
1

CS 6001: Game Theory and Algorithmic
Mechanism Design
Week 11

Swaprava Nath

Slide preparation acknowledgments: Ramsundar Anandanarayanan and Harshvardhan Agarwal

2

Contents

▶ Affine Maximizers

▶ Single Object Allocation

▶ Myerson’s Lemma

▶ Illustration of Myerson’s Lemma

▶ Optimal Mechanism Design

3

Generalization of VCG mechanism

Question

Can we incorporate a larger class of DSIC mechanisms in the quasi-linear domain?

Definition (Affine Maximizer (AM) Allocation Rule)

f AM(θ) ∈ arg max
a∈A

(
∑
i∈N

wiθi(a)

+ κ(a)

)

where,

wi ⩾ 0 ∀i ∈ N, (not all zero) – different weight for players
κ : A → R is any arbitrary function – translation

Special cases

• κ ≡ 0 and wi = 1 ∀i ∈ N – efficient
• κ ≡ 0 and wd = 1, wi = 0 ∀i ̸= d – dictatorial
• wi’s are different =⇒ not ANON
• κ is a non-constant function =⇒ different importance is given to different allocations

3

Generalization of VCG mechanism

Question

Can we incorporate a larger class of DSIC mechanisms in the quasi-linear domain?

Definition (Affine Maximizer (AM) Allocation Rule)

f AM(θ) ∈ arg max
a∈A

(
∑
i∈N

wiθi(a)

+ κ(a)

)

where, wi ⩾ 0 ∀i ∈ N, (not all zero) – different weight for players

κ : A → R is any arbitrary function – translation

Special cases

• κ ≡ 0 and wi = 1 ∀i ∈ N – efficient
• κ ≡ 0 and wd = 1, wi = 0 ∀i ̸= d – dictatorial
• wi’s are different =⇒ not ANON
• κ is a non-constant function =⇒ different importance is given to different allocations

3

Generalization of VCG mechanism

Question

Can we incorporate a larger class of DSIC mechanisms in the quasi-linear domain?

Definition (Affine Maximizer (AM) Allocation Rule)

f AM(θ) ∈ arg max
a∈A

(

∑
i∈N

wiθi(a)

+ κ(a)

)

where, wi ⩾ 0 ∀i ∈ N, (not all zero) – different weight for players

κ : A → R is any arbitrary function – translation

Special cases

• κ ≡ 0 and wi = 1 ∀i ∈ N – efficient
• κ ≡ 0 and wd = 1, wi = 0 ∀i ̸= d – dictatorial
• wi’s are different =⇒ not ANON
• κ is a non-constant function =⇒ different importance is given to different allocations

3

Generalization of VCG mechanism

Question

Can we incorporate a larger class of DSIC mechanisms in the quasi-linear domain?

Definition (Affine Maximizer (AM) Allocation Rule)

f AM(θ) ∈ arg max
a∈A

(

∑
i∈N

wiθi(a) + κ(a)

)

where, wi ⩾ 0 ∀i ∈ N, (not all zero) – different weight for players
κ : A → R is any arbitrary function – translation

Special cases

• κ ≡ 0 and wi = 1 ∀i ∈ N – efficient
• κ ≡ 0 and wd = 1, wi = 0 ∀i ̸= d – dictatorial
• wi’s are different =⇒ not ANON
• κ is a non-constant function =⇒ different importance is given to different allocations

3

Generalization of VCG mechanism

Question

Can we incorporate a larger class of DSIC mechanisms in the quasi-linear domain?

Definition (Affine Maximizer (AM) Allocation Rule)

f AM(θ) ∈

arg max
a∈A

(
∑
i∈N

wiθi(a) + κ(a)

)
where, wi ⩾ 0 ∀i ∈ N, (not all zero) – different weight for players
κ : A → R is any arbitrary function – translation

Special cases

• κ ≡ 0 and wi = 1 ∀i ∈ N – efficient
• κ ≡ 0 and wd = 1, wi = 0 ∀i ̸= d – dictatorial
• wi’s are different =⇒ not ANON
• κ is a non-constant function =⇒ different importance is given to different allocations

3

Generalization of VCG mechanism

Question

Can we incorporate a larger class of DSIC mechanisms in the quasi-linear domain?

Definition (Affine Maximizer (AM) Allocation Rule)

f AM(θ) ∈ arg max
a∈A

(
∑
i∈N

wiθi(a) + κ(a)

)
where, wi ⩾ 0 ∀i ∈ N, (not all zero) – different weight for players
κ : A → R is any arbitrary function – translation

Special cases

• κ ≡ 0 and wi = 1 ∀i ∈ N – efficient
• κ ≡ 0 and wd = 1, wi = 0 ∀i ̸= d – dictatorial
• wi’s are different =⇒ not ANON
• κ is a non-constant function =⇒ different importance is given to different allocations

3

Generalization of VCG mechanism

Question

Can we incorporate a larger class of DSIC mechanisms in the quasi-linear domain?

Definition (Affine Maximizer (AM) Allocation Rule)

f AM(θ) ∈ arg max
a∈A

(
∑
i∈N

wiθi(a) + κ(a)

)
where, wi ⩾ 0 ∀i ∈ N, (not all zero) – different weight for players
κ : A → R is any arbitrary function – translation

Special cases

• κ ≡ 0 and wi = 1 ∀i ∈ N – efficient
• κ ≡ 0 and wd = 1, wi = 0 ∀i ̸= d – dictatorial
• wi’s are different =⇒ not ANON
• κ is a non-constant function =⇒ different importance is given to different allocations

4

Observations on Affine Maximizers

• Affine Maximizer is a super class of VCG (efficient) allocations, hence, it can satisfy more
properties

• We can ask a characterization question (like GS Theorem) in the quasi-linear setting with
public goods.

• Independence of Non-influential Agents

Definition

An AM rule f AM with weights wi ∀i ∈ N and the function κ satisfies independence of
non-influential agents (INA) if for all i ∈ N with wi = 0 we have

f AM(θi, θ−i) = f AM(θ′i , θ−i), ∀ θi, θ′i , θ−i

• Remark: This is a tie-breaking requirement – the zero weight agent does not influence the
allocation decision, hence it should not break any tie either

4

Observations on Affine Maximizers

• Affine Maximizer is a super class of VCG (efficient) allocations, hence, it can satisfy more
properties

• We can ask a characterization question (like GS Theorem) in the quasi-linear setting with
public goods.

• Independence of Non-influential Agents

Definition

An AM rule f AM with weights wi ∀i ∈ N and the function κ satisfies independence of
non-influential agents (INA) if for all i ∈ N with wi = 0 we have

f AM(θi, θ−i) = f AM(θ′i , θ−i), ∀ θi, θ′i , θ−i

• Remark: This is a tie-breaking requirement – the zero weight agent does not influence the
allocation decision, hence it should not break any tie either

4

Observations on Affine Maximizers

• Affine Maximizer is a super class of VCG (efficient) allocations, hence, it can satisfy more
properties

• We can ask a characterization question (like GS Theorem) in the quasi-linear setting with
public goods.

• Independence of Non-influential Agents

Definition

An AM rule f AM with weights wi ∀i ∈ N and the function κ satisfies independence of
non-influential agents (INA) if for all i ∈ N with wi = 0 we have

f AM(θi, θ−i) = f AM(θ′i , θ−i), ∀ θi, θ′i , θ−i

• Remark: This is a tie-breaking requirement – the zero weight agent does not influence the
allocation decision, hence it should not break any tie either

4

Observations on Affine Maximizers

• Affine Maximizer is a super class of VCG (efficient) allocations, hence, it can satisfy more
properties

• We can ask a characterization question (like GS Theorem) in the quasi-linear setting with
public goods.

• Independence of Non-influential Agents

Definition

An AM rule f AM with weights wi ∀i ∈ N and the function κ satisfies independence of
non-influential agents (INA) if for all i ∈ N with wi = 0 we have

f AM(θi, θ−i) = f AM(θ′i , θ−i), ∀ θi, θ′i , θ−i

• Remark: This is a tie-breaking requirement – the zero weight agent does not influence the
allocation decision, hence it should not break any tie either

4

Observations on Affine Maximizers

• Affine Maximizer is a super class of VCG (efficient) allocations, hence, it can satisfy more
properties

• We can ask a characterization question (like GS Theorem) in the quasi-linear setting with
public goods.

• Independence of Non-influential Agents

Definition

An AM rule f AM with weights wi ∀i ∈ N and the function κ satisfies independence of
non-influential agents (INA) if for all i ∈ N with wi = 0 we have

f AM(θi, θ−i) = f AM(θ′i , θ−i), ∀ θi, θ′i , θ−i

• Remark: This is a tie-breaking requirement – the zero weight agent does not influence the
allocation decision, hence it should not break any tie either

5

(Almost) All Affine Maximizers are DSIC

Example

If INA was not satisfied, then AM can be manipulated, e.g., suppose there is a tie when wi = 0
for some valuation profile, but the allocation is the less preferred one for agent i

Theorem

An AM rule satisfying INA is implementable in dominant strategies.

Proof.

We need to construct a payment function pAM to make (f AM, pAM) DSIC.
Consider

pAM
i (θi, θ−i) =

{
1

wi
[hi(θ−i)− {∑j ̸=i wjθj(f AM(θ)) + κ(f AM(θ))}] ∀i : wi > 0,

0, ∀i : wi = 0.

5

(Almost) All Affine Maximizers are DSIC

Example

If INA was not satisfied, then AM can be manipulated, e.g., suppose there is a tie when wi = 0
for some valuation profile, but the allocation is the less preferred one for agent i

Theorem

An AM rule satisfying INA is implementable in dominant strategies.

Proof.

We need to construct a payment function pAM to make (f AM, pAM) DSIC.
Consider

pAM
i (θi, θ−i) =

{
1

wi
[hi(θ−i)− {∑j ̸=i wjθj(f AM(θ)) + κ(f AM(θ))}] ∀i : wi > 0,

0, ∀i : wi = 0.

5

(Almost) All Affine Maximizers are DSIC

Example

If INA was not satisfied, then AM can be manipulated, e.g., suppose there is a tie when wi = 0
for some valuation profile, but the allocation is the less preferred one for agent i

Theorem

An AM rule satisfying INA is implementable in dominant strategies.

Proof.

We need to construct a payment function pAM to make (f AM, pAM) DSIC.

Consider

pAM
i (θi, θ−i) =

{
1

wi
[hi(θ−i)− {∑j ̸=i wjθj(f AM(θ)) + κ(f AM(θ))}] ∀i : wi > 0,

0, ∀i : wi = 0.

5

(Almost) All Affine Maximizers are DSIC

Example

If INA was not satisfied, then AM can be manipulated, e.g., suppose there is a tie when wi = 0
for some valuation profile, but the allocation is the less preferred one for agent i

Theorem

An AM rule satisfying INA is implementable in dominant strategies.

Proof.

We need to construct a payment function pAM to make (f AM, pAM) DSIC.
Consider

pAM
i (θi, θ−i) =

{
1

wi
[hi(θ−i)− {∑j ̸=i wjθj(f AM(θ)) + κ(f AM(θ))}] ∀i : wi > 0,

0, ∀i : wi = 0.

6

(Almost) All Affine Maximizers are DSIC (contd.)

Proof.

Payoff of i if wi > 0

= θi(f AM(θi, θ−i))− pAM
i (θi, θ−i)

=
1
wi

[{∑
j∈N

wjθj(f AM(θi, θ−i)) + κ(f AM(θi, θ−i))} − hi(θ−i)]

⩾
1
wi

[{∑
j∈N

wjθj(f AM(θ′i , θ−i)) + κ(f AM(θ′i , θ−i))} − hi(θ−i)]

= θi(f AM(θ′i , θ−i))− pAM
i (θ′i , θ−i)

For i where wi = 0, payments are zero and

f AM(θi, θ−i) = f AM(θ′i , θ−i), ∀θi, θ′i , θ−i

Hence, payoff are identical for all types.

6

(Almost) All Affine Maximizers are DSIC (contd.)

Proof.

