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Lecture 13: Bargaining Games and TU Games
Lecturer: Swaprava Nath Scribe(s): Aditya Sanapala, Aditya Vema Reddy Kesari

Disclaimer: These notes aggregate content from several texts and have not been subjected to the usual
scrutiny deserved by formal publications. If you find errors, please bring to the notice of the Instructor.

13.1 Setup of the Game

A two-person bargain game consists of:

• A feasibility set S ∈ R2 that is often assumed to be nonempty, compact, and convex, the elements of
which are interpreted as agreements.

• A disagreement, or threat, point d = (d1, d2), where d1 and d2 are the respective payoffs to player 1
and player 2, which they are guaranteed to receive if they cannot come to a mutual agreement.

13.2 Desirable Properties

13.2.1 Symmetry

Definition 13.1 A bargaining game (S,d) ∈ F is symmetric if the following 2 properties are satisfied:

1. d1 = d2 (the disagreement point is symmetric).

2. If x = (x1, x2) ∈ S, then (x2, x1) ∈ S.

Definition 13.2 A solution concept ϕ is symmetric (or satisfies the symmetry property) if
for every symmetric bargaining game (S,d) ∈ F the vector φ(S,d) = (φ1(S,d), φ2(S,d))
satisfies φ1(S,d) = φ2(S,d).
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13.2.2 (Pareto) Efficiency

Definition 13.3 An alternative x ∈ S is called an efficient point of S if there does not exist an alternative
y ∈ S,y ̸= x, such that y ≥ x.

Denote by PO(S) the set of efficient points of S (Pareto optimum).
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Definition 13.4 An alternative x ∈ S is called weakly efficient in S if there is no alternative y ∈ S,y ̸= x,
satisfying y ≫ x.

Denote the set of weakly efficient points in S by POW (S). It follows by definition that PO(S) ⊆ POW (S)
for each set S ⊆ R2; as the following example shows, this set inclusion can be a proper inclusion.

Example: Consider the bargaining game in Figure (13.1). The set of possible outcomes that cannot be
improved from the perspective of at least one player, i.e., PO(S), appears in bold in part A. The set of
possible outcomes that cannot be improved from the perspective of both players, i.e., POW (S), appears in
bold in part B. For example, the outcome (30, 100) is inefficient, since the outcome (40, 100) is better from
the perspective of Player 1. On the other hand, there is no outcome that is strictly better for both players
than (30, 100). In other words, (30, 100) ∈ POW (S), but (30, 100) ̸∈ PO(S).
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Figure 13.1: The efficient points of S in the previous example

Definition 13.5 A solution concept φ is called efficient if φ(S,d) ∈ PO(S) for each bargaining game
(S,d) ∈ F .

Definition 13.6 A solution concept φ is called weakly efficient if φ(S,d) ∈ POW (S) for each bargaining
game (S,d) ∈ F .

13.2.3 Covariance under Positive Affine Transformation (CPAT)

When the axes of a bargaining game represent monetary payoffs, it is reasonable to require that the solution
concept be independent of the units of measurement. In other words, if we measure the payoff to one player
in cents instead of dollars, we get a different bargaining game (in which the coordinate corresponding to
each point is larger by a factor of 100). In this case, we want the coordinate corresponding to the solution
to change by the same ratio.

Definition 13.7 A solution concept ϕ is covariant under positive affine transformations if for each bargain-
ing game (S,d) ∈ F , and for every vector a ∈ R2 such that a ≫ 0, and for every vector b ∈ R2,

φ(aS + b,ad+ b) = aφ(S,d) + b. (13.1)
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Figure 13.2: Independence of irrelevant alternatives

13.2.4 Independence of Irrelevant Alternatives (IIA)

Definition 13.8 A solution concept φ satisfies the property of independence of irrelevant alternatives (IIA)
if for every bargaining game (T,d) ∈ F , and every subset S ⊆ T ,

φ(T,d) ∈ S =⇒ φ(S,d) = φ(T,d). (13.2)

13.3 The Nash Solution

Theorem 13.9 (Nash, 1953) There exists a unique solution concept N for the family of bargaining games
S ∈ F satisfying the four desirable properties.

The solutions satisfying these properties are exactly the points x = (x, y) ∈ S which maximize the following
expression:

N (S,d) = arg max
x∈S,x≥d

(x1 − d1)(x2 − d2) (13.3)

Lemma 13.10 For every bargaining game (S,d) ∈ F , there exists a unique point in the set, N (S,d) (i.e.,
the Nash Solution is unique).

