भारतीय प्रौद्योगिकी संस्थान मुंबई

Indian Institute of Technology Bombay

CS 6001: Game Theory and Algorithmic Mechanism Design

Week 12

Contents

- Single Agent Optimal Mechanism Design

- Optimal Mechanism Design with Multiple Agents

- Examples of Optimal Mechanism Design
- Endnotes and Summary

Mechanism Design for Single Agent

- Type set $T=[0, \beta]$, Mechanism $M:=(f, p)$

Mechanism Design for Single Agent

- Type set $T=[0, \beta]$, Mechanism $M:=(f, p)$
- $f:[0, \beta] \rightarrow[0,1], p:[0, \beta] \rightarrow \mathbb{R}$

Mechanism Design for Single Agent

- Type set $T=[0, \beta]$, Mechanism $M:=(f, p)$
- $f:[0, \beta] \rightarrow[0,1], p:[0, \beta] \rightarrow \mathbb{R}$
- Incentive Compatibility [BIC and DSIC equivalent]

$$
t f(t)-p(t) \geqslant t f(s)-p(s), \forall t, s \in T
$$

Mechanism Design for Single Agent

- Type set $T=[0, \beta]$, Mechanism $M:=(f, p)$
- $f:[0, \beta] \rightarrow[0,1], p:[0, \beta] \rightarrow \mathbb{R}$
- Incentive Compatibility [BIC and DSIC equivalent]

$$
t f(t)-p(t) \geqslant t f(s)-p(s), \forall t, s \in T
$$

- Individual Rationality [IR and IIR equivalent]

$$
t f(t)-p(t) \geqslant 0, \forall t, s \in T
$$

Mechanism Design for Single Agent

- Type set $T=[0, \beta]$, Mechanism $M:=(f, p)$
- $f:[0, \beta] \rightarrow[0,1], p:[0, \beta] \rightarrow \mathbb{R}$
- Incentive Compatibility [BIC and DSIC equivalent]

$$
t f(t)-p(t) \geqslant t f(s)-p(s), \forall t, s \in T
$$

- Individual Rationality [IR and IIR equivalent]

$$
t f(t)-p(t) \geqslant 0, \forall t, s \in T
$$

- The expected revenue earned by a mechanism M is given by

$$
\Pi^{M}:=\int_{0}^{\beta} p(t) g(t) d t
$$

Optimal Mechanism for Single Agent

Definition (Optimal Mechanism)

An optimal mechanism M^{*} for a single agent is a mechanism in the class of all IC and IR mechanisms, such that $\Pi^{M^{*}} \geqslant \Pi^{M}, \forall M$

Question

What is the structure of an optimal mechanism?

- Consider an IC and IR mechanism $M=(f, p)$

Optimal Mechanism for Single Agent

Definition (Optimal Mechanism)

An optimal mechanism M^{*} for a single agent is a mechanism in the class of all IC and IR mechanisms, such that $\Pi^{M^{*}} \geqslant \Pi^{M}, \forall M$

Question

What is the structure of an optimal mechanism?

- Consider an IC and IR mechanism $M=(f, p)$
- By the characterization results, we know f is monotone, and

$$
\begin{align*}
& p(t)=p(0)+t f(t)-\int_{0}^{t} f(x) d x \\
& p(0) \leqslant 0 \tag{IR}
\end{align*}
$$

Optimal Mechanism for Single Agent

Definition (Optimal Mechanism)

An optimal mechanism M^{*} for a single agent is a mechanism in the class of all IC and IR mechanisms, such that $\Pi^{M^{*}} \geqslant \Pi^{M}, \forall M$

Question

What is the structure of an optimal mechanism?

- Consider an IC and IR mechanism $M=(f, p)$
- By the characterization results, we know f is monotone, and

$$
\begin{aligned}
& p(t)=p(0)+t f(t)-\int_{0}^{t} f(x) d x \\
& p(0) \leqslant 0
\end{aligned}
$$

- Since we want to maximize the revenue, hence $p(0)=0$

Optimal Mechanism for Single Agent

- Hence the payment formula is

$$
p(t)=t f(t)-\int_{0}^{t} f(x) d x
$$

Optimal Mechanism for Single Agent

- Hence the payment formula is

$$
p(t)=t f(t)-\int_{0}^{t} f(x) d x
$$

- Note: In optimal mechanism, payment is completely given once the allocation is fixed

Optimal Mechanism for Single Agent

- Hence the payment formula is

$$
p(t)=t f(t)-\int_{0}^{t} f(x) d x
$$

- Note: In optimal mechanism, payment is completely given once the allocation is fixed
- Hence, we need to optimize only over one variable f

Optimal Mechanism for Single Agent

- Hence the payment formula is

$$
p(t)=t f(t)-\int_{0}^{t} f(x) d x
$$

- Note: In optimal mechanism, payment is completely given once the allocation is fixed
- Hence, we need to optimize only over one variable f
- Expected revenue:

$$
\begin{aligned}
\Pi^{f} & =\int_{0}^{\beta} p(t) g(t) d t \\
& =\int_{0}^{\beta}\left(t f(t)-\int_{0}^{t} f(x) d x\right) g(t) d t
\end{aligned}
$$

Optimal Mechanism for Single Agent

- Hence the payment formula is

$$
p(t)=t f(t)-\int_{0}^{t} f(x) d x
$$

- Note: In optimal mechanism, payment is completely given once the allocation is fixed
- Hence, we need to optimize only over one variable f
- Expected revenue:

$$
\begin{aligned}
\Pi^{f} & =\int_{0}^{\beta} p(t) g(t) d t \\
& =\int_{0}^{\beta}\left(t f(t)-\int_{0}^{t} f(x) d x\right) g(t) d t
\end{aligned}
$$

- Need to maximize this w.r.t. f

The Optimization Problem

Lemma

For any implementable allocation rule f, we have

$$
\Pi^{f}=\int_{0}^{\beta}\left(t-\frac{1-G(t)}{g(t)}\right) g(t) f(t) d t
$$

The Optimization Problem

Lemma

For any implementable allocation rule f, we have

$$
\Pi^{f}=\int_{0}^{\beta}\left(t-\frac{1-G(t)}{g(t)}\right) g(t) f(t) d t
$$

- The following term is also called the virtual valuation of the agent

$$
w(t)=\left(t-\frac{1-G(t)}{g(t)}\right)
$$

The Optimization Problem

$$
\begin{aligned}
\Pi^{f} & =\left(t f(t)-\int_{0}^{t} f(x) d x\right) g(t) d t \\
& =\int_{0}^{\beta} t f(t) g(t) d t-\int_{0}^{\beta} \int_{0}^{t} f(x) d x g(t) d t
\end{aligned}
$$

The Optimization Problem

$$
\begin{aligned}
\Pi^{f} & =\left(t f(t)-\int_{0}^{t} f(x) d x\right) g(t) d t \\
& =\int_{0}^{\beta} t f(t) g(t) d t-\int_{0}^{\beta} \int_{0}^{t} f(x) d x g(t) d t \\
& =\int_{0}^{\beta} t f(t) g(t) d t-\int_{0}^{\beta} \int_{x}^{\beta} g(t) d t f(x) d x
\end{aligned}
$$

