Mechanism Design with Monetary Transfers

Swaprava Nath

Economics and Planning Unit
Indian Statistical Institute, New Delhi

Workshop on Static and Dynamic Mechanism Design
Indian Statistical Institute, New Delhi

August 2, 2015
Outline of the Talk

1. The Setup
 - Unrestricted Preferences
 - Restricted Preferences

2. Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

3. Results
 - Groves Class of Mechanisms
 - What Other Mechanisms are Incentive Compatible
 - Revenue Equivalence
 - Uniqueness of Groves for Efficiency
 - Budget Balance
 - Bayesian Incentive Compatibility

4. Summary
Outline of the Talk

1. The Setup
 - Unrestricted Preferences
 - Restricted Preferences

2. Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

3. Results
 - Groves Class of Mechanisms
 - What Other Mechanisms are Incentive Compatible
 - Revenue Equivalence
 - Uniqueness of Groves for Efficiency
 - Budget Balance
 - Bayesian Incentive Compatibility

4. Summary
Outline of the Talk

1 The Setup
 - Unrestricted Preferences
 - Restricted Preferences

2 Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

3 Results
 - Groves Class of Mechanisms
 - What Other Mechanisms are Incentive Compatible
 - Revenue Equivalence
 - Uniqueness of Groves for Efficiency
 - Budget Balance
 - Bayesian Incentive Compatibility

4 Summary
The Gibbard-Satterthwaite Setting

- Voters can have arbitrary *strict ordinal* preferences over the set of alternatives
- Set of alternatives $X = \{a, b, c, d\}$

<table>
<thead>
<tr>
<th>Voter 1</th>
<th>Voter 2</th>
<th>Voter 3</th>
<th>Voter 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>d</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
<td>a</td>
</tr>
</tbody>
</table>
The Gibbard-Satterthwaite Setting

- Voters can have arbitrary *strict ordinal* preferences over the set of alternatives
- Set of alternatives $X = \{a, b, c, d\}$
- **Goal**: elicit the preferences truthfully from the agents

<table>
<thead>
<tr>
<th>Voter 1</th>
<th>Voter 2</th>
<th>Voter 3</th>
<th>Voter 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>d</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
<td>a</td>
</tr>
</tbody>
</table>
The Gibbard-Satterthwaite Setting

- Voters can have arbitrary strict ordinal preferences over the set of alternatives
- Set of alternatives $X = \{a, b, c, d\}$
- **Goal**: elicit the preferences truthfully from the agents

<table>
<thead>
<tr>
<th>Voter 1</th>
<th>Voter 2</th>
<th>Voter 3</th>
<th>Voter 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>d</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
<td>a</td>
</tr>
</tbody>
</table>

Theorem (Gibbard (1973), Satterthwaite (1975))

If $|X| \geq 3$, an onto social choice function is strategyproof if and only if it is dictatorial.
Outline of the Talk

1. The Setup
 - Unrestricted Preferences
 - Restricted Preferences

2. Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

3. Results
 - Groves Class of Mechanisms
 - What Other Mechanisms are Incentive Compatible
 - Revenue Equivalence
 - Uniqueness of Groves for Efficiency
 - Budget Balance
 - Bayesian Incentive Compatibility

4. Summary
Quasi-linear Preferences

- An alternative $x \in X$ is a tuple (a, p)
- Allocation a belongs to the set of allocations A
Quasi-linear Preferences

- An alternative \(x \in X \) is a tuple \((a, p)\)
- Allocation \(a \) belongs to the set of allocations \(A \)
- Payments \(p \) belong to \(\mathbb{R}^n \)
Quasi-linear Preferences

- An alternative \(x \in X \) is a tuple \((a, p)\)
- Allocation \(a \) belongs to the set of allocations \(A \)
- Payments \(p \) belong to \(\mathbb{R}^n \)
- Each agent \(i \) has a valuation function \(v_i : A \rightarrow \mathbb{R} \) belonging to the set \(V_i \)
Quasi-linear Preferences

- An alternative $x \in X$ is a tuple (a, p)
- Allocation a belongs to the set of allocations A
- Payments p belong to \mathbb{R}^n
- Each agent i has a valuation function $v_i : A \to \mathbb{R}$ belonging to the set V_i
- Agents’ utilities are given by

$$u_i(x) = u_i(a, p) = v_i(a) - p_i$$
Example: Public Good

Alternatives →

Alice 10 80
Bob 100 30
Carol 40 50

Photo courtesy: wikimedia.org and nimsuniversity.org
Example: Public Good

Alternatives →

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>Bob</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>Carol</td>
<td>40</td>
<td>50</td>
</tr>
</tbody>
</table>

Valuations: $v_A(F) = 10, v_A(L) = 80$

Social planner takes the decision of building F or L

Can tax people differently depending on their preferences

Quasi-linear preferences
Example: Resource Allocation

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Alice</th>
<th>Bob</th>
<th>Carol</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM Smart Cloud</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>HP Cloud</td>
<td>0.8</td>
<td>0.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Photo courtesy: individual organizations
Example: Resource Allocation

<table>
<thead>
<tr>
<th>Commodities</th>
<th>Alice</th>
<th>Bob</th>
<th>Carol</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM Smart Cloud</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>HP Cloud</td>
<td>0.8</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Cisco</td>
<td>0.5</td>
<td>0.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

- *Set of allocations* $A = \{ x \in [0, 1]^{n \times m} : \sum_{j=1}^{m} x_{i,j} = 1 \}$
- Items are divisible among the agents
- Agents’ valuations reflect their preferences over different allocations
- They are charged monetary transfers for every allocation

Quasi-linear preferences
Example: Resource Allocation

<table>
<thead>
<tr>
<th>Commodities</th>
<th>IBM Smart Cloud</th>
<th>HP Cloud</th>
<th>Cisco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>0.2</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Bob</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Carol</td>
<td>0.5</td>
<td>0.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Selfish valuations
Why Quasi-linearity avoids GS Impossibility

- GS theorem is valid for unrestricted preferences
- In quasi-linear domain, agents’ preferences are restricted
Why Quasi-linearity avoids GS Impossibility

- GS theorem is valid for unrestricted preferences
- In quasi-linear domain, agents’ preferences are restricted

Example:
- Set of alternatives $X = A \times \mathbb{R}^n$ consists of (a, p) pairs
- Allocation $a \in A$ and payment vector $p \in \mathbb{R}^n$
Why Quasi-linearity avoids GS Impossibility

