

भारतीय प्रौद्योगिकी संस्थान मुंबई

Indian Institute of Technology Bombay

CS 6001: Game Theory and Algorithmic Mechanism Design

Week 12

Swaprava Nath

Slide preparation acknowledgments: Ramsundar Anandanarayanan and Harshvardhan Agarwal

ज्ञानम् परमम् ध्येयम् Knowledge is the supreme goal

- Single Agent Optimal Mechanism Design
- Optimal Mechanism Design with Multiple Agents
- Examples of Optimal Mechanism Design
- ► Endnotes and Summary

• Type set $T = [0, \beta]$, Mechanism M := (f, p)

• $f:[0,\beta] \rightarrow [0,1], p:[0,\beta] \rightarrow \mathbb{R}$

Mechanism Design for Single Agent

- Type set $T = [0, \beta]$, Mechanism M := (f, p)
- $f:[0,\beta] \rightarrow [0,1], p:[0,\beta] \rightarrow \mathbb{R}$
- Incentive Compatibility [BIC and DSIC equivalent]

 $tf(t) - p(t) \ge tf(s) - p(s), \ \forall t, s \in T$

Mechanism Design for Single Agent

- Type set $T = [0, \beta]$, Mechanism M := (f, p)
- $f:[0,\beta] \rightarrow [0,1], p:[0,\beta] \rightarrow \mathbb{R}$
- Incentive Compatibility [BIC and DSIC equivalent]

 $tf(t) - p(t) \ge tf(s) - p(s), \ \forall t, s \in T$

• Individual Rationality [IR and IIR equivalent]

 $tf(t) - p(t) \ge 0, \ \forall t, s \in T$

Mechanism Design for Single Agent

- Type set $T = [0, \beta]$, Mechanism M := (f, p)
- $f:[0,\beta] \rightarrow [0,1], p:[0,\beta] \rightarrow \mathbb{R}$
- Incentive Compatibility [BIC and DSIC equivalent]

 $tf(t) - p(t) \ge tf(s) - p(s), \ \forall t, s \in T$

• Individual Rationality [IR and IIR equivalent]

 $tf(t) - p(t) \ge 0, \ \forall t, s \in T$

• The expected revenue earned by a mechanism *M* is given by

$$\Pi^{M} := \int_{0}^{\beta} p(t)g(t)dt$$

An optimal mechanism M^* for a single agent is a mechanism in the class of all IC and IR mechanisms, such that $\Pi^{M^*} \ge \Pi^M$, $\forall M$

An optimal mechanism M^* for a single agent is a mechanism in the class of all IC and IR mechanisms, such that $\Pi^{M^*} \ge \Pi^M$, $\forall M$

Question

What is the structure of an optimal mechanism?

• Consider an IC and IR mechanism M = (f, p)

An optimal mechanism M^* for a single agent is a mechanism in the class of all IC and IR mechanisms, such that $\Pi^{M^*} \ge \Pi^M$, $\forall M$

Question

What is the structure of an optimal mechanism?

- Consider an IC and IR mechanism M = (f, p)
- By the characterization results, we know *f* is monotone, and

$$p(t) = p(0) + tf(t) - \int_0^t f(x)dx \qquad [IC]$$
$$p(0) \le 0 \qquad [IR]$$

An optimal mechanism M^* for a single agent is a mechanism in the class of all IC and IR mechanisms, such that $\Pi^{M^*} \ge \Pi^M$, $\forall M$

Question

What is the structure of an optimal mechanism?

- Consider an IC and IR mechanism M = (f, p)
- By the characterization results, we know *f* is monotone, and

$$p(t) = p(0) + tf(t) - \int_0^t f(x)dx \qquad [IC]$$
$$p(0) \le 0 \qquad [IR]$$

• Since we want to maximize the revenue, hence p(0) = 0

• Hence the payment formula is

$$p(t) = tf(t) - \int_0^t f(x)dx$$

• Hence the payment formula is

$$v(t) = tf(t) - \int_0^t f(x)dx$$

• Note: In optimal mechanism, payment is completely given once the allocation is fixed

• Hence the payment formula is

$$p(t) = tf(t) - \int_0^t f(x)dx$$

- Note: In optimal mechanism, payment is completely given once the allocation is fixed
- Hence, we need to optimize only over one variable *f*

• Hence the payment formula is

$$p(t) = tf(t) - \int_0^t f(x)dx$$

- Note: In optimal mechanism, payment is completely given once the allocation is fixed
- Hence, we need to optimize only over one variable *f*
- Expected revenue:

$$\Pi^{f} = \int_{0}^{\beta} p(t)g(t)dt$$
$$= \int_{0}^{\beta} \left(tf(t) - \int_{0}^{t} f(x)dx \right) g(t)dt$$

• Hence the payment formula is

$$p(t) = tf(t) - \int_0^t f(x)dx$$

- Note: In optimal mechanism, payment is completely given once the allocation is fixed
- Hence, we need to optimize only over one variable *f*
- Expected revenue:

$$\Pi^{f} = \int_{0}^{\beta} p(t)g(t)dt$$
$$= \int_{0}^{\beta} \left(tf(t) - \int_{0}^{t} f(x)dx\right)g(t)dt$$