Proof: If we translate all the points in the plane by adding −d to each point, we get the bargaining game
(S − d, (0, 0)). Since the area of a rectangle is unchanged by translation, the points at which the Nash
product is maximized for the bargaining game (S,d) are translated to the points at which the Nash product
is maximized in the bargaining game (S−d, (0, 0)). We can therefore assume that, without loss of generality,
d = (0, 0), and then

f(x) = x1x2.

The set of individually rational points in S, which we denote by

D := x ∈ S,x ≥ d,

is the intersection of the compact and convex set S with the closed and convex set

x ∈ R2 : x ≥ d,
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Figure 13.3: The areas of the rectangles defined by y and z are equal

so that is compact and convex as well. As we already noted, the set D is nonempty because it contains the
disagreement point d.

Since the function f is continuous, and the set D is compact, there exists at least one point y in D at which
the maximum is attained. Suppose by contradiction that there exist two distinct points y and z in D at
which the maximum of f is attained. In particular,

y1y2 = z1z2. (13.4)

Define

w :=
1

2
y +

1

2
z. (13.5)

Since D is convex, and y, z ∈ D, it follows that w ∈ D. We will show that

f(w) > f(z), (13.6)

contradicting the fact that the Nash product is maximized at y (and at z). The assumption that y ̸= z
therefore leads to a contradiction, hence y = z, and we will be able to conclude that the Nash product is
maximized at a unique point.

One way to prove Equation (13.6) is to note that for every c > 0 the function x2 = c
x1

is strictly convex. For
c = y1y2, both (y, f(y)) and (z, f(z)), are on the graph of the function, and therefore (w, f(w)) is above
the graph. In particular, w1w2 > c = y1y2.

A direct proof of the claim is as follows. In Figure (13.3), the points y and z are noted, with A,B,C,and D
denoting four rectangular areas. From the figure we see that

y1z2 + z1y2 = A+ 2B + C +D > A+ 2B + C = y1y2 + z1z2. (13.7)

Thus we have

f(w) = w1w2 = (
y1
2

+
z1
2
)(
y2
2

+
z2
2
) (13.8)
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>
y1y2
4

+
y1y2
4

+
z1z2
4

+
z1z2
4

(13.10)

=
y1y2
2

+
z1z2
2

= f(y), (13.11)

where Equation (13.10) follows from Equation (13.7) and Equation (13.11) follows from Equation (13.4). In
summary, f(w) > f(y), which is the desired contradiction.

Lemma 13.11 The solution concept N satisfies the properties of symmetry, efficiency, covariance under
positive affine transformations, and independence of irrelevant alternatives.

Proof:

1. N satisfies symmetry:

Let (S,d) be a symmetric bargaining game, and let y∗ = (y∗1 , y
∗
2) be the vector that maximizes the

Nash product (y∗1 − d)(y∗2 − d).

Define the point z = (y∗2 , y
∗
1).

Since S is symmetric, and y∗ ∈ S, we have z ∈ S.

Since d1 = d2, the area of the rectangle defined by y∗ and d equals the area of the rectangle defined
by z and d:

By Lemma (13.10), the maximum of f over S is attained at a unique point.

Therefore, y∗ = z, leading to y∗1 = y∗2 .

Hence, N satisfies symmetry.

2. N satisfies efficiency: Proof by Contradiction

If y is not efficient in S then there exists z ∈ S satisfying

(a) z ≥ y

(b) z ̸= y.

Then the area of the rectangle defined by z and d is strictly greater than the area of the rectangle
defined by y and d, and therefore,

N (S,d) ̸= y

.

Hence, N has to be efficient.

3. N satisfies covariance under positive affine transformations:

The maximum of the function f over {x ∈ S,x ≥ d} is attained at the point N (S, d). Applying the
positive affine transformation x 7→ ax+ b to the plane combines a translation with multiplication by
a positive constant at every coordinate. A translation does not change the area of a rectangle and
multiplication by a = (a1, a2) multiplies the area of the rectangle by a1a2. It follows that if prior to
the application of the transformation the Nash product maximizes at y, then after the application of
the transformation x 7→ ax+ b the Nash product maximizes at ay + b.
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Figure 13.4: The bargaining game (S,d) (a) and the game obtained by implementation of the positive affine
transformation L, along with the symmetric square T (b)

