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Lecture 7: The Basics of Fair Division
Lecturer: Swaprava Nath Scribe(s): Dhvanil Gheewala,Akshara

Disclaimer: These notes aggregate content from several texts and have not been subjected to the usual
scrutiny deserved by formal publications. If you find errors, please bring to the notice of the Instructor.

7.1 Stable Roommate Problem

Unlike stable matching problems, the stable roommate problem has only one pool of agents. Each agent has
a preference list over all other agents. The goal is to find a stable matching. It is not always be possible
to find a stable matching. There exists a polynomial time algorithm (Irving’s algorithm) to find a stable
matching that returns a stable matching if one exists and returns that no stable matching exists otherwise.

Preference list of A : B C D

Preference list of B : C A D

Preference list of C : A B D

Preference list of D : B A C
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Figure 7.1: Stable Roommate Problem

7.2 Fair Division

Fair Division

Indivisible Divisible

• Hostel Room
• COVID vaccine
• Inheritance

• Spectrum allocation
• Electricity
• Profit / Rent
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Figure 7.2: Different valuation distributions for two agents over the cake interval [0, 1]. The area under each
curve represents how each agent values different parts of the cake.

7.2.1 Divisible resource allocation : Cake cutting

• Heterogenous : Different pieces of the cake may have different values for an agent

• Divisible : The cake can be divided into infinitely many pieces i.e. arbitrary fractional division

• Non-identical preferences : Different agents have different preferences over different pieces of the
cake

• Good : the valuation of each part of cake is greater than or equal to 0 for all agents

vi(A) ≥ 0 ∀i ∈ N, ∀ agents

This is in contrast to chore division where the valuation of each chore is less than 0 for all agents

This can be visualised on a number line from 0 to 1 where each agent has its own distribution of value over
the cake.

A piece of cake is a finite union of disjoint subintervals of [0, 1]

Si = Ii1 ∪ Ii2 . . . Iiki
⊆ [0, 1]

Valuation function

Agent preferences valuation function : A valuation function vi assigns a non-negative real number to any
piece

Properties

1. Additivity:
vi(A ∪B) = vi(A) + vi(B) ∀A,B ⊆ [0, 1] such that A ∩B = ∅

2. Divisibility:
∀X ⊆ [0, 1] and ∀λ ∈ [0, 1],∃Y ⊆ X such that vi(Y ) = λvi(X)

This property rules out atomic valuation functions.
Note : The cake is a good : Larger pieces are always better than smaller pieces and thus trimming is
possible
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3. Normalisation: The total valuation of the cake is 1 for all the agents

vi([0, 1]) = 1∀i ∈ N

Allocation : A partition of the cake into disjoint pieces A1, A2 . . . AN such that Ai is allocated to agent i.

A1 ∪A2 · · · ∪AN = [0, 1]

Note : Disposal of any piece does not put anyone better off

7.2.2 Desirable Fairness Ideas

• Proportionality : An allocation is called proportional if each agent gets at least 1/N of the cake

vi(Ai) ≥
1

N
∀i ∈ N

This is worth noting that this is a personal notion and is not dependent on the allocation of other
agents.

• Envy-freeness : An allocation is called envy-free if no agent prefers the piece of another agent over his
own piece

∀i, j ∈ N, vi(Ai) ≥ vi(Aj)

It should be noted that this notion of fairness is dependent on the allocation of other agents.

Theorem 7.1. Envy freeness implies proportionality

Proof. According to the definition of Envy-Freeness (EF),

∀i, j ∈ N, vi(Ai) ≥ vi(Aj)

Summing over all allocations Aj of agents j, we get:

N∑
j=1

vi(Ai) ≥
N∑
j=1

vi(Aj) ∀ agents i ∈ N

Simplifying the left-hand side, we obtain:

N · vi(Ai) ≥
N∑
j=1

vi(Aj) ∀ agents i ∈ N

By normalization: (i.e.,
∑N

j=1 vi(Aj) = 1)

N · vi(Ai) ≥ 1 ∀ agents i ∈ N

Finally, dividing both sides by N , we obtain:

vi(Ai) ≥
1

N
∀ agents i ∈ N

Thus, the allocation is proportional.
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Envy-Free

Proportional

Figure 7.3: Envy-Free implies Proportional

Example 1. The following example illustrates an allocation which is Proportional but not Envy free:

A B C
1 1

3
1
3 + ϵ 1

3 − ϵ
2 1

3
1
3

1
3

3 1
3

1
3

1
3

In the above example, agent 1 is allocated A, 2 is allocated B and 3 is allocated C. The allocation is propor-
tional but not envy free as agent 1 prefers the piece of agent 2 over his own piece.

