
    - all risk on the advertiser
  - Bids on clicks **pay-per-click model** 
    - risk is shared by the publisher



- Position Auctions: auctions to sell multiple ad positions on a page
- Let  $N = \{1, 2, \dots, n\}$ : set of advertisers
- Let *M* = {1, 2, . . . , *m*}: set of slots, assume *m* ≥ *n*, i.e., every ad is shown; 1: best position, *m*: worst position
- Evolution of position auctions:
  - Early positions auctions ordered the ads via **bid-per-impression** 
    - just for showing the ad, e.g., newspaper ads
    - all risk on the advertiser
  - Bids on clicks **pay-per-click model** 
    - risk is shared by the publisher
    - ranked by **pay-per-click**



- Position Auctions: auctions to sell multiple ad positions on a page
- Let  $N = \{1, 2, \dots, n\}$ : set of advertisers
- Let *M* = {1, 2, . . . , *m*}: set of slots, assume *m* ≥ *n*, i.e., every ad is shown; 1: best position, *m*: worst position
- Evolution of position auctions:
  - Early positions auctions ordered the ads via **bid-per-impression** 
    - just for showing the ad, e.g., newspaper ads
    - all risk on the advertiser
  - Bids on clicks **pay-per-click model** 
    - risk is shared by the publisher
    - ranked by **pay-per-click**
    - If shown ads are not clicked, the publisher earns nothing



- Position Auctions: auctions to sell multiple ad positions on a page
- Let  $N = \{1, 2, \dots, n\}$ : set of advertisers
- Let *M* = {1, 2, . . . , *m*}: set of slots, assume *m* ≥ *n*, i.e., every ad is shown; 1: best position, *m*: worst position
- Evolution of position auctions:
  - Early positions auctions ordered the ads via **bid-per-impression** 
    - just for showing the ad, e.g., newspaper ads
    - all risk on the advertiser
  - Bids on clicks **pay-per-click model** 
    - risk is shared by the publisher
    - ranked by **pay-per-click**
    - If shown ads are not clicked, the publisher earns nothing
  - Today's approach: Rank advertisers based on the product of the probability of a click and the bid value



- Position Auctions: auctions to sell multiple ad positions on a page
- Let  $N = \{1, 2, \dots, n\}$ : set of advertisers
- Let *M* = {1, 2, . . . , *m*}: set of slots, assume *m* ≥ *n*, i.e., every ad is shown; 1: best position, *m*: worst position
- Evolution of position auctions:
  - Early positions auctions ordered the ads via **bid-per-impression** 
    - just for showing the ad, e.g., newspaper ads
    - all risk on the advertiser
  - Bids on clicks **pay-per-click model** 
    - risk is shared by the publisher
    - ranked by **pay-per-click**
    - If shown ads are not clicked, the publisher earns nothing
  - Today's approach: Rank advertisers based on the product of the probability of a click and the bid value
    - Probability of click is called **click through rate (CTR)**



- Position Auctions: auctions to sell multiple ad positions on a page
- Let  $N = \{1, 2, \dots, n\}$ : set of advertisers
- Let *M* = {1, 2, . . . , *m*}: set of slots, assume *m* ≥ *n*, i.e., every ad is shown; 1: best position, *m*: worst position
- Evolution of position auctions:
  - Early positions auctions ordered the ads via **bid-per-impression** 
    - just for showing the ad, e.g., newspaper ads
    - all risk on the advertiser
  - Bids on clicks **pay-per-click model** 
    - risk is shared by the publisher
    - ranked by **pay-per-click**
    - If shown ads are not clicked, the publisher earns nothing
  - Today's approach: Rank advertisers based on the product of the probability of a click and the bid value
    - Probability of click is called **click through rate (CTR)**
    - rank by expected revenue



• Assumption 1: Clicks generate value to the advertisers



- Assumption 1: Clicks generate value to the advertisers
- Assumption 2: All clicks are valued equally, no matter what position the ad is displayed the position only affects the chance of getting the click



- Assumption 1: Clicks generate value to the advertisers
- Assumption 2: All clicks are valued equally, no matter what position the ad is displayed the position only affects the chance of getting the click
- These assumptions help decouple the value effect and position effect



- Assumption 1: Clicks generate value to the advertisers
- Assumption 2: All clicks are valued equally, no matter what position the ad is displayed the position only affects the chance of getting the click
- These assumptions help decouple the value effect and position effect
- Agent *i*'s expected value when her ad is shown at position  $j \in M$  is given by

$$v_{ij} = CTR_{ij} \cdot v_i$$

 $CTR_{ij} \in [0, 1]$ : click through rate, i.e., probability of getting a click on *i*'s ad at *j*<sup>th</sup> position,  $v_i$ : value of a click