- GS theorem is valid for unrestricted preferences
- In quasi-linear domain, agents’ preferences are restricted
- Example:
 - Set of alternatives \(X = A \times \mathbb{R}^n \) consists of \((a, p)\) pairs
 - Allocation \(a \in A \) and payment vector \(p \in \mathbb{R}^n \)
 - Consider two alternatives \(x_1 = (a, p_1) \) and \(x_2 = (a, p_2) \), where \(p_1 < p_2 \)
Why Quasi-linearity avoids GS Impossibility

- GS theorem is valid for unrestricted preferences
- In quasi-linear domain, agents’ preferences are restricted
- Example:
 - Set of alternatives $X = A \times \mathbb{R}^n$ consists of (a, p) pairs
 - Allocation $a \in A$ and payment vector $p \in \mathbb{R}^n$
 - Consider two alternatives $x_1 = (a, p_1)$ and $x_2 = (a, p_2)$, where $p_1 < p_2$
 - For all agents, $x_1 \succ x_2$ for any valuation profile
Why Quasi-linearity avoids GS Impossibility

- GS theorem is valid for unrestricted preferences
- In quasi-linear domain, agents’ preferences are restricted
- Example:
 - Set of alternatives $X = A \times \mathbb{R}^n$ consists of (a, p) pairs
 - Allocation $a \in A$ and payment vector $p \in \mathbb{R}^n$
 - Consider two alternatives $x_1 = (a, p_1)$ and $x_2 = (a, p_2)$, where $p_1 < p_2$
 - For all agents, $x_1 \succ x_2$ for any valuation profile
 - There is no preference profile where $x_2 \succ x_1$
An Example of a Truthful Mechanism

Alice 10 80 40
Bob 100 20 50
Carol 0 40 30

Swaprava Nath
Mechanism Design with Monetary Transfers
An Example of a Truthful Mechanism

Consider the mechanism:

- pick the alternative \(a^* \) that maximizes the sum of the valuations (with arbitrary tie-breaking rule)
- pay every agent \(i \) an amount \(\sum_{j \neq i} v_j(a^*) \)

<table>
<thead>
<tr>
<th>Agent</th>
<th>Bonus</th>
<th>Revenue</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>10</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>Bob</td>
<td>100</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Carol</td>
<td>0</td>
<td>40</td>
<td>30</td>
</tr>
</tbody>
</table>
An Example of a Truthful Mechanism

Consider the mechanism:

- pick the alternative a^* that maximizes the sum of the valuations (with arbitrary tie-breaking rule)
- pay every agent i an amount $\sum_{j \neq i} v_j(a^*)$

The mechanism is truthful, even though not a dictatorship
Outline of the Talk

1. The Setup
 - Unrestricted Preferences
 - Restricted Preferences

2. Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

3. Results
 - Groves Class of Mechanisms
 - What Other Mechanisms are Incentive Compatible
 - Revenue Equivalence
 - Uniqueness of Groves for Efficiency
 - Budget Balance
 - Bayesian Incentive Compatibility

4. Summary
Outline of the Talk

1 The Setup
 - Unrestricted Preferences
 - Restricted Preferences

2 Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

3 Results
 - Groves Class of Mechanisms
 - What Other Mechanisms are Incentive Compatible
 - Revenue Equivalence
 - Uniqueness of Groves for Efficiency
 - Budget Balance
 - Bayesian Incentive Compatibility

4 Summary
Structure of a Mechanism

- Set of agents $N = \{1, \ldots, n\}$
- Set of allocations A, finite (for this tutorial)
- Valuation of agent i, $v_i : A \rightarrow \mathbb{R}$, the set of valuations is denoted by V_i
Structure of a Mechanism

- Set of agents $N = \{1, \ldots, n\}$
- Set of allocations A, finite (for this tutorial)
- Valuation of agent i, $v_i : A \to \mathbb{R}$, the set of valuations is denoted by V_i

A mechanism in quasi-linear (QL) domain is a pair of functions:
- allocation function, $a : \prod_j V_j \to A$
- payment function, $p_i : \prod_j V_j \to \mathbb{R}$, for all $i \in N$

Agent i’s payoff is given by:

$$v_i(a(v)) - p_i(v)$$
Structure of a Mechanism

- Set of agents $N = \{1, \ldots, n\}$
- Set of allocations A, finite (for this tutorial)
- Valuation of agent i, $v_i : A \rightarrow \mathbb{R}$, the set of valuations is denoted by V_i

A mechanism in quasi-linear (QL) domain is a pair of functions:

- allocation function, $a : \prod_j V_j \rightarrow A$
- payment function, $p_i : \prod_j V_j \rightarrow \mathbb{R}$, for all $i \in N$

Agent i’s payoff is given by:

$$v_i(a(v)) - p_i(v)$$

- Only direct revelation mechanisms (DRM) (this talk)
Outline of the Talk

1. The Setup
 - Unrestricted Preferences
 - Restricted Preferences

2. Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

3. Results
 - Groves Class of Mechanisms
 - What Other Mechanisms are Incentive Compatible
 - Revenue Equivalence
 - Uniqueness of Groves for Efficiency
 - Budget Balance
 - Bayesian Incentive Compatibility

4. Summary
Social Choice Function

Definition (Social Choice Function)

A social choice function (SCF) f is a mapping from the set of valuation profiles to the set of allocations, i.e., $f : V \rightarrow A$, where $V = \prod_j V_j$.

- Note that the outcome is only the allocations
A social choice function (SCF) f is a mapping from the set of valuation profiles to the set of allocations, i.e., $f : V \rightarrow A$, where $V = \prod_j V_j$.

- Note that the outcome is only the allocations.
- In QL domain:
 A mechanism $M = (a, p)$ implements a SCF f if:
 - $a(v) = f(v), \forall v \in V$ and,
 - for every agent $i \in N$, reporting v_i truthfully is an equilibrium.
- Even though the SCF is concerned with only allocations, payments can also be characterized by revenue equivalence (defined later).
Incentive Compatibility

Definition (Dominant Strategy Incentive Compatibility (DSIC))

A mechanism \((f, p_1, \ldots, p_n)\) is dominant strategy incentive compatible if for all \(i \in N\) and for all \(v_{-i} \in V_{-i} := \prod_{j \neq i} V_j\),

\[
v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \geq v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i}), \ \forall v_i, v'_i \in V_i.
\]

In this case, payments \(p_i, i \in N\) implement \(f\) in dominant strategies.
Incentive Compatibility (Contd.)

