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Abstract

We propose a game-theoretic model and a mechanism design solution to allocate slots
fairly at congested airports. This mechanism: (a) ensures that the slots are allocated accord-
ing to the true valuations of airlines, (b) provides fair opportunities for flights connecting
remote cities to large airports, and (c) controls the number of flights in each slot to mini-
mize congestion. Drawing inspiration from economic theory, this mechanism allocates the
slots based on an affine maximizer allocation rule and charges payments to the airlines to
incentivize them to participate in the allocation process and reveal their actual valuations.
The allocation also optimizes the occupancy of each slot to keep them as uncongested as
possible. The formulation solves an optimal integral solution in strongly polynomial time.
We conduct experiments on the data collected from two primary airports in India. We also
compare our results with existing allocations and an allocation based on the International
Air Transport Association (IATA) guidelines. The computational results show that our
mechanism is more egalitarian and generates 20%-30% higher social utility than the IATA
based state-of-the-art approach and current allocations.

Keywords: Airport slot allocation, Congestion mitigation, Remote city connectivity, Strategic
behavior, Game theory, Mechanism design, Strongly polynomial algorithm.

1 Introduction

In the last two decades, an overwhelming increase in demand for air transportation coupled with
political, physical, and institutional constraints for capacity expansion resulted in congestion
and delays at the world’s major commercial airports. As the demand for airport slots1 exceeds
its available capacity; it results in more holding time for the permission to land or take-off,
leading to congestion. Airport congestion veritably imposes a tremendous cost on the global
economy, including additional aircraft operating costs, and passenger delay costs. The other
externalities are environmental and noise pollution around the congested airport, while aircraft
wait in queue with engines fired up. According to the study commissioned by the Federal
Aviation Administration, the total delay cost2 in the United States for the calendar year 2019

1The daily runway scheduling period of an airport is divided into time intervals of a fixed length (e.g., 15
minutes) called slots (Androutsopoulos and Madas, 2019). We define ‘slot’ as a permitted time-interval for a
planned operation to use the full range of airport infrastructure necessary for an aircraft to arrive or depart. The
slot allocation to an airline movement means the permission to use the airport for landing or taking-off within a
particular time interval (slot) (Pellegrini et al., 2017).

2The total cost of flight delays is the sum of the costs of delay to airlines, passengers, lost demand, and
indirect costs to business sectors which depend on air transportation of their goods and services.
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is estimated at $33 billions (FAA, 2020). The situation is similar in other parts of the world,
which is predicted to worsen in the future.

However, governments worldwide have used various administrative instruments to promote
remote air connectivity. Air transportation has emerged as a ‘lifeline service’ to connect remote
cities where land transportation is not an option (Fageda et al., 2018). The link between air
connectivity and economic growth is well established (Brueckner, 2003; Alderighi et al., 2017).
Bilotkach et al. (2015) show a strong correlation between regional development and connectivity
to various new destinations. Fageda et al. (2018) observe that an appropriate mechanism can
help governments effectively promote regional air transport, which otherwise is excluded under
normal market conditions. An administrative approach might respond to a country’s varied
political goals, for example, United Kingdom (UK) governments’ objective to connect Heathrow
airport to the rest of the UK (Burghouwt, 2017). However, in market-based mechanisms for slot
allocation, e.g., auction; the airlines are more inclined toward servicing between metro cities.
Airlines try to suppress frequencies in less profitable routes and allocate the resources to the
most profitable ones (Leandro et al., 2021). The low profitability and inconsistent load factor
of movements from remote cities result in low valuations for those flights. This study addresses
congestion awareness and promotes remote connectivity during airport slot allocation.

The runway resources at congested airports in peak periods are valuable and scarce. Ad-
ministrative approaches such as grandfather rights, first-come-first-serve, lotteries, and the new
entrant rule are inefficient and random ways to allocate slots at congested airport (Zografos and
Madas, 2003; Zografos et al., 2013). Therefore, the slots should be allocated to those airlines
valuing them the most (Cao and Kanafani, 2000). The slot allocation by the International Air
Transport Association (IATA) follows the use-it-or-lose-it rule (80/20 rule). By this rule, if an
airline uses at least 80% of the slots allocated in a predefined period, the airline can continue
using the same slots in the next period. Although this rule offers airlines the certainty to publish
tickets in advance allowing consumers to plan travel, incidents occur when airlines use the slots
with almost empty flights to maintain the record for at least 80% not to lose the slot. The lost
slots are traded again and, increases the risk of seeing rivals take over the slot. These empty
flights are often called ghost flights. One such incident caught attention British Mediterranean
Airways flew empty six days a week for almost six months (when the service from London to
Tashkent was abruptly canceled) until they started another route using the slot3. Though such
incidents are not frequent, the mechanism should ensure that the scarce resources are allocated
to those agents4 who truly value them.

