Mechanism Design with Monetary Transfers

Swaprava Nath

Economics and Planning Unit Indian Statistical Institute, New Delhi

Workshop on Static and Dynamic Mechanism Design Indian Statistical Institute, New Delhi

August 2, 2015

The Setup

- Unrestricted Preferences
- Restricted Preferences
- 2 Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

Results

- Groves Class of Mechanisms
- What Other Mechanisms are Incentive Compatible
- Revenue Equivalence
- Uniqueness of Groves for Efficiency
- Budget Balance
- Bayesian Incentive Compatibility

The Setup

- Unrestricted Preferences
- Restricted Preferences
- 2 Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

B Results

- Groves Class of Mechanisms
- What Other Mechanisms are Incentive Compatible
- Revenue Equivalence
- Uniqueness of Groves for Efficiency
- Budget Balance
- Bayesian Incentive Compatibility

The Setup

• Unrestricted Preferences

Restricted Preferences

2 Mechanisms in Quasi-linear Domain

- Structure of a Mechanism
- Some Definitions

B Results

- Groves Class of Mechanisms
- What Other Mechanisms are Incentive Compatible
- Revenue Equivalence
- Uniqueness of Groves for Efficiency
- Budget Balance
- Bayesian Incentive Compatibility

The Gibbard-Satterthwaite Setting

Voters can have arbitrary *strict ordinal* preferences over the set of alternatives
Set of alternatives X = {a, b, c, d}

Voter 1	Voter 2	Voter 3	Voter 4
a	d	c	d
b	b	b	b
с	a	a	с
d	c	d	a

The Gibbard-Satterthwaite Setting

- Voters can have arbitrary strict ordinal preferences over the set of alternatives
- Set of alternatives $X = \{a, b, c, d\}$
- Goal: elicit the preferences truthfully from the agents

Voter 1	Voter 2	Voter 3	Voter 4
a	d	c	d
b	b	b	b
c	a	a	c
d	c	d	a

The Gibbard-Satterthwaite Setting

- Voters can have arbitrary strict ordinal preferences over the set of alternatives
- Set of alternatives $X = \{a, b, c, d\}$
- Goal: elicit the preferences truthfully from the agents

Voter 1	Voter 2	Voter 3	Voter 4
a	d	c	d
b	b	b	b
с	a	a	с
d	c	d	a

Theorem (Gibbard (1973), Satterthwaite (1975))

If $|X| \ge 3$, an onto social choice function is strategyproof if and only if it is dictatorial.

The Setup

- Unrestricted Preferences
- Restricted Preferences
- 2 Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

B Results

- Groves Class of Mechanisms
- What Other Mechanisms are Incentive Compatible
- Revenue Equivalence
- Uniqueness of Groves for Efficiency
- Budget Balance
- Bayesian Incentive Compatibility

- An alternative $x \in X$ is a tuple (a, p)
- \bullet Allocation a belongs to the set of allocations A

- An alternative $x \in X$ is a tuple (a, p)
- \bullet Allocation a belongs to the set of allocations A
- Payments p belong to \mathbb{R}^n

- An alternative $x \in X$ is a tuple (a, p)
- Allocation a belongs to the set of allocations A
- Payments p belong to \mathbb{R}^n
- Each agent *i* has a valuation function $v_i : A \to \mathbb{R}$ belonging to the set V_i

- An alternative $x \in X$ is a tuple (a, p)
- \bullet Allocation a belongs to the set of allocations A
- Payments p belong to \mathbb{R}^n
- Each agent i has a valuation function $v_i : A \to \mathbb{R}$ belonging to the set V_i
- Agents' utilities are given by

$$u_i(x) = u_i(a, p) = v_i(a) - p_i$$

Example: Public Good

Photo courtesy: wikimedia.org and nimsuniversity.org

Example: Public Good

- Valuations: $v_A(F) = 10, v_A(L) = 80$
- Social planner takes the decision of building F or L
- Can tax people differently depending on their preferences

Example: Resource Allocation

$\stackrel{Commodities}{\to}$	IBMSmartCloud	/ Cloud	cisco
Alice	0.2	0.8	0.5
Bob	0.3	0.1	0.2
Carol	0.5	0.1	0.3

Photo courtesy: individual organizations

Example: Resource Allocation

$\stackrel{Commodities}{\to}$	IBMSmartCloud	/ Cloud	cisco
Alice	0.2	0.8	0.5
Bob	0.3	0.1	0.2
Carol	0.5	0.1	0.3

- Set of allocations $A = \{x \in [0,1]^{n \times m} : \sum_{j=1}^m x_{i,j} = 1\}$
- Items are divisible among the agents
- Agents' valuations reflect their preferences over different allocations
- They are charged monetary transfers for every allocation

Example: Resource Allocation

$\stackrel{Commodities}{\to}$	IBMSmartCloud	🅢 Cloud	cisco
Alice	0.2	0.8	0.5
Bob	0.3	0.1	0.2
Carol	0.5	0.1	0.3

Selfish valuations

- GS theorem is valid for unrestricted preferences
- In quasi-linear domain, agents' preferences are restricted

- GS theorem is valid for unrestricted preferences
- In quasi-linear domain, agents' preferences are restricted
- Example:
 - Set of alternatives $X = A \times \mathbb{R}^n$ consists of (a, p) pairs
 - Allocation $a \in A$ and payment vector $p \in \mathbb{R}^n$

- GS theorem is valid for unrestricted preferences
- In quasi-linear domain, agents' preferences are restricted
- Example:
 - Set of alternatives $X = A \times \mathbb{R}^n$ consists of (a, p) pairs
 - Allocation $a \in A$ and payment vector $p \in \mathbb{R}^n$
 - Consider two alternatives $x_1 = (a, p_1)$ and $x_2 = (a, p_2)$, where $p_1 < p_2$