- Assumption 1: Clicks generate value to the advertisers
- Assumption 2: All clicks are valued equally, no matter what position the ad is displayed the position only affects the chance of getting the click
- These assumptions help decouple the value effect and position effect
- Agent *i*'s expected value when her ad is shown at position  $j \in M$  is given by

$$v_{ij} = CTR_{ij} \cdot v_i$$

 $CTR_{ij} \in [0, 1]$ : click through rate, i.e., probability of getting a click on *i*'s ad at *j*<sup>th</sup> position,  $v_i$ : value of a click

• Further assumption:  $CTR_{ij} = \rho_i \cdot p_j$ , where  $\rho_i$ : quality component, and  $p_j$ : position component



- Assumption 1: Clicks generate value to the advertisers
- Assumption 2: All clicks are valued equally, no matter what position the ad is displayed the position only affects the chance of getting the click
- These assumptions help decouple the value effect and position effect
- Agent *i*'s expected value when her ad is shown at position  $j \in M$  is given by

$$v_{ij} = CTR_{ij} \cdot v_i$$

 $CTR_{ij} \in [0, 1]$ : click through rate, i.e., probability of getting a click on *i*'s ad at *j*<sup>th</sup> position,  $v_i$ : value of a click

- Further assumption:  $CTR_{ij} = \rho_i \cdot p_j$ , where  $\rho_i$ : quality component, and  $p_j$ : position component
- Hence, agent *i*'s expected value when her ad is shown at position  $j \in M$

$$v_{ij} = \underbrace{p_j} \cdot \underbrace{(\rho_i v_i)}_{i \neq j}$$

position effect agent effect





position effect agent effect

$$p_1 = 1, p_j > p_{j+1}, \forall j = 1, \dots, m-1$$





position effect agent effect

• Position effect is assumed to be decreasing with position

$$p_1 = 1, p_j > p_{j+1}, \forall j = 1, \dots, m-1$$

•  $v_i$  is the only private information of the advertiser





position effect agent effect

$$p_1 = 1, p_j > p_{j+1}, \forall j = 1, \dots, m-1$$

- $v_i$  is the only private information of the advertiser
- $p_i$  and  $\rho_i$  are measurable





position effect agent effect

$$p_1 = 1, p_j > p_{j+1}, \forall j = 1, \dots, m-1$$

- $v_i$  is the only private information of the advertiser
- $p_i$  and  $\rho_i$  are measurable
- Search engines estimate the *ρ<sub>i</sub>*: say *ρ̂<sub>i</sub>*





position effect agent effect

$$p_1 = 1, p_j > p_{j+1}, \forall j = 1, \dots, m-1$$

- $v_i$  is the only private information of the advertiser
- $p_i$  and  $\rho_i$  are measurable
- Search engines estimate the  $\rho_i$ : say  $\hat{\rho}_i$
- Bidders bid *b<sub>i</sub>*





position effect agent effect

$$p_1 = 1, p_j > p_{j+1}, \forall j = 1, \dots, m-1$$

- $v_i$  is the only private information of the advertiser
- $p_i$  and  $\rho_i$  are measurable
- Search engines estimate the *ρ<sub>i</sub>*: say *ρ̂<sub>i</sub>*
- Bidders bid *b<sub>i</sub>*
- Reported agent effect component is  $\hat{\rho}_i \cdot b_i$



- Introduction to VCG Mechanism
- ► VCG in Combinatorial Allocations
- ► Applications to Internet Advertising
- ► Slot Allocation and Payments in Position Auctions
- Pros and Cons of VCG Mechanism



• Suppose the allocation of the slots is given by  $a = (a_1, a_2, ..., a_n)$  is the allocation, where  $a_i$  is the slot allocated to i



- Suppose the allocation of the slots is given by  $a = (a_1, a_2, ..., a_n)$  is the allocation, where  $a_i$  is the slot allocated to i
- Then the value of agent *i*:

$$v_i(a,\theta_i) = p_{a_i} \cdot (\hat{\rho}_i \cdot \theta_i)$$



- Suppose the allocation of the slots is given by  $a = (a_1, a_2, ..., a_n)$  is the allocation, where  $a_i$  is the slot allocated to i
- Then the value of agent *i*:

$$v_i(a,\theta_i) = p_{a_i} \cdot (\hat{\rho}_i \cdot \theta_i)$$

• **Efficient** allocation:  $a^* \in \arg \max_{a \in A} \sum_{i \in N} v_i(a, \theta_i)$ 