4. N satisfies independence of irrelevant alternatives:

This follows from a general fact:

Let S ⊆ T , let g : T → R be a function, and let w ∈ argmaxx∈T,x≥d g(x). If w ∈ S, then w ∈
argmaxx∈T,x≥d g(x) (explain why the claim that N satisfies independence of irrelevant alternatives
follows from this general fact). To see why this claim holds, note that since w ∈ S and S ⊆ T ,

max
{x∈S,x≥d}

g(x) ≥ g(w) = max
{x∈T,x≥d}

g(x) ≥ max
{x∈S,x≥d}

g(x). (13.12)

It follows that

max
{x∈T,x≥d}

g(x) = max
{x∈S,x≥d}

g(x), (13.13)

and therefore w ∈ argmaxx∈S,x≥d g(x).

Lemma 13.12 Every solution concept φ satisfying symmetry, efficiency, covariance under positive affine
transformations, and independence of irrelevant alternatives is identical to the solution concept N defined
by Equation (13.3).

Proof: Let φ be a solution concept satisfying the four properties of the statement of the theorem. Let (S,d)
be a bargaining game in F , and denote y∗ := N (S,d). We will show that φ(S,d) = y∗.
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Step 1: Applying a positive affine transformation L.

Since there is an alternative x in S such that x ≫ d, the point N (S,d) = y∗ ∈ {z ∈ S : z ≥ d} at which
the Nash product is maximized satisfies y∗ ≫ d. We can therefore define a positive affine transformation L
over the plane shifting d to the origin, and y∗ to (1, 1) (see Figure (13.4)). This function is given by

L(x1, x2) =

(
x1 − d1
y∗1 − d1

,
x2 − d2
y∗2 − d2

)
(13.14)

Since y∗1 > d1 and y∗2 > d2, the denominators in the definition of L are positive. The function L is of the
form L = ax + b, where a1 = 1

y∗
1−d1

> 0, a2 = 1
y∗
2−d2

> 0, b1 = −d1

y∗
1−d1

> 0, and b2 = −d2

y∗
2−d2

> 0. Since the

solution concept N satisfies CPAT,

N (aS + b, (0, 0)) = N (aS + b,ad+ b) = ay∗ + b = (1, 1). (13.15)

Step 2: x1 + x2 ≤ 2 for every x ∈ aS + b.

Let x ∈ aS + b. Since S is convex, the set aS + b is also convex. Therefore, since both x and (1, 1) are in
aS + b, the interval connecting x and (1, 1) is also in aS + b. In other words, for every ε ∈ [0, 1], the point
zε defined by

zε := (1− ε)(1, 1) + εx = (1 + ε(x1 − 1), 1 + ε(x2 − 1)) (13.16)

is in aS + b. If ε is sufficiently close to 0 then zε ≥ (0, 0), and therefore zε is one of the points in the set
{w ∈ aS + b,w ≥ (0, 0)}. It follows that for each such ε,

f(zε) ≤ max
{w∈aS+b,w≥(0,0)}

f(w) = f(N (aS + b, (0, 0))) = f((1, 1)) = 1. (13.17)

Hence

1 ≥ f(zε) = zε1z
ε
2 = 1 + ε(x1 + x2 − 2) + ε2(x1 − 1)(x2 − 1) (13.18)

= 1 + ε(x1 + x2 − 2 + ε(x1 − 1)(x2 − 1)). (13.19)

Therefore, for every ε > 0 sufficiently small,

0 ≥ ε(x1 + x2 − 2 + ε(x1 − 1)(x2 − 1)), (13.20)

leading to the conclusion that

2− ε(x1 − 1)(x2 − 1)) ≥ x1 + x2. (13.21)

Taking the limit as ε approaches 0 yields 2 ≥ x1 + x2, which is what we wanted to show.

Finally, let T be a symmetric square relative to the diagonal x1 = x2 that contains aS + b, with one side
along the line x1 + x2 = 2 (see Figure (13.4)(b)). Since aS + b is compact (and thus bounded), such a
square exists. By the symmetry and efficiency of φ, one has φ(T, (0, 0)) = (1, 1). Since the solution concept
φ satisfies IIA, and since aS + b is a subset of T containing (1, 1), it follows that φ(aS + b, (0, 0)) = (1, 1).
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Since the solution concept φ satisfies CPAT, one can implement the inverse transformation L−1 to deduce
that φ(S,d) = y∗. Since y∗ = N (S,d), we conclude that φ(S,d) = N (S,d), as required.