7.2.3 Robertson - Webb’s Query Model (1998)

Oracle Based Model : The agents can ask different queries to the oracle to get information about the
cake. The oracle can answer the following queries:

• Eval Query : The agent can ask the oracle to evaluate the value of a piece of cake

Evali(x, y) = vi([x, y]) x ≤ y

• Cut Query : The agent can ask the oracle to cut the cake with specified value

Cuti(x, α) = z such that vi([x, z]) = α

This query can return NULL if such a cut is not possible. Note : We have made a smoothness
assumption.

While counting the number of operations required to do a given allocation, we shall not count the number
of cuts made but we shall count the number of queries made to the oracle.
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7.2.4 Cake Cutting Algorithms

7.2.4.1 PROP for n Agents : Dubins-Spanier Algorithm (1961)

Steps:

1. A continuously moving knife: A knife moves from left to right over the cake, starting at position
0. Every agent is given a buzzer.

2. Claiming the share: Each participant continuously evaluates the portion of the cake from the starting
point up to the knife’s position. When a participant values the piece as at least 1

n of the total cake,
they hit the buzzer.

3. Remove the Claimed Piece & Repeat: The claimed piece is removed, and the process is repeated
with the remaining participants and leftover cake.

4. Continue Until All Participants Receive a Piece: This guarantees that each of the n participants
receives at least 1

n of the total cake in their own valuation.

Complexity : The algorithm requires O(N2) queries

Theorem 7.2. The Dubins-Spanier algorithm returns a proportional allocation.

Proof. All agents {1, 2, . . . , N −1} get exactly 1
N of the cake as they shout as soon as the left piece evaluates

to 1
N . The last agent has not shouted during the first N − 1 pieces,

=⇒ vN (ai) ≤
1

N
∀i ∈ N − 1

N−1∑
i=1

vN (ai) ≤ N − 1 · 1

N
= 1

vN (aN ) ≥ 1−
N−1∑
i=1

vN (ai)

≥ 1− (N − 1) · 1

N
=

1

N

Hence, agent N will also receive a piece worth greater than equal to 1
N of the cake.
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7.2.4.2 Recursive Cake Cutting Algorithm (Even-Paz 1984)

Cake

M1 M2 M3 M4

Agent 1 Agent 2 Agent 3 Agent 4

Cake

M1 M2 M3 M4

Agent 1 Agent 2 Agent 3 Agent 4

Algorithm : (Assume 2n agents for simplicity)

Base Case : n = 2 requires 2 queries

1. Given piece [x, y] each agent marks zi such that

vi([x, zi]) =
1

2
· vi([x, y])

2. Let z∗ be the the n
2
th from the left

3. Recurse on [x, z∗] with the left n
2
th agents and [z∗, y] with remaining agents

Theorem 7.3. The Even-Paz cutting algorithm returns a proportional allocation

Proof. • At stage zero , each agent values the cake 1

• At each subsequent stage, the agents who share a piece [x, y] values it atleast 1
2vi([x, y])

• Hence, if ast stage k each agent has value atleast 1
2k

of the cake, then at stage k + 1 each agents has

value atleast 1
2k+1 of the cake

• The binary tree of division has depth logN and hence the algorithm is PROP with O(N logN) queries

The time complexity of the Even-Paz Divide-and-Conquer Algorithm is O(n log n). This is because:

• At each stage, the participant calls a cut-query. So, there are total n cut-queries.

• There will be log n number of rounds (As every time the piece is getting halved).

Thus, the total time complexity is O(n log n).

Claim 7.4. If the number of agents is n, which is not a power of 2, we need to ask every agent to make a
cut at n−1

n . We have verified it for n = 3 in the class. It will be interesting to verify or refute this statement.
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Questions to think on-

• What if the valuation is not normalized?

• Can we improve the complexity of the cake-cutting algorithms?

• How can we work if Free-Disposability (Throwing away some cake) is allowed? How can we ensure
efficiency?