- GS theorem is valid for unrestricted preferences
- In quasi-linear domain, agents' preferences are restricted
- Example:
 - Set of alternatives $X = A \times \mathbb{R}^n$ consists of (a, p) pairs
 - Allocation $a \in A$ and payment vector $p \in \mathbb{R}^n$
 - Consider two alternatives $x_1 = (a, p_1)$ and $x_2 = (a, p_2)$, where $p_1 < p_2$
 - ▶ For all agents, $x_1 \succ x_2$ for any valuation profile

- GS theorem is valid for unrestricted preferences
- In quasi-linear domain, agents' preferences are restricted
- Example:
 - Set of alternatives $X = A \times \mathbb{R}^n$ consists of (a, p) pairs
 - Allocation $a \in A$ and payment vector $p \in \mathbb{R}^n$
 - Consider two alternatives $x_1 = (a, p_1)$ and $x_2 = (a, p_2)$, where $p_1 < p_2$
 - For all agents, $x_1 \succ x_2$ for any valuation profile
 - There is no preference profile where $x_2 \succ x_1$

An Example of a Truthful Mechanism

Alice	10	80	40
Bob	100	20	50
Carol	0	40	30

An Example of a Truthful Mechanism

- Consider the mechanism:
 - pick the alternative a^* that maximizes the sum of the valuations (with arbitrary tie-breaking rule)
 - ▶ pay every agent i an amount $\sum_{j \neq i} v_j(a^*)$

An Example of a Truthful Mechanism

- Consider the mechanism:
 - pick the alternative a^* that maximizes the sum of the valuations (with arbitrary tie-breaking rule)
 - ▶ pay every agent i an amount $\sum_{j \neq i} v_j(a^*)$
- The mechanism is truthful, even though not a dictatorship

The Setup

- Unrestricted Preferences
- Restricted Preferences

Mechanisms in Quasi-linear Domain

- Structure of a Mechanism
- Some Definitions

Results

- Groves Class of Mechanisms
- What Other Mechanisms are Incentive Compatible
- Revenue Equivalence
- Uniqueness of Groves for Efficiency
- Budget Balance
- Bayesian Incentive Compatibility

The Setup

- Unrestricted Preferences
- Restricted Preferences

Mechanisms in Quasi-linear Domain

- Structure of a Mechanism
- Some Definitions

B Results

- Groves Class of Mechanisms
- What Other Mechanisms are Incentive Compatible
- Revenue Equivalence
- Uniqueness of Groves for Efficiency
- Budget Balance
- Bayesian Incentive Compatibility

Structure of a Mechanism

- Set of agents $N=\{1,\ldots,n\}$
- Set of allocations A, finite (for this tutorial)
- Valuation of agent $i, v_i : A \to \mathbb{R}$, the set of valuations is denoted by V_i

Structure of a Mechanism

- Set of agents $N = \{1, \ldots, n\}$
- Set of allocations A, finite (for this tutorial)
- Valuation of agent $i, v_i : A \to \mathbb{R}$, the set of valuations is denoted by V_i
- A mechanism in quasi-linear (QL) domain is a pair of functions:
 - allocation function, $a: \prod_{j} V_{j} \to A$
 - ▶ payment function, $p_i : \prod_j V_j \to \mathbb{R}$, for all $i \in N$
- Agent *i*'s payoff is given by:

 $v_i(a(v)) - p_i(v)$

Structure of a Mechanism

- Set of agents $N = \{1, \ldots, n\}$
- Set of allocations A, finite (for this tutorial)
- Valuation of agent $i, v_i : A \to \mathbb{R}$, the set of valuations is denoted by V_i
- A mechanism in quasi-linear (QL) domain is a pair of functions:
 - allocation function, $a: \prod_{j} V_{j} \to A$
 - ▶ payment function, $p_i : \prod_i V_i \to \mathbb{R}$, for all $i \in N$
- Agent *i*'s payoff is given by:

$$v_i(a(v)) - p_i(v)$$

• Only direct revelation mechanisms (DRM) (this talk)

The Setup

- Unrestricted Preferences
- Restricted Preferences

2 Mechanisms in Quasi-linear Domain

- Structure of a Mechanism
- Some Definitions

Results

- Groves Class of Mechanisms
- What Other Mechanisms are Incentive Compatible
- Revenue Equivalence
- Uniqueness of Groves for Efficiency
- Budget Balance
- Bayesian Incentive Compatibility

Social Choice Function

Definition (Social Choice Function)

A social choice function (SCF) f is a mapping from the set of valuation profiles to the set of allocations, i.e., $f: V \to A$, where $V = \prod_{j} V_{j}$.

• Note that the outcome is only the allocations

Social Choice Function

Definition (Social Choice Function)

A social choice function (SCF) f is a mapping from the set of valuation profiles to the set of allocations, i.e., $f: V \to A$, where $V = \prod_{j} V_{j}$.

- Note that the outcome is only the allocations
- In QL domain:

A mechanism M = (a, p) implements a SCF f if:

- $a(v) = f(v), \forall v \in V \text{ and},$
- ▶ for every agent $i \in N$, reporting v_i truthfully is an *equilibrium*
- Even though the SCF is concerned with only allocations, payments can also be characterized by *revenue equivalence* (defined later)

Incentive Compatibility

Definition (Dominant Strategy Incentive Compatibility (DSIC))

A mechanism (f, p_1, \ldots, p_n) is dominant strategy incentive compatible if for all $i \in N$ and for all $v_{-i} \in V_{-i} := \prod_{j \neq i} V_j$,

 $v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \ge v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i}), \ \forall v_i, v'_i \in V_i.$

In this case, payments $p_i, i \in N$ implement f in dominant strategies

Incentive Compatibility (Contd.)

