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Mechanism Design for Single Agent

• Type set T = [0, β], Mechanism M := (f , p)

• f : [0, β] → [0, 1], p : [0, β] → R

• Incentive Compatibility [BIC and DSIC equivalent]

tf (t)− p(t) ⩾ tf (s)− p(s), ∀t, s ∈ T

• Individual Rationality [IR and IIR equivalent]

tf (t)− p(t) ⩾ 0, ∀t, s ∈ T

• The expected revenue earned by a mechanism M is given by

ΠM :=
∫ β

0
p(t)g(t)dt
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Optimal Mechanism for Single Agent

Definition (Optimal Mechanism)

An optimal mechanism M∗ for a single agent is a mechanism in the class of all IC and IR
mechanisms, such that ΠM∗

⩾ ΠM, ∀M

Question

What is the structure of an optimal mechanism?

• Consider an IC and IR mechanism M = (f , p)

• By the characterization results, we know f is monotone, and

p(t) = p(0) + tf (t)−
∫ t

0
f (x)dx [IC]

p(0) ⩽ 0 [IR]

• Since we want to maximize the revenue, hence p(0) = 0
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Optimal Mechanism for Single Agent

• Hence the payment formula is

p(t) = tf (t)−
∫ t

0
f (x)dx

• Note: In optimal mechanism, payment is completely given once the allocation is fixed
• Hence, we need to optimize only over one variable f
• Expected revenue:

Πf =
∫ β

0
p(t)g(t)dt

=
∫ β

0

(
tf (t)−

∫ t

0
f (x)dx

)
g(t)dt

• Need to maximize this w.r.t. f
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The Optimization Problem

Lemma

For any implementable allocation rule f , we have

Πf =
∫ β

0

(
t − 1 − G(t)

g(t)

)
g(t)f (t)dt

• The following term is also called the virtual valuation of the agent

w(t) =
(

t − 1 − G(t)
g(t)

)
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The Optimization Problem

Proof

Πf =

(
tf (t)−

∫ t

0
f (x)dx

)
g(t)dt

=
∫ β

0
tf (t)g(t)dt −

∫ β

0

∫ t

0
f (x)dx g(t)dt

=
∫ β

0
tf (t)g(t)dt −

∫ β

0

∫ β

x
g(t)dt f (x)dx [switching the order of integration]

=
∫ β

0
tf (t)g(t)dt −

∫ β

0

∫ β

t
g(x)dxf (t)dt

=
∫ β

0
(tf (t)g(t)− (1 − G(t)f (t)) dt

=
∫ β

0

(
t − 1 − G(t)

g(t)

)
g(t)f (t)dt
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The Modified Optimization Problem

• Hence the optimal mechanism finding mechanism reduces to

OPT1: max
f :f is non-decreasing

∫ β

0

(
t − 1 − G(t)

g(t)

)
g(t)f (t)dt

• Assumption: G satisfies the montotone hazard rate condition (MHR), i.e., g(x)
1−G(x) is

non-decreasing in x
• Standard distributions like uniform and exponential statisfy MHR condition
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Observation

Fact

If G satisfies MHR condition, there is a soultion to x = 1−G(x)
g(x)

• Let x∗ be a solution of this equation

• Hence, w(x) = x − 1−G(x)
g(x) is zero at x∗

• =⇒ w(x) ⩾ 0, ∀x > x∗ and ⩽ 0, ∀x < x∗

y=(1-G(x)) / g(x)y=(1-G(x)) / g(x)

y=xy=xCC

x*x*
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Solution to the optimization problem

• The unrestricted solution to OPT1 is therefore

f (t) =


0 if t < x∗

1 if t > x∗

α if t = x∗, α ∈ [0, 1]
(1)

• But this f is non-decreasing, therefore it is the optimal solution of OPT1

Theorem

A mechanism (f , p) under the MHR condition is optimal iff

1 f is given by Equation (1) where x∗ is a solution of x = 1−G(x)
g(x) , and

2 For all t ∈ T, p(t) =

{
x∗ if t ⩾ x∗

0 otherwise
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Optimal mechanism design for multiple agents

• In this context, we will call a mechanism optimal if it is BIC, IIR, and maximizes revenue

• By previous results, this reduces to:

1 fi’s are NDE ∀i ∈ N,
2 πi(ti) has a specific integral formula and πi(0) = 0

• Hence, the expected payment made by agent i is
∫

Ti
πi(ti)gi(ti) dti, Ti = [0, bi]

• This can be simplified to the following in a way similar to the earlier exercise∫ bi

0
wi(ti)gi(ti)αi(ti) dti

where, wi(ti) = ti −
1 − Gi(ti)

gi(ti)
(virtual valuation of player i) and,

αi(ti) =
∫

T−i

fi(ti, t−i)g−i(t−i) dt−i
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Optimal mechanism design for multiple agents

