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Mechanism Design for Single Agent

e Type set T = [0, B], Mechanism M := (f,p)

* 08 =01, p:[08] =R
* Incentive Compatibility [BIC and DSIC equivalent]

tf () —p(t) > tf(s) —p(s), Vi,s €T
¢ Individual Rationality [IR and IIR equivalent]
tf(t) —p(t) >0, Vt,s € T

* The expected revenue earned by a mechanism M is given by

.= /0  o(t)g(t)at
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What is the structure of an optimal mechanism?

* Consider an IC and IR mechanism M = (f, p)
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Optimal Mechanism for Single Agent

Definition (Optimal Mechanism)

An optimal mechanism M* for a single agent is a mechanism in the class of all IC and IR
mechanisms, such that [TM" > [IM, vM

Question

What is the structure of an optimal mechanism?

* Consider an IC and IR mechanism M = (f, p)
e By the characterization results, we know f is monotone, and

p(t) = p(0) +tf(t) / f(x) [IC]
p(0) <0 [IR]

* Since we want to maximize the revenue, hence p(0) =0
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Optimal Mechanism for Single Agent

* Hence the payment formula is

p(0) = 1(6)— [ fexgix

* Note: In optimal mechanism, payment is completely given once the allocation is fixed
* Hence, we need to optimize only over one variable f

¢ Expected revenue:
. P
_/0 p(t)g(t)dt

= [ (0~ [ o) sty

* Need to maximize this w.r.t. f
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Lemma

For any implementable allocation rule f, we have
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Lemma

For any implementable allocation rule f, we have

¥ = /Oﬁ (t . ;(?)(t)> g(H)f (bdt

* The following term is also called the virtual valuation of the agent

w = (-5
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The Optimization Problem

Proof

= ( /f dx)
:/ tf (t) (t)dt—/ /f(x dx g(t)dt

= / tf(t)g(t)dt — / / t)dt f(x)dx [switching the order of integration]

- / (1) (D)t — / / x)dxf (¢)

= [ et —< — G(HF(E) dt

= [ (- 552 st




The Modified Optimization Problem

* Hence the optimal mechanism finding mechanism reduces to

B _
OPT1: max / <t - ﬂ) g(t)f (t)dt
ff is non-decreasing /0 g (t)
e Assumption: G satisfies the montotone hazard rate condition (MHR), i.e., % is

non-decreasing in x
e Standard distributions like uniform and exponential statisfy MHR condition



Observation

Fact

1-G(x)

If G satisfies MHR condition, there is a soultion to x = RE)



Observation

Fact
If G satisfies MHR condition, there is a soultion to x = 1;8(;‘)
* Let x* be a solution of this equation e
* Hence, w(x) = x — 1;85()") is zero at x* y=x

e — w(x) >0, Vx >x"and <0, Vx < x*

%




Solution to the optimization problem

e The unrestricted solution to OPT1 is therefore
0 ift<ux*
f(H)y =<1 ift>x* (1)
a ift=x"a€][0,1]
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Theorem
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0 ift<ux*
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* But this f is non-decreasing, therefore it is the optimal solution of OPT1

Theorem
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Solution to the optimization problem

e The unrestricted solution to OPT1 is therefore
0 ift<ux*
f(H)y =<1 ift>x* (1)
a ift=x"a€][0,1]

* But this f is non-decreasing, therefore it is the optimal solution of OPT1

Theorem

A mechanism (f, p) under the MHR condition is optimal iff

@ f is given by Equation (1) where x* is a solution of x = 1;8(())‘) , and

{x* ift > x*

0  otherwise

Q Forallt €T, p(t)
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Optimal mechanism design for multiple agents

e In this context, we will call a mechanism optimal if it is BIC, IIR, and maximizes revenue
* By previous results, this reduces to:

@ f’'sare NDEVie N,
Q@ 7;(t;) has a specific integral formula and 77;(0) = 0

* Hence, the expected payment made by agent i is [ 7;(t;)gi(t;) dt;, T; = [0, b;]

* This can be simplified to the following in a way similar to the earlier exercise

[ witsi et

1—Gi(ti)
8i(ti)
wlt) = [ fltytg-i(t)dey

where, w;(t;) = t; — (virtual valuation of player i) and,



Optimal mechanism design for multiple agents

e This gives, expected payment made by agent i as

J itz a



Optimal mechanism design for multiple agents

e This gives, expected payment made by agent i as

[ witfwg(e) dr

e The total revenue generated by all players is

L [ swdt= [ w030 d

ieEN ieN

where Y ;o (w;(t)fi(t)) is the expected total virtual valuation



Optimal mechanism design for multiple agents

e This gives, expected payment made by agent i as

[ witfwg(e) dr

e The total revenue generated by all players is

L [ wthg@d= [ ¥ @tz
ieN’T TieN

where Y ;o (w;(t)fi(t)) is the expected total virtual valuation
* Hence, the optimal mechanism problem reduces to

max /T Y (w(1)fi(£))g(t) dt, s.t. f is NDE

iEN



Optimal mechanism design for multiple agents

* As before, we try to solve the unconstrainted optimization problem.