- In a Bayesian game, the valuations v are generated through a prior P
- Each agent i knows her own realized valuation v_i and P
- Her belief on the valuations of other agents v_{-i} is given by $P(v_{-i}|v_i)$ derived by Baye’s rule
In a Bayesian game, the valuations v are generated through a prior P.

- Each agent i knows her own realized valuation v_i and P.
- Her belief on the valuations of other agents v_{-i} is given by $P(v_{-i}|v_i)$ derived by Baye’s rule.

Definition (Bayesian Incentive Compatibility (BIC))

A mechanism (f, p_1, \ldots, p_n) is *Bayesian incentive compatible* for a prior P if for all $i \in N$,

$$\mathbb{E}_{v_{-i}|v_i}[v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i})] \geq \mathbb{E}_{v_{-i}|v_i}[v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i})]$$

\forall v_i, v'_i \in V_i.

In this case, payments $p_i, i \in N$ implement f in a Bayesian Nash equilibrium.
Observations on IC

- A DSIC mechanism is always BIC
Observations on IC

- A DSIC mechanism is always BIC

For a DSIC mechanism \((f, p_1, \ldots, p_n)\), let valuations of agents other than \(i\) is fixed at \(v_{-i}\)

- If \(v_i, v'_i\) be such that \(f(v_i, v_{-i}) = f(v'_i, v_{-i})\), then \(p_i(v_i, v_{-i}) = p_i(v'_i, v_{-i})\)
A DSIC mechanism is always BIC

For a DSIC mechanism \((f, p_1, \ldots, p_n)\), let valuations of agents other than \(i\) is fixed at \(v_{-i}\)

- If \(v_i, v'_i\) be such that \(f(v_i, v_{-i}) = f(v'_i, v_{-i})\), then \(p_i(v_i, v_{-i}) = p_i(v'_i, v_{-i})\)

- Consider another payment \(q_i(v_i, v_{-i}) = p_i(v_i, v_{-i}) + h_i(v_{-i})\),

\[
v_i(f(v_i, v_{-i})) - q_i(v_i, v_{-i}) \geq v_i(f(v'_i, v_{-i})) - q_i(v'_i, v_{-i}), \quad \forall v_i, v'_i \in V_i.
\]
Efficiency

Definition (Efficiency)

An SCF f is efficient if for all $v \in V$,

$$
f(v) \in \arg\max_{a \in A} \sum_{i \in N} v_i(a).$$

An efficient SCF ensures that the ‘social welfare’ is maximized
Revenue Equivalence

- This property characterizes the payment functions

Definition (Revenue Equivalence)

An SCF f satisfies *revenue equivalence* if for any two payment rules p and p' that implement f, there exist functions $\alpha_i : V_{-i} \to \mathbb{R}$, such that,

$$p_i(v_i, v_{-i}) = p'_i(v_i, v_{-i}) + \alpha_i(v_{-i}), \quad \forall v_i \in V_i, \forall v_{-i} \in V_{-i}, \forall i \in N.$$
Revenue Equivalence

- This property characterizes the payment functions

Definition (Revenue Equivalence)

An SCF \(f \) satisfies *revenue equivalence* if for any two payment rules \(p \) and \(p' \) that implement \(f \), there exist functions \(\alpha_i : V_{-i} \rightarrow \mathbb{R} \), such that,

\[
p_i(v_i, v_{-i}) = p'_i(v_i, v_{-i}) + \alpha_i(v_{-i}), \ \forall v_i \in V_i, \forall v_{-i} \in V_{-i}, \forall i \in N.
\]

- Saw an example of a payment of agent \(i \) being different by a factor not dependent on \(i \)'s valuation

- This property says more: pick *any* two payments that implement \(f \) - they must be different by a similar factor
Definition (Budget Balance)

A set of payments $p_i : V \rightarrow \mathbb{R}, i \in N$ is budget balanced if,

$$\sum_{i \in N} p_i(v) = 0, \forall v \in V.$$

- This property ensures that the mechanism does not produce any monetary surplus
- Hard to satisfy with incentive compatibility
Outline of the Talk

1. The Setup
 - Unrestricted Preferences
 - Restricted Preferences

2. Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

3. Results
 - Groves Class of Mechanisms
 - What Other Mechanisms are Incentive Compatible
 - Revenue Equivalence
 - Uniqueness of Groves for Efficiency
 - Budget Balance
 - Bayesian Incentive Compatibility

4. Summary
Outline of the Talk

1. The Setup
 - Unrestricted Preferences
 - Restricted Preferences

2. Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

3. Results
 - Groves Class of Mechanisms
 - What Other Mechanisms are Incentive Compatible
 - Revenue Equivalence
 - Uniqueness of Groves for Efficiency
 - Budget Balance
 - Bayesian Incentive Compatibility

4. Summary
Single Indivisible Item Auction

Buyer 1
Metropolitan Museum of Arts

Buyer 2
Louvre
Second Price Auction

- Metropolitan wins, but pays second highest bid
- The mechanism is DSIC (why?)
Groves Class of Mechanisms

- Allocation rule is efficient:

\[a^*(v) \in \arg\max_{a \in A} \sum_{i \in N} v_i(a) \]

- Payment rule is given by:

\[p^*_i(v_i, v_{-i}) = h_i(v_{-i}) - \sum_{j \in N \setminus \{i\}} v_j(a^*(v)), \]

where \(h_i : V_{-i} \rightarrow \mathbb{R} \) is any arbitrary function that does not depend on \(v_i \)
Groves Class of Mechanisms

- Allocation rule is efficient:

$$a^*(v) \in \arg\max_{a \in A} \sum_{i \in N} v_i(a)$$

- Payment rule is given by:

$$p^*_i(v_i, v_{-i}) = h_i(v_{-i}) - \sum_{j \in N \setminus \{i\}} v_j(a^*(v)),$$

where $h_i : V_{-i} \rightarrow \mathbb{R}$ is any arbitrary function that does not depend on v_i