• Need to maximize this w.r.t. *f*

$$\Pi^{f} = \left(tf(t) - \int_{0}^{t} f(x)dx\right)g(t)dt$$
$$= \int_{0}^{\beta} tf(t)g(t)dt - \int_{0}^{\beta} \int_{0}^{t} f(x)dx g(t)dt$$

$$\Pi^{f} = \left(tf(t) - \int_{0}^{t} f(x)dx\right)g(t)dt$$
$$= \int_{0}^{\beta} tf(t)g(t)dt - \int_{0}^{\beta} \int_{0}^{t} f(x)dx g(t)dt$$
$$= \int_{0}^{\beta} tf(t)g(t)dt - \int_{0}^{\beta} \int_{x}^{\beta} g(t)dt f(x)dx$$

$$\Pi^{f} = \left(tf(t) - \int_{0}^{t} f(x)dx\right)g(t)dt$$
$$= \int_{0}^{\beta} tf(t)g(t)dt - \int_{0}^{\beta} \int_{0}^{t} f(x)dx g(t)dt$$
$$= \int_{0}^{\beta} tf(t)g(t)dt - \int_{0}^{\beta} \int_{x}^{\beta} g(t)dt f(x)dx$$
$$= \int_{0}^{\beta} tf(t)g(t)dt - \int_{0}^{\beta} \int_{t}^{\beta} g(x)dxf(t)dt$$

$$\Pi^{f} = \left(tf(t) - \int_{0}^{t} f(x)dx\right)g(t)dt$$
$$= \int_{0}^{\beta} tf(t)g(t)dt - \int_{0}^{\beta} \int_{0}^{t} f(x)dx g(t)dt$$
$$= \int_{0}^{\beta} tf(t)g(t)dt - \int_{0}^{\beta} \int_{x}^{\beta} g(t)dt f(x)dx$$
$$= \int_{0}^{\beta} tf(t)g(t)dt - \int_{0}^{\beta} \int_{t}^{\beta} g(x)dxf(t)dt$$
$$= \int_{0}^{\beta} (tf(t)g(t) - (1 - G(t)f(t)) dt$$
$$= \int_{0}^{\beta} \left(t - \frac{1 - G(t)}{g(t)}\right)g(t)f(t)dt$$

Lemma

For any implementable allocation rule f, we have

$$\Pi^{f} = \int_{0}^{\beta} \left(t - \frac{1 - G(t)}{g(t)} \right) g(t) f(t) dt$$

Lemma

For any implementable allocation rule f, we have

$$\Pi^{f} = \int_{0}^{\beta} \left(t - \frac{1 - G(t)}{g(t)} \right) g(t) f(t) dt$$

• The following term is also called the **virtual valuation** of the agent

$$w(t) = \left(t - \frac{1 - G(t)}{g(t)}\right)$$

• Hence the optimal mechanism finding mechanism reduces to

OPT1:

$$\max_{f \text{ is non-decreasing }} \int_{0}^{\beta} \left(t - \frac{1 - G(t)}{g(t)} \right) g(t) f(t) dt$$

- Assumption: *G* satisfies the montotone hazard rate condition (MHR), i.e., $\frac{g(x)}{1-G(x)}$ is non-decreasing in *x*
- Standard distributions like uniform and exponential statisfy MHR condition

Observation

Fact If G satisfies MHR condition, there is a soultion to $x = \frac{1-G(x)}{g(x)}$

Observation

Fact

If G satisfies MHR condition, there is a soultion to $x = \frac{1-G(x)}{g(x)}$

- Let *x*^{*} be a solution of this equation
- Hence, $w(x) = x \frac{1-G(x)}{g(x)}$ is zero at x^*
- \implies $w(x) \ge 0$, $\forall x > x^*$ and $\leqslant 0$, $\forall x < x^*$

• The unrestricted solution to OPT1 is therefore

$$f(t) = \begin{cases} 0 & \text{if } t < x^* \\ 1 & \text{if } t > x^* \\ \alpha & \text{if } t = x^*, \alpha \in [0, 1] \end{cases}$$

(1)

• The unrestricted solution to OPT1 is therefore

$$f(t) = \begin{cases} 0 & \text{if } t < x^* \\ 1 & \text{if } t > x^* \\ \alpha & \text{if } t = x^*, \alpha \in [0, 1] \end{cases}$$
(1)

• But this *f* is non-decreasing, therefore it is the optimal solution of OPT1

The unrestricted solution to OPT1 is therefore

•

$$f(t) = \begin{cases} 0 & \text{if } t < x^* \\ 1 & \text{if } t > x^* \\ \alpha & \text{if } t = x^*, \alpha \in [0, 1] \end{cases}$$
(1)

• But this *f* is non-decreasing, therefore it is the optimal solution of OPT1

Theorem

A mechanism (f, p) under the MHR condition is optimal iff

• The unrestricted solution to OPT1 is therefore

$$f(t) = \begin{cases} 0 & \text{if } t < x^* \\ 1 & \text{if } t > x^* \\ \alpha & \text{if } t = x^*, \alpha \in [0, 1] \end{cases}$$
(1)

• But this *f* is non-decreasing, therefore it is the optimal solution of OPT1

Theorem

A mechanism (f, p) under the MHR condition is optimal iff

• *f* is given by Equation (1) where x^* is a solution of $x = \frac{1-G(x)}{g(x)}$, and

- The unrestricted solution to OPT1 is therefore

$$f(t) = \begin{cases} 0 & \text{if } t < x^* \\ 1 & \text{if } t > x^* \\ \alpha & \text{if } t = x^*, \alpha \in [0, 1] \end{cases}$$
(1)

• But this *f* is non-decreasing, therefore it is the optimal solution of OPT1

Theorem

A mechanism (f, p) under the MHR condition is optimal iff

• *f* is given by Equation (1) where x^* is a solution of $x = \frac{1-G(x)}{g(x)}$, and

So For all
$$t \in T$$
, $p(t) = \begin{cases} x^* & \text{if } t \ge x^* \\ 0 & \text{otherwise} \end{cases}$

- Single Agent Optimal Mechanism Design
- ► Optimal Mechanism Design with Multiple Agents
- Examples of Optimal Mechanism Design
- ► Endnotes and Summary

• In this context, we will call a mechanism optimal if it is BIC, IIR, and maximizes revenue