0, otherwise 2)
fi(t) =0,Vi € N, if w;(t;) <0, Vi€ N (Unsold)

() = {1 if w;(t;) > w;(t;), Vj, break ties arbitrarily (Sold)
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Optimal mechanism design for multiple agents

* As before, we try to solve the unconstrainted optimization problem.
() = 1 if wi(ti? > wj(t;), Vj, break ties arbitrarily (Sold)
0, otherwise 2)
fi(t) =0,¥i € N, ifw;(t;) <0, Vie N (Unsold)

* But it can lead to a case where f is not NDE (for an example, see Roger B Myerson. “Optimal
auction design”, 1981

* The example is such that the following condition is violated

Definition

A virtual valuation w; is regular if Vs;, t; € T; with s; < t;, it holds that w;(s;) < w;(#;).

* This condition is weaker than MHR condition as MHR implies regularity
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Lemma

Suppose every agent’s valuations are reqular. The allocation rule of the optimal mechanism is same as the
solution of the unconstrained problem.

Proof-sketch:

* The solution is as given in Equation (2)
* Regularity ensures that w;(t;) > w;(s;), Vs; < t;
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Optimal mechanism design for multiple agents

Lemma

Suppose every agent’s valuations are reqular. The allocation rule of the optimal mechanism is same as the
solution of the unconstrained problem.

Proof-sketch:

* The solution is as given in Equation (2)
* Regularity ensures that w;(t;) > w;(s;), Vs; < t;
* Then the optimal allocation also satisfies

filtist—i) = fisist—i), Vt_; € T_;, Vs < t

* ie, f; is non-decreasing (hence NDE)



The solution

* Optimal Mechanism Design Problem

max / (Z w;(#)fi( )dt) such that f is NDE

ieN

Solution for regular w;’s

0, otherwise (©)]
fi(t) =0,¥i e N, if w;(t;) <0, ¥i € N (Unsold)

1) = {1 if w;(t;) > wj(t;), Vj, break ties arbitrarily (Sold)

* We wanted to find an allocation that is NDE, but found an f that is non-decreasing
e It is also deterministic



Optimal Mechanism

BIC, IIR, randomized

DSIC, IR, deterministic

Space of mechanisms with regular virtual valuations




Optimal Mechanism: Allocation and Payment

Theorem

Suppose every agent’s valuation is regular.
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Theorem
Suppose every agent’s valuation is regular. Then, for every type profile t, if w;(t;) < 0,Vi € N,
fi(t) =0,Vi € N.
1 ifwi(tz-) P> w](t]) VieN
0 otherwise,
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Otherwise, f;(t) =
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Payments are given by p;(t) = ’
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optimal mechanism.



Optimal Mechanism: Allocation and Payment

Theorem
Suppose every agent’s valuation is regular. Then, for every type profile t, if w;(t;) < 0,Vi € N,
fi(t) =0,Vi € N.
1 ifwi(tz-) P> w](t]) VieN
0 otherwise,
with ties are broken arbitrarily.

Otherwise, f;(t) =

0 () =0
max{w; ' (0),Kf(t-)} iffi(t) =1,

where wl._l(O): the value of t; where w;(t;) = 0, and Kf (t_;) = inf{t; : fi(t;, t_;) = 1}, then (f,p) is an
optimal mechanism.

Payments are given by p;(t) = {

Note: K7 (t_;) is the minimum of value of ¢; where i begins to be the winner
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Example 1

@ Two buyers : T; = [0,12], T, = [0,18]

@ Uniform independent prior

SR <[ R
Q wi(h) =t — 20D =t ——

Q wy(k) =2t —18

=2 —12
12
t1 | t Action | py | p2
4| 8 unsold 0|0
2 12 |soldto2 | 0 | 9
6| 6 |soldtol | 6 | 0
919 |soldtol | 6 | O
8 | 15 |soldto2 | 0 | 11




Example 2

* Systematic bidders: the valuations are drawn from the same distribution, g; =g, T; =T,
Vie N
e Virtual valuation: w; = w

w(ti) > w(i’]'), iff £ > tj

* The object goes to the highest bidder. Not sold if w_;(0) > t;Vi € N.
pi = max{w’l(O),maxj# tj}
* Second price auction with a reserve price, and is efficient when the object is sold.