• This gives, expected payment made by agent i as∫
T

wi(ti)fi(t)g(t) dt

• The total revenue generated by all players is

∑
i∈N

∫
T

wi(ti)fi(t)g(t) dt =
∫

T
∑
i∈N

(wi(ti)fi(t))g(t) dt

where ∑i∈N(wi(ti)fi(t)) is the expected total virtual valuation
• Hence, the optimal mechanism problem reduces to

max
∫

T
∑
i∈N

(wi(ti)fi(t))g(t) dt, s.t. f is NDE
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Optimal mechanism design for multiple agents

• As before, we try to solve the unconstrainted optimization problem.

fi(t) =

{
1 if wi(ti) ⩾ wj(tj), ∀j, break ties arbitrarily
0, otherwise

(Sold)

fi(t) = 0, ∀i ∈ N, if wi(ti) < 0, ∀i ∈ N (Unsold)

(2)

• But it can lead to a case where f is not NDE (for an example, see Roger B Myerson. “Optimal
auction design”, 1981

• The example is such that the following condition is violated

Definition

A virtual valuation wi is regular if ∀si, ti ∈ Ti with si < ti, it holds that wi(si) ⩽ wi(ti).

• This condition is weaker than MHR condition as MHR implies regularity
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• This condition is weaker than MHR condition as MHR implies regularity
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Optimal mechanism design for multiple agents

• As before, we try to solve the unconstrainted optimization problem.
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Optimal mechanism design for multiple agents

Lemma

Suppose every agent’s valuations are regular. The allocation rule of the optimal mechanism is same as the
solution of the unconstrained problem.

Proof-sketch:

• The solution is as given in Equation (2)
• Regularity ensures that wi(ti) ⩾ wi(si), ∀si < ti

• Then the optimal allocation also satisfies

fi(ti, t−i) ⩾ fi(si, t−i), ∀t−i ∈ T−i, ∀si < ti

• i.e., fi is non-decreasing (hence NDE)
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The solution

• Optimal Mechanism Design Problem

max
∫

T

(
∑
i∈N

wi(ti)fi(t))g(t)dt

)
, such that f is NDE

Solution for regular wi’s

fi(t) =

{
1 if wi(ti) ⩾ wj(tj), ∀j, break ties arbitrarily
0, otherwise

(Sold)

fi(t) = 0, ∀i ∈ N, if wi(ti) < 0, ∀i ∈ N (Unsold)

(3)

• We wanted to find an allocation that is NDE, but found an f that is non-decreasing
• It is also deterministic
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Optimal Mechanism

optimaloptimal

BIC, IIR, randomized

DSIC, IR, deterministic

Space of mechanisms with regular virtual valuations
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Optimal Mechanism: Allocation and Payment

Theorem

Suppose every agent’s valuation is regular.

Then, for every type profile t, if wi(ti) < 0, ∀i ∈ N,
fi(t) = 0, ∀i ∈ N.

Otherwise, fi(t) =

{
1 if wi(ti) ⩾ wj(tj) ∀j ∈ N
0 otherwise,

with ties are broken arbitrarily.

Payments are given by pi(t) =

{
0 if fi(t) = 0
max{w−1

i (0), K∗
i (t−i)} if fi(t) = 1,

where w−1
i (0): the value of ti where wi(ti) = 0, and K∗

i (t−i) = inf{ti : fi(ti, t−i) = 1}, then (f , p) is an
optimal mechanism.

Note: K∗
i (t−i) is the minimum of value of ti where i begins to be the winner
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Example 1

1 Two buyers : T1 = [0, 12], T2 = [0, 18]
2 Uniform independent prior

3 w1(t1) = t1 − 1−G(t)
g(t) = t1 −

1− t1
12

1
12

= 2t1 − 12

4 w2(t2) = 2t2 − 18

t1 t2 Action p1 p2
4 8 unsold 0 0
2 12 sold to 2 0 9
6 6 sold to 1 6 0
9 9 sold to 1 6 0
8 15 sold to 2 0 11
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Example 2

• Systematic bidders: the valuations are drawn from the same distribution, gi = g, Ti = T,
∀i ∈ N

• Virtual valuation: wi = w

w(ti) > w(tj), iff ti > tj

• The object goes to the highest bidder. Not sold if w−i(0) > ti∀i ∈ N.
pi = max{w−1(0), maxj ̸=i tj}

• Second price auction with a reserve price, and is efficient when the object is sold.
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Example 3 : Efficiency and Optimality

• Two buyers : T1 = [0, 10],
T2 = [0, 6], Uniform
independent prior

• w1(t1) = 2t1 − 10,
w2(t2) = 2t2 − 6

• Unsold is inefficient, also in
the region of the plane where
1 has higher valuation but
item is sold to 2

(0, 3)

(5, 0)

Unsold

Sold to 2

Sold to 1

v1 →

v2 ↑
Sold to 2 when
v1 > v2
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Efficiency and Groves Mechanism

• Uniqueness of Groves for efficiency f eff (t) ∈ arg maxa∈A ∑i∈N ti(a)

Theorem (Green and Laffont (1979), Holmström (1979))

If the type space is ‘sufficiently rich’, every efficient and DSIC mechanism is a Groves mechanism.