- ${ullet}$ In a Bayesian game, the valuations v are generated through a prior P
- Each agent i knows her own realized valuation v_i and P
- Her belief on the valuations of other agents v_{-i} is given by $P(v_{-i}|v_i)$ derived by Baye's rule

Incentive Compatibility (Contd.)

- ${\ensuremath{\, \bullet }}$ In a Bayesian game, the valuations v are generated through a prior P
- Each agent i knows her own realized valuation v_i and P
- Her belief on the valuations of other agents v_{-i} is given by $P(v_{-i} \vert v_i)$ derived by Baye's rule

Definition (Bayesian Incentive Compatibility (BIC))

A mechanism (f, p_1, \ldots, p_n) is Bayesian incentive compatible for a prior P if for all $i \in N$,

$$\mathbb{E}_{v_{-i}|v_i}[v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i})] \ge \mathbb{E}_{v_{-i}|v_i}[v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i})]$$

$$\forall v_i, v'_i \in V_i.$$

In this case, payments $p_i, i \in N$ implement f in a Bayesian Nash equilibrium

Observations on IC

• A DSIC mechanism is always BIC

Observations on IC

• A DSIC mechanism is always BIC

For a DSIC mechanism $(f,p_1,\ldots,p_n),$ let valuations of agents other than i is fixed at v_{-i}

• If v_i, v_i' be such that $f(v_i, v_{-i}) = f(v_i', v_{-i})$, then $p_i(v_i, v_{-i}) = p_i(v_i', v_{-i})$

Observations on IC

• A DSIC mechanism is always BIC

For a DSIC mechanism $(f,p_1,\ldots,p_n),$ let valuations of agents other than i is fixed at v_{-i}

- If v_i, v'_i be such that $f(v_i, v_{-i}) = f(v'_i, v_{-i})$, then $p_i(v_i, v_{-i}) = p_i(v'_i, v_{-i})$
- Consider another payment $q_i(v_i, v_{-i}) = p_i(v_i, v_{-i}) + h_i(v_{-i})$,

 $v_i(f(v_i, v_{-i})) - q_i(v_i, v_{-i}) \ge v_i(f(v'_i, v_{-i})) - q_i(v'_i, v_{-i}), \ \forall v_i, v'_i \in V_i.$

Efficiency

Definition (Efficiency)

An SCF f is *efficient* if for all $v \in V$,

$$f(v) \in \underset{a \in A}{\operatorname{argmax}} \sum_{i \in N} v_i(a).$$

An efficient SCF ensures that the 'social welfare' is maximized

Revenue Equivalence

• This property characterizes the payment functions

Definition (Revenue Equivalence)

An SCF f satisfies *revenue equivalence* if for any two payment rules p and p' that implement f, there exist functions $\alpha_i : V_{-i} \to \mathbb{R}$, such that,

 $p_i(v_i, v_{-i}) = p'_i(v_i, v_{-i}) + \alpha_i(v_{-i}), \ \forall v_i \in V_i, \forall v_{-i} \in V_{-i}, \forall i \in N.$

Revenue Equivalence

• This property characterizes the payment functions

Definition (Revenue Equivalence)

An SCF f satisfies *revenue equivalence* if for any two payment rules p and p' that implement f, there exist functions $\alpha_i : V_{-i} \to \mathbb{R}$, such that,

 $p_i(v_i, v_{-i}) = p'_i(v_i, v_{-i}) + \alpha_i(v_{-i}), \ \forall v_i \in V_i, \forall v_{-i} \in V_{-i}, \forall i \in N.$

- Saw an example of a payment of agent *i* being different by a factor not dependent on *i*'s valuation
- This property says more: pick *any* two payments that implement *f* they must be different by a similar factor

Budget Balance

Definition (Budget Balance) A set of payments $p_i: V \to \mathbb{R}, i \in N$ is budget balanced if, $\sum_{i \in N} p_i(v) = 0, \forall v \in V.$

- This property ensures that the mechanism does not produce any monetary surplus
- Hard to satisfy with incentive compatibility

Outline of the Talk

The Setup

- Unrestricted Preferences
- Restricted Preferences
- 2 Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

Results

- Groves Class of Mechanisms
- What Other Mechanisms are Incentive Compatible
- Revenue Equivalence
- Uniqueness of Groves for Efficiency
- Budget Balance
- Bayesian Incentive Compatibility

Summary

Outline of the Talk

The Setup

- Unrestricted Preferences
- Restricted Preferences
- 2 Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

Results

Groves Class of Mechanisms

- What Other Mechanisms are Incentive Compatible
- Revenue Equivalence
- Uniqueness of Groves for Efficiency
- Budget Balance
- Bayesian Incentive Compatibility

Summary

Single Indivisible Item Auction

Buyer 1 Metropolitan Museum of Arts Buyer 2 Louvre

Second Price Auction

- Metropolitan wins, but pays second highest bid
- The mechanism is DSIC (why?)