The Optimization Problem

$$
\begin{aligned}
\Pi^{f} & =\left(t f(t)-\int_{0}^{t} f(x) d x\right) g(t) d t \\
& =\int_{0}^{\beta} t f(t) g(t) d t-\int_{0}^{\beta} \int_{0}^{t} f(x) d x g(t) d t \\
& =\int_{0}^{\beta} t f(t) g(t) d t-\int_{0}^{\beta} \int_{x}^{\beta} g(t) d t f(x) d x \quad \text { [switching the order of integration] } \\
& =\int_{0}^{\beta} t f(t) g(t) d t-\int_{0}^{\beta} \int_{t}^{\beta} g(x) d x f(t) d t
\end{aligned}
$$

The Optimization Problem

$$
\begin{aligned}
\Pi^{f} & =\left(t f(t)-\int_{0}^{t} f(x) d x\right) g(t) d t \\
& =\int_{0}^{\beta} t f(t) g(t) d t-\int_{0}^{\beta} \int_{0}^{t} f(x) d x g(t) d t \\
& =\int_{0}^{\beta} t f(t) g(t) d t-\int_{0}^{\beta} \int_{x}^{\beta} g(t) d t f(x) d x \\
& =\int_{0}^{\beta} t f(t) g(t) d t-\int_{0}^{\beta} \int_{t}^{\beta} g(x) d x f(t) d t \\
& =\int_{0}^{\beta}(t f(t) g(t)-(1-G(t) f(t)) d t
\end{aligned}
$$

The Optimization Problem

$$
\begin{aligned}
\Pi^{f} & =\left(t f(t)-\int_{0}^{t} f(x) d x\right) g(t) d t \\
& =\int_{0}^{\beta} t f(t) g(t) d t-\int_{0}^{\beta} \int_{0}^{t} f(x) d x g(t) d t \\
& =\int_{0}^{\beta} t f(t) g(t) d t-\int_{0}^{\beta} \int_{x}^{\beta} g(t) d t f(x) d x \\
& =\int_{0}^{\beta} t f(t) g(t) d t-\int_{0}^{\beta} \int_{t}^{\beta} g(x) d x f(t) d t \\
& =\int_{0}^{\beta}(t f(t) g(t)-(1-G(t) f(t)) d t \\
& =\int_{0}^{\beta}\left(t-\frac{1-G(t)}{g(t)}\right) g(t) f(t) d t
\end{aligned}
$$

The Modified Optimization Problem

- Hence the optimal mechanism finding mechanism reduces to

$$
\text { OPT1: } \quad \max _{f: f \text { is non-decreasing }} \int_{0}^{\beta}\left(t-\frac{1-G(t)}{g(t)}\right) g(t) f(t) d t
$$

- Assumption: G satisfies the montotone hazard rate condition (MHR), i.e., $\frac{g(x)}{1-G(x)}$ is non-decreasing in x
- Standard distributions like uniform and exponential statisfy MHR condition

Observation

Fact

If G satisfies $M H R$ condition, there is a soultion to $x=\frac{1-G(x)}{g(x)}$

Observation

Fact

If G satisfies $M H R$ condition, there is a soultion to $x=\frac{1-G(x)}{g(x)}$

- Let x^{*} be a solution of this equation
- Hence, $w(x)=x-\frac{1-G(x)}{g(x)}$ is zero at x^{*}
- $\Longrightarrow w(x) \geqslant 0, \forall x>x^{*}$ and $\leqslant 0, \forall x<x^{*}$

Solution to the optimization problem

- The unrestricted solution to OPT1 is therefore

$$
f(t)= \begin{cases}0 & \text { if } t<x^{*} \tag{1}\\ 1 & \text { if } t>x^{*} \\ \alpha & \text { if } t=x^{*}, \alpha \in[0,1]\end{cases}
$$

Solution to the optimization problem

- The unrestricted solution to OPT1 is therefore

$$
f(t)= \begin{cases}0 & \text { if } t<x^{*} \tag{1}\\ 1 & \text { if } t>x^{*} \\ \alpha & \text { if } t=x^{*}, \alpha \in[0,1]\end{cases}
$$

- But this f is non-decreasing, therefore it is the optimal solution of OPT1

Solution to the optimization problem

- The unrestricted solution to OPT1 is therefore

$$
f(t)= \begin{cases}0 & \text { if } t<x^{*} \tag{1}\\ 1 & \text { if } t>x^{*} \\ \alpha & \text { if } t=x^{*}, \alpha \in[0,1]\end{cases}
$$

- But this f is non-decreasing, therefore it is the optimal solution of OPT1

Theorem

A mechanism (f, p) under the MHR condition is optimal iff

Solution to the optimization problem

- The unrestricted solution to OPT1 is therefore

$$
f(t)= \begin{cases}0 & \text { if } t<x^{*} \tag{1}\\ 1 & \text { if } t>x^{*} \\ \alpha & \text { if } t=x^{*}, \alpha \in[0,1]\end{cases}
$$

- But this f is non-decreasing, therefore it is the optimal solution of OPT1

Theorem

A mechanism (f, p) under the MHR condition is optimal iff
(1) f is given by Equation (1) where x^{*} is a solution of $x=\frac{1-G(x)}{g(x)}$, and

Solution to the optimization problem

- The unrestricted solution to OPT1 is therefore

$$
f(t)= \begin{cases}0 & \text { if } t<x^{*} \tag{1}\\ 1 & \text { if } t>x^{*} \\ \alpha & \text { if } t=x^{*}, \alpha \in[0,1]\end{cases}
$$

- But this f is non-decreasing, therefore it is the optimal solution of OPT1

Theorem

A mechanism (f, p) under the MHR condition is optimal iff
(1) f is given by Equation (1) where x^{*} is a solution of $x=\frac{1-G(x)}{g(x)}$, and
(2) For all $t \in T, p(t)= \begin{cases}x^{*} & \text { if } t \geqslant x^{*} \\ 0 & \text { otherwise }\end{cases}$

Contents

- Single Agent Optimal Mechanism Design

- Optimal Mechanism Design with Multiple Agents

Optimal mechanism design for multiple agents

- In this context, we will call a mechanism optimal if it is BIC, IIR, and maximizes revenue

Optimal mechanism design for multiple agents

- In this context, we will call a mechanism optimal if it is BIC, IIR, and maximizes revenue
- By previous results, this reduces to:

Optimal mechanism design for multiple agents

- In this context, we will call a mechanism optimal if it is BIC, IIR, and maximizes revenue
- By previous results, this reduces to:
(1) f_{i}^{\prime} s are NDE $\forall i \in N$,

Optimal mechanism design for multiple agents

- In this context, we will call a mechanism optimal if it is BIC, IIR, and maximizes revenue
- By previous results, this reduces to:
(1) f_{i}^{\prime} s are NDE $\forall i \in N$,
(2) $\pi_{i}\left(t_{i}\right)$ has a specific integral formula and $\pi_{i}(0)=0$