- In this context, we will call a mechanism optimal if it is BIC, IIR, and maximizes revenue
- By previous results, this reduces to:

- In this context, we will call a mechanism optimal if it is BIC, IIR, and maximizes revenue
- By previous results, this reduces to:
 - f_i 's are NDE $\forall i \in N$,

- In this context, we will call a mechanism optimal if it is BIC, IIR, and maximizes revenue
- By previous results, this reduces to:
 - f_i 's are NDE $\forall i \in N$,
 - (2) $\pi_i(t_i)$ has a specific integral formula and $\pi_i(0) = 0$

- In this context, we will call a mechanism optimal if it is BIC, IIR, and maximizes revenue
- By previous results, this reduces to:
 - f_i 's are NDE $\forall i \in N$,
 - (2) $\pi_i(t_i)$ has a specific integral formula and $\pi_i(0) = 0$
- Hence, the expected payment made by agent *i* is $\int_{T_i} \pi_i(t_i)g_i(t_i) dt_i$, $T_i = [0, b_i]$

- In this context, we will call a mechanism optimal if it is BIC, IIR, and maximizes revenue
- By previous results, this reduces to:
 - f_i 's are NDE $\forall i \in N$,
 - (2) $\pi_i(t_i)$ has a specific integral formula and $\pi_i(0) = 0$
- Hence, the expected payment made by agent *i* is $\int_{T_i} \pi_i(t_i)g_i(t_i) dt_i$, $T_i = [0, b_i]$
- This can be simplified to the following in a way similar to the earlier exercise

$$\begin{aligned} \int_{0}^{b_{i}} w_{i}(t_{i})g_{i}(t_{i})\alpha_{i}(t_{i}) dt_{i} \\ \text{where, } w_{i}(t_{i}) &= t_{i} - \frac{1 - G_{i}(t_{i})}{g_{i}(t_{i})} \text{ (virtual valuation of player } i \text{) and,} \\ \alpha_{i}(t_{i}) &= \int_{T_{-i}} f_{i}(t_{i}, t_{-i})g_{-i}(t_{-i}) dt_{-i} \end{aligned}$$

• This gives, expected payment made by agent *i* as

 $\int_T w_i(t_i) f_i(t) g(t) dt$

• This gives, expected payment made by agent *i* as

$$\int_T w_i(t_i) f_i(t) g(t) dt$$

• The total revenue generated by all players is

$$\sum_{i\in\mathbb{N}}\int_T w_i(t_i)f_i(t)g(t)\,dt = \int_T \sum_{i\in\mathbb{N}} (w_i(t_i)f_i(t))g(t)\,dt$$

where $\sum_{i \in N} (w_i(t_i)f_i(t))$ is the expected total virtual valuation

• This gives, expected payment made by agent *i* as

$$\int_T w_i(t_i) f_i(t) g(t) dt$$

• The total revenue generated by all players is

$$\sum_{i\in N} \int_T w_i(t_i) f_i(t) g(t) dt = \int_T \sum_{i\in N} (w_i(t_i) f_i(t)) g(t) dt$$

where $\sum_{i \in N} (w_i(t_i)f_i(t))$ is the expected total virtual valuation

• Hence, the optimal mechanism problem reduces to

$$\max \int_{T} \sum_{i \in N} (w_i(t_i)f_i(t))g(t) dt, \text{ s.t. } f \text{ is NDE}$$

• As before, we try to solve the **unconstrainted** optimization problem.

$$f_i(t) = \begin{cases} 1 & \text{if } w_i(t_i) \ge w_j(t_j), \ \forall j, \text{ break ties arbitrarily} \\ 0, & \text{otherwise} \end{cases}$$
(Sold)
$$f_i(t) = 0, \forall i \in N, \text{ if } w_i(t_i) < 0, \ \forall i \in N$$
(Unsold)

• As before, we try to solve the **unconstrainted** optimization problem.

$$f_{i}(t) = \begin{cases} 1 & \text{if } w_{i}(t_{i}) \ge w_{j}(t_{j}), \ \forall j, \text{ break ties arbitrarily} \\ 0, & \text{otherwise} \end{cases}$$
(Sold)
$$f_{i}(t) = 0, \forall i \in N, \text{ if } w_{i}(t_{i}) < 0, \ \forall i \in N$$
(Unsold) (2)

• But it can lead to a case where *f* is not NDE (for an example, see Roger B Myerson. "Optimal auction design", 1981

• As before, we try to solve the **unconstrainted** optimization problem.

$$f_i(t) = \begin{cases} 1 & \text{if } w_i(t_i) \ge w_j(t_j), \ \forall j, \text{ break ties arbitrarily} \\ 0, & \text{otherwise} \end{cases}$$
(Sold)
$$f_i(t) = 0, \forall i \in N, \text{ if } w_i(t_i) < 0, \ \forall i \in N$$
(Unsold)

- But it can lead to a case where *f* is not NDE (for an example, see Roger B Myerson. "Optimal auction design", 1981
- The example is such that the following condition is violated

• As before, we try to solve the **unconstrainted** optimization problem.

$$f_i(t) = \begin{cases} 1 & \text{if } w_i(t_i) \ge w_j(t_j), \ \forall j, \text{ break ties arbitrarily} \\ 0, & \text{otherwise} \end{cases}$$
(Sold)
$$f_i(t) = 0, \forall i \in N, \text{ if } w_i(t_i) < 0, \ \forall i \in N$$
(Unsold)

- But it can lead to a case where *f* is not NDE (for an example, see Roger B Myerson. "Optimal auction design", 1981
- The example is such that the following condition is violated

Definition

A virtual valuation w_i is regular if $\forall s_i, t_i \in T_i$ with $s_i < t_i$, it holds that $w_i(s_i) \leq w_i(t_i)$.