Groves Class of Mechanisms

• Allocation rule is efficient:

$$a^*(v) \in \operatorname*{argmax}_{a \in A} \sum_{i \in N} v_i(a)$$

• Payment rule is given by:

$$p_i^*(v_i, v_{-i}) = h_i(v_{-i}) - \sum_{j \in N \setminus \{i\}} v_j(a^*(v)),$$

where $h_i: V_{-i} \to \mathbb{R}$ is any arbitrary function that does not depend on v_i

Groves Class of Mechanisms

• Allocation rule is efficient:

$$a^*(v) \in \operatorname*{argmax}_{a \in A} \sum_{i \in N} v_i(a)$$

• Payment rule is given by:

$$p_i^*(v_i, v_{-i}) = h_i(v_{-i}) - \sum_{j \in N \setminus \{i\}} v_j(a^*(v)),$$

where $h_i:V_{-i} \to \mathbb{R}$ is any arbitrary function that does not depend on v_i

Claim

Groves class of mechanisms are DSIC

$$u_i^{(a^*,p^*)}(v_i, v_{-i}) = v_i(a^*(v_i, v_{-i})) - p_i^*(v_i, v_{-i})$$

$$u_i^{(a^*,p^*)}(v_i, v_{-i})$$

= $v_i(a^*(v_i, v_{-i})) - p_i^*(v_i, v_{-i})$
= $v_i(a^*(v_i, v_{-i})) - h_i(v_{-i}) + \sum_{j \in N \setminus \{i\}} v_j(a^*(v_i, v_{-i}))$

$$u_i^{(a^*,p^*)}(v_i, v_{-i}) = v_i(a^*(v_i, v_{-i})) - p_i^*(v_i, v_{-i}) = v_i(a^*(v_i, v_{-i})) - h_i(v_{-i}) + \sum_{j \in N \setminus \{i\}} v_j(a^*(v_i, v_{-i})) = \sum_{i \in N} v_j(a^*(v_i, v_{-i})) - h_i(v_{-i})$$

$$\begin{split} u_i^{(a^*,p^*)}(v_i, v_{-i}) &= v_i(a^*(v_i, v_{-i})) - p_i^*(v_i, v_{-i}) \\ &= v_i(a^*(v_i, v_{-i})) - h_i(v_{-i}) + \sum_{j \in N \setminus \{i\}} v_j(a^*(v_i, v_{-i})) \\ &= \sum_{j \in N} v_j(a^*(v_i, v_{-i})) - h_i(v_{-i}) \\ &\ge \sum_{j \in N} v_j(a^*(v_i', v_{-i})) - h_i(v_{-i}) \text{ (by definition of } a^*) \end{split}$$

$$\begin{split} &u_i^{(a^*,p^*)}(v_i,v_{-i}) \\ &= v_i(a^*(v_i,v_{-i})) - p_i^*(v_i,v_{-i}) \\ &= v_i(a^*(v_i,v_{-i})) - h_i(v_{-i}) + \sum_{j \in N \setminus \{i\}} v_j(a^*(v_i,v_{-i})) \\ &= \sum_{j \in N} v_j(a^*(v_i,v_{-i})) - h_i(v_{-i}) \\ &\geq \sum_{j \in N} v_j(a^*(v_i',v_{-i})) - h_i(v_{-i}) \text{ (by definition of } a^*) \\ &= v_i(a^*(v_i',v_{-i})) - h_i(v_{-i}) + \sum_{j \in N \setminus \{i\}} v_j(a^*(v_i',v_{-i})) \end{split}$$

$$\begin{split} & u_i^{(a^*,p^*)}(v_i,v_{-i}) \\ &= v_i(a^*(v_i,v_{-i})) - p_i^*(v_i,v_{-i}) \\ &= v_i(a^*(v_i,v_{-i})) - h_i(v_{-i}) + \sum_{j \in N \setminus \{i\}} v_j(a^*(v_i,v_{-i})) \\ &= \sum_{j \in N} v_j(a^*(v_i,v_{-i})) - h_i(v_{-i}) \\ &\geq \sum_{j \in N} v_j(a^*(v_i',v_{-i})) - h_i(v_{-i}) \text{ (by definition of } a^*) \\ &= v_i(a^*(v_i',v_{-i})) - h_i(v_{-i}) + \sum_{j \in N \setminus \{i\}} v_j(a^*(v_i',v_{-i})) \\ &= v_i(a^*(v_i',v_{-i})) - p_i^*(v_i',v_{-i}) \end{split}$$

$$\begin{split} &u_i^{(a^*,p^*)}(v_i, v_{-i}) \\ &= v_i(a^*(v_i, v_{-i})) - p_i^*(v_i, v_{-i}) \\ &= v_i(a^*(v_i, v_{-i})) - h_i(v_{-i}) + \sum_{j \in N \setminus \{i\}} v_j(a^*(v_i, v_{-i})) \\ &= \sum_{j \in N} v_j(a^*(v_i, v_{-i})) - h_i(v_{-i}) \\ &\ge \sum_{j \in N} v_j(a^*(v_i', v_{-i})) - h_i(v_{-i}) \text{ (by definition of } a^*) \\ &= v_i(a^*(v_i', v_{-i})) - h_i(v_{-i}) + \sum_{j \in N \setminus \{i\}} v_j(a^*(v_i', v_{-i})) \\ &= v_i(a^*(v_i', v_{-i})) - p_i^*(v_i', v_{-i}) \\ &= u_i^{(a^*, p^*)}(v_i', v_{-i}) \end{split}$$

Pivot Mechanism

• A special case of Groves class when the payment is given by:

$$h_i(v_{-i}) = \sum_{j \in N \setminus \{i\}} v_j(a_{-i}^*(v_{-i})),$$

where the allocation $a_{-i}^*(v_{-i})$ is given by:

$$a_{-i}^*(v_{-i}) \in \operatorname*{argmax}_{a \in A} \sum_{j \in N \setminus \{i\}} v_j(a)$$

 $\bullet\,$ The allocation a_{-i}^* maximizes the sum of valuations in the absence of agent i

- The function h_i is the maximum value of this sum
- The payment is therefore:

$$p_i(v_i, v_{-i}) = \max_{a \in A} \sum_{j \in N \setminus \{i\}} v_j(a) - \sum_{j \in N \setminus \{i\}} v_j(a^*(v))$$