Optimal mechanism design for multiple agents

- In this context, we will call a mechanism optimal if it is BIC, IIR, and maximizes revenue
- By previous results, this reduces to:
(1) f_{i}^{\prime} s are NDE $\forall i \in N$,
(3) $\pi_{i}\left(t_{i}\right)$ has a specific integral formula and $\pi_{i}(0)=0$
- Hence, the expected payment made by agent i is $\int_{T_{i}} \pi_{i}\left(t_{i}\right) g_{i}\left(t_{i}\right) d t_{i}, T_{i}=\left[0, b_{i}\right]$

Optimal mechanism design for multiple agents

- In this context, we will call a mechanism optimal if it is BIC, IIR, and maximizes revenue
- By previous results, this reduces to:
(1) f_{i}^{\prime} s are NDE $\forall i \in N$,
(3) $\pi_{i}\left(t_{i}\right)$ has a specific integral formula and $\pi_{i}(0)=0$
- Hence, the expected payment made by agent i is $\int_{T_{i}} \pi_{i}\left(t_{i}\right) g_{i}\left(t_{i}\right) d t_{i}, T_{i}=\left[0, b_{i}\right]$
- This can be simplified to the following in a way similar to the earlier exercise

$$
\begin{aligned}
& \int_{0}^{b_{i}} w_{i}\left(t_{i}\right) g_{i}\left(t_{i}\right) \alpha_{i}\left(t_{i}\right) d t_{i} \\
& \text { where, } w_{i}\left(t_{i}\right)=t_{i}-\frac{1-G_{i}\left(t_{i}\right)}{g_{i}\left(t_{i}\right)} \text { (virtual valuation of player } i \text {) and, } \\
& \alpha_{i}\left(t_{i}\right)=\int_{T_{-i}} f_{i}\left(t_{i}, t_{-i}\right) g_{-i}\left(t_{-i}\right) d t_{-i}
\end{aligned}
$$

Optimal mechanism design for multiple agents

- This gives, expected payment made by agent i as

$$
\int_{T} w_{i}\left(t_{i}\right) f_{i}(t) g(t) d t
$$

Optimal mechanism design for multiple agents

- This gives, expected payment made by agent i as

$$
\int_{T} w_{i}\left(t_{i}\right) f_{i}(t) g(t) d t
$$

- The total revenue generated by all players is

$$
\sum_{i \in N} \int_{T} w_{i}\left(t_{i}\right) f_{i}(t) g(t) d t=\int_{T} \sum_{i \in N}\left(w_{i}\left(t_{i}\right) f_{i}(t)\right) g(t) d t
$$

where $\sum_{i \in N}\left(w_{i}\left(t_{i}\right) f_{i}(t)\right)$ is the expected total virtual valuation

Optimal mechanism design for multiple agents

- This gives, expected payment made by agent i as

$$
\int_{T} w_{i}\left(t_{i}\right) f_{i}(t) g(t) d t
$$

- The total revenue generated by all players is

$$
\sum_{i \in N} \int_{T} w_{i}\left(t_{i}\right) f_{i}(t) g(t) d t=\int_{T} \sum_{i \in N}\left(w_{i}\left(t_{i}\right) f_{i}(t)\right) g(t) d t
$$

where $\sum_{i \in N}\left(w_{i}\left(t_{i}\right) f_{i}(t)\right)$ is the expected total virtual valuation

- Hence, the optimal mechanism problem reduces to

$$
\max \int_{T} \sum_{i \in N}\left(w_{i}\left(t_{i}\right) f_{i}(t)\right) g(t) d t \text {, s.t. } f \text { is } \mathrm{NDE}
$$

Optimal mechanism design for multiple agents

- As before, we try to solve the unconstrainted optimization problem.

$$
\begin{align*}
& f_{i}(t)= \begin{cases}1 & \text { if } w_{i}\left(t_{i}\right) \geqslant w_{j}\left(t_{j}\right), \forall j, \text { break ties arbitrarily } \quad \text { (Sold) } \\
0, & \text { otherwise }\end{cases} \tag{2}\\
& f_{i}(t)=0, \forall i \in N, \text { if } w_{i}\left(t_{i}\right)<0, \forall i \in N \quad \text { (Unsold) }
\end{align*}
$$

Optimal mechanism design for multiple agents

- As before, we try to solve the unconstrainted optimization problem.

$$
\begin{aligned}
& f_{i}(t)= \begin{cases}1 & \text { if } w_{i}\left(t_{i}\right) \geqslant w_{j}\left(t_{j}\right), \forall j, \text { break ties arbitrarily } \quad \text { (Sold) } \\
0, & \text { otherwise }\end{cases} \\
& f_{i}(t)=0, \forall i \in N, \text { if } w_{i}\left(t_{i}\right)<0, \forall i \in N \quad \text { (Unsold) }
\end{aligned}
$$

- But it can lead to a case where f is not NDE (for an example, see Roger B Myerson. "Optimal auction design", 1981

Optimal mechanism design for multiple agents

- As before, we try to solve the unconstrainted optimization problem.

$$
\begin{aligned}
& f_{i}(t)= \begin{cases}1 & \text { if } w_{i}\left(t_{i}\right) \geqslant w_{j}\left(t_{j}\right), \forall j, \text { break ties arbitrarily } \quad \text { (Sold) } \\
0, & \text { otherwise }\end{cases} \\
& f_{i}(t)=0, \forall i \in N, \text { if } w_{i}\left(t_{i}\right)<0, \forall i \in N \quad \text { (Unsold) }
\end{aligned}
$$

- But it can lead to a case where f is not NDE (for an example, see Roger B Myerson. "Optimal auction design", 1981
- The example is such that the following condition is violated

Optimal mechanism design for multiple agents

- As before, we try to solve the unconstrainted optimization problem.

$$
\begin{aligned}
& f_{i}(t)= \begin{cases}1 & \text { if } w_{i}\left(t_{i}\right) \geqslant w_{j}\left(t_{j}\right), \forall j, \text { break ties arbitrarily } \\
0, & \text { otherwise }\end{cases} \\
& f_{i}(t)=0, \forall i \in N, \text { if } w_{i}\left(t_{i}\right)<0, \forall i \in N \quad \text { (Unsold) }
\end{aligned}
$$

- But it can lead to a case where f is not NDE (for an example, see Roger B Myerson. "Optimal auction design", 1981
- The example is such that the following condition is violated

Definition

A virtual valuation w_{i} is regular if $\forall s_{i}, t_{i} \in T_{i}$ with $s_{i}<t_{i}$, it holds that $w_{i}\left(s_{i}\right) \leqslant w_{i}\left(t_{i}\right)$.