- Suppose the allocation of the slots is given by  $a = (a_1, a_2, ..., a_n)$  is the allocation, where  $a_i$  is the slot allocated to i
- Then the value of agent *i*:

$$v_i(a,\theta_i) = p_{a_i} \cdot (\hat{\rho}_i \cdot \theta_i)$$

- **Efficient** allocation:  $a^* \in \arg \max_{a \in A} \sum_{i \in N} v_i(a, \theta_i)$
- **Observe:** an allocation *a* is efficient iff it is a **"rank-by-expected revenue"** ( $\hat{\rho}_i \cdot \theta_i$ ) mechanism



- Suppose the allocation of the slots is given by  $a = (a_1, a_2, ..., a_n)$  is the allocation, where  $a_i$  is the slot allocated to i
- Then the value of agent *i*:

$$v_i(a,\theta_i) = p_{a_i} \cdot (\hat{\rho}_i \cdot \theta_i)$$

- **Efficient** allocation:  $a^* \in \arg \max_{a \in A} \sum_{i \in N} v_i(a, \theta_i)$
- **Observe:** an allocation *a* is efficient iff it is a **"rank-by-expected revenue"** ( $\hat{\rho}_i \cdot \theta_i$ ) mechanism
- Why? because it is a moment maximization problem: sum is maximized when the maximum weight is put on the maximum value



- Suppose the allocation of the slots is given by  $a = (a_1, a_2, ..., a_n)$  is the allocation, where  $a_i$  is the slot allocated to i
- Then the value of agent *i*:

$$v_i(a,\theta_i)=p_{a_i}\cdot(\hat{\rho}_i\cdot\theta_i)$$

- **Efficient** allocation:  $a^* \in \arg \max_{a \in A} \sum_{i \in N} v_i(a, \theta_i)$
- **Observe:** an allocation *a* is efficient iff it is a **"rank-by-expected revenue"** ( $\hat{\rho}_i \cdot \theta_i$ ) mechanism
- Why? because it is a moment maximization problem: sum is maximized when the maximum weight is put on the maximum value
- The slot allocation problem is a **sorting** problem, hence computationally tractable



- Suppose the allocation of the slots is given by  $a = (a_1, a_2, ..., a_n)$  is the allocation, where  $a_i$  is the slot allocated to i
- Then the value of agent *i*:

$$v_i(a,\theta_i)=p_{a_i}\cdot(\hat{\rho}_i\cdot\theta_i)$$

- **Efficient** allocation:  $a^* \in \arg \max_{a \in A} \sum_{i \in N} v_i(a, \theta_i)$
- **Observe:** an allocation *a* is efficient iff it is a **"rank-by-expected revenue"** ( $\hat{\rho}_i \cdot \theta_i$ ) mechanism
- Why? because it is a moment maximization problem: sum is maximized when the maximum weight is put on the maximum value
- The slot allocation problem is a **sorting** problem, hence computationally tractable
- Allocation decision is done, need payments to make it DSIC



- Suppose the allocation of the slots is given by  $a = (a_1, a_2, ..., a_n)$  is the allocation, where  $a_i$  is the slot allocated to i
- Then the value of agent *i*:

$$v_i(a,\theta_i) = p_{a_i} \cdot (\hat{\rho}_i \cdot \theta_i)$$

- **Efficient** allocation:  $a^* \in \arg \max_{a \in A} \sum_{i \in N} v_i(a, \theta_i)$
- **Observe:** an allocation *a* is efficient iff it is a **"rank-by-expected revenue"** ( $\hat{\rho}_i \cdot \theta_i$ ) mechanism
- Why? because it is a moment maximization problem: sum is maximized when the maximum weight is put on the maximum value
- The slot allocation problem is a **sorting** problem, hence computationally tractable
- Allocation decision is done, need payments to make it DSIC
- Natural candidate: VCG