Interpretations of the Pivot Mechanism

$$p_i(v_i, v_{-i}) = \max_{a \in A} \sum_{j \in N \setminus \{i\}} v_j(a) - \sum_{j \in N \setminus \{i\}} v_j(a^*(v))$$

Two Interpretations:

- 1. Externality:
 - $\max_{a \in A} \sum_{j \in N \setminus \{i\}} v_j(a)$ is what the agents $N \setminus \{i\}$ can achieve
 - $\sum_{j \in N \setminus \{i\}} v_j(a^*(v))$ is what they achieve under the efficient rule
 - The mechanism asks agent i to pay the difference

Interpretations of the Pivot Mechanism

$$p_i(v_i, v_{-i}) = \max_{a \in A} \sum_{j \in N \setminus \{i\}} v_j(a) - \sum_{j \in N \setminus \{i\}} v_j(a^*(v))$$

Two Interpretations:

- 1. Externality:
 - ▶ $\max_{a \in A} \sum_{j \in N \setminus \{i\}} v_j(a)$ is what the agents $N \setminus \{i\}$ can achieve
 - $\sum_{j \in N \setminus \{i\}} v_j(a^*(v))$ is what they achieve under the efficient rule
 - The mechanism asks agent i to pay the difference
- 2. Marginal contribution:
 - Net utility of agent i in pivot mechanism:

$$u_i(v_i, v_{-i}) = \sum_{j \in N} v_j(a^*(v_i, v_{-i})) - \max_{a \in A} \sum_{j \in N \setminus \{i\}} v_j(a)$$

i.e., the difference in sum valuation in presence of agent i and in her absence \blacktriangleright Net utility is agent i's marginal contribution

Outcome: L

Outcome: L

• Alice pays (100 + 10) - (10 + 50) = 50

- Outcome: L
- Alice pays (100 + 10) (10 + 50) = 50

• Carol pays
$$(10 + 100) - (70 + 10) = 30$$

- Outcome: L
- Alice pays (100 + 10) (10 + 50) = 50
- Bob pays (70+50) (70+50) = 0
- Carol pays (10 + 100) (70 + 10) = 30

- Outcome: L
- Alice pays (100 + 10) (10 + 50) = 50
- Bob pays (70+50) (70+50) = 0
- Carol pays (10 + 100) (70 + 10) = 30

Outline of the Talk

The Setup

- Unrestricted Preferences
- Restricted Preferences
- 2 Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

Results

• Groves Class of Mechanisms

• What Other Mechanisms are Incentive Compatible

- Revenue Equivalence
- Uniqueness of Groves for Efficiency
- Budget Balance
- Bayesian Incentive Compatibility

Summary

Affine Maximizers

An important class of SCFs is that of affine maximizers

Definition (Affine Maximizer)

An SCF $f: V \to A$ is an *affine maximizer* if there exists $w_i \ge 0, i \in N$, not all zero, and a function $\kappa: A \to \mathbb{R}$ such that,

$$f(v) \in \operatorname*{argmax}_{a \in A} \left(\sum_{i \in N} w_i v_i(a) + \kappa(a) \right).$$

Affine Maximizers

An important class of SCFs is that of affine maximizers

Definition (Affine Maximizer)

An SCF $f: V \to A$ is an *affine maximizer* if there exists $w_i \ge 0, i \in N$, not all zero, and a function $\kappa: A \to \mathbb{R}$ such that,

$$f(v) \in \underset{a \in A}{\operatorname{argmax}} \left(\sum_{i \in N} w_i v_i(a) + \kappa(a) \right).$$

Special cases:

• $w_i = 1, \forall i \text{ and } \kappa \equiv 0$: efficient SCF

Affine Maximizers

An important class of SCFs is that of affine maximizers

Definition (Affine Maximizer)

An SCF $f: V \to A$ is an *affine maximizer* if there exists $w_i \ge 0, i \in N$, not all zero, and a function $\kappa: A \to \mathbb{R}$ such that,

$$f(v) \in \underset{a \in A}{\operatorname{argmax}} \left(\sum_{i \in N} w_i v_i(a) + \kappa(a) \right).$$

Special cases:

• $w_i = 1, \forall i \text{ and } \kappa \equiv 0$: efficient SCF

• $w_d = 1$, for some d, $w_i = 0, \forall i \neq d$ and $\kappa \equiv 0$: dictatorial SCF

Affine Maximizers (Contd.)

 An affine maximizer f satisfies independence of irrelevant agents (IIA) if for every i with w_i = 0 and for every v_{-i} ∈ V_{-i},

$$f(v_i, v_{-i}) = f(v'_i, v_{-i}), \forall v_i, v'_i \in V_i$$

• This is a consistency condition for tie-breaking

Affine Maximizers (Contd.)

 An affine maximizer f satisfies independence of irrelevant agents (IIA) if for every i with w_i = 0 and for every v_{-i} ∈ V_{-i},

$$f(v_i, v_{-i}) = f(v'_i, v_{-i}), \forall v_i, v'_i \in V_i$$

- This is a consistency condition for tie-breaking
- Every affine maximizer satisfying IIA is implementable

Affine Maximizers (Contd.)

 An affine maximizer f satisfies independence of irrelevant agents (IIA) if for every i with w_i = 0 and for every v_{-i} ∈ V_{-i},

$$f(v_i, v_{-i}) = f(v'_i, v_{-i}), \forall v_i, v'_i \in V_i$$

- This is a consistency condition for tie-breaking
- Every affine maximizer satisfying IIA is implementable
- In particular, payments are of the following form: for all $i \in N$

$$p_i(v_i, v_{-i}) = \begin{cases} \frac{1}{w_i} \left(\sum_{j \neq i} w_j v_j(f(v)) + \kappa(f(v)) + h_i(v_{-i}) \right), & w_i > 0\\ 0 & w_i = 0 \end{cases}$$

f is an affine maximizer

Theorem (Roberts 1979)

Let the allocation space A be finite with $|A| \ge 3$. If the space of valuations V is unrestricted, then an onto and dominant strategy implementable SCF $f: V \to A$ is an affine maximizer.