Payoff of i if wi > 0

= θi(f AM(θi, θ−i))− pAM
i (θi, θ−i)

=
1
wi

[{∑
j∈N

wjθj(f AM(θi, θ−i)) + κ(f AM(θi, θ−i))} − hi(θ−i)]

⩾
1
wi

[{∑
j∈N

wjθj(f AM(θ′i , θ−i)) + κ(f AM(θ′i , θ−i))} − hi(θ−i)]

= θi(f AM(θ′i , θ−i))− pAM
i (θ′i , θ−i)

For i where wi = 0, payments are zero and

f AM(θi, θ−i) = f AM(θ′i , θ−i), ∀θi, θ′i , θ−i

Hence, payoff are identical for all types.

6

(Almost) All Affine Maximizers are DSIC (contd.)

Proof.

Payoff of i if wi > 0

= θi(f AM(θi, θ−i))− pAM
i (θi, θ−i)

=
1
wi

[{∑
j∈N

wjθj(f AM(θi, θ−i)) + κ(f AM(θi, θ−i))} − hi(θ−i)]

⩾
1
wi

[{∑
j∈N

wjθj(f AM(θ′i , θ−i)) + κ(f AM(θ′i , θ−i))} − hi(θ−i)]

= θi(f AM(θ′i , θ−i))− pAM
i (θ′i , θ−i)

For i where wi = 0, payments are zero and

f AM(θi, θ−i) = f AM(θ′i , θ−i), ∀θi, θ′i , θ−i

Hence, payoff are identical for all types.

6

(Almost) All Affine Maximizers are DSIC (contd.)

Proof.

Payoff of i if wi > 0

= θi(f AM(θi, θ−i))− pAM
i (θi, θ−i)

=
1
wi

[{∑
j∈N

wjθj(f AM(θi, θ−i)) + κ(f AM(θi, θ−i))} − hi(θ−i)]

⩾
1
wi

[{∑
j∈N

wjθj(f AM(θ′i , θ−i)) + κ(f AM(θ′i , θ−i))} − hi(θ−i)]

= θi(f AM(θ′i , θ−i))− pAM
i (θ′i , θ−i)

For i where wi = 0, payments are zero and

f AM(θi, θ−i) = f AM(θ′i , θ−i), ∀θi, θ′i , θ−i

Hence, payoff are identical for all types.

6

(Almost) All Affine Maximizers are DSIC (contd.)

Proof.

Payoff of i if wi > 0

= θi(f AM(θi, θ−i))− pAM
i (θi, θ−i)

=
1
wi

[{∑
j∈N

wjθj(f AM(θi, θ−i)) + κ(f AM(θi, θ−i))} − hi(θ−i)]

⩾
1
wi

[{∑
j∈N

wjθj(f AM(θ′i , θ−i)) + κ(f AM(θ′i , θ−i))} − hi(θ−i)]

= θi(f AM(θ′i , θ−i))− pAM
i (θ′i , θ−i)

For i where wi = 0, payments are zero and

f AM(θi, θ−i) = f AM(θ′i , θ−i), ∀θi, θ′i , θ−i

Hence, payoff are identical for all types.

7

Roberts’ Theorem

• Similar to GS Theorem, we ask what if the valuations are unrestricted, i.e., Θi contains all
possible valuation functions θi : A → R, no restriction on the functions is imposed

• With this unrestricted space of valuations, we can characterize the class DSIC mechanisms in
the quasi-linear domain

• Roberts’ theorem

Theorem (Roberts 1979)

Let A be finite with |A| ⩾ 3. If the type space is unrestricted, then every ONTO and dominant strategy
implementable allocation rule must be an affine maximizer

• Proof reference: Ron Lavi, Ahuva Mu’alem, and Noam Nisan. “Two simplified proofs for
Roberts’ theorem”. In: Social Choice and Welfare 32 (2009), pp. 407–423.

• Similarity with GS Theorem: GS Theorem is restricting the class to dictatorships, but here it
is restricting to affine maximizers

7

Roberts’ Theorem

• Similar to GS Theorem, we ask what if the valuations are unrestricted, i.e., Θi contains all
possible valuation functions θi : A → R, no restriction on the functions is imposed

• With this unrestricted space of valuations, we can characterize the class DSIC mechanisms in
the quasi-linear domain

• Roberts’ theorem

Theorem (Roberts 1979)

Let A be finite with |A| ⩾ 3. If the type space is unrestricted, then every ONTO and dominant strategy
implementable allocation rule must be an affine maximizer

• Proof reference: Ron Lavi, Ahuva Mu’alem, and Noam Nisan. “Two simplified proofs for
Roberts’ theorem”. In: Social Choice and Welfare 32 (2009), pp. 407–423.

• Similarity with GS Theorem: GS Theorem is restricting the class to dictatorships, but here it
is restricting to affine maximizers

7

Roberts’ Theorem

• Similar to GS Theorem, we ask what if the valuations are unrestricted, i.e., Θi contains all
possible valuation functions θi : A → R, no restriction on the functions is imposed

• With this unrestricted space of valuations, we can characterize the class DSIC mechanisms in
the quasi-linear domain

• Roberts’ theorem

Theorem (Roberts 1979)

Let A be finite with |A| ⩾ 3. If the type space is unrestricted, then every ONTO and dominant strategy
implementable allocation rule must be an affine maximizer

• Proof reference: Ron Lavi, Ahuva Mu’alem, and Noam Nisan. “Two simplified proofs for
Roberts’ theorem”. In: Social Choice and Welfare 32 (2009), pp. 407–423.

• Similarity with GS Theorem: GS Theorem is restricting the class to dictatorships, but here it
is restricting to affine maximizers

7

Roberts’ Theorem

• Similar to GS Theorem, we ask what if the valuations are unrestricted, i.e., Θi contains all
possible valuation functions θi : A → R, no restriction on the functions is imposed

• With this unrestricted space of valuations, we can characterize the class DSIC mechanisms in
the quasi-linear domain

• Roberts’ theorem

Theorem (Roberts 1979)

Let A be finite with |A| ⩾ 3. If the type space is unrestricted, then every ONTO and dominant strategy
implementable allocation rule must be an affine maximizer

• Proof reference: Ron Lavi, Ahuva Mu’alem, and Noam Nisan. “Two simplified proofs for
Roberts’ theorem”. In: Social Choice and Welfare 32 (2009), pp. 407–423.

• Similarity with GS Theorem: GS Theorem is restricting the class to dictatorships, but here it
is restricting to affine maximizers

7

Roberts’ Theorem

• Similar to GS Theorem, we ask what if the valuations are unrestricted, i.e., Θi contains all
possible valuation functions θi : A → R, no restriction on the functions is imposed

• With this unrestricted space of valuations, we can characterize the class DSIC mechanisms in
the quasi-linear domain

• Roberts’ theorem

Theorem (Roberts 1979)

Let A be finite with |A| ⩾ 3. If the type space is unrestricted, then every ONTO and dominant strategy
implementable allocation rule must be an affine maximizer

• Proof reference: Ron Lavi, Ahuva Mu’alem, and Noam Nisan. “Two simplified proofs for
Roberts’ theorem”. In: Social Choice and Welfare 32 (2009), pp. 407–423.

• Similarity with GS Theorem: GS Theorem is restricting the class to dictatorships, but here it
is restricting to affine maximizers

7

Roberts’ Theorem

• Similar to GS Theorem, we ask what if the valuations are unrestricted, i.e., Θi contains all
possible valuation functions θi : A → R, no restriction on the functions is imposed

• With this unrestricted space of valuations, we can characterize the class DSIC mechanisms in
the quasi-linear domain

• Roberts’ theorem

Theorem (Roberts 1979)

Let A be finite with |A| ⩾ 3. If the type space is unrestricted, then every ONTO and dominant strategy
implementable allocation rule must be an affine maximizer

• Proof reference: Ron Lavi, Ahuva Mu’alem, and Noam Nisan. “Two simplified proofs for
Roberts’ theorem”. In: Social Choice and Welfare 32 (2009), pp. 407–423.

• Similarity with GS Theorem: GS Theorem is restricting the class to dictatorships, but here it
is restricting to affine maximizers

8

Contents

▶ Affine Maximizers

▶ Single Object Allocation

▶ Myerson’s Lemma

▶ Illustration of Myerson’s Lemma

▶ Optimal Mechanism Design

9

Setup for selling single indivisible object

• Type set of agent i : Ti ⊆ R

• ti ∈ Ti: value of agent i if she wins the object
• An allocation a is a vector of length n that represents the probability of winning the object by

the respective agent (a0 is probability of not selling the object)

Set of allocations: ∆A = {a ∈ [0, 1]n :
n

∑
i=0

ai = 1}

• Allocation rule: f : T1 × T2 × . . . × Tn → ∆A
• Valuation: vi(a, ti) = ai · ti (product form, expected valuation)
• Hence, fi(ti, t−i) is agent i’s probability of winning the object when the type profile is (ti, t−i)

— f0(t) is the probability of not selling the object

9

Setup for selling single indivisible object

• Type set of agent i : Ti ⊆ R

• ti ∈ Ti: value of agent i if she wins the object

• An allocation a is a vector of length n that represents the probability of winning the object by
the respective agent (a0 is probability of not selling the object)

Set of allocations: ∆A = {a ∈ [0, 1]n :
n

∑
i=0

ai = 1}

• Allocation rule: f : T1 × T2 × . . . × Tn → ∆A
• Valuation: vi(a, ti) = ai · ti (product form, expected valuation)
• Hence, fi(ti, t−i) is agent i’s probability of winning the object when the type profile is (ti, t−i)

— f0(t) is the probability of not selling the object

9

Setup for selling single indivisible object

• Type set of agent i : Ti ⊆ R

• ti ∈ Ti: value of agent i if she wins the object
• An allocation a is a vector of length n that represents the probability of winning the object by

the respective agent (a0 is probability of not selling the object)

Set of allocations: ∆A = {a ∈ [0, 1]n :
n

∑
i=0

ai = 1}

• Allocation rule: f : T1 × T2 × . . . × Tn → ∆A
• Valuation: vi(a, ti) = ai · ti (product form, expected valuation)
• Hence, fi(ti, t−i) is agent i’s probability of winning the object when the type profile is (ti, t−i)

— f0(t) is the probability of not selling the object

9

Setup for selling single indivisible object

• Type set of agent i : Ti ⊆ R

• ti ∈ Ti: value of agent i if she wins the object
• An allocation a is a vector of length n that represents the probability of winning the object by

the respective agent (a0 is probability of not selling the object)

Set of allocations: ∆A = {a ∈ [0, 1]n :
n

∑
i=0

ai = 1}

• Allocation rule: f : T1 × T2 × . . . × Tn → ∆A

• Valuation: vi(a, ti) = ai · ti (product form, expected valuation)
• Hence, fi(ti, t−i) is agent i’s probability of winning the object when the type profile is (ti, t−i)

— f0(t) is the probability of not selling the object

9

Setup for selling single indivisible object

• Type set of agent i : Ti ⊆ R

• ti ∈ Ti: value of agent i if she wins the object
• An allocation a is a vector of length n that represents the probability of winning the object by

the respective agent (a0 is probability of not selling the object)

Set of allocations: ∆A = {a ∈ [0, 1]n :
n

∑
i=0

ai = 1}

• Allocation rule: f : T1 × T2 × . . . × Tn → ∆A
• Valuation: vi(a, ti) = ai · ti (product form, expected valuation)

• Hence, fi(ti, t−i) is agent i’s probability of winning the object when the type profile is (ti, t−i)

— f0(t) is the probability of not selling the object

9

Setup for selling single indivisible object

• Type set of agent i : Ti ⊆ R

• ti ∈ Ti: value of agent i if she wins the object
• An allocation a is a vector of length n that represents the probability of winning the object by

the respective agent (a0 is probability of not selling the object)

Set of allocations: ∆A = {a ∈ [0, 1]n :
n

∑
i=0

ai = 1}

• Allocation rule: f : T1 × T2 × . . . × Tn → ∆A
• Valuation: vi(a, ti) = ai · ti (product form, expected valuation)
• Hence, fi(ti, t−i) is agent i’s probability of winning the object when the type profile is (ti, t−i)

— f0(t) is the probability of not selling the object

9

Setup for selling single indivisible object

• Type set of agent i : Ti ⊆ R

• ti ∈ Ti: value of agent i if she wins the object
• An allocation a is a vector of length n that represents the probability of winning the object by

the respective agent (a0 is probability of not selling the object)