- Suppose the allocation of the slots is given by  $a = (a_1, a_2, ..., a_n)$  is the allocation, where  $a_i$  is the slot allocated to i
- Then the value of agent *i*:

$$v_i(a,\theta_i) = p_{a_i} \cdot (\hat{\rho}_i \cdot \theta_i)$$

- **Efficient** allocation:  $a^* \in \arg \max_{a \in A} \sum_{i \in N} v_i(a, \theta_i)$
- **Observe:** an allocation *a* is efficient iff it is a **"rank-by-expected revenue"** ( $\hat{\rho}_i \cdot \theta_i$ ) mechanism
- Why? because it is a moment maximization problem: sum is maximized when the maximum weight is put on the maximum value
- The slot allocation problem is a **sorting** problem, hence computationally tractable
- Allocation decision is done, need payments to make it DSIC
- Natural candidate: VCG
- **Note:** actual implementation in practice might be different, here we discuss only the principle of its computation

• VCG in the context of position auctions

- VCG in the context of position auctions
- Given bids  $(b_1, \dots, b_n)$  (Note:  $\hat{\theta}_i$ : reported type and  $b_i$  are the same)

- VCG in the context of position auctions
- Given bids  $(b_1, \dots, b_n)$  (Note:  $\hat{\theta}_i$ : reported type and  $b_i$  are the same)
- WLOG, assume the order to be such that  $\hat{\rho}_1 \hat{b}_1 \ge \hat{\rho}_2 b_2 \ge \cdots \ge \hat{\rho}_n b_n$

- VCG in the context of position auctions
- Given bids  $(b_1, \dots, b_n)$  (Note:  $\hat{\theta}_i$ : reported type and  $b_i$  are the same)
- WLOG, assume the order to be such that  $\hat{\rho}_1 \hat{b}_1 \ge \hat{\rho}_2 b_2 \ge \cdots \ge \hat{\rho}_n b_n$ 
  - allocation  $a^*$  is s.t.,  $a_i^* = i$



- VCG in the context of position auctions
- Given bids  $(b_1, \dots, b_n)$  (Note:  $\hat{\theta}_i$ : reported type and  $b_i$  are the same)
- WLOG, assume the order to be such that  $\hat{\rho}_1 \hat{b}_1 \ge \hat{\rho}_2 b_2 \ge \cdots \ge \hat{\rho}_n b_n$ 
  - allocation  $a^*$  is s.t.,  $a_i^* = i$
  - define  $a_{-i}^* \in \arg \max_{a \in A} \sum_{j \neq i} v_j(a, \theta_j)$ : in this allocation, the slots allocated to the agents after *i*, i.e., from *i* + 1 to *n* get one slot better/above than  $a^*$

- VCG in the context of position auctions
- Given bids  $(b_1, \dots, b_n)$  (Note:  $\hat{\theta}_i$ : reported type and  $b_i$  are the same)
- WLOG, assume the order to be such that  $\hat{\rho}_1 \hat{b}_1 \ge \hat{\rho}_2 b_2 \ge \cdots \ge \hat{\rho}_n b_n$ 
  - allocation  $a^*$  is s.t.,  $a_i^* = i$
  - define  $a_{-i}^* \in \arg \max_{a \in A} \sum_{j \neq i} v_j(a, \theta_j)$ : in this allocation, the slots allocated to the agents after *i*, i.e., from *i* + 1 to *n* get one slot better/above than  $a^*$
- Hence,

$$p_i^{VCG} = \sum_{j \neq i} v_j(a_{-i}^*, \theta_j) - \sum_{j \neq i} v_j(a^*, \theta_j) = \sum_{j=i}^{n-1} p_j(\hat{\rho}_{j+1}b_{j+1}) - \sum_{j=i}^{n-1} p_{j+1}(\hat{\rho}_{j+1}b_{j+1})$$
$$= \sum_{j=i}^{n-1} (p_j - p_{j+1})(\hat{\rho}_{j+1}b_{j+1}), \ \forall i = 1, \cdots, n-1, \text{ and}$$
$$p_n^{VCG}(b) = 0$$

- VCG in the context of position auctions
- Given bids  $(b_1, \dots, b_n)$  (Note:  $\hat{\theta}_i$ : reported type and  $b_i$  are the same)
- WLOG, assume the order to be such that  $\hat{\rho}_1 \hat{b}_1 \ge \hat{\rho}_2 b_2 \ge \cdots \ge \hat{\rho}_n b_n$ 
  - allocation  $a^*$  is s.t.,  $a_i^* = i$
  - define  $a_{-i}^* \in \arg \max_{a \in A} \sum_{j \neq i} v_j(a, \theta_j)$ : in this allocation, the slots allocated to the agents after *i*, i.e., from *i* + 1 to *n* get one slot better/above than  $a^*$
- Hence,

$$p_i^{VCG} = \sum_{j \neq i} v_j(a_{-i}^*, \theta_j) - \sum_{j \neq i} v_j(a^*, \theta_j) = \sum_{j=i}^{n-1} p_j(\hat{\rho}_{j+1}b_{j+1}) - \sum_{j=i}^{n-1} p_{j+1}(\hat{\rho}_{j+1}b_{j+1})$$
$$= \sum_{j=i}^{n-1} (p_j - p_{j+1})(\hat{\rho}_{j+1}b_{j+1}), \ \forall i = 1, \cdots, n-1, \text{ and}$$
$$p_n^{VCG}(b) = 0$$