• Proof-sketch: Two alternatives A = {a, b} with respective welfare of ∑i∈N ti(a) and ∑i∈N ti(b)
• ∑i∈N ti(a) ⩾ ∑i∈N ti(b) then a is chosen.

— Fix the valuations of other agents to t−i
— Fix value of i at alternative b as ti(b)

• ∃ some threshold t∗i (a) s.t.

∀ti(a) ⩾ t∗i (a), a is the outcome, and ∀ti(a) < t∗i (a), b is the outcome
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Proof sketch (contd.)

• Using DSIC for t∗i (a) + ϵ = ti(a), ϵ > 0 we have,

t∗i (a) + ϵ − pia ⩾ ti(b)− pib (Note: payment for a player has to be the same for an allocation.)

• Similarly, t′i(a) = t∗i (a)− δ, δ > 0 and

ti(b)− pib ⩾ t∗i (a)− δ − pia

• Since, ϵ, δ are arbitrary , then
t∗i (a)− pia = ti(b)− pib (4)

• But t∗i (a) is the threshold of the efficient outcome, thus,

t∗i (a) + ∑
j ̸=i

tj(a) = ti(b) + ∑
j ̸=i

tj(b) (5)
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Proof sketch (contd.)

• From Equations (4) and (5)
pia − pib = ∑

j ̸=i
tj(b)− ∑

j ̸=i
tj(a)

• Hence, the payment has to be of the form pix = hi(t−i)− ∑j ̸=i tj(x)
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Proof sketch (contd.)
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Efficiency and Budget Balance

Theorem (Green and Laffont (1979), Holmström (1979))

If the type space is ‘sufficiently rich’, every efficient and DSIC mechanism is a Groves mechanism.

Theorem (Green and Laffont (1979))

No Groves mechanism is budget balanced, i.e., ∄ pG
i s.t., ∑i∈N pG

i (t) = 0, ∀t ∈ T.

Corollary

If the valuation space is sufficiently rich, no efficient mechanism can be both DSIC and BB.
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Proof sketch of the second theorem

• Consider two alternatives {0, 1} s.t.

0 : project is not undertaken 1 : project is undertaken

and at outcome 0, every agent has zero value.

• Suppose, ∃ hi, ∀i ∈ N s.t. ∑i∈N pi(t) = 0
• Consider two types w+

1 , w−
1 for player 1, and one type w2 for player 2 s.t.

w+
1 + w2 > 0 : project is built w−

1 + w2 < 0 : project is not built

• Budget balance at type profile (w+
1 , w2) gives h1(w2)− w2 + h2(w+

1 )− w+
1 = 0 and at type

profile (w−
1 , w2) gives h1(w2) + h2(w−

1 ) = 0

• Eliminating h1(w2), we get w2 = h2(w+
1 )− h2(w−

1 )− w+
1

• The RHS depends only on w1, hence it is possible to alter w2 slightly to retain the
inequalities, but then the above equality cannot hold.
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Proof sketch of the second theorem

• Consider two alternatives {0, 1} s.t.

0 : project is not undertaken 1 : project is undertaken

and at outcome 0, every agent has zero value.
• Suppose, ∃ hi, ∀i ∈ N s.t. ∑i∈N pi(t) = 0
• Consider two types w+
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Weakening DSIC for Budget Balance

• Allocation is still the efficient one a∗(t) ∈ arg maxa∈A ∑i∈N ti(a)

• Payment in this setting is also defined via a prior δi(ti) = Et−i|ti ∑j ̸=i tj(a∗(t))
• Payment is given by (named after d’Aspremont, Gerard-Varet (1979), Arrow (1979)):

pdAGVA
i (t) =

1
n − 1 ∑

j ̸=i
δj(tj)− δi(ti)

• This payment implements the efficient allocation rule in Bayes Nash equilibrium

Et−i|ti
[ti(a∗(t))− pdAGVA

i (t)]

= Et−i|ti ∑
j∈N

tj(a∗(t))− Et−i|ti

[
1

n − 1 ∑
j ̸=i

δj(tj)

]

⩾ Et−i|ti ∑
j∈N

tj(a∗(t′i , t−i))− Et−i|ti

[
1

n − 1 ∑
j ̸=i

δj(tj)

]

= Et−i|ti

[
ti(a∗(t′i , t−i))− pdAGVA

i (t′i , t−i)
]
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Budget Balance?

• To show budget balance, consider

∑
i∈N

pdAGVA
i (t) =

1
n − 1 ∑

i∈N
∑
j ̸=i

δj(tj)− ∑
i∈N

δi(ti)

=
n − 1
n − 1 ∑

j∈N
δj(tj)− ∑

i∈N
δi(ti) = 0

Theorem

The dAGVA mechanism is efficient, BIC, and BB.

• However, dAGVA is not IIR

Theorem (Myerson, Satterthwaite (1983))

In a bilateral trade (that involves two types of agents: seller and buyer) no mechanism can be
simultaneously BIC, efficient, IIR and budget balanced.
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