Set of allocations: ∆A = {a ∈ [0, 1]n :
n

∑
i=0

ai = 1}

• Allocation rule: f : T1 × T2 × . . . × Tn → ∆A
• Valuation: vi(a, ti) = ai · ti (product form, expected valuation)
• Hence, fi(ti, t−i) is agent i’s probability of winning the object when the type profile is (ti, t−i)

— f0(t) is the probability of not selling the object

10

Vickrey (Second Price) Auction

1 Define t(2)−i = maxj ̸=i{vj}
2 Agent i wins if vi > t(2)−i , loses if vi < t(2)−i and a tie breaking rule decides if there is an equality

3 Since payment is t(2)−i if i is the winner, the utility is zero in case of a tie

ui(vi, v−i) =

{
0 if vi ⩽ t(2)−i

vi − t(2)−i if vi > t(2)−i

11

Observations

Utility

Allocation

• Utility is convex, derivative is zero if vi < t(2)−i and 1 if vi > t(2)−i (not differentiable at vi = t(2)−i)
• Whenever differentiable, it coincides with the allocation probability

11

Observations

Utility Allocation

• Utility is convex, derivative is zero if vi < t(2)−i and 1 if vi > t(2)−i (not differentiable at vi = t(2)−i)
• Whenever differentiable, it coincides with the allocation probability

11

Observations

Utility Allocation

• Utility is convex, derivative is zero if vi < t(2)−i and 1 if vi > t(2)−i (not differentiable at vi = t(2)−i)

• Whenever differentiable, it coincides with the allocation probability

11

Observations

Utility Allocation

• Utility is convex, derivative is zero if vi < t(2)−i and 1 if vi > t(2)−i (not differentiable at vi = t(2)−i)
• Whenever differentiable, it coincides with the allocation probability

12

Brief review of convex functions

Recall: A function g : I → R (where I is an interval) is convex if for every x, y ∈ I and λ ∈ [0, 1]

λg(x) + (1 − λ)g(y) ⩾ g(λx + (1 − λ)y)

Some known facts from convex analysis (see e.g. Rockafeller (1980))

Fact

Convex functions are continuous in the interior of its domain

i.e., jumps can only occur at the boundaries

Fact

Convex functions are differentiable almost everywhere

i.e., the points where the function is not differentiable form a countable set (see the example
before) - has measure zero

12

Brief review of convex functions

Recall: A function g : I → R (where I is an interval) is convex if for every x, y ∈ I and λ ∈ [0, 1]

λg(x) + (1 − λ)g(y) ⩾ g(λx + (1 − λ)y)

Some known facts from convex analysis (see e.g. Rockafeller (1980))

Fact

Convex functions are continuous in the interior of its domain

i.e., jumps can only occur at the boundaries

Fact

Convex functions are differentiable almost everywhere

i.e., the points where the function is not differentiable form a countable set (see the example
before) - has measure zero

12

Brief review of convex functions

Recall: A function g : I → R (where I is an interval) is convex if for every x, y ∈ I and λ ∈ [0, 1]

λg(x) + (1 − λ)g(y) ⩾ g(λx + (1 − λ)y)

Some known facts from convex analysis (see e.g. Rockafeller (1980))

Fact

Convex functions are continuous in the interior of its domain

i.e., jumps can only occur at the boundaries

Fact

Convex functions are differentiable almost everywhere

i.e., the points where the function is not differentiable form a countable set (see the example
before) - has measure zero

12

Brief review of convex functions

Recall: A function g : I → R (where I is an interval) is convex if for every x, y ∈ I and λ ∈ [0, 1]

λg(x) + (1 − λ)g(y) ⩾ g(λx + (1 − λ)y)

Some known facts from convex analysis (see e.g. Rockafeller (1980))

Fact

Convex functions are continuous in the interior of its domain

i.e., jumps can only occur at the boundaries

Fact

Convex functions are differentiable almost everywhere

i.e., the points where the function is not differentiable form a countable set (see the example
before) - has measure zero

13

Convex functions

If g is differentiable at x ∈ I, we denote the derivative by g′(x)

The following definition extends the idea of gradient

Definition (Subgradient)

For any x ∈ I, x∗ is a subgradient of g at x if g(z) ⩾ g(x) + x∗(z − x), ∀z ∈ I

ll
xx

g(zg(z11))

zz11

g(zg(z22))

zz22 xx

g(x) + x* (zg(x) + x* (z11 - x) - x)

g(x) + x*(zg(x) + x*(z22-x)-x)
slope = x*

Question

• Always exists?
• Is it unique?

13

Convex functions

If g is differentiable at x ∈ I, we denote the derivative by g′(x)

The following definition extends the idea of gradient

Definition (Subgradient)

For any x ∈ I, x∗ is a subgradient of g at x if g(z) ⩾ g(x) + x∗(z − x), ∀z ∈ I

ll
xx

g(zg(z11))

zz11

g(zg(z22))

zz22 xx

g(x) + x* (zg(x) + x* (z11 - x) - x)

g(x) + x*(zg(x) + x*(z22-x)-x)
slope = x*

Question

• Always exists?
• Is it unique?

13

Convex functions

If g is differentiable at x ∈ I, we denote the derivative by g′(x)

The following definition extends the idea of gradient

Definition (Subgradient)

For any x ∈ I, x∗ is a subgradient of g at x if g(z) ⩾ g(x) + x∗(z − x), ∀z ∈ I

ll
xx

g(zg(z11))

zz11

g(zg(z22))

zz22 xx

g(x) + x* (zg(x) + x* (z11 - x) - x)

g(x) + x*(zg(x) + x*(z22-x)-x)
slope = x*

Question

• Always exists?
• Is it unique?

13

Convex functions

If g is differentiable at x ∈ I, we denote the derivative by g′(x)

The following definition extends the idea of gradient

Definition (Subgradient)

For any x ∈ I, x∗ is a subgradient of g at x if g(z) ⩾ g(x) + x∗(z − x), ∀z ∈ I

ll
xx

g(zg(z11))

zz11

g(zg(z22))

zz22 xx

g(x) + x* (zg(x) + x* (z11 - x) - x)

g(x) + x*(zg(x) + x*(z22-x)-x)
slope = x*

Question

• Always exists?

• Is it unique?

13

Convex functions

If g is differentiable at x ∈ I, we denote the derivative by g′(x)

The following definition extends the idea of gradient

Definition (Subgradient)

For any x ∈ I, x∗ is a subgradient of g at x if g(z) ⩾ g(x) + x∗(z − x), ∀z ∈ I

ll
xx

g(zg(z11))

zz11

g(zg(z22))

zz22 xx

g(x) + x* (zg(x) + x* (z11 - x) - x)

g(x) + x*(zg(x) + x*(z22-x)-x)
slope = x*

Question

• Always exists?
• Is it unique?

14

Standard results

Proofs for the following lemmas can be found in any standard convex analysis text

Lemma

Let g : I → R be a convex function. Suppose x is in the interior of I and g is differentiable at x. The g′(x)
is the unique subgradients of g.

Lemma

Let g : I → R be a convex function. Then for every x ∈ I a subgradient of g at x exists.

14

Standard results

Proofs for the following lemmas can be found in any standard convex analysis text

Lemma

Let g : I → R be a convex function. Suppose x is in the interior of I and g is differentiable at x. The g′(x)
is the unique subgradients of g.

Lemma

Let g : I → R be a convex function. Then for every x ∈ I a subgradient of g at x exists.

15

Standard results (contd.)

Fact

Let I′ ⊆ I be the set of points where g is differentiable. The set I \ I′ is of measure zero. The set of
subgradients at a point forms a convex set.

Define g′+(x) and g′−(x) as

g′+(x) = lim
z→x, z>x

g′(z)

g′−(x) = lim
z→x, z<x

g′(z)

Fact

The subgradients at x ∈ I \ I′ is [g′−(x), g′+(x)]

15

Standard results (contd.)

Fact

Let I′ ⊆ I be the set of points where g is differentiable. The set I \ I′ is of measure zero. The set of
subgradients at a point forms a convex set.

Define g′+(x) and g′−(x) as

g′+(x) = lim
z→x, z>x

g′(z)

g′−(x) = lim
z→x, z<x

g′(z)

Fact

The subgradients at x ∈ I \ I′ is [g′−(x), g′+(x)]

15

Standard results (contd.)

Fact

Let I′ ⊆ I be the set of points where g is differentiable. The set I \ I′ is of measure zero. The set of
subgradients at a point forms a convex set.

Define g′+(x) and g′−(x) as

g′+(x) = lim
z→x, z>x

g′(z)

g′−(x) = lim
z→x, z<x

g′(z)

Fact

The subgradients at x ∈ I \ I′ is [g′−(x), g′+(x)]

16

Summary of the Lemmas

We will denote the set of subgradients of g at x ∈ I as ∂g(x)

1 First lemma says ∂g(x) = {g′(x)}, ∀x ∈ I′

2 Second lemma says that ∂g(x) ̸= ∅, ∀x ∈ I

Lemma

Let g : I → R be a convex function. Let ϕ(z) ∈ ∂g(z), ∀z ∈ I. Then for all x, y ∈ I such that x > y, we
have ϕ(x) ⩾ ϕ(y).

• ϕ(z) picks one value at every z (even if subgradients can be many)
• This result says that subgradient functions are monotone

16

Summary of the Lemmas

We will denote the set of subgradients of g at x ∈ I as ∂g(x)

1 First lemma says ∂g(x) = {g′(x)}, ∀x ∈ I′

2 Second lemma says that ∂g(x) ̸= ∅, ∀x ∈ I

Lemma

Let g : I → R be a convex function. Let ϕ(z) ∈ ∂g(z), ∀z ∈ I. Then for all x, y ∈ I such that x > y, we
have ϕ(x) ⩾ ϕ(y).

• ϕ(z) picks one value at every z (even if subgradients can be many)
• This result says that subgradient functions are monotone

16

Summary of the Lemmas

We will denote the set of subgradients of g at x ∈ I as ∂g(x)

1 First lemma says ∂g(x) = {g′(x)}, ∀x ∈ I′

2 Second lemma says that ∂g(x) ̸= ∅, ∀x ∈ I

Lemma

Let g : I → R be a convex function. Let ϕ(z) ∈ ∂g(z), ∀z ∈ I. Then for all x, y ∈ I such that x > y, we
have ϕ(x) ⩾ ϕ(y).

• ϕ(z) picks one value at every z (even if subgradients can be many)
• This result says that subgradient functions are monotone

16

Summary of the Lemmas

We will denote the set of subgradients of g at x ∈ I as ∂g(x)

1 First lemma says ∂g(x) = {g′(x)}, ∀x ∈ I′

2 Second lemma says that ∂g(x) ̸= ∅, ∀x ∈ I

Lemma

Let g : I → R be a convex function. Let ϕ(z) ∈ ∂g(z), ∀z ∈ I. Then for all x, y ∈ I such that x > y, we
have ϕ(x) ⩾ ϕ(y).

• ϕ(z) picks one value at every z (even if subgradients can be many)
• This result says that subgradient functions are monotone

16

Summary of the Lemmas

We will denote the set of subgradients of g at x ∈ I as ∂g(x)

1 First lemma says ∂g(x) = {g′(x)}, ∀x ∈ I′

2 Second lemma says that ∂g(x) ̸= ∅, ∀x ∈ I

Lemma

Let g : I → R be a convex function. Let ϕ(z) ∈ ∂g(z), ∀z ∈ I. Then for all x, y ∈ I such that x > y, we
have ϕ(x) ⩾ ϕ(y).

• ϕ(z) picks one value at every z (even if subgradients can be many)

• This result says that subgradient functions are monotone

16

Summary of the Lemmas

We will denote the set of subgradients of g at x ∈ I as ∂g(x)

1 First lemma says ∂g(x) = {g′(x)}, ∀x ∈ I′

2 Second lemma says that ∂g(x) ̸= ∅, ∀x ∈ I

Lemma

Let g : I → R be a convex function. Let ϕ(z) ∈ ∂g(z), ∀z ∈ I. Then for all x, y ∈ I such that x > y, we
have ϕ(x) ⩾ ϕ(y).

• ϕ(z) picks one value at every z (even if subgradients can be many)
• This result says that subgradient functions are monotone

17

Summary of the Lemmas (contd.)