Optimal mechanism design for multiple agents

- As before, we try to solve the unconstrainted optimization problem.

$$
\begin{aligned}
& f_{i}(t)= \begin{cases}1 & \text { if } w_{i}\left(t_{i}\right) \geqslant w_{j}\left(t_{j}\right), \forall j, \text { break ties arbitrarily } \\
0, & \text { otherwise }\end{cases} \\
& f_{i}(t)=0, \forall i \in N, \text { if } w_{i}\left(t_{i}\right)<0, \forall i \in N \quad \text { (Unsold) }
\end{aligned}
$$

- But it can lead to a case where f is not NDE (for an example, see Roger B Myerson. "Optimal auction design", 1981
- The example is such that the following condition is violated

Definition

A virtual valuation w_{i} is regular if $\forall s_{i}, t_{i} \in T_{i}$ with $s_{i}<t_{i}$, it holds that $w_{i}\left(s_{i}\right) \leqslant w_{i}\left(t_{i}\right)$.

- This condition is weaker than MHR condition as MHR implies regularity

Optimal mechanism design for multiple agents

Lemma

Suppose every agent's valuations are regular. The allocation rule of the optimal mechanism is same as the solution of the unconstrained problem.

Optimal mechanism design for multiple agents

Lemma

Suppose every agent's valuations are regular. The allocation rule of the optimal mechanism is same as the solution of the unconstrained problem.

Proof-sketch:

- The solution is as given in Equation (2)

Optimal mechanism design for multiple agents

Lemma

Suppose every agent's valuations are regular. The allocation rule of the optimal mechanism is same as the solution of the unconstrained problem.

Proof-sketch:

- The solution is as given in Equation (2)
- Regularity ensures that $w_{i}\left(t_{i}\right) \geqslant w_{i}\left(s_{i}\right), \forall s_{i}<t_{i}$

Optimal mechanism design for multiple agents

Lemma

Suppose every agent's valuations are regular. The allocation rule of the optimal mechanism is same as the solution of the unconstrained problem.

Proof-sketch:

- The solution is as given in Equation (2)
- Regularity ensures that $w_{i}\left(t_{i}\right) \geqslant w_{i}\left(s_{i}\right), \forall s_{i}<t_{i}$
- Then the optimal allocation also satisfies

$$
f_{i}\left(t_{i}, t_{-i}\right) \geqslant f_{i}\left(s_{i}, t_{-i}\right), \forall t_{-i} \in T_{-i}, \forall s_{i}<t_{i}
$$

Optimal mechanism design for multiple agents

Lemma

Suppose every agent's valuations are regular. The allocation rule of the optimal mechanism is same as the solution of the unconstrained problem.

Proof-sketch:

- The solution is as given in Equation (2)
- Regularity ensures that $w_{i}\left(t_{i}\right) \geqslant w_{i}\left(s_{i}\right), \forall s_{i}<t_{i}$
- Then the optimal allocation also satisfies

$$
f_{i}\left(t_{i}, t_{-i}\right) \geqslant f_{i}\left(s_{i}, t_{-i}\right), \forall t_{-i} \in T_{-i}, \forall s_{i}<t_{i}
$$

- i.e., f_{i} is non-decreasing (hence NDE)

The solution

- Optimal Mechanism Design Problem

$$
\left.\max \int_{T}\left(\sum_{i \in N} w_{i}\left(t_{i}\right) f_{i}(t)\right) g(t) d t\right), \quad \text { such that } f \text { is NDE }
$$

Solution for regular $w_{i}{ }^{\prime} \mathrm{s}$

$$
\begin{align*}
& f_{i}(t)= \begin{cases}1 & \text { if } w_{i}\left(t_{i}\right) \geqslant w_{j}\left(t_{j}\right), \forall j, \text { break ties arbitrarily } \\
0, & \text { otherwise }\end{cases} \tag{3}\\
& f_{i}(t)=0, \forall i \in N, \text { if } w_{i}\left(t_{i}\right)<0, \forall i \in N \quad \text { (Unsold) }
\end{align*}
$$

- We wanted to find an allocation that is NDE, but found an f that is non-decreasing
- It is also deterministic

Optimal Mechanism

BIC, IIR, randomized

Space of mechanisms with regular virtual valuations

Optimal Mechanism: Allocation and Payment

Theorem

Suppose every agent's valuation is regular.

Optimal Mechanism: Allocation and Payment

Theorem

Suppose every agent's valuation is regular. Then, for every type profile t, if $w_{i}\left(t_{i}\right)<0, \forall i \in N$, $f_{i}(t)=0, \forall i \in N$.

Optimal Mechanism: Allocation and Payment

Theorem

Suppose every agent's valuation is regular. Then, for every type profile t, if $w_{i}\left(t_{i}\right)<0, \forall i \in N$, $f_{i}(t)=0, \forall i \in N$.
Otherwise, $f_{i}(t)= \begin{cases}1 & \text { if } w_{i}\left(t_{i}\right) \geqslant w_{j}\left(t_{j}\right) \forall j \in N \\ 0 & \text { otherwise, }\end{cases}$
with ties are broken arbitrarily.

Optimal Mechanism: Allocation and Payment

Theorem

Suppose every agent's valuation is regular. Then, for every type profile t, if $w_{i}\left(t_{i}\right)<0, \forall i \in N$, $f_{i}(t)=0, \forall i \in N$.
Otherwise, $f_{i}(t)= \begin{cases}1 & \text { if } w_{i}\left(t_{i}\right) \geqslant w_{j}\left(t_{j}\right) \forall j \in N \\ 0 & \text { otherwise, }\end{cases}$
with ties are broken arbitrarily.
Payments are given by $p_{i}(t)= \begin{cases}0 & \text { if } f_{i}(t)=0 \\ \max \left\{w_{i}^{-1}(0), K_{i}^{*}\left(t_{-i}\right)\right\} & \text { if } f_{i}(t)=1,\end{cases}$

Optimal Mechanism: Allocation and Payment

Theorem

Suppose every agent's valuation is regular. Then, for every type profile t, if $w_{i}\left(t_{i}\right)<0, \forall i \in N$, $f_{i}(t)=0, \forall i \in N$.
Otherwise, $f_{i}(t)= \begin{cases}1 & \text { if } w_{i}\left(t_{i}\right) \geqslant w_{j}\left(t_{j}\right) \forall j \in N \\ 0 & \text { otherwise, }\end{cases}$
with ties are broken arbitrarily.
Payments are given by $p_{i}(t)= \begin{cases}0 & \text { if } f_{i}(t)=0 \\ \max \left\{w_{i}^{-1}(0), K_{i}^{*}\left(t_{-i}\right)\right\} & \text { if } f_{i}(t)=1,\end{cases}$ where $w_{i}^{-1}(0)$: the value of t_{i} where $w_{i}\left(t_{i}\right)=0$, and $K_{i}^{*}\left(t_{-i}\right)=\inf \left\{t_{i}: f_{i}\left(t_{i}, t_{-i}\right)=1\right\}$,

Optimal Mechanism: Allocation and Payment

Theorem

Suppose every agent's valuation is regular. Then, for every type profile t, if $w_{i}\left(t_{i}\right)<0, \forall i \in N$, $f_{i}(t)=0, \forall i \in N$.
Otherwise, $f_{i}(t)= \begin{cases}1 & \text { if } w_{i}\left(t_{i}\right) \geqslant w_{j}\left(t_{j}\right) \forall j \in N \\ 0 & \text { otherwise, }\end{cases}$
with ties are broken arbitrarily.
Payments are given by $p_{i}(t)= \begin{cases}0 & \text { if } f_{i}(t)=0 \\ \max \left\{w_{i}^{-1}(0), K_{i}^{*}\left(t_{-i}\right)\right\} & \text { if } f_{i}(t)=1,\end{cases}$
where $w_{i}^{-1}(0)$: the value of t_{i} where $w_{i}\left(t_{i}\right)=0$, and $K_{i}^{*}\left(t_{-i}\right)=\inf \left\{t_{i}: f_{i}\left(t_{i}, t_{-i}\right)=1\right\}$, then (f, p) is an optimal mechanism.