Theorem (Roberts 1979)

Let the allocation space A be finite with $|A| \ge 3$. If the space of valuations V is unrestricted, then an onto and dominant strategy implementable SCF $f: V \to A$ is an affine maximizer.

Understanding Roberts' Theorem:

• Groves' or pivotal mechanisms are implementable, but this result is giving a necessary condition for implementability

Theorem (Roberts 1979)

Let the allocation space A be finite with $|A| \ge 3$. If the space of valuations V is unrestricted, then an onto and dominant strategy implementable SCF $f: V \to A$ is an affine maximizer.

Understanding Roberts' Theorem:

- Groves' or pivotal mechanisms are implementable, but this result is giving a necessary condition for implementability
- Moreover, it provides a functional form characterization of the DSIC mechanisms (as opposed to Myerson's monotonicity characterization)

Theorem (Roberts 1979)

Let the allocation space A be finite with $|A| \ge 3$. If the space of valuations V is unrestricted, then an onto and dominant strategy implementable SCF $f: V \to A$ is an affine maximizer.

Understanding Roberts' Theorem:

- Groves' or pivotal mechanisms are implementable, but this result is giving a necessary condition for implementability
- Moreover, it provides a functional form characterization of the DSIC mechanisms (as opposed to Myerson's monotonicity characterization)
- If payments are enforced to be zero for every valuation profile v, then the only implementable mechanism is dictatorial GS theorem is a corollary of this result

• If an SCF f is implementable in a valuation space V, it is implementable in every valuation space $V' \subseteq V$ - same payments implement them and the number of incentive compatibility constraints reduce

- If an SCF f is implementable in a valuation space V, it is implementable in every valuation space $V' \subseteq V$ same payments implement them and the number of incentive compatibility constraints reduce
- Efficient SCF is implementable in any valuation space

- If an SCF f is implementable in a valuation space V, it is implementable in every valuation space $V' \subseteq V$ same payments implement them and the number of incentive compatibility constraints reduce
- Efficient SCF is implementable in any valuation space
- Unrestricted valuation space is crucial for Roberts' theorem some recent results show that the affine maximizer characterization is true even for certain restricted valuation spaces

- If an SCF f is implementable in a valuation space V, it is implementable in every valuation space $V' \subseteq V$ same payments implement them and the number of incentive compatibility constraints reduce
- Efficient SCF is implementable in any valuation space
- Unrestricted valuation space is crucial for Roberts' theorem some recent results show that the affine maximizer characterization is true even for certain restricted valuation spaces
- Characterization of implementability in restricted domains is an active research area

[A proof by pictures]

Outline of the Talk

The Setup

- Unrestricted Preferences
- Restricted Preferences
- 2 Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

Results

- Groves Class of Mechanisms
- What Other Mechanisms are Incentive Compatible

• Revenue Equivalence

- Uniqueness of Groves for Efficiency
- Budget Balance
- Bayesian Incentive Compatibility

Summary

Revenue Equivalence

 $\bullet~$ If p~ and p'~ implement f~ in dominant strategies, then

$$p_i(v) = p'_i(v) + \alpha_i(v_{-i}), \forall v \in V$$

Revenue Equivalence

• If p and p' implement f in dominant strategies, then

$$p_i(v) = p'_i(v) + \alpha_i(v_{-i}), \forall v \in V$$

Theorem (Rockafeller 1997; Krishna and Maenner (2001))

If the type space is convex and the valuations are linear in type, then an SCF, implementable in dominant strategies, satisfies revenue equivalence.

Revenue Equivalence

• If p and p' implement f in dominant strategies, then

$$p_i(v) = p'_i(v) + \alpha_i(v_{-i}), \forall v \in V$$

Theorem (Rockafeller 1997; Krishna and Maenner (2001))

If the type space is convex and the valuations are linear in type, then an SCF, implementable in dominant strategies, satisfies revenue equivalence.

Theorem (Chung and Olszewski (2007))

Suppose the type space $T \subseteq \mathbb{R}^n$ is a connected set, A is finite and the valuations are continuous in type. If an SCF is implementable in dominant strategies, then it satisfies revenue equivalence.

Outline of the Talk

The Setup

- Unrestricted Preferences
- Restricted Preferences
- 2 Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

Results

- Groves Class of Mechanisms
- What Other Mechanisms are Incentive Compatible
- Revenue Equivalence
- Uniqueness of Groves for Efficiency
- Budget Balance
- Bayesian Incentive Compatibility

Summary

Green-Laffont-Holmström Characterization

• An efficient SCF f chooses an alternative in $\operatorname{argmax}_{a \in A} \sum_{j \in N} v_j(a)$

Green-Laffont-Holmström Characterization

• An efficient SCF f chooses an alternative in $\operatorname{argmax}_{a \in A} \sum_{j \in N} v_j(a)$

Theorem (Green and Laffont (1979), Holmström (1979))

If the valuation space is convex and smoothly connected, every efficient and DSIC mechanism is a Groves mechanism.