Lemma

Let g : I → R be a convex function. Then for any x, y ∈ I

g(x) = g(y) +
∫ x

y
ϕ(z)dz

where ϕ : I → R is such that ϕ(z) ∈ ∂g(z) ∀z ∈ I

18

Contents

▶ Affine Maximizers

▶ Single Object Allocation

▶ Myerson’s Lemma

▶ Illustration of Myerson’s Lemma

▶ Optimal Mechanism Design

19

Monotonicity and Myerson’s Lemma

Definition

An allocation rule is non-decreasing if for every agent i ∈ N and t−i ∈ T−i we have
fi(ti, t−i) ⩾ fi(si, t−i), ∀si, ti ∈ Ti, ti > si.

i.e., holding other agents’ types fixed, the probability of allocation never decreases with valuation

Theorem (Myerson 1981)

Suppose Ti = [0, bi], ∀i ∈ N, and the valuations are in the product form. An allocation rule f : T → ∆A
and a payment rule (p1, p2, . . . , pn) are DSIC iff

• f is non-decreasing, and
• payments are given by

pi(ti, t−i) = pi(0, t−i) + tifi(ti, t−i)−
∫ ti

0
fi(x, t−i) dx, ∀ti ∈ Ti, ∀t−i ∈ T−i, ∀i ∈ N

19

Monotonicity and Myerson’s Lemma

Definition

An allocation rule is non-decreasing if for every agent i ∈ N and t−i ∈ T−i we have
fi(ti, t−i) ⩾ fi(si, t−i), ∀si, ti ∈ Ti, ti > si.

i.e., holding other agents’ types fixed, the probability of allocation never decreases with valuation

Theorem (Myerson 1981)

Suppose Ti = [0, bi], ∀i ∈ N, and the valuations are in the product form. An allocation rule f : T → ∆A
and a payment rule (p1, p2, . . . , pn) are DSIC iff

• f is non-decreasing, and
• payments are given by

pi(ti, t−i) = pi(0, t−i) + tifi(ti, t−i)−
∫ ti

0
fi(x, t−i) dx, ∀ti ∈ Ti, ∀t−i ∈ T−i, ∀i ∈ N

19

Monotonicity and Myerson’s Lemma

Definition

An allocation rule is non-decreasing if for every agent i ∈ N and t−i ∈ T−i we have
fi(ti, t−i) ⩾ fi(si, t−i), ∀si, ti ∈ Ti, ti > si.

i.e., holding other agents’ types fixed, the probability of allocation never decreases with valuation

Theorem (Myerson 1981)

Suppose Ti = [0, bi], ∀i ∈ N, and the valuations are in the product form. An allocation rule f : T → ∆A
and a payment rule (p1, p2, . . . , pn) are DSIC iff

• f is non-decreasing, and
• payments are given by

pi(ti, t−i) = pi(0, t−i) + tifi(ti, t−i)−
∫ ti

0
fi(x, t−i) dx, ∀ti ∈ Ti, ∀t−i ∈ T−i, ∀i ∈ N

19

Monotonicity and Myerson’s Lemma

Definition

An allocation rule is non-decreasing if for every agent i ∈ N and t−i ∈ T−i we have
fi(ti, t−i) ⩾ fi(si, t−i), ∀si, ti ∈ Ti, ti > si.

i.e., holding other agents’ types fixed, the probability of allocation never decreases with valuation

Theorem (Myerson 1981)

Suppose Ti = [0, bi], ∀i ∈ N, and the valuations are in the product form. An allocation rule f : T → ∆A
and a payment rule (p1, p2, . . . , pn) are DSIC iff

• f is non-decreasing, and

• payments are given by

pi(ti, t−i) = pi(0, t−i) + tifi(ti, t−i)−
∫ ti

0
fi(x, t−i) dx, ∀ti ∈ Ti, ∀t−i ∈ T−i, ∀i ∈ N

19

Monotonicity and Myerson’s Lemma

Definition

An allocation rule is non-decreasing if for every agent i ∈ N and t−i ∈ T−i we have
fi(ti, t−i) ⩾ fi(si, t−i), ∀si, ti ∈ Ti, ti > si.

i.e., holding other agents’ types fixed, the probability of allocation never decreases with valuation

Theorem (Myerson 1981)

Suppose Ti = [0, bi], ∀i ∈ N, and the valuations are in the product form. An allocation rule f : T → ∆A
and a payment rule (p1, p2, . . . , pn) are DSIC iff

• f is non-decreasing, and
• payments are given by

pi(ti, t−i) = pi(0, t−i) + tifi(ti, t−i)−
∫ ti

0
fi(x, t−i) dx, ∀ti ∈ Ti, ∀t−i ∈ T−i, ∀i ∈ N

20

Proof of Myerson’s Lemma

Remark: Difference with Roberts’ theorem

Roberts’ result gives a functional form, while Myerson’s result is a more implicit property.
Sometimes functional forms help answering questions in a more direct manner.

Proof: Forward direction

• Given (f , p) is DSIC
• Utility of agent i at types ti and si respectively:

ui(ti, t−i) = tifi(ti, t−i)− pi(ti, t−i), and ui(si, t−i) = sifi(si, t−i)− pi(si, t−i)

• Since (f , p) is DSIC, we have

ui(ti, t−i) = tifi(ti, t−i)− pi(ti, t−i) ⩾ tifi(si, t−i)− pi(si, t−i)

= sifi(si, t−i) + (ti − si)fi(si, t−i)− pi(si, t−i)

= ui(si, t−i) + (ti − si)fi(si, t−i)

20

Proof of Myerson’s Lemma

Remark: Difference with Roberts’ theorem

Roberts’ result gives a functional form, while Myerson’s result is a more implicit property.
Sometimes functional forms help answering questions in a more direct manner.

Proof: Forward direction

• Given (f , p) is DSIC

• Utility of agent i at types ti and si respectively:

ui(ti, t−i) = tifi(ti, t−i)− pi(ti, t−i), and ui(si, t−i) = sifi(si, t−i)− pi(si, t−i)

• Since (f , p) is DSIC, we have

ui(ti, t−i) = tifi(ti, t−i)− pi(ti, t−i) ⩾ tifi(si, t−i)− pi(si, t−i)

= sifi(si, t−i) + (ti − si)fi(si, t−i)− pi(si, t−i)

= ui(si, t−i) + (ti − si)fi(si, t−i)

20

Proof of Myerson’s Lemma

Remark: Difference with Roberts’ theorem

Roberts’ result gives a functional form, while Myerson’s result is a more implicit property.
Sometimes functional forms help answering questions in a more direct manner.

Proof: Forward direction

• Given (f , p) is DSIC
• Utility of agent i at types ti and si respectively:

ui(ti, t−i) = tifi(ti, t−i)− pi(ti, t−i), and ui(si, t−i) = sifi(si, t−i)− pi(si, t−i)

• Since (f , p) is DSIC, we have

ui(ti, t−i) = tifi(ti, t−i)− pi(ti, t−i) ⩾ tifi(si, t−i)− pi(si, t−i)

= sifi(si, t−i) + (ti − si)fi(si, t−i)− pi(si, t−i)

= ui(si, t−i) + (ti − si)fi(si, t−i)

20

Proof of Myerson’s Lemma

Remark: Difference with Roberts’ theorem

Roberts’ result gives a functional form, while Myerson’s result is a more implicit property.
Sometimes functional forms help answering questions in a more direct manner.

Proof: Forward direction

• Given (f , p) is DSIC
• Utility of agent i at types ti and si respectively:

ui(ti, t−i) = tifi(ti, t−i)− pi(ti, t−i), and ui(si, t−i) = sifi(si, t−i)− pi(si, t−i)

• Since (f , p) is DSIC, we have

ui(ti, t−i) = tifi(ti, t−i)− pi(ti, t−i) ⩾ tifi(si, t−i)− pi(si, t−i)

= sifi(si, t−i) + (ti − si)fi(si, t−i)− pi(si, t−i)

= ui(si, t−i) + (ti − si)fi(si, t−i)

21

Proof of Myerson’s Lemma (contd.)

Proof: Forward direction

• We have, ui(ti, t−i) ⩾ ui(si, t−i) + (ti − si)fi(si, t−i)

• Fixing t−i, define g(ti) = ui(ti, t−i), ϕ(ti) = fi(ti, t−i)

• Hence, the above inequality can be written as

g(ti) ⩾ g(si) + ϕ(si)(ti − si)

• The above implies ϕ(si) is a sub-gradient of g at si, if g is convex
• Need to show that g is convex
• Pick xi, zi ∈ Ti and define yi = λxi + (1 − λ)zi, where λ ∈ [0, 1]
• DSIC implies

g(xi) ⩾ g(yi) + ϕ(yi)(xi − yi) and g(zi) ⩾ g(yi) + ϕ(yi)(zi − yi)

21

Proof of Myerson’s Lemma (contd.)

Proof: Forward direction

• We have, ui(ti, t−i) ⩾ ui(si, t−i) + (ti − si)fi(si, t−i)

• Fixing t−i, define g(ti) = ui(ti, t−i), ϕ(ti) = fi(ti, t−i)

• Hence, the above inequality can be written as

g(ti) ⩾ g(si) + ϕ(si)(ti − si)

• The above implies ϕ(si) is a sub-gradient of g at si, if g is convex
• Need to show that g is convex
• Pick xi, zi ∈ Ti and define yi = λxi + (1 − λ)zi, where λ ∈ [0, 1]
• DSIC implies

g(xi) ⩾ g(yi) + ϕ(yi)(xi − yi) and g(zi) ⩾ g(yi) + ϕ(yi)(zi − yi)

21

Proof of Myerson’s Lemma (contd.)

Proof: Forward direction

• We have, ui(ti, t−i) ⩾ ui(si, t−i) + (ti − si)fi(si, t−i)

• Fixing t−i, define g(ti) = ui(ti, t−i), ϕ(ti) = fi(ti, t−i)

• Hence, the above inequality can be written as

g(ti) ⩾ g(si) + ϕ(si)(ti − si)

• The above implies ϕ(si) is a sub-gradient of g at si, if g is convex
• Need to show that g is convex
• Pick xi, zi ∈ Ti and define yi = λxi + (1 − λ)zi, where λ ∈ [0, 1]
• DSIC implies

g(xi) ⩾ g(yi) + ϕ(yi)(xi − yi) and g(zi) ⩾ g(yi) + ϕ(yi)(zi − yi)

21

Proof of Myerson’s Lemma (contd.)

Proof: Forward direction

• We have, ui(ti, t−i) ⩾ ui(si, t−i) + (ti − si)fi(si, t−i)

• Fixing t−i, define g(ti) = ui(ti, t−i), ϕ(ti) = fi(ti, t−i)

• Hence, the above inequality can be written as

g(ti) ⩾ g(si) + ϕ(si)(ti − si)

• The above implies ϕ(si) is a sub-gradient of g at si, if g is convex

• Need to show that g is convex
• Pick xi, zi ∈ Ti and define yi = λxi + (1 − λ)zi, where λ ∈ [0, 1]
• DSIC implies

g(xi) ⩾ g(yi) + ϕ(yi)(xi − yi) and g(zi) ⩾ g(yi) + ϕ(yi)(zi − yi)

21

Proof of Myerson’s Lemma (contd.)

Proof: Forward direction

• We have, ui(ti, t−i) ⩾ ui(si, t−i) + (ti − si)fi(si, t−i)

• Fixing t−i, define g(ti) = ui(ti, t−i), ϕ(ti) = fi(ti, t−i)

• Hence, the above inequality can be written as

g(ti) ⩾ g(si) + ϕ(si)(ti − si)

• The above implies ϕ(si) is a sub-gradient of g at si, if g is convex
• Need to show that g is convex

• Pick xi, zi ∈ Ti and define yi = λxi + (1 − λ)zi, where λ ∈ [0, 1]
• DSIC implies

g(xi) ⩾ g(yi) + ϕ(yi)(xi − yi) and g(zi) ⩾ g(yi) + ϕ(yi)(zi − yi)

21

Proof of Myerson’s Lemma (contd.)