Claim

Groves class of mechanisms are DSIC
Incentive Compatibility of Groves

- Utility of agent i according to Groves class of mechanisms:

\[
\begin{align*}
 u_i^{(a^*, p^*)}(v_i, v_{-i}) &= v_i(a^*(v_i, v_{-i})) - p_i^*(v_i, v_{-i})
\end{align*}
\]
Utility of agent i according to Groves class of mechanisms:

$$
\begin{align*}
& u_i^{(a^*, p^*)}(v_i, v_{-i}) \\
& = v_i(a^*(v_i, v_{-i})) - p_i^*(v_i, v_{-i}) \\
& = v_i(a^*(v_i, v_{-i})) - h_i(v_{-i}) + \sum_{j \in N \setminus \{i\}} v_j(a^*(v_i, v_{-i}))
\end{align*}
$$
Utility of agent i according to Groves class of mechanisms:

$$u_i^{(a^*,p^*)}(v_i, v_{-i})$$

$$= v_i(a^*(v_i, v_{-i})) - p_i^*(v_i, v_{-i})$$

$$= v_i(a^*(v_i, v_{-i})) - h_i(v_{-i}) + \sum_{j \in N \setminus \{i\}} v_j(a^*(v_i, v_{-i}))$$

$$= \sum_{j \in N} v_j(a^*(v_i, v_{-i})) - h_i(v_{-i})$$
Utility of agent i according to Groves class of mechanisms:

$$u_i^{(a^*, p^*)}(v_i, v_{-i})$$

$$= v_i(a^*(v_i, v_{-i})) - p_i^*(v_i, v_{-i})$$

$$= v_i(a^*(v_i, v_{-i})) - h_i(v_{-i}) + \sum_{j \in N \setminus \{i\}} v_j(a^*(v_i, v_{-i}))$$

$$= \sum_{j \in N} v_j(a^*(v_i, v_{-i})) - h_i(v_{-i})$$

$$\geq \sum_{j \in N} v_j(a^*(v'_i, v_{-i})) - h_i(v_{-i}) \quad \text{(by definition of } a^*)$$
Incentive Compatibility of Groves

Utility of agent i according to Groves class of mechanisms:

\[
\begin{align*}
 u_i^{(a^*, p^*)}(v_i, v_{-i}) &= v_i(a^*(v_i, v_{-i})) - p_i^*(v_i, v_{-i}) \\
 &= v_i(a^*(v_i, v_{-i})) - h_i(v_{-i}) + \sum_{j \in N \setminus \{i\}} v_j(a^*(v_i, v_{-i})) \\
 &= \sum_{j \in N} v_j(a^*(v_i, v_{-i})) - h_i(v_{-i}) \geq \sum_{j \in N} v_j(a^*(v'_i, v_{-i})) - h_i(v_{-i}) \quad \text{(by definition of } a^*) \\
 &= v_i(a^*(v'_i, v_{-i})) - h_i(v_{-i}) + \sum_{j \in N \setminus \{i\}} v_j(a^*(v'_i, v_{-i}))
\end{align*}
\]
Utility of agent i according to Groves class of mechanisms:

\[
\begin{align*}
 u_i^{(a^*, p^*)}(v_i, v_{-i}) &= v_i(a^*(v_i, v_{-i})) - p_i^*(v_i, v_{-i}) \\
 &= v_i(a^*(v_i, v_{-i})) - h_i(v_{-i}) + \sum_{j \in N \setminus \{i\}} v_j(a^*(v_i, v_{-i})) \\
 &= \sum_{j \in N} v_j(a^*(v_i, v_{-i})) - h_i(v_{-i}) \\
 &\geq \sum_{j \in N} v_j(a^*(v'_i, v_{-i})) - h_i(v_{-i}) \quad \text{(by definition of } a^*) \\
 &= v_i(a^*(v'_i, v_{-i})) - h_i(v_{-i}) + \sum_{j \in N \setminus \{i\}} v_j(a^*(v'_i, v_{-i})) \\
 &= v_i(a^*(v'_i, v_{-i})) - p_i^*(v'_i, v_{-i})
\end{align*}
\]
Incentive Compatibility of Groves

Utility of agent i according to Groves class of mechanisms:

$$u_i^{(a^*, p^*)}(v_i, v_{-i})$$

$$= v_i(a^*(v_i, v_{-i})) - p_i^*(v_i, v_{-i})$$

$$= v_i(a^*(v_i, v_{-i})) - h_i(v_{-i}) + \sum_{j \in N \setminus \{i\}} v_j(a^*(v_i, v_{-i}))$$

$$= \sum_{j \in N} v_j(a^*(v_i, v_{-i})) - h_i(v_{-i})$$

$$\geq \sum_{j \in N} v_j(a^*(v'_i, v_{-i})) - h_i(v_{-i}) \quad \text{(by definition of } a^*)$$

$$= v_i(a^*(v'_i, v_{-i})) - h_i(v_{-i}) + \sum_{j \in N \setminus \{i\}} v_j(a^*(v'_i, v_{-i}))$$

$$= v_i(a^*(v'_i, v_{-i})) - p_i^*(v'_i, v_{-i})$$

$$= u_i^{(a^*, p^*)}(v'_i, v_{-i})$$
Pivot Mechanism

A special case of Groves class when the payment is given by:

\[h_i(v_{-i}) = \sum_{j \in N \setminus \{i\}} v_j(a_{-i}^*(v_{-i})) , \]

where the allocation \(a_{-i}^*(v_{-i}) \) is given by:

\[a_{-i}^*(v_{-i}) \in \arg\max_{a \in A} \sum_{j \in N \setminus \{i\}} v_j(a) \]

The allocation \(a_{-i}^* \) maximizes the sum of valuations in the absence of agent \(i \).

The function \(h_i \) is the maximum value of this sum.