Optimal Mechanism: Allocation and Payment

Theorem

Suppose every agent's valuation is regular. Then, for every type profile t, if $w_{i}\left(t_{i}\right)<0, \forall i \in N$, $f_{i}(t)=0, \forall i \in N$.
Otherwise, $f_{i}(t)= \begin{cases}1 & \text { if } w_{i}\left(t_{i}\right) \geqslant w_{j}\left(t_{j}\right) \forall j \in N \\ 0 & \text { otherwise, }\end{cases}$
with ties are broken arbitrarily.
Payments are given by $p_{i}(t)= \begin{cases}0 & \text { if } f_{i}(t)=0 \\ \max \left\{w_{i}^{-1}(0), K_{i}^{*}\left(t_{-i}\right)\right\} & \text { if } f_{i}(t)=1,\end{cases}$
where $w_{i}^{-1}(0)$: the value of t_{i} where $w_{i}\left(t_{i}\right)=0$, and $K_{i}^{*}\left(t_{-i}\right)=\inf \left\{t_{i}: f_{i}\left(t_{i}, t_{-i}\right)=1\right\}$, then (f, p) is an optimal mechanism.

Note: $K_{i}^{*}\left(t_{-i}\right)$ is the minimum of value of t_{i} where i begins to be the winner

Contents

- Single Agent Optimal Mechanism Design

- Optimal Mechanism Design with Multiple Agents

- Examples of Optimal Mechanism Design

- Endnotes and Summary

Example 1

(1) Two buyers : $T_{1}=[0,12], T_{2}=[0,18]$
((Uniform independent prior

- $w_{1}\left(t_{1}\right)=t_{1}-\frac{1-G(t)}{g(t)}=t_{1}-\frac{1-\frac{t_{1}}{12}}{\frac{1}{12}}=2 t_{1}-12$
(a) $w_{2}\left(t_{2}\right)=2 t_{2}-18$

t_{1}	t_{2}	Action	p_{1}	p_{2}
4	8	unsold	0	0
2	12	sold to 2	0	9
6	6	sold to 1	6	0
9	9	sold to 1	6	0
8	15	sold to 2	0	11

Example 2

- Systematic bidders: the valuations are drawn from the same distribution, $g_{i}=g, T_{i}=T$, $\forall i \in N$
- Virtual valuation: $w_{i}=w$

$$
w\left(t_{i}\right)>w\left(t_{j}\right), \text { iff } t_{i}>t_{j}
$$

- The object goes to the highest bidder. Not sold if $w_{-i}(0)>t_{i} \forall i \in N$. $p_{i}=\max \left\{w^{-1}(0), \max _{j \neq i} t_{j}\right\}$
- Second price auction with a reserve price, and is efficient when the object is sold.

Example 3 : Efficiency and Optimality

- Two buyers : $T_{1}=[0,10]$, $T_{2}=[0,6]$, Uniform independent prior
- $w_{1}\left(t_{1}\right)=2 t_{1}-10$, $w_{2}\left(t_{2}\right)=2 t_{2}-6$
- Unsold is inefficient, also in the region of the plane where 1 has higher valuation but item is sold to 2

Contents

- Single Agent Optimal Mechanism Design

- Optimal Mechanism Design with Multiple Agents

- Examples of Optimal Mechanism Design
- Endnotes and Summary

Efficiency and Groves Mechanism

- Uniqueness of Groves for efficiency feff $(t) \in \arg \max _{a \in A} \sum_{i \in N} t_{i}(a)$

Efficiency and Groves Mechanism

- Uniqueness of Groves for efficiency feff $(t) \in \arg \max _{a \in A} \sum_{i \in N} t_{i}(a)$

Theorem (Green and Laffont (1979), Holmström (1979))

If the type space is 'sufficiently rich', every efficient and DSIC mechanism is a Groves mechanism.

Efficiency and Groves Mechanism

- Uniqueness of Groves for efficiency feff $(t) \in \arg \max _{a \in A} \sum_{i \in N} t_{i}(a)$

Theorem (Green and Laffont (1979), Holmström (1979))

If the type space is 'sufficiently rich', every efficient and DSIC mechanism is a Groves mechanism.

- Proof-sketch: Two alternatives $A=\{a, b\}$ with respective welfare of $\sum_{i \in N} t_{i}(a)$ and $\sum_{i \in N} t_{i}(b)$

Efficiency and Groves Mechanism

- Uniqueness of Groves for efficiency feff $(t) \in \arg \max _{a \in A} \sum_{i \in N} t_{i}(a)$

Theorem (Green and Laffont (1979), Holmström (1979))

If the type space is 'sufficiently rich', every efficient and DSIC mechanism is a Groves mechanism.

- Proof-sketch: Two alternatives $A=\{a, b\}$ with respective welfare of $\sum_{i \in N} t_{i}(a)$ and $\sum_{i \in N} t_{i}(b)$
- $\sum_{i \in N} t_{i}(a) \geqslant \sum_{i \in N} t_{i}(b)$ then a is chosen.

Efficiency and Groves Mechanism

- Uniqueness of Groves for efficiency feff $(t) \in \arg \max _{a \in A} \sum_{i \in N} t_{i}(a)$

Theorem (Green and Laffont (1979), Holmström (1979))

If the type space is 'sufficiently rich', every efficient and DSIC mechanism is a Groves mechanism.

- Proof-sketch: Two alternatives $A=\{a, b\}$ with respective welfare of $\sum_{i \in N} t_{i}(a)$ and $\sum_{i \in N} t_{i}(b)$
- $\sum_{i \in N} t_{i}(a) \geqslant \sum_{i \in N} t_{i}(b)$ then a is chosen.
- Fix the valuations of other agents to t_{-i}

Efficiency and Groves Mechanism

- Uniqueness of Groves for efficiency feff $(t) \in \arg \max _{a \in A} \sum_{i \in N} t_{i}(a)$

Theorem (Green and Laffont (1979), Holmström (1979))

If the type space is 'sufficiently rich', every efficient and DSIC mechanism is a Groves mechanism.