Proof: Forward direction

• We have, ui(ti, t−i) ⩾ ui(si, t−i) + (ti − si)fi(si, t−i)

• Fixing t−i, define g(ti) = ui(ti, t−i), ϕ(ti) = fi(ti, t−i)

• Hence, the above inequality can be written as

g(ti) ⩾ g(si) + ϕ(si)(ti − si)

• The above implies ϕ(si) is a sub-gradient of g at si, if g is convex
• Need to show that g is convex
• Pick xi, zi ∈ Ti and define yi = λxi + (1 − λ)zi, where λ ∈ [0, 1]

• DSIC implies

g(xi) ⩾ g(yi) + ϕ(yi)(xi − yi) and g(zi) ⩾ g(yi) + ϕ(yi)(zi − yi)

21

Proof of Myerson’s Lemma (contd.)

Proof: Forward direction

• We have, ui(ti, t−i) ⩾ ui(si, t−i) + (ti − si)fi(si, t−i)

• Fixing t−i, define g(ti) = ui(ti, t−i), ϕ(ti) = fi(ti, t−i)

• Hence, the above inequality can be written as

g(ti) ⩾ g(si) + ϕ(si)(ti − si)

• The above implies ϕ(si) is a sub-gradient of g at si, if g is convex
• Need to show that g is convex
• Pick xi, zi ∈ Ti and define yi = λxi + (1 − λ)zi, where λ ∈ [0, 1]
• DSIC implies

g(xi) ⩾ g(yi) + ϕ(yi)(xi − yi) and g(zi) ⩾ g(yi) + ϕ(yi)(zi − yi)

22

Proof of Myerson’s Lemma (contd.)

Proof: Forward direction

g(xi) ⩾ g(yi) + ϕ(yi)(xi − yi) and g(zi) ⩾ g(yi) + ϕ(yi)(zi − yi)

=⇒ λg(xi) + (1 − λ)g(zi) ⩾ g(yi) + ϕ(yi)(λxi + (1 − λ)zi − yi)

=⇒ λg(xi) + (1 − λ)g(zi) ⩾ g(λxi + (1 − λ)zi)

• Thus, g is convex

• Apply lemmas 3 and 4 from our review of convex analysis
• Lemma 3 =⇒ ϕ = fi(., t−i) is non-decreasing =⇒ part 1 proved
• Lemma 4 =⇒

g(ti) = g(0) +
∫ ti

0
ϕ(x)dx =⇒ ui(ti, t−i) = ui(0, t−i) +

∫ ti

0
fi(x, t−i)dx

=⇒ tifi(ti, t−i)− pi(ti, t−i) = −pi(0, t−i) +
∫ ti

0
fi(x, t−i)dx

=⇒ pi(ti, t−i) = pi(0, t−i) + tifi(ti, t−i)−
∫ ti

0
fi(x, t−i)dx =⇒ part 2 proved

22

Proof of Myerson’s Lemma (contd.)

Proof: Forward direction

g(xi) ⩾ g(yi) + ϕ(yi)(xi − yi) and g(zi) ⩾ g(yi) + ϕ(yi)(zi − yi)

=⇒ λg(xi) + (1 − λ)g(zi) ⩾ g(yi) + ϕ(yi)(λxi + (1 − λ)zi − yi)

=⇒ λg(xi) + (1 − λ)g(zi) ⩾ g(λxi + (1 − λ)zi)

• Thus, g is convex
• Apply lemmas 3 and 4 from our review of convex analysis

• Lemma 3 =⇒ ϕ = fi(., t−i) is non-decreasing =⇒ part 1 proved
• Lemma 4 =⇒

g(ti) = g(0) +
∫ ti

0
ϕ(x)dx =⇒ ui(ti, t−i) = ui(0, t−i) +

∫ ti

0
fi(x, t−i)dx

=⇒ tifi(ti, t−i)− pi(ti, t−i) = −pi(0, t−i) +
∫ ti

0
fi(x, t−i)dx

=⇒ pi(ti, t−i) = pi(0, t−i) + tifi(ti, t−i)−
∫ ti

0
fi(x, t−i)dx =⇒ part 2 proved

22

Proof of Myerson’s Lemma (contd.)

Proof: Forward direction

g(xi) ⩾ g(yi) + ϕ(yi)(xi − yi) and g(zi) ⩾ g(yi) + ϕ(yi)(zi − yi)

=⇒ λg(xi) + (1 − λ)g(zi) ⩾ g(yi) + ϕ(yi)(λxi + (1 − λ)zi − yi)

=⇒ λg(xi) + (1 − λ)g(zi) ⩾ g(λxi + (1 − λ)zi)

• Thus, g is convex
• Apply lemmas 3 and 4 from our review of convex analysis
• Lemma 3 =⇒ ϕ = fi(., t−i) is non-decreasing =⇒ part 1 proved

• Lemma 4 =⇒

g(ti) = g(0) +
∫ ti

0
ϕ(x)dx =⇒ ui(ti, t−i) = ui(0, t−i) +

∫ ti

0
fi(x, t−i)dx

=⇒ tifi(ti, t−i)− pi(ti, t−i) = −pi(0, t−i) +
∫ ti

0
fi(x, t−i)dx

=⇒ pi(ti, t−i) = pi(0, t−i) + tifi(ti, t−i)−
∫ ti

0
fi(x, t−i)dx =⇒ part 2 proved

22

Proof of Myerson’s Lemma (contd.)

Proof: Forward direction

g(xi) ⩾ g(yi) + ϕ(yi)(xi − yi) and g(zi) ⩾ g(yi) + ϕ(yi)(zi − yi)

=⇒ λg(xi) + (1 − λ)g(zi) ⩾ g(yi) + ϕ(yi)(λxi + (1 − λ)zi − yi)

=⇒ λg(xi) + (1 − λ)g(zi) ⩾ g(λxi + (1 − λ)zi)

• Thus, g is convex
• Apply lemmas 3 and 4 from our review of convex analysis
• Lemma 3 =⇒ ϕ = fi(., t−i) is non-decreasing =⇒ part 1 proved
• Lemma 4 =⇒

g(ti) = g(0) +
∫ ti

0
ϕ(x)dx =⇒ ui(ti, t−i) = ui(0, t−i) +

∫ ti

0
fi(x, t−i)dx

=⇒ tifi(ti, t−i)− pi(ti, t−i) = −pi(0, t−i) +
∫ ti

0
fi(x, t−i)dx

=⇒ pi(ti, t−i) = pi(0, t−i) + tifi(ti, t−i)−
∫ ti

0
fi(x, t−i)dx =⇒ part 2 proved

23

Proof of Myerson’s Lemma (contd.)

Proof: Reverse direction

• Given f is non-decreasing and the payment formula

• Proof by pictures: assume pi(0, t−i) = 0

Payment

Utility

Figure: Proof by picture 1

Utility

Negative

Figure: Proof by picture 2

Utility

Negative

Figure: Proof by picture 3

23

Proof of Myerson’s Lemma (contd.)

Proof: Reverse direction

• Given f is non-decreasing and the payment formula
• Proof by pictures: assume pi(0, t−i) = 0

Payment

Utility

Figure: Proof by picture 1

Utility

Negative

Figure: Proof by picture 2

Utility

Negative

Figure: Proof by picture 3

23

Proof of Myerson’s Lemma (contd.)

Proof: Reverse direction

• Given f is non-decreasing and the payment formula
• Proof by pictures: assume pi(0, t−i) = 0

Payment

Utility

Figure: Proof by picture 1

Utility

Negative

Figure: Proof by picture 2

Utility

Negative

Figure: Proof by picture 3

23

Proof of Myerson’s Lemma (contd.)

Proof: Reverse direction

• Given f is non-decreasing and the payment formula
• Proof by pictures: assume pi(0, t−i) = 0

Payment

Utility

Figure: Proof by picture 1

Utility

Negative

Figure: Proof by picture 2

Utility

Negative

Figure: Proof by picture 3

23

Proof of Myerson’s Lemma (contd.)

Proof: Reverse direction

• Given f is non-decreasing and the payment formula
• Proof by pictures: assume pi(0, t−i) = 0

Payment

Utility

Figure: Proof by picture 1

Utility

Negative

Figure: Proof by picture 2

Utility

Negative

Figure: Proof by picture 3

23

Proof of Myerson’s Lemma (contd.)

Proof: Reverse direction

• Given f is non-decreasing and the payment formula
• Proof by pictures: assume pi(0, t−i) = 0

Payment

Utility

Figure: Proof by picture 1

Utility

Negative

Figure: Proof by picture 2

Utility

Negative

Figure: Proof by picture 3

24

Proof of Myerson’s Lemma (contd.)

Proof: Reverse direction

• Given f is non-decreasing and the payment formula

• Proof by pictures: assume pi(0, t−i) = 0

[tifi(ti, t−i)− pi(ti, t−i)]− [tifi(si, t−i)− pi(si, t−i)] = (si − ti)fi(si, t−i) +
∫ ti

si

fi(x, t−i) dx ⩾ 0

Corollary

An allocation rule in a single object allocation setting is implementable in dominant strategies iff it is
non-decreasing.

24

Proof of Myerson’s Lemma (contd.)

Proof: Reverse direction

• Given f is non-decreasing and the payment formula
• Proof by pictures: assume pi(0, t−i) = 0

[tifi(ti, t−i)− pi(ti, t−i)]− [tifi(si, t−i)− pi(si, t−i)] = (si − ti)fi(si, t−i) +
∫ ti

si

fi(x, t−i) dx ⩾ 0

Corollary

An allocation rule in a single object allocation setting is implementable in dominant strategies iff it is
non-decreasing.

24

Proof of Myerson’s Lemma (contd.)

Proof: Reverse direction

• Given f is non-decreasing and the payment formula
• Proof by pictures: assume pi(0, t−i) = 0

[tifi(ti, t−i)− pi(ti, t−i)]− [tifi(si, t−i)− pi(si, t−i)] = (si − ti)fi(si, t−i) +
∫ ti

si

fi(x, t−i) dx ⩾ 0

Corollary

An allocation rule in a single object allocation setting is implementable in dominant strategies iff it is
non-decreasing.

24

Proof of Myerson’s Lemma (contd.)

Proof: Reverse direction

• Given f is non-decreasing and the payment formula
• Proof by pictures: assume pi(0, t−i) = 0

[tifi(ti, t−i)− pi(ti, t−i)]− [tifi(si, t−i)− pi(si, t−i)] = (si − ti)fi(si, t−i) +
∫ ti

si

fi(x, t−i) dx ⩾ 0

Corollary

An allocation rule in a single object allocation setting is implementable in dominant strategies iff it is
non-decreasing.

25

Contents

▶ Affine Maximizers

▶ Single Object Allocation

▶ Myerson’s Lemma

▶ Illustration of Myerson’s Lemma

▶ Optimal Mechanism Design

26

Examples of single object allocation

1. Constant allocation rule - non-decreasing, payment = constant (e.g. 0)

2. Dictatorial - give the object only to the dicatator - non decreasing = constant / zero
3. Second price auction

pi(0, t−i) + tifi(ti, t−i)−
∫ ti

0
fi(x, ti)dx

Allocation for second price auction

26

Examples of single object allocation

1. Constant allocation rule - non-decreasing, payment = constant (e.g. 0)
2. Dictatorial - give the object only to the dicatator - non decreasing = constant / zero

3. Second price auction

pi(0, t−i) + tifi(ti, t−i)−
∫ ti

0
fi(x, ti)dx

Allocation for second price auction

26

Examples of single object allocation

1. Constant allocation rule - non-decreasing, payment = constant (e.g. 0)
2. Dictatorial - give the object only to the dicatator - non decreasing = constant / zero
3. Second price auction

pi(0, t−i) + tifi(ti, t−i)−
∫ ti

0
fi(x, ti)dx

Allocation for second price auction

27

Examples of single object allocation

4. Efficient allocation with a reserve price is also non decreasing. If the highest value is below a
reserve price r, nobody gets the object. Otherwise, the item goese to the highest bidder.
Allocated to i if vi > max{t(2)−i , r}. Payment = {t(2)−i , r}

5. Not so common allocation rule: N = {1, 2}, A = {a0, a1, a2} Given a type profile t = (t1, t2),
the seller computes u(t) = max{2, t2

1, t3
2} - select a0, a1, a2 depending on which of the three

expressions is the maxima - break ties in favour of 0 > 1 > 2

Player 1 gets the object if t1 >
√

max{2, t3
2}

Player 2 gets the object if t2 > 3
√

max{2, t2
1}

27

Examples of single object allocation

4. Efficient allocation with a reserve price is also non decreasing. If the highest value is below a
reserve price r, nobody gets the object. Otherwise, the item goese to the highest bidder.
Allocated to i if vi > max{t(2)−i , r}. Payment = {t(2)−i , r}

5. Not so common allocation rule: N = {1, 2}, A = {a0, a1, a2} Given a type profile t = (t1, t2),
the seller computes u(t) = max{2, t2

1, t3
2} - select a0, a1, a2 depending on which of the three

expressions is the maxima - break ties in favour of 0 > 1 > 2

Player 1 gets the object if t1 >
√

max{2, t3
2}

Player 2 gets the object if t2 > 3
√

max{2, t2
1}

28

Individual Rationality

Definition

A mechanism (f , p) is ex-post individual rational if

tifi(ti, t−i)− pi(ti, t−i) ⩾ 0, ∀ti ∈ Ti, t−i ∈ T−i, ∀i ∈ N

Ex-post: Even after all agents have revealed their types, participating is weakly preferred.