The payment is therefore:

\[p_i(v_i, v_{-i}) = \max_{a \in A} \sum_{j \in N \setminus \{i\}} v_j(a) - \sum_{j \in N \setminus \{i\}} v_j(a^*(v)) \]
Interpretations of the Pivot Mechanism

\[p_i(v_i, v_{-i}) = \max_{a \in A} \sum_{j \in N \setminus \{i\}} v_j(a) - \sum_{j \in N \setminus \{i\}} v_j(a^*(v)) \]

Two Interpretations:

1. Externality:
 - \(\max_{a \in A} \sum_{j \in N \setminus \{i\}} v_j(a) \) is what the agents \(N \setminus \{i\} \) can achieve
 - \(\sum_{j \in N \setminus \{i\}} v_j(a^*(v)) \) is what they achieve under the efficient rule
 - The mechanism asks agent \(i \) to pay the difference
Interpretations of the Pivot Mechanism

\[p_i(v_i, v_{-i}) = \max_{a \in A} \sum_{j \in N \setminus \{i\}} v_j(a) - \sum_{j \in N \setminus \{i\}} v_j(a^*(v)) \]

Two Interpretations:

1. Externality:
 - \(\max_{a \in A} \sum_{j \in N \setminus \{i\}} v_j(a) \) is what the agents \(N \setminus \{i\} \) can achieve
 - \(\sum_{j \in N \setminus \{i\}} v_j(a^*(v)) \) is what they achieve under the efficient rule
 - The mechanism asks agent \(i \) to pay the difference

2. Marginal contribution:
 - Net utility of agent \(i \) in pivot mechanism:
 \[u_i(v_i, v_{-i}) = \sum_{j \in N} v_j(a^*(v_i, v_{-i})) - \max_{a \in A} \sum_{j \in N \setminus \{i\}} v_j(a) \]
 i.e., the difference in sum valuation in presence of agent \(i \) and in her absence
 - Net utility is agent \(i \)'s marginal contribution
What is Pivotal about it?

Alternatives →

<table>
<thead>
<tr>
<th>Alice</th>
<th>10</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Carol</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>
What is Pivotal about it?

Alternatives →

Alice 10 70
Bob 100 10
Carol 10 50

Outcome: L
What is Pivotal about it?

Alternatives →

Alice 10 70
Bob 100 10
Carol 10 50

 Outcome: L
Alice pays $(100 + 10) - (10 + 50) = 50$
What is Pivotal about it?

Alternatives →

<table>
<thead>
<tr>
<th></th>
<th>Alice</th>
<th>Bob</th>
<th>Carol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>10</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Pay</td>
<td>70</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- **Outcome:** L
- **Alice pays** \((100 + 10) - (10 + 50) = 50\)
- **Carol pays** \((10 + 100) - (70 + 10) = 30\)
What is Pivotal about it?

Alternatives →

<table>
<thead>
<tr>
<th></th>
<th>Alice</th>
<th>Bob</th>
<th>Carol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>10</td>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>Value</td>
<td>100</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- **Outcome: L**
- Alice pays \((100 + 10) - (10 + 50) = 50\)
- Bob pays \((70 + 50) - (70 + 50) = 0\)
- Carol pays \((10 + 100) - (70 + 10) = 30\)
What is Pivotal about it?

Alternatives →

<table>
<thead>
<tr>
<th>Name</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>Bob</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Carol</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- **Outcome:** L
- Alice pays \((100 + 10) - (10 + 50) = 50\)
- Bob pays \((70 + 50) - (70 + 50) = 0\)
- Carol pays \((10 + 100) - (70 + 10) = 30\)
Outline of the Talk

1. The Setup
 - Unrestricted Preferences
 - Restricted Preferences

2. Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

3. Results
 - Groves Class of Mechanisms
 - What Other Mechanisms are Incentive Compatible
 - Revenue Equivalence
 - Uniqueness of Groves for Efficiency
 - Budget Balance
 - Bayesian Incentive Compatibility

4. Summary
An important class of SCFs is that of affine maximizers

Definition (Affine Maximizer)

An SCF \(f : V \rightarrow A \) is an affine maximizer if there exists \(w_i \geq 0, i \in N \), not all zero, and a function \(\kappa : A \rightarrow \mathbb{R} \) such that,

\[
f(v) \in \arg\max_{a \in A} \left(\sum_{i \in N} w_i v_i(a) + \kappa(a) \right).
\]
Affine Maximizers

An important class of SCFs is that of affine maximizers

Definition (Affine Maximizer)

An SCF $f : V \rightarrow A$ is an **affine maximizer** if there exists $w_i \geq 0, i \in N$, not all zero, and a function $\kappa : A \rightarrow \mathbb{R}$ such that,

$$f(v) \in \arg\max_{a \in A} \left(\sum_{i \in N} w_i v_i(a) + \kappa(a) \right).$$

Special cases:

- $w_i = 1, \forall i$ and $\kappa \equiv 0$: **efficient** SCF
Affine Maximizers

An important class of SCFs is that of affine maximizers

Definition (Affine Maximizer)

An SCF $f : V \rightarrow A$ is an affine maximizer if there exists $w_i \geq 0, i \in N$, not all zero, and a function $\kappa : A \rightarrow \mathbb{R}$ such that,

$$f(v) \in \arg\max_{a \in A} \left(\sum_{i \in N} w_i v_i(a) + \kappa(a) \right).$$

Special cases:

- $w_i = 1, \forall i$ and $\kappa \equiv 0$: **efficient** SCF
- $w_d = 1$, for some d, $w_i = 0, \forall i \neq d$ and $\kappa \equiv 0$: **dictatorial** SCF
An affine maximizer f satisfies *independence of irrelevant agents* (IIA) if for every i with $w_i = 0$ and for every $v_{-i} \in V_{-i}$,

$$f(v_i, v_{-i}) = f(v_i', v_{-i}), \forall v_i, v_i' \in V_i$$

This is a consistency condition for tie-breaking.
An affine maximizer f satisfies *independence of irrelevant agents* (IIA) if for every i with $w_i = 0$ and for every $v_{-i} \in V_{-i}$,

$$f(v_i, v_{-i}) = f(v'_i, v_{-i}), \forall v_i, v'_i \in V_i$$

This is a consistency condition for tie-breaking

Every affine maximizer satisfying IIA is implementable
Affine Maximizers (Contd.)

- An affine maximizer f satisfies \textit{independence of irrelevant agents} (IIA) if for every i with $w_i = 0$ and for every $v_{-i} \in V_{-i}$,

$$f(v_i, v_{-i}) = f(v'_i, v_{-i}), \forall v_i, v'_i \in V_i$$

- This is a consistency condition for tie-breaking
- Every affine maximizer satisfying IIA is implementable
- In particular, payments are of the following form: for all $i \in N$

$$p_i(v_i, v_{-i}) = \begin{cases} \frac{1}{w_i} \left(\sum_{j \neq i} w_j v_j(f(v)) + \kappa(f(v)) + h_i(v_{-i}) \right), & w_i > 0 \\ 0, & w_i = 0 \end{cases}$$

f is an affine maximizer
Roberts’ Theorem

Theorem (Roberts 1979)

Let the allocation space \(A \) be finite with \(|A| \geq 3 \). If the space of valuations \(V \) is unrestricted, then an onto and dominant strategy implementable SCF \(f : V \rightarrow A \) is an affine maximizer.
Theorem (Roberts 1979)

Let the allocation space A be finite with $|A| \geq 3$. If the space of valuations V is unrestricted, then an onto and dominant strategy implementable SCF $f : V \to A$ is an affine maximizer.