- Proof-sketch: Two alternatives $A=\{a, b\}$ with respective welfare of $\sum_{i \in N} t_{i}(a)$ and $\sum_{i \in N} t_{i}(b)$
- $\sum_{i \in N} t_{i}(a) \geqslant \sum_{i \in N} t_{i}(b)$ then a is chosen.
- Fix the valuations of other agents to t_{-i}
- Fix value of i at alternative b as $t_{i}(b)$

Efficiency and Groves Mechanism

- Uniqueness of Groves for efficiency $f^{e f f}(t) \in \arg \max _{a \in A} \sum_{i \in N} t_{i}(a)$

Theorem (Green and Laffont (1979), Holmström (1979))

If the type space is 'sufficiently rich', every efficient and DSIC mechanism is a Groves mechanism.

- Proof-sketch: Two alternatives $A=\{a, b\}$ with respective welfare of $\sum_{i \in N} t_{i}(a)$ and $\sum_{i \in N} t_{i}(b)$
- $\sum_{i \in N} t_{i}(a) \geqslant \sum_{i \in N} t_{i}(b)$ then a is chosen.
- Fix the valuations of other agents to t_{-i}
- Fix value of i at alternative b as $t_{i}(b)$
- \exists some threshold $t_{i}^{*}(a)$ s.t.

$$
\forall t_{i}(a) \geqslant t_{i}^{*}(a), \quad a \text { is the outcome, and } \forall t_{i}(a)<t_{i}^{*}(a), \quad b \text { is the outcome }
$$

Proof sketch (contd.)

- Using DSIC for $t_{i}^{*}(a)+\epsilon=t_{i}(a), \epsilon>0$ we have,
$t_{i}^{*}(a)+\epsilon-p_{i a} \geqslant t_{i}(b)-p_{i b}$ (Note: payment for a player has to be the same for an allocation.)

Proof sketch (contd.)

- Using DSIC for $t_{i}^{*}(a)+\epsilon=t_{i}(a), \epsilon>0$ we have,
$t_{i}^{*}(a)+\epsilon-p_{i a} \geqslant t_{i}(b)-p_{i b}$ (Note: payment for a player has to be the same for an allocation.)
- Similarly, $t_{i}^{\prime}(a)=t_{i}^{*}(a)-\delta, \delta>0$ and

$$
t_{i}(b)-p_{i b} \geqslant t_{i}^{*}(a)-\delta-p_{i a}
$$

Proof sketch (contd.)

- Using DSIC for $t_{i}^{*}(a)+\epsilon=t_{i}(a), \epsilon>0$ we have,
$t_{i}^{*}(a)+\epsilon-p_{i a} \geqslant t_{i}(b)-p_{i b}$ (Note: payment for a player has to be the same for an allocation.)
- Similarly, $t_{i}^{\prime}(a)=t_{i}^{*}(a)-\delta, \delta>0$ and

$$
t_{i}(b)-p_{i b} \geqslant t_{i}^{*}(a)-\delta-p_{i a}
$$

- Since, ϵ, δ are arbitrary , then

$$
\begin{equation*}
t_{i}^{*}(a)-p_{i a}=t_{i}(b)-p_{i b} \tag{4}
\end{equation*}
$$

Proof sketch (contd.)

- Using DSIC for $t_{i}^{*}(a)+\epsilon=t_{i}(a), \epsilon>0$ we have,
$t_{i}^{*}(a)+\epsilon-p_{i a} \geqslant t_{i}(b)-p_{i b}$ (Note: payment for a player has to be the same for an allocation.)
- Similarly, $t_{i}^{\prime}(a)=t_{i}^{*}(a)-\delta, \delta>0$ and

$$
t_{i}(b)-p_{i b} \geqslant t_{i}^{*}(a)-\delta-p_{i a}
$$

- Since, ϵ, δ are arbitrary , then

$$
\begin{equation*}
t_{i}^{*}(a)-p_{i a}=t_{i}(b)-p_{i b} \tag{4}
\end{equation*}
$$

- But $t_{i}^{*}(a)$ is the threshold of the efficient outcome, thus,

$$
\begin{equation*}
t_{i}^{*}(a)+\sum_{j \neq i} t_{j}(a)=t_{i}(b)+\sum_{j \neq i} t_{j}(b) \tag{5}
\end{equation*}
$$

Proof sketch (contd.)

- From Equations (4) and (5)

$$
p_{i a}-p_{i b}=\sum_{j \neq i} t_{j}(b)-\sum_{j \neq i} t_{j}(a)
$$

Proof sketch (contd.)

- From Equations (4) and (5)

$$
p_{i a}-p_{i b}=\sum_{j \neq i} t_{j}(b)-\sum_{j \neq i} t_{j}(a)
$$

- Hence, the payment has to be of the form $p_{i x}=h_{i}\left(t_{-i}\right)-\sum_{j \neq i} t_{j}(x)$

Efficiency and Budget Balance

Theorem (Green and Laffont (1979), Holmström (1979))
If the type space is 'sufficiently rich', every efficient and DSIC mechanism is a Groves mechanism.

Efficiency and Budget Balance

Theorem (Green and Laffont (1979), Holmström (1979))
If the type space is 'sufficiently rich', every efficient and DSIC mechanism is a Groves mechanism.

Theorem (Green and Laffont (1979))

No Groves mechanism is budget balanced, i.e., $\exists p_{i}^{G}$ s.t., $\sum_{i \in N} p_{i}^{G}(t)=0, \forall t \in T$.

Efficiency and Budget Balance

Theorem (Green and Laffont (1979), Holmström (1979))

If the type space is 'sufficiently rich', every efficient and DSIC mechanism is a Groves mechanism.

Theorem (Green and Laffont (1979))

No Groves mechanism is budget balanced, i.e., $\exists p_{i}^{G}$ s.t., $\sum_{i \in N} p_{i}^{G}(t)=0, \forall t \in T$.

Corollary

If the valuation space is sufficiently rich, no efficient mechanism can be both DSIC and BB.

Proof sketch of the second theorem

- Consider two alternatives $\{0,1\}$ s.t.

0 : project is not undertaken 1 : project is undertaken and at outcome 0 , every agent has zero value.

Proof sketch of the second theorem

- Consider two alternatives $\{0,1\}$ s.t.

0 : project is not undertaken 1 : project is undertaken and at outcome 0 , every agent has zero value.

- Suppose, $\exists h_{i}, \forall i \in N$ s.t. $\sum_{i \in N} p_{i}(t)=0$

Proof sketch of the second theorem

- Consider two alternatives $\{0,1\}$ s.t.

$$
0: \text { project is not undertaken } 1: \text { project is undertaken }
$$

and at outcome 0 , every agent has zero value.

- Suppose, $\exists h_{i}, \forall i \in N$ s.t. $\sum_{i \in N} p_{i}(t)=0$
- Consider two types w_{1}^{+}, w_{1}^{-}for player 1 , and one type w_{2} for player 2 s.t.

$$
w_{1}^{+}+w_{2}>0 \text { : project is built } \quad w_{1}^{-}+w_{2}<0: \text { project is not built }
$$

Proof sketch of the second theorem

- Consider two alternatives $\{0,1\}$ s.t.

$$
0: \text { project is not undertaken } 1: \text { project is undertaken }
$$

and at outcome 0 , every agent has zero value.