• As before, we try to solve the **unconstrainted** optimization problem.

$$f_i(t) = \begin{cases} 1 & \text{if } w_i(t_i) \ge w_j(t_j), \ \forall j, \text{ break ties arbitrarily} \\ 0, & \text{otherwise} \end{cases}$$
(Sold)
$$f_i(t) = 0, \forall i \in N, \text{ if } w_i(t_i) < 0, \ \forall i \in N$$
(Unsold)

- But it can lead to a case where *f* is not NDE (for an example, see Roger B Myerson. "Optimal auction design", 1981
- The example is such that the following condition is violated

Definition

A virtual valuation w_i is regular if $\forall s_i, t_i \in T_i$ with $s_i < t_i$, it holds that $w_i(s_i) \leq w_i(t_i)$.

• This condition is weaker than MHR condition as MHR implies regularity

Suppose every agent's valuations are regular. The allocation rule of the optimal mechanism is same as the solution of the unconstrained problem.

Suppose every agent's valuations are regular. The allocation rule of the optimal mechanism is same as the solution of the unconstrained problem.

Proof-sketch:

• The solution is as given in Equation (2)

Suppose every agent's valuations are regular. The allocation rule of the optimal mechanism is same as the solution of the unconstrained problem.

Proof-sketch:

- The solution is as given in Equation (2)
- Regularity ensures that $w_i(t_i) \ge w_i(s_i), \ \forall s_i < t_i$

Suppose every agent's valuations are regular. The allocation rule of the optimal mechanism is same as the solution of the unconstrained problem.

Proof-sketch:

- The solution is as given in Equation (2)
- Regularity ensures that $w_i(t_i) \ge w_i(s_i), \ \forall s_i < t_i$
- Then the optimal allocation also satisfies

 $f_i(t_i, t_{-i}) \ge f_i(s_i, t_{-i}), \ \forall t_{-i} \in T_{-i}, \forall s_i < t_i$

Suppose every agent's valuations are regular. The allocation rule of the optimal mechanism is same as the solution of the unconstrained problem.

Proof-sketch:

- The solution is as given in Equation (2)
- Regularity ensures that $w_i(t_i) \ge w_i(s_i), \ \forall s_i < t_i$
- Then the optimal allocation also satisfies

 $f_i(t_i, t_{-i}) \ge f_i(s_i, t_{-i}), \ \forall t_{-i} \in T_{-i}, \forall s_i < t_i$

• i.e., f_i is non-decreasing (hence NDE)

The solution

Optimal Mechanism Design Problem

$$\max \int_T \left(\sum_{i \in N} w_i(t_i) f_i(t)) g(t) dt \right), \quad \text{such that } f \text{ is NDE}$$

Solution for **regular** w_i 's

$$f_i(t) = \begin{cases} 1 & \text{if } w_i(t_i) \ge w_j(t_j), \ \forall j, \text{ break ties arbitrarily} \\ 0, & \text{otherwise} \end{cases}$$
(Sold)
$$f_i(t) = 0, \forall i \in N, \text{ if } w_i(t_i) < 0, \ \forall i \in N$$
(Unsold)

- We wanted to find an allocation that is NDE, but found an *f* that is non-decreasing
- It is also deterministic

(3)

Optimal Mechanism

Space of mechanisms with regular virtual valuations

Optimal Mechanism: Allocation and Payment

Theorem Suppose every agent's valuation is regular.

Suppose every agent's valuation is regular. Then, for every type profile t, if $w_i(t_i) < 0, \forall i \in N$, $f_i(t) = 0, \forall i \in N$.

Suppose every agent's valuation is regular. Then, for every type profile t, if $w_i(t_i) < 0, \forall i \in N$, $f_i(t) = 0, \forall i \in N$. Otherwise, $f_i(t) = \begin{cases} 1 & \text{if } w_i(t_i) \ge w_j(t_j) \ \forall j \in N \\ 0 & \text{otherwise,} \end{cases}$ with ties are broken arbitrarily.

Suppose every agent's valuation is regular. Then, for every type profile t, if $w_i(t_i) < 0, \forall i \in N$, $f_i(t) = 0, \forall i \in N$. Otherwise, $f_i(t) = \begin{cases} 1 & \text{if } w_i(t_i) \ge w_j(t_j) \ \forall j \in N \\ 0 & \text{otherwise,} \end{cases}$ with ties are broken arbitrarily. Payments are given by $p_i(t) = \begin{cases} 0 & \text{if } f_i(t) = 0 \\ \max\{w_i^{-1}(0), K_i^*(t_{-i})\} & \text{if } f_i(t) = 1, \end{cases}$

Suppose every agent's valuation is regular. Then, for every type profile t, if $w_i(t_i) < 0, \forall i \in N$, $f_i(t) = 0, \forall i \in N$. Otherwise, $f_i(t) = \begin{cases} 1 & \text{if } w_i(t_i) \ge w_j(t_j) \ \forall j \in N \\ 0 & \text{otherwise,} \end{cases}$ with ties are broken arbitrarily. Payments are given by $p_i(t) = \begin{cases} 0 & \text{if } f_i(t) = 0 \\ \max\{w_i^{-1}(0), K_i^*(t_{-i})\} & \text{if } f_i(t) = 1, \end{cases}$ where $w_i^{-1}(0)$: the value of t_i where $w_i(t_i) = 0$, and $K_i^*(t_{-i}) = \inf\{t_i : f_i(t_i, t_{-i}) = 1\}$,

Suppose every agent's valuation is regular. Then, for every type profile t, if $w_i(t_i) < 0, \forall i \in N$, $f_i(t) = 0, \forall i \in N$. Otherwise, $f_i(t) = \begin{cases} 1 & \text{if } w_i(t_i) \ge w_j(t_j) \ \forall j \in N \\ 0 & \text{otherwise,} \end{cases}$ with ties are broken arbitrarily. Payments are given by $p_i(t) = \begin{cases} 0 & \text{if } f_i(t) = 0 \\ \max\{w_i^{-1}(0), K_i^*(t_{-i})\} & \text{if } f_i(t) = 1, \end{cases}$ where $w_i^{-1}(0)$: the value of t_i where $w_i(t_i) = 0$, and $K_i^*(t_{-i}) = \inf\{t_i : f_i(t_i, t_{-i}) = 1\}$, then (f, p) is an optimal mechanism.