Example 3 : Efficiency and Optimality

e Two buyers : Ty = [0,10],
T, = [0, 6], Uniform
independent prior

e wi(t) =2t —10,
wZ(tz) =2t —6

e Unsold is inefficient, also in
the region of the plane where
1 has higher valuation but
item is sold to 2

N

(0,3)

Sold to 2
Sold to 2 wHen
U1 > Uy
Unsold
Sold to 1

(5, 0) 01 —
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Efficiency and Groves Mechanism

* Uniqueness of Groves for efficiency o (t) € arg max,ea Yjen ti(a)

Theorem (Green and Laffont (1979), Holmstrom (1979))

If the type space is ‘sufficiently rich’, every efficient and DSIC mechanism is a Groves mechanism.

* Proof-sketch: Two alternatives A = {a, b} with respective welfare of ) ;cn t;j(a) and Y ;cn ti(b)
° Yienti(a) = Yicn ti(b) then a is chosen.

— Fix the valuations of other agents to t_;
— Fix value of i at alternative b as t;(b)

* Jsome threshold t/(a) s.t.

Vti(a) >t (a), ais the outcome, and Vt;(a) < t7(a), b is the outcome



Proof sketch (contd.)

e Using DSIC for tf(a) 4 € = t;(a),e > 0 we have,

t7(a) + € — piy = ti(b) —pip (Note: payment for a player has to be the same for an allocation.)
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Proof sketch (contd.)

Using DSIC for t](a) 4 € = t;(a), e > 0 we have,

t7(a) + € — piy = ti(b) —pip (Note: payment for a player has to be the same for an allocation.)

Similarly, t}(a) = t(a) — 6,6 > 0 and

ti(b) —pip = t{ (a) — 6 — pia

Since, €, 0 are arbitrary , then

ti (@) — pia = ti(b) — piv 4
* But t(a) is the threshold of the efficient outcome, thus,
t(a) + Y _ti(a) = t;(b) + ) _ti(b) )

J# J#



Proof sketch (contd.)

e From Equations (4) and (5)
Pia — Piv = Y_tj(b) = Y _t;(a)
J# J#



Proof sketch (contd.)

e From Equations (4) and (5)
Pia — Piv = Y_tj(b) = Y _t;(a)
j#i j#i
* Hence, the payment has to be of the form p;, = h;(t-;) — ¥4; tj(x)
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Efficiency and Budget Balance

Theorem (Green and Laffont (1979), Holmstrom (1979))

If the type space is ‘sufficiently rich’, every efficient and DSIC mechanism is a Groves mechanism.

Theorem (Green and Laffont (1979))
No Groves mechanism is budget balanced, i.e., 4 pf.; S.t., Yien piG(t) =0, VteT.

Corollary
If the valuation space is sufficiently rich, no efficient mechanism can be both DSIC and BB.
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Proof sketch of the second theorem

e Consider two alternatives {0,1} s.t.
0 : project is not undertaken 1: project is undertaken

and at outcome 0, every agent has zero value.
* Suppose, 3 h;, Vi € Ns.t. Yienpi(t) =0
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Proof sketch of the second theorem

e Consider two alternatives {0,1} s.t.
0 : project is not undertaken 1: project is undertaken

and at outcome 0, every agent has zero value.
* Suppose, 3 h;, Vi € Ns.t. Yienpi(t) =0
¢ Consider two types w}",w; for player 1, and one type w; for player 2 s.t.

w] +wy > 0: project is built w; +wy < 0: project is not built

¢ Budget balance at type profile (w;,w,) gives hy(wy) — wy + ha(w]") — w{ = 0 and at type
profile (wy , wy) gives hy(w2) +hy(wy ) =0

o Eliminating 1y (w;), we get wy = hy(w]) — hp(wy ) — w;

* The RHS depends only on w;, hence it is possible to alter w, slightly to retain the
inequalities, but then the above equality cannot hold.
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Budget Balance?

e To show budget balance, consider

> pACA () = —— Y Y 6() — ) ailt)

ieN zeN]#l ieN
:1’1—125 Zéi(tl):
JEN ieN
Theorem

The dAGVA mechanism is efficient, BIC, and BB.

e However, dAGVA is not IIR
Theorem (Myerson, Satterthwaite (1983))

In a bilateral trade (that involves two types of agents: seller and buyer) no mechanism can be
simultaneously BIC, efficient, IIR and budget balanced.
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