28

Individual Rationality

Definition

A mechanism (f , p) is ex-post individual rational if

tifi(ti, t−i)− pi(ti, t−i) ⩾ 0, ∀ti ∈ Ti, t−i ∈ T−i, ∀i ∈ N

Ex-post: Even after all agents have revealed their types, participating is weakly preferred.

29

Implications of Individual Rationality

Lemma

In the single object allocation setting, consider a DSIC mechanism (f , p)
1 It is IR iff ∀i ∈ N and ∀t−i ∈ T−i, pi(0, t−i) ⩽ 0
2 It is IR and satisfies no subsidy, i.e., pi(ti, t−i) ⩾ 0, ∀ti ∈ Ti, t−i ∈ T−i, ∀i ∈ N iff

∀i ∈ N, t−i ∈ T−i, pi(0, t−i) = 0

Proof

1 Suppose (f , p) is IR, then 0 − pi(0, t−i) ⩾ 0, hence pi(0, t−i) ⩽ 0
Conversely, if pi(0, t−i) ⩽ 0, then the payoff of i is

tifi(ti, t−i)− pi(ti, t−i) = tifi(ti, t−i)− pi(0, t−i)− tifi(ti, t−i) +
∫ ti

0
fi(x, t−i)dx ⩾ 0

2 IR =⇒ pi(0, t−i) ⩽ 0, if pi(ti, t−i) ⩾ 0 ∀ti =⇒ pi(0, t−i) = 0
Clearly if pi(0, t−i) = 0 =⇒ (f , p) is IR and no-subsidy.

29

Implications of Individual Rationality

Lemma

In the single object allocation setting, consider a DSIC mechanism (f , p)
1 It is IR iff ∀i ∈ N and ∀t−i ∈ T−i, pi(0, t−i) ⩽ 0
2 It is IR and satisfies no subsidy, i.e., pi(ti, t−i) ⩾ 0, ∀ti ∈ Ti, t−i ∈ T−i, ∀i ∈ N iff

∀i ∈ N, t−i ∈ T−i, pi(0, t−i) = 0

Proof

1 Suppose (f , p) is IR, then 0 − pi(0, t−i) ⩾ 0, hence pi(0, t−i) ⩽ 0

Conversely, if pi(0, t−i) ⩽ 0, then the payoff of i is

tifi(ti, t−i)− pi(ti, t−i) = tifi(ti, t−i)− pi(0, t−i)− tifi(ti, t−i) +
∫ ti

0
fi(x, t−i)dx ⩾ 0

2 IR =⇒ pi(0, t−i) ⩽ 0, if pi(ti, t−i) ⩾ 0 ∀ti =⇒ pi(0, t−i) = 0
Clearly if pi(0, t−i) = 0 =⇒ (f , p) is IR and no-subsidy.

29

Implications of Individual Rationality

Lemma

In the single object allocation setting, consider a DSIC mechanism (f , p)
1 It is IR iff ∀i ∈ N and ∀t−i ∈ T−i, pi(0, t−i) ⩽ 0
2 It is IR and satisfies no subsidy, i.e., pi(ti, t−i) ⩾ 0, ∀ti ∈ Ti, t−i ∈ T−i, ∀i ∈ N iff

∀i ∈ N, t−i ∈ T−i, pi(0, t−i) = 0

Proof

1 Suppose (f , p) is IR, then 0 − pi(0, t−i) ⩾ 0, hence pi(0, t−i) ⩽ 0
Conversely, if pi(0, t−i) ⩽ 0, then the payoff of i is

tifi(ti, t−i)− pi(ti, t−i) = tifi(ti, t−i)− pi(0, t−i)− tifi(ti, t−i) +
∫ ti

0
fi(x, t−i)dx ⩾ 0

2 IR =⇒ pi(0, t−i) ⩽ 0, if pi(ti, t−i) ⩾ 0 ∀ti =⇒ pi(0, t−i) = 0
Clearly if pi(0, t−i) = 0 =⇒ (f , p) is IR and no-subsidy.

29

Implications of Individual Rationality

Lemma

In the single object allocation setting, consider a DSIC mechanism (f , p)
1 It is IR iff ∀i ∈ N and ∀t−i ∈ T−i, pi(0, t−i) ⩽ 0
2 It is IR and satisfies no subsidy, i.e., pi(ti, t−i) ⩾ 0, ∀ti ∈ Ti, t−i ∈ T−i, ∀i ∈ N iff

∀i ∈ N, t−i ∈ T−i, pi(0, t−i) = 0

Proof

1 Suppose (f , p) is IR, then 0 − pi(0, t−i) ⩾ 0, hence pi(0, t−i) ⩽ 0
Conversely, if pi(0, t−i) ⩽ 0, then the payoff of i is

tifi(ti, t−i)− pi(ti, t−i) = tifi(ti, t−i)− pi(0, t−i)− tifi(ti, t−i) +
∫ ti

0
fi(x, t−i)dx ⩾ 0

2 IR =⇒ pi(0, t−i) ⩽ 0, if pi(ti, t−i) ⩾ 0 ∀ti =⇒ pi(0, t−i) = 0

Clearly if pi(0, t−i) = 0 =⇒ (f , p) is IR and no-subsidy.

29

Implications of Individual Rationality

Lemma

In the single object allocation setting, consider a DSIC mechanism (f , p)
1 It is IR iff ∀i ∈ N and ∀t−i ∈ T−i, pi(0, t−i) ⩽ 0
2 It is IR and satisfies no subsidy, i.e., pi(ti, t−i) ⩾ 0, ∀ti ∈ Ti, t−i ∈ T−i, ∀i ∈ N iff

∀i ∈ N, t−i ∈ T−i, pi(0, t−i) = 0

Proof

1 Suppose (f , p) is IR, then 0 − pi(0, t−i) ⩾ 0, hence pi(0, t−i) ⩽ 0
Conversely, if pi(0, t−i) ⩽ 0, then the payoff of i is

tifi(ti, t−i)− pi(ti, t−i) = tifi(ti, t−i)− pi(0, t−i)− tifi(ti, t−i) +
∫ ti

0
fi(x, t−i)dx ⩾ 0

2 IR =⇒ pi(0, t−i) ⩽ 0, if pi(ti, t−i) ⩾ 0 ∀ti =⇒ pi(0, t−i) = 0
Clearly if pi(0, t−i) = 0 =⇒ (f , p) is IR and no-subsidy.

30

Non-Vickrey Auctions: Example 1

The object goes to the highest bidder, but the payment is such that everyone is compensated
some amount.

1 Highest and second highest bidders are compensated 1
n of the third highest bid.

p1(0, t−i) = p2(0, t−2) = − 1
n t3

2 Everyone else receives 1
n of the second highest bid

p1(0, t−i) = − 1
n second highest in {tj, j ̸= i}

WLOG t1 > t2 > . . . > tn

• 1 pays = − 1
n t3 + t1 −

∫ t1
0 f1(x, t−1)dx = − 1

n t3 + t1 − (t1 − t2) = − 1
n t3 + t2

• 2 pays = − 1
n t3, all others = − 1

n t2

• Total payment = − 1
n t3 + t2 − 1

n t3 − n−2
n t2 = 2

n (t2 − t3), which tends to 0 for large n.

Deterministic mechanism that redistributes the money

30

Non-Vickrey Auctions: Example 1

The object goes to the highest bidder, but the payment is such that everyone is compensated
some amount.

1 Highest and second highest bidders are compensated 1
n of the third highest bid.

p1(0, t−i) = p2(0, t−2) = − 1
n t3

2 Everyone else receives 1
n of the second highest bid

p1(0, t−i) = − 1
n second highest in {tj, j ̸= i}

WLOG t1 > t2 > . . . > tn

• 1 pays = − 1
n t3 + t1 −

∫ t1
0 f1(x, t−1)dx = − 1

n t3 + t1 − (t1 − t2) = − 1
n t3 + t2

• 2 pays = − 1
n t3, all others = − 1

n t2

• Total payment = − 1
n t3 + t2 − 1

n t3 − n−2
n t2 = 2

n (t2 − t3), which tends to 0 for large n.

Deterministic mechanism that redistributes the money

30

Non-Vickrey Auctions: Example 1

The object goes to the highest bidder, but the payment is such that everyone is compensated
some amount.

1 Highest and second highest bidders are compensated 1
n of the third highest bid.

p1(0, t−i) = p2(0, t−2) = − 1
n t3

2 Everyone else receives 1
n of the second highest bid

p1(0, t−i) = − 1
n second highest in {tj, j ̸= i}

WLOG t1 > t2 > . . . > tn

• 1 pays = − 1
n t3 + t1 −

∫ t1
0 f1(x, t−1)dx = − 1

n t3 + t1 − (t1 − t2) = − 1
n t3 + t2

• 2 pays = − 1
n t3, all others = − 1

n t2

• Total payment = − 1
n t3 + t2 − 1

n t3 − n−2
n t2 = 2

n (t2 − t3), which tends to 0 for large n.

Deterministic mechanism that redistributes the money

30

Non-Vickrey Auctions: Example 1

The object goes to the highest bidder, but the payment is such that everyone is compensated
some amount.

1 Highest and second highest bidders are compensated 1
n of the third highest bid.

p1(0, t−i) = p2(0, t−2) = − 1
n t3

2 Everyone else receives 1
n of the second highest bid

p1(0, t−i) = − 1
n second highest in {tj, j ̸= i}

WLOG t1 > t2 > . . . > tn

• 1 pays = − 1
n t3 + t1 −

∫ t1
0 f1(x, t−1)dx = − 1

n t3 + t1 − (t1 − t2) = − 1
n t3 + t2

• 2 pays = − 1
n t3, all others = − 1

n t2

• Total payment = − 1
n t3 + t2 − 1

n t3 − n−2
n t2 = 2

n (t2 − t3), which tends to 0 for large n.

Deterministic mechanism that redistributes the money

30

Non-Vickrey Auctions: Example 1

The object goes to the highest bidder, but the payment is such that everyone is compensated
some amount.

1 Highest and second highest bidders are compensated 1
n of the third highest bid.

p1(0, t−i) = p2(0, t−2) = − 1
n t3

2 Everyone else receives 1
n of the second highest bid

p1(0, t−i) = − 1
n second highest in {tj, j ̸= i}

WLOG t1 > t2 > . . . > tn

• 1 pays = − 1
n t3 + t1 −

∫ t1
0 f1(x, t−1)dx = − 1

n t3 + t1 − (t1 − t2) = − 1
n t3 + t2

• 2 pays = − 1
n t3, all others = − 1

n t2

• Total payment = − 1
n t3 + t2 − 1

n t3 − n−2
n t2 = 2

n (t2 − t3), which tends to 0 for large n.

Deterministic mechanism that redistributes the money

30

Non-Vickrey Auctions: Example 1

The object goes to the highest bidder, but the payment is such that everyone is compensated
some amount.

1 Highest and second highest bidders are compensated 1
n of the third highest bid.

p1(0, t−i) = p2(0, t−2) = − 1
n t3

2 Everyone else receives 1
n of the second highest bid

p1(0, t−i) = − 1
n second highest in {tj, j ̸= i}

WLOG t1 > t2 > . . . > tn

• 1 pays = − 1
n t3 + t1 −

∫ t1
0 f1(x, t−1)dx = − 1

n t3 + t1 − (t1 − t2) = − 1
n t3 + t2

• 2 pays = − 1
n t3, all others = − 1

n t2

• Total payment = − 1
n t3 + t2 − 1

n t3 − n−2
n t2 = 2

n (t2 − t3), which tends to 0 for large n.