With maintaining the social goals to mitigate congestion and egalitarian allocation of slots
(the process of slot allocation should create equal opportunity to the currently disadvantaged
remote cities by incentivizing the airlines to increase connectivity with them), we aim to assign
the slots to the airlines (or flights) who value them the most. It might not always be possible to
achieve multiple objectives simultaneously, e.g., finding an efficient and egalitarian allocation of
resources is not always feasible. Therefore, we try to create a balance between these objectives.

Since airlines are independent entities, they might misreport their privately known values
for the slots to secure their preferred slots, making the situation like a game where airlines
strategically choose their actions. Suppose we aim at an efficient allocation of slots. In that
case, a strong need to ensure truthfulness arises, meaning we must design a mechanism that
incentivizes the airlines to tell the truth about their private information. We should consider the
liberty owned by the airlines to choose whether to participate in the implemented mechanism.
Moreover, suppose we want to achieve a specific objective requiring each airlines’ collaboration.
In that case, the mechanism must ensure individual rationality, meaning that airlines rationally

3http://news.bbc.co.uk/2/hi/uk_news/6441103.stm
4We use the terms agent, player, and movement interchangeably in this paper.
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choose to participate in the mechanism. This property along with truthfulness will imply the
successful implementation of the mechanism to achieve the desired objective.

Efficient and truthful mechanism exist but they allow utility transfers between the agents.
In those mechanisms, the sum of the transfers between the agents might not always be zero;
in other words, the mechanism might not be budget-balanced. An impossibility result by Green
and Laffont (1979) proposes that no mechanism exists that simultaneously guarantees efficiency,
strategy-proof, and budget-balance. In other words, the sum of airlines’ payments to obtain
the slots might be more than zero (meaning the planner earns in that mechanism) or less than
zero (meaning the planner needs an outside subsidy to operate that mechanism). If the sum
of payments exceeds zero, the planner’s collected revenue can be used in the airport’s facilities.
However, it is always undesirable for the planner to be required to pay for allocating the slots;
in other words, the planner needs an outside subsidy to operate. Therefore, we need a weaker
notion of budget-balance known as weakly budget-balance, meaning that the planner might gain
some money but never runs into a deficit while allocating the slot.

For a large airport, the number of movements and slots and capacities of slots is insignificant,
exponentially increasing in the size of the set of all feasible solutions. Finding the optimal
allocations for each flight can become computationally expensive. Therefore, we desire to design
a mechanism whose outcome can be computed with minimum resources for computation, e.g.,
time and storage. Next, we briefly introduce the work done in this paper by summarizing the
key contributions.

1.1 Our contributions

This study provides a game-theoretic model for the multiagent interaction of airlines. We
consider a central planner who allocates the slots among the airlines, maintaining the feasibility
constraints and concerning some social objectives.

We devise a slot allocation mechanism (egalitarian and congestion-aware truthful slot
(ECATS)), to integrate various (administrative and market-based) instruments into an over-
all slot allocation strategy that finds a balance between multiple objectives. These objectives
are (a) efficiency (slots should be given to the agents who value them the most), (b) egalitarian
(slot allocation should create equal opportunity to remote cities by incentivizing the airlines
to increase connectivity with the remote cities), and (c) the allocation should mitigate the
congestion at the airport.

We avoid rational agents’ manipulation by including (d) truthfulness and (e) individual
rationality. Our objectives include (f) weakly budget-balance to prevent the payments on the
planner, and we desire that the mechanism be (g) computationally tractable, meaning it requires
fewer computational resources to find the optimal allocation. Note that a dearth of models exists
in the extant literature that can simultaneously consider all the above objectives in airport slot
allocation. We summarize the main contributions of this paper as follows.

• We provide a game-theoretic model for the slot allocation problem.

• The proposed mechanism (ECATS) incentivizes airlines to report the actual valuations for
the slots (Theorem 1).