- Suppose, $\exists h_{i}, \forall i \in N$ s.t. $\sum_{i \in N} p_{i}(t)=0$
- Consider two types w_{1}^{+}, w_{1}^{-}for player 1 , and one type w_{2} for player 2 s.t.

$$
w_{1}^{+}+w_{2}>0 \text { : project is built } \quad w_{1}^{-}+w_{2}<0: \text { project is not built }
$$

- Budget balance at type profile $\left(w_{1}^{+}, w_{2}\right)$ gives $h_{1}\left(w_{2}\right)-w_{2}+h_{2}\left(w_{1}^{+}\right)-w_{1}^{+}=0$ and at type profile $\left(w_{1}^{-}, w_{2}\right)$ gives $h_{1}\left(w_{2}\right)+h_{2}\left(w_{1}^{-}\right)=0$

Proof sketch of the second theorem

- Consider two alternatives $\{0,1\}$ s.t.

$$
0: \text { project is not undertaken } 1: \text { project is undertaken }
$$

and at outcome 0 , every agent has zero value.

- Suppose, $\exists h_{i}, \forall i \in N$ s.t. $\sum_{i \in N} p_{i}(t)=0$
- Consider two types w_{1}^{+}, w_{1}^{-}for player 1 , and one type w_{2} for player 2 s.t.

$$
w_{1}^{+}+w_{2}>0 \text { : project is built } \quad w_{1}^{-}+w_{2}<0: \text { project is not built }
$$

- Budget balance at type profile $\left(w_{1}^{+}, w_{2}\right)$ gives $h_{1}\left(w_{2}\right)-w_{2}+h_{2}\left(w_{1}^{+}\right)-w_{1}^{+}=0$ and at type profile $\left(w_{1}^{-}, w_{2}\right)$ gives $h_{1}\left(w_{2}\right)+h_{2}\left(w_{1}^{-}\right)=0$
- Eliminating $h_{1}\left(w_{2}\right)$, we get $w_{2}=h_{2}\left(w_{1}^{+}\right)-h_{2}\left(w_{1}^{-}\right)-w_{1}^{+}$

Proof sketch of the second theorem

- Consider two alternatives $\{0,1\}$ s.t.

$$
0: \text { project is not undertaken } 1: \text { project is undertaken }
$$

and at outcome 0 , every agent has zero value.

- Suppose, $\exists h_{i}, \forall i \in N$ s.t. $\sum_{i \in N} p_{i}(t)=0$
- Consider two types w_{1}^{+}, w_{1}^{-}for player 1 , and one type w_{2} for player 2 s.t.

$$
w_{1}^{+}+w_{2}>0 \text { : project is built } \quad w_{1}^{-}+w_{2}<0: \text { project is not built }
$$

- Budget balance at type profile $\left(w_{1}^{+}, w_{2}\right)$ gives $h_{1}\left(w_{2}\right)-w_{2}+h_{2}\left(w_{1}^{+}\right)-w_{1}^{+}=0$ and at type profile $\left(w_{1}^{-}, w_{2}\right)$ gives $h_{1}\left(w_{2}\right)+h_{2}\left(w_{1}^{-}\right)=0$
- Eliminating $h_{1}\left(w_{2}\right)$, we get $w_{2}=h_{2}\left(w_{1}^{+}\right)-h_{2}\left(w_{1}^{-}\right)-w_{1}^{+}$
- The RHS depends only on w_{1}, hence it is possible to alter w_{2} slightly to retain the inequalities, but then the above equality cannot hold.

Weakening DSIC for Budget Balance

- Allocation is still the efficient one $a^{*}(t) \in \arg \max _{a \in A} \sum_{i \in N} t_{i}(a)$

Weakening DSIC for Budget Balance

- Allocation is still the efficient one $a^{*}(t) \in \arg \max _{a \in A} \sum_{i \in N} t_{i}(a)$
- Payment in this setting is also defined via a prior $\delta_{i}\left(t_{i}\right)=\mathbb{E}_{t_{-i} \mid t_{i}} \sum_{j \neq i} t_{j}\left(a^{*}(t)\right)$

Weakening DSIC for Budget Balance

- Allocation is still the efficient one $a^{*}(t) \in \arg \max _{a \in A} \sum_{i \in N} t_{i}(a)$
- Payment in this setting is also defined via a prior $\delta_{i}\left(t_{i}\right)=\mathbb{E}_{t_{-i} \mid t_{i}} \sum_{j \neq i} t_{j}\left(a^{*}(t)\right)$
- Payment is given by (named after d'Aspremont, Gerard-Varet (1979), Arrow (1979)):

$$
p_{i}^{d A G V A}(t)=\frac{1}{n-1} \sum_{j \neq i} \delta_{j}\left(t_{j}\right)-\delta_{i}\left(t_{i}\right)
$$

Weakening DSIC for Budget Balance

- Allocation is still the efficient one $a^{*}(t) \in \arg \max _{a \in A} \sum_{i \in N} t_{i}(a)$
- Payment in this setting is also defined via a prior $\delta_{i}\left(t_{i}\right)=\mathbb{E}_{t_{-i} \mid t_{i}} \sum_{j \neq i} t_{j}\left(a^{*}(t)\right)$
- Payment is given by (named after d'Aspremont, Gerard-Varet (1979), Arrow (1979)):

$$
p_{i}^{d A G V A}(t)=\frac{1}{n-1} \sum_{j \neq i} \delta_{j}\left(t_{j}\right)-\delta_{i}\left(t_{i}\right)
$$

- This payment implements the efficient allocation rule in Bayes Nash equilibrium

$$
\mathbb{E}_{t_{-i} \mid t_{i}}\left[t_{i}\left(a^{*}(t)\right)-p_{i}^{d A G V A}(t)\right]
$$

Weakening DSIC for Budget Balance

- Allocation is still the efficient one $a^{*}(t) \in \arg \max _{a \in A} \sum_{i \in N} t_{i}(a)$
- Payment in this setting is also defined via a prior $\delta_{i}\left(t_{i}\right)=\mathbb{E}_{t_{-i} \mid t_{i}} \sum_{j \neq i} t_{j}\left(a^{*}(t)\right)$
- Payment is given by (named after d'Aspremont, Gerard-Varet (1979), Arrow (1979)):

$$
p_{i}^{d A G V A}(t)=\frac{1}{n-1} \sum_{j \neq i} \delta_{j}\left(t_{j}\right)-\delta_{i}\left(t_{i}\right)
$$

- This payment implements the efficient allocation rule in Bayes Nash equilibrium

$$
\mathbb{E}_{t_{-i} \mid t_{i}}\left[t_{i}\left(a^{*}(t)\right)-p_{i}^{d A G V A}(t)\right]=\mathbb{E}_{t_{-i} \mid t_{i}} \sum_{j \in N} t_{j}\left(a^{*}(t)\right)-\mathbb{E}_{t_{-i} \mid t_{i}}\left[\frac{1}{n-1} \sum_{j \neq i} \delta_{j}\left(t_{j}\right)\right]
$$