• This is the total expected payment, to convert this to the pay-per-click:  $\frac{1}{p_i \hat{\rho}_i} p_i^{VCG}(b)$ 



- Introduction to VCG Mechanism
- ► VCG in Combinatorial Allocations
- ► Applications to Internet Advertising
- ▶ Slot Allocation and Payments in Position Auctions
- ▶ Pros and Cons of VCG Mechanism



• DSIC: hence very low cognitive load on the bidders



#### OSIC: hence very low cognitive load on the bidders

So subsidy (and therefore, deficits) under certain conditions if items are goods



OSIC: hence very low cognitive load on the bidders

• No subsidy (and therefore, deficits) under certain conditions if items are goods

Never charges an agent who gets no items



OSIC: hence very low cognitive load on the bidders

• No subsidy (and therefore, deficits) under certain conditions if items are goods

Never charges an agent who gets no items

Individually rational to participate: nobody loses money

# Cons of VCG Mechanism



#### Privacy and transparency

- it reveals true valuations/types. Two competing companies would not like to make private information public
- a malicious auctioneer may introduce fake bidders to extract more payment from the bidders

# Cons of VCG Mechanism



#### Privacy and transparency

- it reveals true valuations/types. Two competing companies would not like to make private information public
- a malicious auctioneer may introduce fake bidders to extract more payment from the bidders
- Susceptibility to Collusion: consider a public good decision of A or B

|   | А   | В   | Payment |
|---|-----|-----|---------|
| 1 | 200 | 0   | 150     |
| 2 | 100 | 0   | 50      |
| 3 | 0   | 250 | 0       |



#### Privacy and transparency

- it reveals true valuations/types. Two competing companies would not like to make private information public
- a malicious auctioneer may introduce fake bidders to extract more payment from the bidders
- Susceptibility to Collusion: consider a public good decision of A or B

|   | А   | В   | Payment |   | А   | В   | Payment |
|---|-----|-----|---------|---|-----|-----|---------|
| 1 | 200 | 0   | 150     | 1 | 250 | 0   | 100     |
| 2 | 100 | 0   | 50      | 2 | 150 | 0   | 0       |
| 3 | 0   | 250 | 0       | 3 | 0   | 250 | 0       |

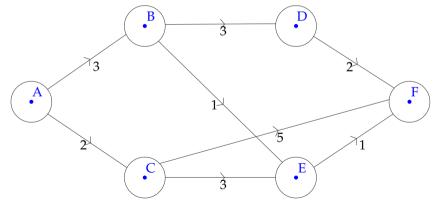
— If 1 and 2 collude and bid higher, both of them reduce their payments  $\implies$  utility increases



Not frugal: payment could be very large: VCG is guaranteed to be no deficit but can charge payments much larger than the cost



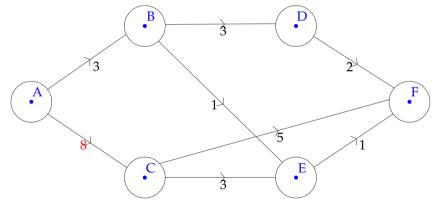
Not frugal: payment could be very large: VCG is guaranteed to be no deficit but can charge payments much larger than the cost



Example: Item delivery network (e.g, Amazon), source: A, destination: F



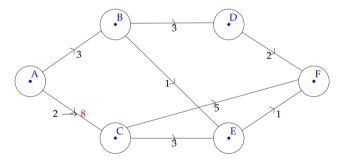
Not frugal: payment could be very large: VCG is guaranteed to be no deficit but can charge payments much larger than the cost



Example: Item delivery network (e.g, Amazon), source: A, destination: F

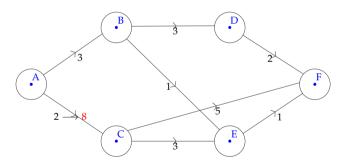


• This is a cost setup, hence the values can be considered to be negative



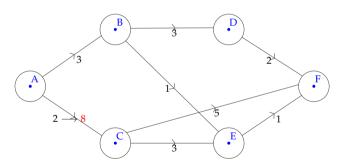


- This is a cost setup, hence the values can be considered to be negative
- Each edge is a player