Deterministic mechanism that redistributes the money

31

Non-Vickrey Auctions: Example 2

• Allocate the object w.p. (1 − 1
n) to the highest bidder and w.p. 1

n to the second highest bidder.

• pi(0, t−i) = − 1
n second highest bid in {tj, j ̸= i}

• WLOG t1 > t2 > . . . > tn

• 1 pays = − 1
n t3 + (1 − 1

n)t1 − 1
n (t2 − t3)− (1 − 1

n)(t1 − t2) = (1 − 2
n)t2

• 2 pays = − 1
n t3 +

1
n t2 − 1

n (t2 − t3) = 0

• All others = − 1
n t2.

• Together = 0

Randomized mechanism that redistributes the money

31

Non-Vickrey Auctions: Example 2

• Allocate the object w.p. (1 − 1
n) to the highest bidder and w.p. 1

n to the second highest bidder.

• pi(0, t−i) = − 1
n second highest bid in {tj, j ̸= i}

• WLOG t1 > t2 > . . . > tn

• 1 pays = − 1
n t3 + (1 − 1

n)t1 − 1
n (t2 − t3)− (1 − 1

n)(t1 − t2) = (1 − 2
n)t2

• 2 pays = − 1
n t3 +

1
n t2 − 1

n (t2 − t3) = 0

• All others = − 1
n t2.

• Together = 0

Randomized mechanism that redistributes the money

31

Non-Vickrey Auctions: Example 2

• Allocate the object w.p. (1 − 1
n) to the highest bidder and w.p. 1

n to the second highest bidder.

• pi(0, t−i) = − 1
n second highest bid in {tj, j ̸= i}

• WLOG t1 > t2 > . . . > tn

• 1 pays = − 1
n t3 + (1 − 1

n)t1 − 1
n (t2 − t3)− (1 − 1

n)(t1 − t2) = (1 − 2
n)t2

• 2 pays = − 1
n t3 +

1
n t2 − 1

n (t2 − t3) = 0

• All others = − 1
n t2.

• Together = 0

Randomized mechanism that redistributes the money

31

Non-Vickrey Auctions: Example 2

• Allocate the object w.p. (1 − 1
n) to the highest bidder and w.p. 1

n to the second highest bidder.

• pi(0, t−i) = − 1
n second highest bid in {tj, j ̸= i}

• WLOG t1 > t2 > . . . > tn

• 1 pays = − 1
n t3 + (1 − 1

n)t1 − 1
n (t2 − t3)− (1 − 1

n)(t1 − t2) = (1 − 2
n)t2

• 2 pays = − 1
n t3 +

1
n t2 − 1

n (t2 − t3) = 0

• All others = − 1
n t2.

• Together = 0

Randomized mechanism that redistributes the money

31

Non-Vickrey Auctions: Example 2

• Allocate the object w.p. (1 − 1
n) to the highest bidder and w.p. 1

n to the second highest bidder.

• pi(0, t−i) = − 1
n second highest bid in {tj, j ̸= i}

• WLOG t1 > t2 > . . . > tn

• 1 pays = − 1
n t3 + (1 − 1

n)t1 − 1
n (t2 − t3)− (1 − 1

n)(t1 − t2) = (1 − 2
n)t2

• 2 pays = − 1
n t3 +

1
n t2 − 1

n (t2 − t3) = 0

• All others = − 1
n t2.

• Together = 0

Randomized mechanism that redistributes the money

31

Non-Vickrey Auctions: Example 2

• Allocate the object w.p. (1 − 1
n) to the highest bidder and w.p. 1

n to the second highest bidder.

• pi(0, t−i) = − 1
n second highest bid in {tj, j ̸= i}

• WLOG t1 > t2 > . . . > tn

• 1 pays = − 1
n t3 + (1 − 1

n)t1 − 1
n (t2 − t3)− (1 − 1

n)(t1 − t2) = (1 − 2
n)t2

• 2 pays = − 1
n t3 +

1
n t2 − 1

n (t2 − t3) = 0

• All others = − 1
n t2.

• Together = 0

Randomized mechanism that redistributes the money

31

Non-Vickrey Auctions: Example 2

• Allocate the object w.p. (1 − 1
n) to the highest bidder and w.p. 1

n to the second highest bidder.

• pi(0, t−i) = − 1
n second highest bid in {tj, j ̸= i}

• WLOG t1 > t2 > . . . > tn

• 1 pays = − 1
n t3 + (1 − 1

n)t1 − 1
n (t2 − t3)− (1 − 1

n)(t1 − t2) = (1 − 2
n)t2

• 2 pays = − 1
n t3 +

1
n t2 − 1

n (t2 − t3) = 0

• All others = − 1
n t2.

• Together = 0

Randomized mechanism that redistributes the money

31

Non-Vickrey Auctions: Example 2

• Allocate the object w.p. (1 − 1
n) to the highest bidder and w.p. 1

n to the second highest bidder.

• pi(0, t−i) = − 1
n second highest bid in {tj, j ̸= i}

• WLOG t1 > t2 > . . . > tn

• 1 pays = − 1
n t3 + (1 − 1

n)t1 − 1
n (t2 − t3)− (1 − 1

n)(t1 − t2) = (1 − 2
n)t2

• 2 pays = − 1
n t3 +

1
n t2 − 1

n (t2 − t3) = 0

• All others = − 1
n t2.

• Together = 0

Randomized mechanism that redistributes the money

31

Non-Vickrey Auctions: Example 2

• Allocate the object w.p. (1 − 1
n) to the highest bidder and w.p. 1

n to the second highest bidder.

• pi(0, t−i) = − 1
n second highest bid in {tj, j ̸= i}

• WLOG t1 > t2 > . . . > tn

• 1 pays = − 1
n t3 + (1 − 1

n)t1 − 1
n (t2 − t3)− (1 − 1

n)(t1 − t2) = (1 − 2
n)t2

• 2 pays = − 1
n t3 +

1
n t2 − 1

n (t2 − t3) = 0

• All others = − 1
n t2.

• Together = 0

Randomized mechanism that redistributes the money

32

Contents

▶ Affine Maximizers

▶ Single Object Allocation

▶ Myerson’s Lemma

▶ Illustration of Myerson’s Lemma

▶ Optimal Mechanism Design

33

Revenue Maximization

Question

How to maximize revenue earned by the auctioneer?

Question

Maximize w.r.t. what knowledge of the auctioneer?

Answer

The common prior distribution over types

Accordingly, the notions of incentive compatibility and individual rationality have to change

33

Revenue Maximization

Question

How to maximize revenue earned by the auctioneer?

Question

Maximize w.r.t. what knowledge of the auctioneer?

Answer

The common prior distribution over types

Accordingly, the notions of incentive compatibility and individual rationality have to change

33

Revenue Maximization

Question

How to maximize revenue earned by the auctioneer?

Question

Maximize w.r.t. what knowledge of the auctioneer?

Answer

The common prior distribution over types

Accordingly, the notions of incentive compatibility and individual rationality have to change

33

Revenue Maximization

Question

How to maximize revenue earned by the auctioneer?

Question

Maximize w.r.t. what knowledge of the auctioneer?

Answer

The common prior distribution over types

Accordingly, the notions of incentive compatibility and individual rationality have to change

34

Bayesian setup

Preliminaries

• Ti = [0, bi], Common prior G over T = ×n
i=1Ti, g denotes the density

• G−i(s−i|si) is the conditional distribution over s−i, given i’s type is si

• Similarly, g−i(s−i|si) is derived via Bayes rule from g
• Every mechanism (f , p1, p2, . . . , pn) induces an expected allocation and payment rule (α, π)

αi(si︸︷︷︸
reported

| ti︸︷︷︸
true

) =

∫
s−i∈T−i

fi(si, s−i)︸ ︷︷ ︸
probabilistic allocation

g−i(s−i|ti)︸ ︷︷ ︸
prior on types of others

ds−i expected allocation

πi(si|ti) =
∫

s−i∈T−i

pi(si, s−i)g−i(s−i|ti)ds−i expected payment

where si is the reported type and ti is the true type.

• Expected utility of agent i: ui = tiαi(si|ti)− πi(si|ti)

34

Bayesian setup

Preliminaries

• Ti = [0, bi], Common prior G over T = ×n
i=1Ti, g denotes the density

• G−i(s−i|si) is the conditional distribution over s−i, given i’s type is si

• Similarly, g−i(s−i|si) is derived via Bayes rule from g
• Every mechanism (f , p1, p2, . . . , pn) induces an expected allocation and payment rule (α, π)

αi(si︸︷︷︸
reported

| ti︸︷︷︸
true

) =

∫
s−i∈T−i

fi(si, s−i)︸ ︷︷ ︸
probabilistic allocation

g−i(s−i|ti)︸ ︷︷ ︸
prior on types of others

ds−i expected allocation

πi(si|ti) =
∫

s−i∈T−i

pi(si, s−i)g−i(s−i|ti)ds−i expected payment

where si is the reported type and ti is the true type.

• Expected utility of agent i: ui = tiαi(si|ti)− πi(si|ti)

34

Bayesian setup

Preliminaries

• Ti = [0, bi], Common prior G over T = ×n
i=1Ti, g denotes the density

• G−i(s−i|si) is the conditional distribution over s−i, given i’s type is si

• Similarly, g−i(s−i|si) is derived via Bayes rule from g

• Every mechanism (f , p1, p2, . . . , pn) induces an expected allocation and payment rule (α, π)

αi(si︸︷︷︸
reported

| ti︸︷︷︸
true

) =

∫
s−i∈T−i

fi(si, s−i)︸ ︷︷ ︸
probabilistic allocation

g−i(s−i|ti)︸ ︷︷ ︸
prior on types of others

ds−i expected allocation

πi(si|ti) =
∫

s−i∈T−i

pi(si, s−i)g−i(s−i|ti)ds−i expected payment

where si is the reported type and ti is the true type.

• Expected utility of agent i: ui = tiαi(si|ti)− πi(si|ti)

34

Bayesian setup

Preliminaries

• Ti = [0, bi], Common prior G over T = ×n
i=1Ti, g denotes the density

• G−i(s−i|si) is the conditional distribution over s−i, given i’s type is si

• Similarly, g−i(s−i|si) is derived via Bayes rule from g
• Every mechanism (f , p1, p2, . . . , pn) induces an expected allocation and payment rule (α, π)

αi(si︸︷︷︸
reported

| ti︸︷︷︸
true

) =

∫
s−i∈T−i

fi(si, s−i)︸ ︷︷ ︸
probabilistic allocation

g−i(s−i|ti)︸ ︷︷ ︸
prior on types of others

ds−i expected allocation

πi(si|ti) =
∫

s−i∈T−i

pi(si, s−i)g−i(s−i|ti)ds−i expected payment

where si is the reported type and ti is the true type.

• Expected utility of agent i: ui = tiαi(si|ti)− πi(si|ti)

34

Bayesian setup

Preliminaries

• Ti = [0, bi], Common prior G over T = ×n
i=1Ti, g denotes the density

• G−i(s−i|si) is the conditional distribution over s−i, given i’s type is si

• Similarly, g−i(s−i|si) is derived via Bayes rule from g
• Every mechanism (f , p1, p2, . . . , pn) induces an expected allocation and payment rule (α, π)

αi(si︸︷︷︸
reported

| ti︸︷︷︸
true

) =

∫
s−i∈T−i

fi(si, s−i)︸ ︷︷ ︸
probabilistic allocation

g−i(s−i|ti)︸ ︷︷ ︸
prior on types of others

ds−i expected allocation

πi(si|ti) =
∫

s−i∈T−i

pi(si, s−i)g−i(s−i|ti)ds−i expected payment

where si is the reported type and ti is the true type.