Weakening DSIC for Budget Balance

- Allocation is still the efficient one $a^{*}(t) \in \arg \max _{a \in A} \sum_{i \in N} t_{i}(a)$
- Payment in this setting is also defined via a prior $\delta_{i}\left(t_{i}\right)=\mathbb{E}_{t_{-i} \mid t_{i}} \sum_{j \neq i} t_{j}\left(a^{*}(t)\right)$
- Payment is given by (named after d'Aspremont, Gerard-Varet (1979), Arrow (1979)):

$$
p_{i}^{d A G V A}(t)=\frac{1}{n-1} \sum_{j \neq i} \delta_{j}\left(t_{j}\right)-\delta_{i}\left(t_{i}\right)
$$

- This payment implements the efficient allocation rule in Bayes Nash equilibrium

$$
\begin{aligned}
\mathbb{E}_{t_{-i} \mid t_{i}}\left[t_{i}\left(a^{*}(t)\right)-p_{i}^{d A G V A}(t)\right] & =\mathbb{E}_{t_{-i} \mid t_{i}} \sum_{j \in N} t_{j}\left(a^{*}(t)\right)-\mathbb{E}_{t_{-i} \mid t_{i}}\left[\frac{1}{n-1} \sum_{j \neq i} \delta_{j}\left(t_{j}\right)\right] \\
& \geqslant \mathbb{E}_{t_{-i} \mid t_{i}} \sum_{j \in N} t_{j}\left(a^{*}\left(t_{i}^{\prime}, t_{-i}\right)\right)-\mathbb{E}_{t_{-i} \mid t_{i}}\left[\frac{1}{n-1} \sum_{j \neq i} \delta_{j}\left(t_{j}\right)\right]
\end{aligned}
$$

Weakening DSIC for Budget Balance

- Allocation is still the efficient one $a^{*}(t) \in \arg \max _{a \in A} \sum_{i \in N} t_{i}(a)$
- Payment in this setting is also defined via a prior $\delta_{i}\left(t_{i}\right)=\mathbb{E}_{t_{-i} \mid t_{i}} \sum_{j \neq i} t_{j}\left(a^{*}(t)\right)$
- Payment is given by (named after d'Aspremont, Gerard-Varet (1979), Arrow (1979)):

$$
p_{i}^{d A G V A}(t)=\frac{1}{n-1} \sum_{j \neq i} \delta_{j}\left(t_{j}\right)-\delta_{i}\left(t_{i}\right)
$$

- This payment implements the efficient allocation rule in Bayes Nash equilibrium

$$
\begin{aligned}
\mathbb{E}_{t_{-i} \mid t_{i}}\left[t_{i}\left(a^{*}(t)\right)-p_{i}^{d A G V A}(t)\right] & =\mathbb{E}_{t_{-i} \mid t_{i}} \sum_{j \in N} t_{j}\left(a^{*}(t)\right)-\mathbb{E}_{t_{-i} \mid t_{i}}\left[\frac{1}{n-1} \sum_{j \neq i} \delta_{j}\left(t_{j}\right)\right] \\
& \geqslant \mathbb{E}_{t_{-i} \mid t_{i}} \sum_{j \in N} t_{j}\left(a^{*}\left(t_{i}^{\prime}, t_{-i}\right)\right)-\mathbb{E}_{t_{-i} \mid t_{i}}\left[\frac{1}{n-1} \sum_{j \neq i} \delta_{j}\left(t_{j}\right)\right] \\
& =\mathbb{E}_{t_{-i} \mid t_{i}}\left[t_{i}\left(a^{*}\left(t_{i}^{\prime}, t_{-i}\right)\right)-p_{i}^{d A G V A}\left(t_{i}^{\prime}, t_{-i}\right)\right]
\end{aligned}
$$

Budget Balance?

- To show budget balance, consider

$$
\begin{aligned}
\sum_{i \in N} p_{i}^{d A G V A}(t) & =\frac{1}{n-1} \sum_{i \in N} \sum_{j \neq i} \delta_{j}\left(t_{j}\right)-\sum_{i \in N} \delta_{i}\left(t_{i}\right) \\
& =\frac{n-1}{n-1} \sum_{j \in N} \delta_{j}\left(t_{j}\right)-\sum_{i \in N} \delta_{i}\left(t_{i}\right)=0
\end{aligned}
$$

Budget Balance?

- To show budget balance, consider

$$
\begin{aligned}
\sum_{i \in N} p_{i}^{d A G V A}(t) & =\frac{1}{n-1} \sum_{i \in N} \sum_{j \neq i} \delta_{j}\left(t_{j}\right)-\sum_{i \in N} \delta_{i}\left(t_{i}\right) \\
& =\frac{n-1}{n-1} \sum_{j \in N} \delta_{j}\left(t_{j}\right)-\sum_{i \in N} \delta_{i}\left(t_{i}\right)=0
\end{aligned}
$$

Theorem

The dAGVA mechanism is efficient, BIC, and BB.

Budget Balance?

- To show budget balance, consider

$$
\begin{aligned}
\sum_{i \in N} p_{i}^{d A G V A}(t) & =\frac{1}{n-1} \sum_{i \in N} \sum_{j \neq i} \delta_{j}\left(t_{j}\right)-\sum_{i \in N} \delta_{i}\left(t_{i}\right) \\
& =\frac{n-1}{n-1} \sum_{j \in N} \delta_{j}\left(t_{j}\right)-\sum_{i \in N} \delta_{i}\left(t_{i}\right)=0
\end{aligned}
$$

Theorem

The dAGVA mechanism is efficient, BIC, and BB.

- However, dAGVA is not IIR

Budget Balance?

- To show budget balance, consider

$$
\begin{aligned}
\sum_{i \in N} p_{i}^{d A G V A}(t) & =\frac{1}{n-1} \sum_{i \in N} \sum_{j \neq i} \delta_{j}\left(t_{j}\right)-\sum_{i \in N} \delta_{i}\left(t_{i}\right) \\
& =\frac{n-1}{n-1} \sum_{j \in N} \delta_{j}\left(t_{j}\right)-\sum_{i \in N} \delta_{i}\left(t_{i}\right)=0
\end{aligned}
$$

Theorem

The dAGVA mechanism is efficient, BIC, and BB.

- However, dAGVA is not IIR

Theorem (Myerson, Satterthwaite (1983))

In a bilateral trade (that involves two types of agents: seller and buyer) no mechanism can be simultaneously BIC, efficient, IIR and budget balanced.

Space of Mechanisms

Figure: Space of Mechanisms 1

Space of Mechanisms

Figure: Space of Mechanisms 2

Space of Mechanisms

Figure: Space of Mechanisms 2

Figure: Space of Mechanisms 3

भारतीय प्रौद्योगिकी संस्थान मुंबई

Indian Institute of Technology Bombay