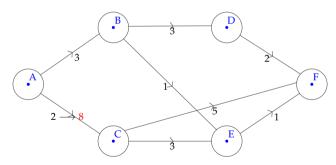


- This is a cost setup, hence the values can be considered to be negative
- Each edge is a player
- Efficient allocation:  $A \rightarrow B \rightarrow E \rightarrow F$



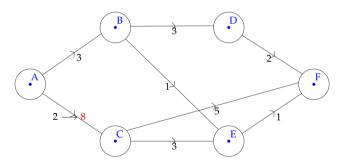


- This is a cost setup, hence the values can be considered to be negative
- Each edge is a player
- Efficient allocation:  $A \rightarrow B \rightarrow E \rightarrow F$
- $p_{AB} = (-2 3 1) (-1 1) = -4$





- This is a cost setup, hence the values can be considered to be negative
- Each edge is a player
- Efficient allocation:  $A \rightarrow B \rightarrow E \rightarrow F$
- $p_{AB} = (-2 3 1) (-1 1) = -4$
- $p_{AB} = (-8 3 1) (-1 1) = -10$



• Revenue monotonicity violation: revenue should weakly increase with the number of players

|   | F   | Μ  | Payment            |
|---|-----|----|--------------------|
| 1 | 0   | 90 | $0 \rightarrow 0$  |
| 2 | 100 | 0  | $90 \rightarrow 0$ |
| 3 | 100 | 0  | 0                  |

Nobody's pivotal

• Revenue monotonicity violation: revenue should weakly increase with the number of players

|   | F   | Μ  | Payment            |
|---|-----|----|--------------------|
| 1 | 0   | 90 | $0 \rightarrow 0$  |
| 2 | 100 | 0  | $90 \rightarrow 0$ |
| 3 | 100 | 0  | 0                  |

Nobody's pivotal

Not budget balanced: this is a no-deficit mechanism but it almost always keeps surplus, which can be large

**O** Revenue monotonicity violation: revenue should weakly increase with the number of players

|   | F   | Μ  | Payment            |
|---|-----|----|--------------------|
| 1 | 0   | 90 | $0 \rightarrow 0$  |
| 2 | 100 | 0  | $90 \rightarrow 0$ |
| 3 | 100 | 0  | 0                  |

Nobody's pivotal

- Not budget balanced: this is a no-deficit mechanism but it almost always keeps surplus, which can be large
  - This money cannot be redistributed among the same players, since that will change their payoffs and the resulting mechanism would not remain DSIC



• Revenue monotonicity violation: revenue should weakly increase with the number of players

|   | F   | Μ  | Payment            |
|---|-----|----|--------------------|
| 1 | 0   | 90 | $0 \rightarrow 0$  |
| 2 | 100 | 0  | $90 \rightarrow 0$ |
| 3 | 100 | 0  | 0                  |

Nobody's pivotal

- Not budget balanced: this is a no-deficit mechanism but it almost always keeps surplus, which can be large
  - This money cannot be redistributed among the same players, since that will change their payoffs and the resulting mechanism would not remain DSIC
  - If the players are partitioned into two groups and the surplus of one group is redistributed over the other group, then it is budget balanced, but the overall efficiency is compromised



# Cons of VCG and Concluding Remark



• This surplus has to be taken away or destroyed: money burning

# Cons of VCG and Concluding Remark



- This surplus has to be taken away or destroyed: money burning
- How much to burn and what efficiency we compromise?



- This surplus has to be taken away or destroyed: money burning
- How much to burn and what efficiency we compromise?
- Nath and Sandholm (2019): Efficiency and budget balance in general quasi-linear domains, Games and Econ Behavior



- This surplus has to be taken away or destroyed: money burning
- How much to burn and what efficiency we compromise?
- Nath and Sandholm (2019): Efficiency and budget balance in general quasi-linear domains, Games and Econ Behavior
- But



- This surplus has to be taken away or destroyed: money burning
- How much to burn and what efficiency we compromise?
- Nath and Sandholm (2019): Efficiency and budget balance in general quasi-linear domains, Games and Econ Behavior
- But

These are certain limitations that are good to know for effective use of VCG, however, it is the most widely used mechanism in the literature



# भारतीय प्रौद्योगिकी संस्थान मुंबई Indian Institute of Technology Bombay