• Shows uniqueness of Groves class in the space of efficient, DSIC mechanisms

[A proof outline]

Outline of the Talk

The Setup

- Unrestricted Preferences
- Restricted Preferences
- 2 Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

Results

- Groves Class of Mechanisms
- What Other Mechanisms are Incentive Compatible
- Revenue Equivalence
- Uniqueness of Groves for Efficiency
- Budget Balance
- Bayesian Incentive Compatibility

Summary

Green-Laffont Impossibility

Theorem (Green and Laffont (1979))

No Groves mechanism is budget balanced (BB), i.e., $\nexists p_i^{\text{Groves}} s.t. \sum_{i \in N} p_i^{\text{Groves}}(v) = 0, \forall v \in V.$

• This leads to the following corollary

Corollary

If the valuation space is convex and smoothly connected, no efficient mechanism can be both DSIC and BB.

Outline of the Talk

The Setup

- Unrestricted Preferences
- Restricted Preferences
- 2 Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

Results

- Groves Class of Mechanisms
- What Other Mechanisms are Incentive Compatible
- Revenue Equivalence
- Uniqueness of Groves for Efficiency
- Budget Balance
- Bayesian Incentive Compatibility

Summary

AGV Mechanism

- If the equilibrium condition is relaxed to BIC, we have a positive result
- Payment is defined via a function $\delta_i, i \in N$:

$$\delta_i(v_i) = \mathbb{E}_{v_{-i}|v_i} \left(\sum_{j \in N \setminus \{i\}} v_j(a^*(v)) \right),$$

where a^{\ast} is an efficient allocation

Payment is:

$$p_i^{\mathsf{AGV}}(v) = \sum_{j \in N \setminus \{i\}} \delta_j(v_j) - \delta_i(v_i)$$

Theorem (d'Aspremont and Gerard-Varet (1979), Arrow (1979)) The AGV mechanism is BIC, efficient, and budget-balanced

Outline of the Talk

The Setup

- Unrestricted Preferences
- Restricted Preferences

2 Mechanisms in Quasi-linear Domain

- Structure of a Mechanism
- Some Definitions

B Results

- Groves Class of Mechanisms
- What Other Mechanisms are Incentive Compatible
- Revenue Equivalence
- Uniqueness of Groves for Efficiency
- Budget Balance
- Bayesian Incentive Compatibility

4 Summary

DSIC mechanisms

Valuation / Type Space

DSIC mechanisms

DSIC mechanisms

DSIC mechanisms

DSIC mechanisms

DSIC mechanisms

DSIC mechanisms

AM

Dict

DSIC mechanisms

AM

Dict

DSIC mechanisms

DSIC mechanisms

Thank you!

🖂 swaprava@gmail.com

http://www.isid.ac.in/~swaprava

Q: What does affine maximizer mean?

Q: What does affine maximizer mean? **A:** If f(v) = y then

$$w^{\top}v(y) + \kappa(y) \ge w^{\top}v(z) + \kappa(z), \forall z \in A \setminus \{y\}$$

$$\Rightarrow w^{\top}(v(y) - v(z)) \ge \kappa(z) - \kappa(y), \forall z \in A \setminus \{y\}$$

Q: What does affine maximizer mean? **A:** If f(v) = y then

$$w^{\top}v(y) + \kappa(y) \ge w^{\top}v(z) + \kappa(z), \forall z \in A \setminus \{y\}$$

$$\Rightarrow w^{\top}(v(y) - v(z)) \ge \kappa(z) - \kappa(y), \forall z \in A \setminus \{y\}$$

$$w^{\top}\alpha \ge \beta \quad \text{half-space}$$

Q: What does affine maximizer mean? **A:** If f(v) = y then

$$w^{\top}v(y) + \kappa(y) \ge w^{\top}v(z) + \kappa(z), \forall z \in A \setminus \{y\}$$

$$\Rightarrow w^{\top}(v(y) - v(z)) \ge \kappa(z) - \kappa(y), \forall z \in A \setminus \{y\}$$

$$w^{\top}\alpha \ge \beta \quad \text{half-space}$$

• Define the value difference set for any pair of distinct alternatives $y, z \in A$.

$$P(y,z) = \{ \alpha \in \mathbb{R}^n : \exists v \in V \text{ s.t. } v(y) - v(z) = \alpha \text{ and } f(v) = y \}.$$

Q: What does affine maximizer mean? **A:** If f(v) = y then

$$w^{\top}v(y) + \kappa(y) \ge w^{\top}v(z) + \kappa(z), \forall z \in A \setminus \{y\}$$

$$\Rightarrow w^{\top}(v(y) - v(z)) \ge \kappa(z) - \kappa(y), \forall z \in A \setminus \{y\}$$

$$w^{\top}\alpha \ge \beta \quad \text{half-space}$$

• Define the value difference set for any pair of distinct alternatives $y, z \in A$.

$$P(y,z) = \{ \alpha \in \mathbb{R}^n : \exists v \in V \text{ s.t. } v(y) - v(z) = \alpha \text{ and } f(v) = y \}.$$

Claim

If $\alpha \in P(y, z)$, and $\delta > \mathbf{0} \in \mathbb{R}^n$, then $\alpha + \delta \in P(y, z)$, for all distinct $y, z \in A$.

Graphical Illustration for Two Players

Complementary Structures of P(y, z) and P(z, y)

Claim

49 / 46

For every $\alpha, \epsilon \in \mathbb{R}^n$, $\epsilon > 0$, and for all $y, z \in A$, (a) $\alpha - \epsilon \in P(y, z) \Rightarrow -\alpha \notin P(z, y)$. (b) $\alpha \notin P(y, z) \Rightarrow -\alpha \in P(z, y)$.