Suppose every agent's valuation is regular. Then, for every type profile t, if $w_i(t_i) < 0, \forall i \in N$, $f_i(t) = 0, \forall i \in N$. Otherwise, $f_i(t) = \begin{cases} 1 & \text{if } w_i(t_i) \ge w_j(t_j) \ \forall j \in N \\ 0 & \text{otherwise,} \end{cases}$ with ties are broken arbitrarily. Payments are given by $p_i(t) = \begin{cases} 0 & \text{if } f_i(t) = 0 \\ \max\{w_i^{-1}(0), K_i^*(t_{-i})\} & \text{if } f_i(t) = 1, \end{cases}$ where $w_i^{-1}(0)$: the value of t_i where $w_i(t_i) = 0$, and $K_i^*(t_{-i}) = \inf\{t_i : f_i(t_i, t_{-i}) = 1\}$, then (f, p) is an optimal mechanism.

Note: $K_i^*(t_{-i})$ is the minimum of value of t_i where *i* begins to be the winner

- Single Agent Optimal Mechanism Design
- ▶ Optimal Mechanism Design with Multiple Agents
- ► Examples of Optimal Mechanism Design
- ► Endnotes and Summary

Example 1

- Two buyers : $T_1 = [0, 12], T_2 = [0, 18]$
- Output of the second second

•
$$w_1(t_1) = t_1 - \frac{1 - G(t)}{g(t)} = t_1 - \frac{1 - \frac{t_1}{12}}{\frac{1}{12}} = 2t_1 - 12$$

• $w_2(t_2) = 2t_2 - 18$

t_1	t_2	Action	p_1	<i>p</i> ₂
4	8	unsold	0	0
2	12	sold to 2	0	9
6	6	sold to 1	6	0
9	9	sold to 1	6	0
8	15	sold to 2	0	11

• Symmetric bidders: the valuations are drawn from the same distribution, $g_i = g$, $T_i = T$, $\forall i \in N$

- Symmetric bidders: the valuations are drawn from the same distribution, $g_i = g$, $T_i = T$, $\forall i \in N$
- Virtual valuation: $w_i = w$

 $w(t_i) > w(t_j)$, iff $t_i > t_j$

- Symmetric bidders: the valuations are drawn from the same distribution, $g_i = g$, $T_i = T$, $\forall i \in N$
- Virtual valuation: $w_i = w$

 $w(t_i) > w(t_j)$, iff $t_i > t_j$

• The object goes to the highest bidder. Not sold if $w_{-i}(0) > t_i \forall i \in N$. $p_i = \max\{w^{-1}(0), \max_{j \neq i} t_j\}$

- Symmetric bidders: the valuations are drawn from the same distribution, $g_i = g$, $T_i = T$, $\forall i \in N$
- Virtual valuation: $w_i = w$

 $w(t_i) > w(t_j)$, iff $t_i > t_j$

- The object goes to the highest bidder. Not sold if $w_{-i}(0) > t_i \forall i \in N$. $p_i = \max\{w^{-1}(0), \max_{j \neq i} t_j\}$
- Second price auction with a reserve price, and is efficient when the object is sold.

Example 3 : Efficiency and Optimality

• Two buyers :
$$T_1 = [0, 10]$$
, $v_2 \uparrow$
 $T_2 = [0, 6]$, Uniform
independent prior
(0, 3)
Unsold
Sold to 2
Unsold
Sold to 1

22

 $v_1 \rightarrow$

(5,0)

Example 3 : Efficiency and Optimality

•
$$w_1(t_1) = 2t_1 - 10,$$

 $w_2(t_2) = 2t_2 - 6$

Example 3 : Efficiency and Optimality

 $v_2 \uparrow$

(0,3)

- Two buyers : $T_1 = [0, 10]$, $T_2 = [0, 6]$, Uniform independent prior
- $w_1(t_1) = 2t_1 10,$ $w_2(t_2) = 2t_2 - 6$
- Unsold is inefficient, also in the region of the plane where 1 has higher valuation but item is sold to 2

- Single Agent Optimal Mechanism Design
- ▶ Optimal Mechanism Design with Multiple Agents
- Examples of Optimal Mechanism Design
- ► Endnotes and Summary

• Uniqueness of Groves for efficiency $f^{eff}(t) \in \arg \max_{a \in A} \sum_{i \in N} t_i(a)$

• Uniqueness of Groves for efficiency $f^{eff}(t) \in \arg \max_{a \in A} \sum_{i \in N} t_i(a)$

Theorem (Green and Laffont (1979), Holmström (1979))

If the type space is 'sufficiently rich', every efficient and DSIC mechanism is a Groves mechanism.

Theorem (Green and Laffont (1979), Holmström (1979))

If the type space is 'sufficiently rich', every efficient and DSIC mechanism is a Groves mechanism.

• **Proof-sketch:** Two alternatives $A = \{a, b\}$ with respective welfare of $\sum_{i \in N} t_i(a)$ and $\sum_{i \in N} t_i(b)$

Theorem (Green and Laffont (1979), Holmström (1979))

If the type space is 'sufficiently rich', every efficient and DSIC mechanism is a Groves mechanism.