Understanding Roberts’ Theorem:

- Groves’ or pivotal mechanisms are implementable, but this result is giving a necessary condition for implementability.
Roberts’ Theorem

Theorem (Roberts 1979)

Let the allocation space \(A \) be finite with \(|A| \geq 3\). If the space of valuations \(V \) is unrestricted, then an onto and dominant strategy implementable SCF \(f : V \rightarrow A \) is an affine maximizer.

Understanding Roberts’ Theorem:

- Groves’ or pivotal mechanisms are implementable, but this result is giving a necessary condition for implementability.
- Moreover, it provides a functional form characterization of the DSIC mechanisms (as opposed to Myerson’s monotonicity characterization).
Roberts’ Theorem

Theorem (Roberts 1979)

Let the allocation space A be finite with $|A| \geq 3$. If the space of valuations V is unrestricted, then an onto and dominant strategy implementable SCF $f : V \rightarrow A$ is an affine maximizer.

Understanding Roberts’ Theorem:

- Groves’ or pivotal mechanisms are implementable, but this result is giving a necessary condition for implementability.
- Moreover, it provides a functional form characterization of the DSIC mechanisms (as opposed to Myerson’s monotonicity characterization).
- If payments are enforced to be zero for every valuation profile v, then the only implementable mechanism is dictatorial - GS theorem is a corollary of this result.
If an SCF f is implementable in a valuation space V, it is implementable in every valuation space $V' \subseteq V$ - same payments implement them and the number of incentive compatibility constraints reduce.
Some Observations and Implications

- If an SCF f is implementable in a valuation space V, it is implementable in every valuation space $V' \subseteq V$ - same payments implement them and the number of incentive compatibility constraints reduce

- Efficient SCF is implementable in any valuation space
Some Observations and Implications

- If an SCF f is implementable in a valuation space V, it is implementable in every valuation space $V' \subseteq V$ - same payments implement them and the number of incentive compatibility constraints reduce.

- Efficient SCF is implementable in any valuation space.

- Unrestricted valuation space is crucial for Roberts’ theorem - some recent results show that the affine maximizer characterization is true even for certain restricted valuation spaces.
Some Observations and Implications

- If an SCF \(f \) is implementable in a valuation space \(V \), it is implementable in every valuation space \(V' \subseteq V \) - same payments implement them and the number of incentive compatibility constraints reduce.

- Efficient SCF is implementable in any valuation space.

- Unrestricted valuation space is crucial for Roberts’ theorem - some recent results show that the affine maximizer characterization is true even for certain restricted valuation spaces.

- Characterization of implementability in restricted domains is an active research area.

[A proof by pictures]
Outline of the Talk

1. The Setup
 - Unrestricted Preferences
 - Restricted Preferences

2. Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

3. Results
 - Groves Class of Mechanisms
 - What Other Mechanisms are Incentive Compatible
 - Revenue Equivalence
 - Uniqueness of Groves for Efficiency
 - Budget Balance
 - Bayesian Incentive Compatibility

4. Summary
Revenue Equivalence

If p and p' implement f in dominant strategies, then

$$p_i(v) = p'_i(v) + \alpha_i(v_{-i}), \forall v \in V$$
Revenue Equivalence

If p and p' implement f in dominant strategies, then

$$p_i(v) = p'_i(v) + \alpha_i(v_{-i}), \forall v \in V$$

Theorem (Rockafeller 1997; Krishna and Maenner (2001))

If the type space is convex and the valuations are linear in type, then an SCF, implementable in dominant strategies, satisfies revenue equivalence.
Revenue Equivalence

- If \(p \) and \(p' \) implement \(f \) in dominant strategies, then

\[
p_i(v) = p'_i(v) + \alpha_i(v_{-i}), \forall v \in V
\]

Theorem (Rockafeller 1997; Krishna and Maenner (2001))

If the type space is convex and the valuations are linear in type, then an SCF, implementable in dominant strategies, satisfies revenue equivalence.

Theorem (Chung and Olszewski (2007))

Suppose the type space \(T \subseteq \mathbb{R}^n \) is a connected set, \(A \) is finite and the valuations are continuous in type. If an SCF is implementable in dominant strategies, then it satisfies revenue equivalence.
Outline of the Talk

1. The Setup
 - Unrestricted Preferences
 - Restricted Preferences

2. Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

3. Results
 - Groves Class of Mechanisms
 - What Other Mechanisms are Incentive Compatible
 - Revenue Equivalence
 - Uniqueness of Groves for Efficiency
 - Budget Balance
 - Bayesian Incentive Compatibility

4. Summary
Green-Laffont-Holmström Characterization

- An efficient SCF f chooses an alternative in $\arg\max_{a \in A} \sum_{j \in N} v_j(a)$
Green-Laffont-Holmström Characterization

- An efficient SCF f chooses an alternative in $\arg\max_{a \in A} \sum_{j \in N} v_j(a)$

Theorem (Green and Laffont (1979), Holmström (1979))

If the valuation space is convex and smoothly connected, every efficient and DSIC mechanism is a Groves mechanism.