Independence of \mathring{C} from the Alternatives in A

- Define the translated set $C(y,z) = P(y,z) \gamma(y,z)\mathbf{1}$
- Denote the 'interior' of C(y,z) by $\mathring{C}(y,z)$

Independence of \mathring{C} from the Alternatives in A

- \bullet Define the translated set $C(y,z)=P(y,z)-\gamma(y,z)\mathbf{1}$
- Denote the 'interior' of C(y,z) by $\mathring{C}(y,z)$

Claim

$$\mathring{C}(y,z) = \mathring{C}(w,l)$$
, for any $y,z,w,l \in A$, $y \neq z$ and $w \neq l$.

Independence of \mathring{C} from the Alternatives in A

- Define the translated set $C(y,z)=P(y,z)-\gamma(y,z)\mathbf{1}$
- Denote the 'interior' of C(y,z) by $\mathring{C}(y,z)$

Claim

$$\mathring{C}(y,z) = \mathring{C}(w,l)$$
, for any $y,z,w,l \in A$, $y \neq z$ and $w \neq l$.

Remark: Note that this result, in particular, includes the cases, $\mathring{C}(y,z) = \mathring{C}(l,z) = \mathring{C}(l,y) = \mathring{C}(z,y)$. Therefore, the claim holds even without y, z, w, l being all distinct.

Convexity of \boldsymbol{C}

Claim

The set C is convex.

[BACK]

- Set of allocations $A = \{a, b\}$
- Social welfares at these two allocations are $\sum_{j\in N} v_j(a)$ and $\sum_{j\in N} v_j(b)$

- Set of allocations $A = \{a, b\}$
- Social welfares at these two allocations are $\sum_{i \in N} v_j(a)$ and $\sum_{i \in N} v_j(b)$
- Efficiency requires that if a is chosen, then $\sum_{j \in N} v_j(a) \ge \sum_{j \in N} v_j(b)$

- Set of allocations $A = \{a, b\}$
- Social welfares at these two allocations are $\sum_{j \in N} v_j(a)$ and $\sum_{j \in N} v_j(b)$
- Efficiency requires that if a is chosen, then $\sum_{j \in N} v_j(a) \ge \sum_{j \in N} v_j(b)$
- Fix valuations of agents other than i at v_{-i}
- Fix valuations of agent i except allocation a, i.e., at b at $v_i(b)$

- Set of allocations $A = \{a, b\}$
- Social welfares at these two allocations are $\sum_{j \in N} v_j(a)$ and $\sum_{j \in N} v_j(b)$
- Efficiency requires that if a is chosen, then $\sum_{j \in N} v_j(a) \ge \sum_{j \in N} v_j(b)$
- Fix valuations of agents other than i at v_{-i}
- Fix valuations of agent i except allocation a, i.e., at b at $v_i(b)$
- There exists some threshold $v_i^*(a)$ such that
 - for all $v_i(a) \ge v_i^*(a)$, a is the outcome
 - ▶ for all $v_i(a) < v_i^*(a)$, b is the outcome

- Set of allocations $A = \{a, b\}$
- Social welfares at these two allocations are $\sum_{j \in N} v_j(a)$ and $\sum_{j \in N} v_j(b)$
- Efficiency requires that if a is chosen, then $\sum_{j \in N} v_j(a) \ge \sum_{j \in N} v_j(b)$
- Fix valuations of agents other than i at v_{-i}
- Fix valuations of agent i except allocation a, i.e., at b at $v_i(b)$
- There exists some threshold $v_i^*(a)$ such that
 - for all $v_i(a) \ge v_i^*(a)$, a is the outcome
 - ▶ for all $v_i(a) < v_i^*(a)$, b is the outcome
- Consider $v_i(a) = v_i^*(a) + \epsilon$, $\epsilon > 0$, and write the DSIC constraint:

$$v_i^*(a) + \epsilon - p_{i,a} \ge v_i(b) - p_{i,b} \tag{1}$$

outcome does not change \Rightarrow payment does not change

• Consider $v_i(a) = v_i^*(a) - \delta$, $\delta > 0$, and similarly:

$$v_i(b) - p_{i,b} \ge v_i^*(a) - \delta - p_{i,a}$$
 (2)

• Combining Equations (1) and (2) and taking limits $\epsilon, \delta \rightarrow 0$, we get,

$$v_i(b) - p_{i,b} = v_i^*(a) - p_{i,a}$$

• Consider $v_i(a) = v_i^*(a) - \delta$, $\delta > 0$, and similarly:

$$v_i(b) - p_{i,b} \ge v_i^*(a) - \delta - p_{i,a}$$
 (2)

• Combining Equations (1) and (2) and taking limits $\epsilon, \delta \rightarrow 0$, we get,

$$v_i(b) - p_{i,b} = v_i^*(a) - p_{i,a}$$

• Since $v_i^*(a)$ is a threshold of change of *efficient* outcome,

$$v_i^*(a) + \sum_{j \in N \setminus \{i\}} v_j(a) = v_i(b) + \sum_{j \in N \setminus \{i\}} v_j(b)$$

• Consider $v_i(a) = v_i^*(a) - \delta$, $\delta > 0$, and similarly:

$$v_i(b) - p_{i,b} \ge v_i^*(a) - \delta - p_{i,a}$$
 (2)

• Combining Equations (1) and (2) and taking limits $\epsilon, \delta \rightarrow 0$, we get,

$$v_i(b) - p_{i,b} = v_i^*(a) - p_{i,a}$$

• Since $v_i^*(a)$ is a threshold of change of *efficient* outcome,

$$v_i^*(a) + \sum_{j \in N \setminus \{i\}} v_j(a) = v_i(b) + \sum_{j \in N \setminus \{i\}} v_j(b)$$

• Substituting:

$$p_{i,a} - p_{i,b} = -\left(\sum_{j \in N \setminus \{i\}} v_j(b) - \sum_{j \in N \setminus \{i\}} v_j(a)\right)$$

[BACK]