• **Proof-sketch:** Two alternatives $A = \{a, b\}$ with respective welfare of $\sum_{i \in N} t_i(a)$ and $\sum_{i \in N} t_i(b)$

• Suppose, $\sum_{i \in N} t_i(a) \ge \sum_{i \in N} t_i(b)$, hence *a* is chosen.

Theorem (Green and Laffont (1979), Holmström (1979))

If the type space is 'sufficiently rich', every efficient and DSIC mechanism is a Groves mechanism.

- **Proof-sketch:** Two alternatives $A = \{a, b\}$ with respective welfare of $\sum_{i \in N} t_i(a)$ and $\sum_{i \in N} t_i(b)$
- Suppose, $\sum_{i \in N} t_i(a) \ge \sum_{i \in N} t_i(b)$, hence *a* is chosen.
 - Fix the valuations of other agents to t_{-i}

Theorem (Green and Laffont (1979), Holmström (1979))

If the type space is 'sufficiently rich', every efficient and DSIC mechanism is a Groves mechanism.

- **Proof-sketch:** Two alternatives $A = \{a, b\}$ with respective welfare of $\sum_{i \in N} t_i(a)$ and $\sum_{i \in N} t_i(b)$
- Suppose, $\sum_{i \in N} t_i(a) \ge \sum_{i \in N} t_i(b)$, hence *a* is chosen.
 - Fix the valuations of other agents to t_{-i}
 - Fix value of *i* at alternative *b* as $t_i(b)$

Theorem (Green and Laffont (1979), Holmström (1979))

If the type space is 'sufficiently rich', every efficient and DSIC mechanism is a Groves mechanism.

- **Proof-sketch:** Two alternatives $A = \{a, b\}$ with respective welfare of $\sum_{i \in N} t_i(a)$ and $\sum_{i \in N} t_i(b)$
- Suppose, $\sum_{i \in N} t_i(a) \ge \sum_{i \in N} t_i(b)$, hence *a* is chosen.
 - Fix the valuations of other agents to t_{-i}
 - Fix value of *i* at alternative *b* as $t_i(b)$
- \exists some threshold $t_i^*(a)$ s.t.

 $\forall t_i(a) \ge t_i^*(a), a \text{ is the outcome, and } \forall t_i(a) < t_i^*(a), b \text{ is the outcome}$

• Using DSIC for $t_i^*(a) + \epsilon = t_i(a), \epsilon > 0$ we have,

 $t_i^*(a) + \epsilon - p_{ia} \ge t_i(b) - p_{ib}$ (Note: payment for a player has to be the same for an allocation)

• Using DSIC for $t_i^*(a) + \epsilon = t_i(a), \epsilon > 0$ we have,

 $t_i^*(a) + \epsilon - p_{ia} \ge t_i(b) - p_{ib}$ (Note: payment for a player has to be the same for an allocation)

• Similarly, $t'_i(a) = t^*_i(a) - \delta, \delta > 0$ and

$$t_i(b) - p_{ib} \ge t_i^*(a) - \delta - p_{ia}$$

• Using DSIC for $t_i^*(a) + \epsilon = t_i(a), \epsilon > 0$ we have,

 $t_i^*(a) + \epsilon - p_{ia} \ge t_i(b) - p_{ib}$ (Note: payment for a player has to be the same for an allocation)

• Similarly, $t_i'(a) = t_i^*(a) - \delta$, $\delta > 0$ and

$$t_i(b) - p_{ib} \ge t_i^*(a) - \delta - p_{ia}$$

• Since, ϵ , δ are arbitrary , then

$$t_i^*(a) - p_{ia} = t_i(b) - p_{ib}$$
(4)

• Using DSIC for $t_i^*(a) + \epsilon = t_i(a), \epsilon > 0$ we have,

 $t_i^*(a) + \epsilon - p_{ia} \ge t_i(b) - p_{ib}$ (Note: payment for a player has to be the same for an allocation)

• Similarly, $t_i'(a) = t_i^*(a) - \delta$, $\delta > 0$ and

$$t_i(b) - p_{ib} \ge t_i^*(a) - \delta - p_{ia}$$

• Since, ϵ , δ are arbitrary , then

$$t_i^*(a) - p_{ia} = t_i(b) - p_{ib}$$
(4)

• But $t_i^*(a)$ is the threshold of the efficient outcome, thus,

$$t_i^*(a) + \sum_{j \neq i} t_j(a) = t_i(b) + \sum_{j \neq i} t_j(b)$$

(5)

• From Equations (4) and (5)

$$p_{ia} - p_{ib} = \sum_{j \neq i} t_j(b) - \sum_{j \neq i} t_j(a)$$

• From Equations (4) and (5)

$$p_{ia} - p_{ib} = \sum_{j \neq i} t_j(b) - \sum_{j \neq i} t_j(a)$$

• Hence, the payment has to be of the form $p_{ix} = h_i(t_{-i}) - \sum_{j \neq i} t_j(x)$

Theorem (Green and Laffont (1979), Holmström (1979))

If the type space is 'sufficiently rich', every efficient and DSIC mechanism is a Groves mechanism.

Theorem (Green and Laffont (1979), Holmström (1979))

If the type space is 'sufficiently rich', every efficient and DSIC mechanism is a Groves mechanism.

Theorem (Green and Laffont (1979))

No Groves mechanism is budget balanced, i.e., $\nexists p_i^G s.t., \sum_{i \in N} p_i^G(t) = 0, \forall t \in T.$

Theorem (Green and Laffont (1979), Holmström (1979))

If the type space is 'sufficiently rich', every efficient and DSIC mechanism is a Groves mechanism.

Theorem (Green and Laffont (1979))

No Groves mechanism is budget balanced, i.e., $\nexists p_i^G s.t., \sum_{i \in N} p_i^G(t) = 0, \forall t \in T.$

Corollary

If the valuation space is sufficiently rich, no efficient mechanism can be both DSIC and BB.