- Shows uniqueness of Groves class in the space of efficient, DSIC mechanisms

[A proof outline]
Outline of the Talk

1. The Setup
 - Unrestricted Preferences
 - Restricted Preferences

2. Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

3. Results
 - Groves Class of Mechanisms
 - What Other Mechanisms are Incentive Compatible
 - Revenue Equivalence
 - Uniqueness of Groves for Efficiency
 - Budget Balance
 - Bayesian Incentive Compatibility

4. Summary
Green-Laffont Impossibility

Theorem (Green and Laffont (1979))

No Groves mechanism is budget balanced (BB), i.e.,
\[\exists p_i^{\text{Groves}} \text{ s.t. } \sum_{i \in N} p_i^{\text{Groves}}(v) = 0, \forall v \in V. \]

This leads to the following corollary

Corollary

If the valuation space is convex and smoothly connected, no efficient mechanism can be both DSIC and BB.
Outline of the Talk

1. The Setup
 - Unrestricted Preferences
 - Restricted Preferences

2. Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

3. Results
 - Groves Class of Mechanisms
 - What Other Mechanisms are Incentive Compatible
 - Revenue Equivalence
 - Uniqueness of Groves for Efficiency
 - Budget Balance
 - Bayesian Incentive Compatibility

4. Summary
AGV Mechanism

- If the equilibrium condition is relaxed to BIC, we have a positive result
- Payment is defined via a function $\delta_i, i \in N$:

$$\delta_i(v_i) = \mathbb{E}_{v_{-i} | v_i} \left(\sum_{j \in N \setminus \{i\}} v_j(a^*(v)) \right),$$

where a^* is an efficient allocation
- Payment is:

$$p_{AGV}^i(v) = \sum_{j \in N \setminus \{i\}} \delta_j(v_j) - \delta_i(v_i)$$

Theorem (d’Aspremont and Gerard-Varet (1979), Arrow (1979))

The AGV mechanism is BIC, efficient, and budget-balanced
Outline of the Talk

1 The Setup
 - Unrestricted Preferences
 - Restricted Preferences

2 Mechanisms in Quasi-linear Domain
 - Structure of a Mechanism
 - Some Definitions

3 Results
 - Groves Class of Mechanisms
 - What Other Mechanisms are Incentive Compatible
 - Revenue Equivalence
 - Uniqueness of Groves for Efficiency
 - Budget Balance
 - Bayesian Incentive Compatibility

4 Summary
Summary

DSIC mechanisms

Valuation / Type Space

Mechanism Space
Summary

DSIC mechanisms

Valuation / Type Space

Mechanism Space
Summary

DSIC mechanisms

Valuation / Type Space

Mechanism Space

Dict
Summary

DSIC mechanisms

Valuation / Type Space

Mechanism Space

U

QL

Dict
Summary

DSIC mechanisms

Valuation / Type Space

Mechanism Space
Summary

DSIC mechanisms

Valuation / Type Space

Mechanism Space
Summary

DSIC mechanisms

Valuation / Type Space

Mechanism Space
Summary

DSIC mechanisms

Valuation / Type Space

Mechanism Space

U
QL
+EFF

Gr
AM
Dict
Piv
Summary

DSIC mechanisms

Valuation / Type Space

Mechanism Space

U
QL
+EFF
+BB

Gr
Piv
AM
Dict
Summary

DSIC mechanisms

Valuation / Type Space

Mechanism Space

U
QL
+EFF
+BB

Gr
Piv
∅
Dict

AM
Thank you!

✉️ swaprava@gmail.com

http://www.isid.ac.in/~swaprava
Value Difference Set

Q: What does affine maximizer mean?
Q: What does affine maximizer mean?
A: If \(f(v) = y \) then
\[
w^\top v(y) + \kappa(y) \geq w^\top v(z) + \kappa(z), \forall z \in A \setminus \{y\}
\]
\[
\Rightarrow w^\top (v(y) - v(z)) \geq \kappa(z) - \kappa(y), \forall z \in A \setminus \{y\}
\]
Q: What does affine maximizer mean?

A: If $f(v) = y$ then

$$w^T v(y) + \kappa(y) \geq w^T v(z) + \kappa(z), \forall z \in A \setminus \{y\}$$

$$\Rightarrow w^T (v(y) - v(z)) \geq \kappa(z) - \kappa(y), \forall z \in A \setminus \{y\}$$

$$w^T \alpha \geq \beta \quad \text{half-space}$$
Q: What does affine maximizer mean?
A: If \(f(v) = y \) then

\[
\begin{align*}
 w^T v(y) + \kappa(y) & \geq w^T v(z) + \kappa(z), \forall z \in A \setminus \{y\} \\
\Rightarrow w^T (v(y) - v(z)) & \geq \kappa(z) - \kappa(y), \forall z \in A \setminus \{y\} \\
 w^T \alpha & \geq \beta
\end{align*}
\]

Define the value difference set for any pair of distinct alternatives \(y, z \in A \).

\[
P(y, z) = \{ \alpha \in \mathbb{R}^n : \exists v \in V \text{ s.t. } v(y) - v(z) = \alpha \text{ and } f(v) = y \}.
\]
Value Difference Set

Q: What does affine maximizer mean?

A: If \(f(v) = y \) then

\[
w^\top v(y) + \kappa(y) \geq w^\top v(z) + \kappa(z), \forall z \in A \setminus \{y\}
\]

\[
\Rightarrow w^\top (v(y) - v(z)) \geq \kappa(z) - \kappa(y), \forall z \in A \setminus \{y\}
\]

\[
w^\top \alpha \geq \beta \quad \text{half-space}
\]

- Define the value difference set for any pair of distinct alternatives \(y, z \in A \).

\[
P(y, z) = \{\alpha \in \mathbb{R}^n : \exists v \in V \text{ s.t. } v(y) - v(z) = \alpha \text{ and } f(v) = y\}.
\]

Claim

If \(\alpha \in P(y, z) \), and \(\delta > 0 \in \mathbb{R}^n \), then \(\alpha + \delta \in P(y, z) \), for all distinct \(y, z \in A \).
Graphical Illustration for Two Players

\[v_2(y) - v_2(z) \]

\[P(y, z), y, z \in A \]
Complementary Structures of $P(y, z)$ and $P(z, y)$

Claim

For every $\alpha, \epsilon \in \mathbb{R}^n$, $\epsilon > 0$, and for all $y, z \in A$,

(a) $\alpha - \epsilon \in P(y, z) \implies -\alpha \notin P(z, y)$.