13.4 Multi-Person Cooperative Games (n > 2)

A game in this setting is defined as:

(S, (d1, d2, . . . , dn))

where S ⊆ RM .

The bargaining solution can be extended to a n-player setting, and almost all results extend. However, there
are more possible choices in an n-player game than a bargaining model can capture. We show what the
bargaining model cannot capture by an example below

13.4.1 Example 1: Divide the Money (Version 1)

Let N = {1, 2, 3} want to divide |300. Each player can propose a division of this money. The feasible set S
is:

S =

{
(x1, x2, x3) ∈ R3 | xi ≥ 0,

3∑
i=1

xi ≤ 300

}

The disagreement point is given by:

d1 = d2 = d3 = 0

In this version, all players must unanimously agree to the division for the negotiation to succeed. The utility
function is given as:

ui(x1, x2, x3) =

{
xi, if s1 = s2 = s3 = (x1, x2, x3)

0, otherwise

Since every player has equal power in this game, the Nash bargaining solution gives (100, 100, 100), which is
reasonable as no group can deviate and be better off.

Example 2: DTM Game (Version 2)

Now, we want to capture x1 and x2 have more power than x3 and therefore as long as both x1 and x2 agree
on a division, the negotiation succeeds:

ui(x1, x2, x3) =

{
xi, if s1 = s2 = (x1, x2, x3)

0, otherwise

The Nash bargaining solution still remains (100, 100, 100). However, in this game, players 1 and 2 have more
power than player 3 causing them to deviate from this allocation and propose (150, 150, 0).
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Example 3: DTM Game (Version 3)

Now, we want to capture the case where the negotiation is successful if either x1 and x2 or x1 and x3 agree
on a decision. This can be seen as x1 having maximum power with some power distributed equally between
x2 and x3.

ui(x1, x2, x3) =


xi, if s1 = s2 = (x1, x2, x3)

xi, if s1 = s3 = (x1, x2, x3)

0, otherwise

If x1 and x2 agree on a distribution, then trivially x3 receives nothing. However, x1 and x3 can renegotiate,
allowing x1 to secure a higher share while granting x3 a nonzero amount. In response, x2 is left with nothing
and can initiate negotiations with x1 to obtain a nonzero value. This cycle continues, leading to a final
outcome that converges to (300, 0, 0).

Example 4: DTM Game (Version 4)

ui(x1, x2, x3) =

{
xi, if sj = sk = (x1, x2, x3) for some j ̸= k

0, otherwise

Any two agents agreeing on a division finalize the decision. However, if (100, 100, 100) is proposed, agents
1 and 2 can propose differently, e.g., (150, 150, 0). Then agent 3 can approach agent 1 or 2 and offer
(200, 0, 100), leading to an indefinite negotiation process.

Thus, we conclude that a better axiomatic solution is needed.

13.5 Transferable Utility Games (TU Games)

A fluid commodity that can transfer utility, such as money, allows us to define a cooperative game using a
characteristic function.

• v : 2N → R, where N is the set of players.

• v(S) represents the value of the coalition S ⊆ N .

• v(∅) = 0.

Definition: A TU game is given by the tuple (N, v), where N is the set of players and v is the characteristic
function.
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13.6 DTM Game Variants

13.6.1 DTM Version 1

We calculate the worth of each of the coalitions in the DTM versions we had defined above.

v(1, 2, 3) = 300, v(1) = v(2) = v(3) = v(1, 2) = v(2, 3) = v(1, 3) = 0

13.6.2 DTM Version 2

v(1, 2) = v(1, 2, 3) = 300, v(1) = v(2) = v(3) = v(2, 3) = v(1, 3) = 0

13.6.3 DTM Version 3

v(1, 2) = v(1, 3) = v(1, 2, 3) = 300, v(1) = v(2) = v(3) = v(2, 3) = 0

13.6.4 DTM Version 4

v(1, 2) = v(2, 3) = v(1, 3) = v(1, 2, 3) = 300, v(1) = v(2) = v(3) = 0

13.6.5 Example - Minimum Cost Spanning Tree Game

This is a game in which each coalition seeks to find the minimum cost spanning tree that connects those
agents and the fixed node F .

Figure 13.5: Cost graph

The value of each coalition is the aggregate benefit minus the aggregate cost. For example,

v({1}) = 10− 5, v({2}) = 10− 1, v({1, 2}) = 20− 5