- Consider two alternatives {0,1} s.t.
 - 0 : project is not undertaken 1 : project is undertaken

and at outcome 0, every agent has zero value.

• Consider two alternatives {0,1} s.t.

0 : project is not undertaken 1 : project is undertaken

and at outcome 0, every agent has zero value.

• Suppose, $\exists h_i, \forall i \in N \text{ s.t. } \sum_{i \in N} p_i(t) = 0$

• Consider two alternatives {0,1} s.t.

0 : project is not undertaken 1 : project is undertaken

and at outcome 0, every agent has zero value.

- Suppose, $\exists h_i, \forall i \in N \text{ s.t. } \sum_{i \in N} p_i(t) = 0$
- Consider two types w_1^+, w_1^- for player 1, and one type w_2 for player 2 s.t.

 $w_1^+ + w_2 > 0$: project is built $w_1^- + w_2 < 0$: project is not built

• Consider two alternatives {0,1} s.t.

0 : project is not undertaken 1 : project is undertaken

and at outcome 0, every agent has zero value.

- Suppose, $\exists h_i, \forall i \in N \text{ s.t. } \sum_{i \in N} p_i(t) = 0$
- Consider two types w_1^+, w_1^- for player 1, and one type w_2 for player 2 s.t.

 $w_1^+ + w_2 > 0$: project is built $w_1^- + w_2 < 0$: project is not built

• Budget balance at type profile (w_1^+, w_2) gives $h_1(w_2) - w_2 + h_2(w_1^+) - w_1^+ = 0$ and at type profile (w_1^-, w_2) gives $h_1(w_2) + h_2(w_1^-) = 0$

• Consider two alternatives {0,1} s.t.

0 : project is not undertaken 1 : project is undertaken

and at outcome 0, every agent has zero value.

- Suppose, $\exists h_i, \forall i \in N \text{ s.t. } \sum_{i \in N} p_i(t) = 0$
- Consider two types w_1^+, w_1^- for player 1, and one type w_2 for player 2 s.t.

 $w_1^+ + w_2 > 0$: project is built $w_1^- + w_2 < 0$: project is not built

- Budget balance at type profile (w_1^+, w_2) gives $h_1(w_2) w_2 + h_2(w_1^+) w_1^+ = 0$ and at type profile (w_1^-, w_2) gives $h_1(w_2) + h_2(w_1^-) = 0$
- Eliminating $h_1(w_2)$, we get $w_2 = h_2(w_1^+) h_2(w_1^-) w_1^+$

• Consider two alternatives {0,1} s.t.

0 : project is not undertaken 1 : project is undertaken

and at outcome 0, every agent has zero value.

- Suppose, $\exists h_i, \forall i \in N \text{ s.t. } \sum_{i \in N} p_i(t) = 0$
- Consider two types w_1^+, w_1^- for player 1, and one type w_2 for player 2 s.t.

 $w_1^+ + w_2 > 0$: project is built $w_1^- + w_2 < 0$: project is not built

- Budget balance at type profile (w_1^+, w_2) gives $h_1(w_2) w_2 + h_2(w_1^+) w_1^+ = 0$ and at type profile (w_1^-, w_2) gives $h_1(w_2) + h_2(w_1^-) = 0$
- Eliminating $h_1(w_2)$, we get $w_2 = h_2(w_1^+) h_2(w_1^-) w_1^+$
- The RHS depends only on w_1 , hence it is possible to alter w_2 slightly to retain the inequalities, but then the above equality cannot hold.

• Allocation is still the efficient one $a^*(t) \in \arg \max_{a \in A} \sum_{i \in N} t_i(a)$

- Allocation is still the efficient one $a^*(t) \in \arg \max_{a \in A} \sum_{i \in N} t_i(a)$
- Payment in this setting is also defined via a prior $\delta_i(t_i) = \mathbb{E}_{t_{-i}|t_i} \sum_{j \neq i} t_j(a^*(t))$

- Allocation is still the efficient one $a^*(t) \in \arg \max_{a \in A} \sum_{i \in N} t_i(a)$
- Payment in this setting is also defined via a prior $\delta_i(t_i) = \mathbb{E}_{t_{-i}|t_i} \sum_{j \neq i} t_j(a^*(t))$
- Payment is given by (named after d'Aspremont, Gerard-Varet (1979), Arrow (1979)):

$$p_i^{dAGVA}(t) = \frac{1}{n-1} \sum_{j \neq i} \delta_j(t_j) - \delta_i(t_i)$$

- Allocation is still the efficient one $a^*(t) \in \arg \max_{a \in A} \sum_{i \in N} t_i(a)$
- Payment in this setting is also defined via a prior $\delta_i(t_i) = \mathbb{E}_{t_{-i}|t_i} \sum_{j \neq i} t_j(a^*(t))$
- Payment is given by (named after d'Aspremont, Gerard-Varet (1979), Arrow (1979)):

$$p_i^{dAGVA}(t) = \frac{1}{n-1} \sum_{j \neq i} \delta_j(t_j) - \delta_i(t_i)$$

$$\mathbb{E}_{t_{-i}|t_i}[t_i(a^*(t)) - p_i^{dAGVA}(t)]$$

- Allocation is still the efficient one $a^*(t) \in \arg \max_{a \in A} \sum_{i \in N} t_i(a)$
- Payment in this setting is also defined via a prior $\delta_i(t_i) = \mathbb{E}_{t_{-i}|t_i} \sum_{j \neq i} t_j(a^*(t))$
- Payment is given by (named after d'Aspremont, Gerard-Varet (1979), Arrow (1979)):

$$p_i^{dAGVA}(t) = \frac{1}{n-1} \sum_{j \neq i} \delta_j(t_j) - \delta_i(t_i)$$

$$\mathbb{E}_{t_{-i}|t_i}[t_i(a^*(t)) - p_i^{dAGVA}(t)] = \mathbb{E}_{t_{-i}|t_i} \sum_{j \in N} t_j(a^*(t)) - \mathbb{E}_{t_{-i}|t_i} \left[\frac{1}{n-1} \sum_{j \neq i} \delta_j(t_j) \right]$$