(b) $\alpha \notin P(y, z) \implies -\alpha \in P(z, y)$.
\[P(y, z), y, z \in A \]

\[v_1(y) - v_1(z) \]

\[v_2(y) - v_2(z) \]

\[P(z, y), y, z \in A \]

\[P(y, z), y, z \in A \]
\[P(y, z), y, z \in A \]
\[P(z, y), y, z \in A \]
\[v_2(y) - v_2(z) \]
\[v_1(y) - v_1(z) \]
$v_2(y) - v_2(z)$

$P(y, z), y, z \in A$

$\gamma(y, z)$

$\gamma(z, y) = -\gamma(y, z)$

$P(z, y), y, z \in A$

$v_1(y) - v_1(z)$

$P(y, z), y, z \in A$
Independence of \hat{C} from the Alternatives in A

- Define the translated set $C(y, z) = P(y, z) - \gamma(y, z)1$
- Denote the ‘interior’ of $C(y, z)$ by $\hat{C}(y, z)$
Independence of $\hat{\mathcal{C}}$ from the Alternatives in A

- Define the translated set $\mathcal{C}(y, z) = P(y, z) - \gamma(y, z)1$
- Denote the ‘interior’ of $\mathcal{C}(y, z)$ by $\hat{\mathcal{C}}(y, z)$

Claim

$\hat{\mathcal{C}}(y, z) = \hat{\mathcal{C}}(w, l)$, for any $y, z, w, l \in A$, $y \neq z$ and $w \neq l$.
Independence of \hat{C} from the Alternatives in A

- Define the translated set $C(y, z) = P(y, z) - \gamma(y, z)\mathbf{1}$
- Denote the ‘interior’ of $C(y, z)$ by $\hat{C}(y, z)$

Claim

$\hat{C}(y, z) = \hat{C}(w, l)$, for any $y, z, w, l \in A$, $y \neq z$ and $w \neq l$.

Remark: Note that this result, in particular, includes the cases, $\hat{C}(y, z) = \hat{C}(l, z) = \hat{C}(l, y) = \hat{C}(z, y)$. Therefore, the claim holds even without y, z, w, l being all distinct.
\[\hat{C}(y, z) = \hat{C}'(z, y) = C \]

\[v_2(y) - v_2(z) \]

\[v_1(y) - v_1(z) \]
Convexity of C

Claim

The set C is convex.
Holmström Characterization

- Set of allocations $A = \{a, b\}$
- Social welfares at these two allocations are $\sum_{j \in N} v_j(a)$ and $\sum_{j \in N} v_j(b)$
Holmström Characterization

- Set of allocations $A = \{a, b\}$
- Social welfares at these two allocations are $\sum_{j \in N} v_j(a)$ and $\sum_{j \in N} v_j(b)$
- Efficiency requires that if a is chosen, then $\sum_{j \in N} v_j(a) \geq \sum_{j \in N} v_j(b)$
Holmström Characterization

- Set of allocations $A = \{a, b\}$
- Social welfares at these two allocations are $\sum_{j \in N} v_j(a)$ and $\sum_{j \in N} v_j(b)$
- Efficiency requires that if a is chosen, then $\sum_{j \in N} v_j(a) \geq \sum_{j \in N} v_j(b)$
- Fix valuations of agents other than i at v_{-i}
- Fix valuations of agent i except allocation a, i.e., at b at $v_i(b)$
Holmström Characterization

- Set of allocations $A = \{a, b\}$
- Social welfares at these two allocations are $\sum_{j \in N} v_j(a)$ and $\sum_{j \in N} v_j(b)$
- Efficiency requires that if a is chosen, then $\sum_{j \in N} v_j(a) \geq \sum_{j \in N} v_j(b)$
- Fix valuations of agents other than i at v_{-i}
- Fix valuations of agent i except allocation a, i.e., at b at $v_i(b)$
- There exists some threshold $v_i^*(a)$ such that
 - for all $v_i(a) \geq v_i^*(a)$, a is the outcome
 - for all $v_i(a) < v_i^*(a)$, b is the outcome
Holmström Characterization

- Set of allocations $A = \{a, b\}$
- Social welfares at these two allocations are $\sum_{j \in N} v_j(a)$ and $\sum_{j \in N} v_j(b)$
- Efficiency requires that if a is chosen, then $\sum_{j \in N} v_j(a) \geq \sum_{j \in N} v_j(b)$
- Fix valuations of agents other than i at v_{-i}
- Fix valuations of agent i except allocation a, i.e., at b at $v_i(b)$
- There exists some threshold $v_i^*(a)$ such that
 - for all $v_i(a) \geq v_i^*(a)$, a is the outcome
 - for all $v_i(a) < v_i^*(a)$, b is the outcome
- Consider $v_i(a) = v_i^*(a) + \epsilon$, $\epsilon > 0$, and write the DSIC constraint:
 \[
 v_i^*(a) + \epsilon - p_{i,a} \geq v_i(b) - p_{i,b}
 \] (1)
 - outcome does not change \Rightarrow payment does not change
Consider $v_i(a) = v_i^*(a) - \delta$, $\delta > 0$, and similarly:

$$v_i(b) - p_{i,b} \geq v_i^*(a) - \delta - p_{i,a} \quad (2)$$

Combining Equations (1) and (2) and taking limits $\epsilon, \delta \rightarrow 0$, we get,

$$v_i(b) - p_{i,b} = v_i^*(a) - p_{i,a}$$
Holmström Characterization

- Consider \(v_i(a) = v_i^*(a) - \delta, \delta > 0 \), and similarly:

\[
v_i(b) - p_{i,b} \geq v_i^*(a) - \delta - p_{i,a}
\] (2)

- Combining Equations (1) and (2) and taking limits \(\epsilon, \delta \to 0 \), we get,

\[
v_i(b) - p_{i,b} = v_i^*(a) - p_{i,a}
\]

- Since \(v_i^*(a) \) is a threshold of change of efficient outcome,

\[
v_i^*(a) + \sum_{j \in N\setminus\{i\}} v_j(a) = v_i(b) + \sum_{j \in N\setminus\{i\}} v_j(b)
\]
Holmström Characterization

Consider $v_i(a) = v_i^*(a) - \delta$, $\delta > 0$, and similarly:

$$v_i(b) - p_{i,b} \geq v_i^*(a) - \delta - p_{i,a}$$

(2)

Combining Equations (1) and (2) and taking limits $\epsilon, \delta \to 0$, we get,

$$v_i(b) - p_{i,b} = v_i^*(a) - p_{i,a}$$

Since $v_i^*(a)$ is a threshold of change of efficient outcome,

$$v_i^*(a) + \sum_{j \in N \setminus \{i\}} v_j(a) = v_i(b) + \sum_{j \in N \setminus \{i\}} v_j(b)$$

Substituting:

$$p_{i,a} - p_{i,b} = - \left(\sum_{j \in N \setminus \{i\}} v_j(b) - \sum_{j \in N \setminus \{i\}} v_j(a) \right)$$