• Expected utility of agent i: ui = tiαi(si|ti)− πi(si|ti)

34

Bayesian setup

Preliminaries

• Ti = [0, bi], Common prior G over T = ×n
i=1Ti, g denotes the density

• G−i(s−i|si) is the conditional distribution over s−i, given i’s type is si

• Similarly, g−i(s−i|si) is derived via Bayes rule from g
• Every mechanism (f , p1, p2, . . . , pn) induces an expected allocation and payment rule (α, π)

αi(si︸︷︷︸
reported

| ti︸︷︷︸
true

) =
∫

s−i∈T−i

fi(si, s−i)︸ ︷︷ ︸
probabilistic allocation

g−i(s−i|ti)︸ ︷︷ ︸
prior on types of others

ds−i

expected allocation

πi(si|ti) =
∫

s−i∈T−i

pi(si, s−i)g−i(s−i|ti)ds−i expected payment

where si is the reported type and ti is the true type.

• Expected utility of agent i: ui = tiαi(si|ti)− πi(si|ti)

34

Bayesian setup

Preliminaries

• Ti = [0, bi], Common prior G over T = ×n
i=1Ti, g denotes the density

• G−i(s−i|si) is the conditional distribution over s−i, given i’s type is si

• Similarly, g−i(s−i|si) is derived via Bayes rule from g
• Every mechanism (f , p1, p2, . . . , pn) induces an expected allocation and payment rule (α, π)

αi(si︸︷︷︸
reported

| ti︸︷︷︸
true

) =
∫

s−i∈T−i

fi(si, s−i)︸ ︷︷ ︸
probabilistic allocation

g−i(s−i|ti)︸ ︷︷ ︸
prior on types of others

ds−i expected allocation

πi(si|ti) =
∫

s−i∈T−i

pi(si, s−i)g−i(s−i|ti)ds−i expected payment

where si is the reported type and ti is the true type.

• Expected utility of agent i: ui = tiαi(si|ti)− πi(si|ti)

34

Bayesian setup

Preliminaries

• Ti = [0, bi], Common prior G over T = ×n
i=1Ti, g denotes the density

• G−i(s−i|si) is the conditional distribution over s−i, given i’s type is si

• Similarly, g−i(s−i|si) is derived via Bayes rule from g
• Every mechanism (f , p1, p2, . . . , pn) induces an expected allocation and payment rule (α, π)

αi(si︸︷︷︸
reported

| ti︸︷︷︸
true

) =
∫

s−i∈T−i

fi(si, s−i)︸ ︷︷ ︸
probabilistic allocation

g−i(s−i|ti)︸ ︷︷ ︸
prior on types of others

ds−i expected allocation

πi(si|ti) =
∫

s−i∈T−i

pi(si, s−i)g−i(s−i|ti)ds−i expected payment

where si is the reported type and ti is the true type.

• Expected utility of agent i: ui = tiαi(si|ti)− πi(si|ti)

34

Bayesian setup

Preliminaries

• Ti = [0, bi], Common prior G over T = ×n
i=1Ti, g denotes the density

• G−i(s−i|si) is the conditional distribution over s−i, given i’s type is si

• Similarly, g−i(s−i|si) is derived via Bayes rule from g
• Every mechanism (f , p1, p2, . . . , pn) induces an expected allocation and payment rule (α, π)

αi(si︸︷︷︸
reported

| ti︸︷︷︸
true

) =
∫

s−i∈T−i

fi(si, s−i)︸ ︷︷ ︸
probabilistic allocation

g−i(s−i|ti)︸ ︷︷ ︸
prior on types of others

ds−i expected allocation

πi(si|ti) =
∫

s−i∈T−i

pi(si, s−i)g−i(s−i|ti)ds−i expected payment

where si is the reported type and ti is the true type.
• Expected utility of agent i: ui = tiαi(si|ti)− πi(si|ti)

35

Bayesian Incentive Compatibility

Definition (Bayesian Incentive Compatibility (BIC))

A mechanism (f , p) is Bayesian incentive compatible (BIC) if ∀i ∈ N, ∀si, ti ∈ Ti

tiαi(ti|ti)− πi(ti|ti) ⩾ tiαi(si|ti)− πi(si|ti)

Similarly, f is Bayesian implementable if ∃p s.t. (f , p) is BIC.

35

Bayesian Incentive Compatibility

Definition (Bayesian Incentive Compatibility (BIC))

A mechanism (f , p) is Bayesian incentive compatible (BIC) if ∀i ∈ N, ∀si, ti ∈ Ti

tiαi(ti|ti)− πi(ti|ti) ⩾ tiαi(si|ti)− πi(si|ti)

Similarly, f is Bayesian implementable if ∃p s.t. (f , p) is BIC.

36

Characterization of BIC mechanisms

Assume that priors are independent, i.e., agent i’s value is drawn from a distribution Gi (density
gi) independently from other agents.

G(s1, s2, . . . , sn) = ∏
i∈N

Gi(si), G(s−i|ti) = ∏
j ̸=i

Gj(sj)

Because of independence, the conditional term can be dropped from the notation, i.e.,
α(si) = α(si|ti) – we will assume independence in all discussions from now on

Definition

An allocation rule is Non-decreasing in expectation (NDE) if ∀i ∈ N, ∀si, ti ∈ Ti with si < ti we
have αi(si) ⩽ αi(ti)

Note: The rules that are non-decreasing (defined before) are always NDE, but there can be more
rules that are NDE

36

Characterization of BIC mechanisms

Assume that priors are independent, i.e., agent i’s value is drawn from a distribution Gi (density
gi) independently from other agents.

G(s1, s2, . . . , sn) = ∏
i∈N

Gi(si), G(s−i|ti) = ∏
j ̸=i

Gj(sj)

Because of independence, the conditional term can be dropped from the notation, i.e.,
α(si) = α(si|ti) – we will assume independence in all discussions from now on

Definition

An allocation rule is Non-decreasing in expectation (NDE) if ∀i ∈ N, ∀si, ti ∈ Ti with si < ti we
have αi(si) ⩽ αi(ti)

Note: The rules that are non-decreasing (defined before) are always NDE, but there can be more
rules that are NDE

36

Characterization of BIC mechanisms

Assume that priors are independent, i.e., agent i’s value is drawn from a distribution Gi (density
gi) independently from other agents.

G(s1, s2, . . . , sn) = ∏
i∈N

Gi(si), G(s−i|ti) = ∏
j ̸=i

Gj(sj)

Because of independence, the conditional term can be dropped from the notation, i.e.,
α(si) = α(si|ti) – we will assume independence in all discussions from now on

Definition

An allocation rule is Non-decreasing in expectation (NDE) if ∀i ∈ N, ∀si, ti ∈ Ti with si < ti we
have αi(si) ⩽ αi(ti)

Note: The rules that are non-decreasing (defined before) are always NDE, but there can be more
rules that are NDE

36

Characterization of BIC mechanisms

Assume that priors are independent, i.e., agent i’s value is drawn from a distribution Gi (density
gi) independently from other agents.

G(s1, s2, . . . , sn) = ∏
i∈N

Gi(si), G(s−i|ti) = ∏
j ̸=i

Gj(sj)

Because of independence, the conditional term can be dropped from the notation, i.e.,
α(si) = α(si|ti) – we will assume independence in all discussions from now on

Definition

An allocation rule is Non-decreasing in expectation (NDE) if ∀i ∈ N, ∀si, ti ∈ Ti with si < ti we
have αi(si) ⩽ αi(ti)

Note: The rules that are non-decreasing (defined before) are always NDE, but there can be more
rules that are NDE

37

NDE but not ND

1 1

1 1

1

1

Figure: An allocation rule may be NDE but not non-decreasing

All five types are equally likely, α1(t1) and α2(t2) are monotone, but f (t1, t2) is not.

Theorem (Myerson 1981)

A mechanism (f , p) in the independent prior setting is BIC iff
• f is NDE, and

• pi satisfies πi(ti) = πi(0) + tiαi(ti)−
∫ ti

0 αi(x) dx, ∀ti ∈ Ti, ∀i ∈ N

37

NDE but not ND

1 1

1 1

1

1

Figure: An allocation rule may be NDE but not non-decreasing

All five types are equally likely, α1(t1) and α2(t2) are monotone, but f (t1, t2) is not.

Theorem (Myerson 1981)

A mechanism (f , p) in the independent prior setting is BIC iff
• f is NDE, and

• pi satisfies πi(ti) = πi(0) + tiαi(ti)−
∫ ti

0 αi(x) dx, ∀ti ∈ Ti, ∀i ∈ N

38

Characterization of BIC rules

Proof.

This is Bayesian version of the earlier Myerson theorem, proof proceeds in similar lines as before
[exercise]

As we are in the Bayesian setting now, we can define an analog of individual rationality.

Definition

A mechanism (f , p) is interim individually rational (IIR) if for every bidder i ∈ N, we have
tiαi(ti)− πi(ti) ⩾ 0, ∀ti ∈ Ti

Lemma

A mechanism (f , p) is BIC and IIR iff
• f is NDE

• pi satisfies πi(ti) = πi(0) + tiαi(ti)−
∫ ti

0 αi(x) dx, ∀ti ∈ Ti, ∀i ∈ N
• ∀i ∈ N, πi(0) ⩽ 0

38

Characterization of BIC rules

Proof.

This is Bayesian version of the earlier Myerson theorem, proof proceeds in similar lines as before
[exercise]

As we are in the Bayesian setting now, we can define an analog of individual rationality.

Definition

A mechanism (f , p) is interim individually rational (IIR) if for every bidder i ∈ N, we have
tiαi(ti)− πi(ti) ⩾ 0, ∀ti ∈ Ti

Lemma

A mechanism (f , p) is BIC and IIR iff
• f is NDE

• pi satisfies πi(ti) = πi(0) + tiαi(ti)−
∫ ti

0 αi(x) dx, ∀ti ∈ Ti, ∀i ∈ N
• ∀i ∈ N, πi(0) ⩽ 0

38

Characterization of BIC rules

Proof.

This is Bayesian version of the earlier Myerson theorem, proof proceeds in similar lines as before
[exercise]

As we are in the Bayesian setting now, we can define an analog of individual rationality.

Definition

A mechanism (f , p) is interim individually rational (IIR) if for every bidder i ∈ N, we have
tiαi(ti)− πi(ti) ⩾ 0, ∀ti ∈ Ti

Lemma

A mechanism (f , p) is BIC and IIR iff
• f is NDE

• pi satisfies πi(ti) = πi(0) + tiαi(ti)−
∫ ti

0 αi(x) dx, ∀ti ∈ Ti, ∀i ∈ N
• ∀i ∈ N, πi(0) ⩽ 0

39

Characterization of BIC rules

Proof-sketch:

• The first two conditions uniquely identify a BIC mechanism

• So, the proof requires to show that IIR along with first two conditions is equivalent to third
condition

• Forward direction: apply IIR at ti = 0 on second condition and get πi(0) ⩽ 0

• Reverse direction: tiαi(ti)− πi(ti) = −πi(0) +
∫ ti

0 αi(si) dsi ⩾ 0 if πi(0) ⩽ 0

39

Characterization of BIC rules

Proof-sketch:

• The first two conditions uniquely identify a BIC mechanism
• So, the proof requires to show that IIR along with first two conditions is equivalent to third

condition

• Forward direction: apply IIR at ti = 0 on second condition and get πi(0) ⩽ 0

• Reverse direction: tiαi(ti)− πi(ti) = −πi(0) +
∫ ti

0 αi(si) dsi ⩾ 0 if πi(0) ⩽ 0

39

Characterization of BIC rules

Proof-sketch:

• The first two conditions uniquely identify a BIC mechanism
• So, the proof requires to show that IIR along with first two conditions is equivalent to third

condition
• Forward direction: apply IIR at ti = 0 on second condition and get πi(0) ⩽ 0

• Reverse direction: tiαi(ti)− πi(ti) = −πi(0) +
∫ ti

0 αi(si) dsi ⩾ 0 if πi(0) ⩽ 0

39

Characterization of BIC rules

Proof-sketch:

• The first two conditions uniquely identify a BIC mechanism
• So, the proof requires to show that IIR along with first two conditions is equivalent to third

condition
• Forward direction: apply IIR at ti = 0 on second condition and get πi(0) ⩽ 0

• Reverse direction: tiαi(ti)− πi(ti) = −πi(0) +
∫ ti

0 αi(si) dsi ⩾ 0 if πi(0) ⩽ 0

40

	Affine Maximizers
	Single Object Allocation
	Myerson's Lemma
	Illustration of Myerson's Lemma
	Optimal Mechanism Design