- Allocation is still the efficient one $a^*(t) \in \arg \max_{a \in A} \sum_{i \in N} t_i(a)$
- Payment in this setting is also defined via a prior $\delta_i(t_i) = \mathbb{E}_{t_{-i}|t_i} \sum_{j \neq i} t_j(a^*(t))$
- Payment is given by (named after d'Aspremont, Gerard-Varet (1979), Arrow (1979)):

$$p_i^{dAGVA}(t) = \frac{1}{n-1} \sum_{j \neq i} \delta_j(t_j) - \delta_i(t_i)$$

$$\begin{split} \mathbb{E}_{t_{-i}|t_i}[t_i(a^*(t)) - p_i^{dAGVA}(t)] &= \mathbb{E}_{t_{-i}|t_i} \sum_{j \in N} t_j(a^*(t)) - \mathbb{E}_{t_{-i}|t_i} \left[\frac{1}{n-1} \sum_{j \neq i} \delta_j(t_j) \right] \\ &\geqslant \mathbb{E}_{t_{-i}|t_i} \sum_{j \in N} t_j(a^*(t'_i, t_{-i})) - \mathbb{E}_{t_{-i}|t_i} \left[\frac{1}{n-1} \sum_{j \neq i} \delta_j(t_j) \right] \end{split}$$

- Allocation is still the efficient one $a^*(t) \in \arg \max_{a \in A} \sum_{i \in N} t_i(a)$
- Payment in this setting is also defined via a prior $\delta_i(t_i) = \mathbb{E}_{t_{-i}|t_i} \sum_{j \neq i} t_j(a^*(t))$
- Payment is given by (named after d'Aspremont, Gerard-Varet (1979), Arrow (1979)):

$$p_i^{dAGV\!A}(t) = \frac{1}{n-1} \sum_{j \neq i} \delta_j(t_j) - \delta_i(t_i)$$

$$\begin{split} \mathbb{E}_{t_{-i}|t_{i}}[t_{i}(a^{*}(t)) - p_{i}^{dAGVA}(t)] &= \mathbb{E}_{t_{-i}|t_{i}} \sum_{j \in N} t_{j}(a^{*}(t)) - \mathbb{E}_{t_{-i}|t_{i}} \left[\frac{1}{n-1} \sum_{j \neq i} \delta_{j}(t_{j}) \right] \\ &\geqslant \mathbb{E}_{t_{-i}|t_{i}} \sum_{j \in N} t_{j}(a^{*}(t_{i}', t_{-i})) - \mathbb{E}_{t_{-i}|t_{i}} \left[\frac{1}{n-1} \sum_{j \neq i} \delta_{j}(t_{j}) \right] \\ &= \mathbb{E}_{t_{-i}|t_{i}} \left[t_{i}(a^{*}(t_{i}', t_{-i})) - p_{i}^{dAGVA}(t_{i}', t_{-i}) \right] \end{split}$$

• To show budget balance, consider

$$\sum_{i \in N} p_i^{dAGVA}(t) = \frac{1}{n-1} \sum_{i \in N} \sum_{j \neq i} \delta_j(t_j) - \sum_{i \in N} \delta_i(t_i)$$
$$= \frac{n-1}{n-1} \sum_{j \in N} \delta_j(t_j) - \sum_{i \in N} \delta_i(t_i) = 0$$

• To show budget balance, consider

$$\sum_{i \in N} p_i^{dAGVA}(t) = \frac{1}{n-1} \sum_{i \in N} \sum_{j \neq i} \delta_j(t_j) - \sum_{i \in N} \delta_i(t_i)$$
$$= \frac{n-1}{n-1} \sum_{j \in N} \delta_j(t_j) - \sum_{i \in N} \delta_i(t_i) = 0$$

Theorem

The dAGVA mechanism is efficient, BIC, and BB.

• To show budget balance, consider

$$\sum_{i \in N} p_i^{dAGVA}(t) = \frac{1}{n-1} \sum_{i \in N} \sum_{j \neq i} \delta_j(t_j) - \sum_{i \in N} \delta_i(t_i)$$
$$= \frac{n-1}{n-1} \sum_{j \in N} \delta_j(t_j) - \sum_{i \in N} \delta_i(t_i) = 0$$

Theorem

The dAGVA mechanism is efficient, BIC, and BB.

• However, **dAGVA** is not IIR

• To show budget balance, consider

$$\sum_{i \in N} p_i^{dAGVA}(t) = \frac{1}{n-1} \sum_{i \in N} \sum_{j \neq i} \delta_j(t_j) - \sum_{i \in N} \delta_i(t_i)$$
$$= \frac{n-1}{n-1} \sum_{j \in N} \delta_j(t_j) - \sum_{i \in N} \delta_i(t_i) = 0$$

Theorem

The dAGVA mechanism is efficient, BIC, and BB.

• However, **dAGVA** is not IIR

Theorem (Myerson, Satterthwaite (1983))

In a bilateral trade (that involves two types of agents: seller and buyer) no mechanism can be simultaneously BIC, efficient, IIR and budget balanced.

Figure: Space of Mechanisms 1

Space of Mechanisms

Figure: Space of Mechanisms 2

Space of Mechanisms

Figure: Space of Mechanisms 2

Figure: Space of Mechanisms 3

भारतीय प्रौद्योगिकी संस्थान मुंबई Indian Institute of Technology Bombay