• ECATS ensures that the airlines can never be worse off by participating in the allocation
process; hence, it guarantees their voluntary participation (Theorem 2).

• ECATS ensures that the planner never needs an outside subsidy to operate (Theorem 3).

• The slot allocation problem is an integer program belonging to a computationally intractable
class (NP-complete). However, our formulation is solvable in strongly polynomial time
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(Theorem 6).

• We propose the remote city opportunity factor (Equation (3)) that works as tunable param-
eters to ensure a more egalitarian slot allocation that increases the connectivity with remote
cities as shown in the experiments (Figures 3 and 4).

• We collected the flight movement data for Delhi and Chennai airports. We evaluate ECATS

by comparing its allocation with the current allocation and a state-of-the-art allocation given
by Ribeiro et al. (2018) based on IATA guidelines. The experiments show that the social
utility generated using ECATS is 5% − 20% and 20% − 30% higher than the IATA-based
state-of-the-art and current allocations, respectively (Figures 5 and 6).

2 Literature review

Contemporary research on airport slot allocations primarily focuses on demand-side solutions to
mitigate congestion because can restore the demand-capacity balance over a medium to short
time horizon with low investments (Barnhart and Cohn, 2004). The demand management
strategies to manage slots at congested airports range from various administrative tools to
market-based mechanisms.

Administrative approaches: The administrative approaches for slot allocation include
grandfather rights, first-come-first-serve, lotteries, and the new entrant rule (Ball et al., 2006).
These approaches are government or institutional interventions through rules and regulations
to allocate scarce slots at congested airports.

• The historical precedence of the allocated slots is maintained in the grandfathering rights
(Sieg, 2010). Airlines can exercise their historical usage rights during the slot allocation
step. The grandfather rights implement a use-it-or-lose-it rule, where an airline must use
the allocated slot at least 80% of the time to obtain the slot in the next allocation period.
Based on the historical precedence, Ribeiro et al. (2018) proposed a priority-based slot
allocation model (PSAM) that minimizes the displacement of airlines’ slot requests. The
model fully complies with the ‘primary criteria’ of the IATA guidelines and the historical
precedence.

• In the first-come-first-serve rule, the slots are assigned based on arrival time, and airlines
queue up for runway and gate access. The first-come first-serve concept was used at the
five most congested airports, three airports in New York (JFK, LaGuardia, and Newark),
Chicago O’Hare and Washington Reagan, to manage congestion and delays (Fan and Odoni,
2002).

• In the new entrant rule, preference is given to new entrants for the vacant/newly available
slots. For example, numerous slots at the newly constructed runway at Frankfurt airport
were allocated to new entrants (IATA, 2017). In India, the allocation is governed by the
Airports Authority of India (AAI), mandating that 50% of the slots contained in the pool
at initial slot allocation must be allocated to new entrants.

Administrative instruments might respond to a country’s varied social or political goals, For
example, the UK government’s objective is to connect Heathrow airport to the rest of the UK
(Burghouwt, 2017).

Limitations of administrative approaches: The extant literature highlights several issues
with administrative approaches, with one of the biggest criticisms being that they are economi-
cally inefficient. Another criticism of the grandfathering rule is that it creates entry barriers to
new airlines (Vaze and Barnhart, 2012) and encourages legacy carriers to overschedule flights
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to avoid losing the allocated slots (Harsha, 2009). Furthermore, it prevents adequate competi-
tive pressure on these incumbents from the new entrants, especially the low-cost carriers. For
example, British Airways holds 51% of the take-off and landing capacity at London Heathrow
(the busiest airport in Europe), estimated at 742 million pounds (Horton, 2020). This air-
port operates at 100% capacity, making it incredibly challenging for new entrants to obtain a
slot. Moreover, when no monetary payments are involved in slot allocation, the airlines might
over demand the slots to minimize deviation from their preferred schedule (Vaze and Barnhart,
2012) or gain market power through slot hoarding (Sheng et al., 2019). Historically, govern-
ment interventions lead to inefficiencies, and airlines might exploit loopholes in the regulations
(Burghouwt, 2017).

Market-based mechanisms: Researchers have shown that market-based mechanisms re-
sult in the efficient allocation of scarce resources (Zhang et al., 2020; Abdulkadiroğlu and
Sönmez, 2003). Czerny and Zhang (2014) concluded that the market mechanisms would re-
veal the resources’ true economic value at the congested airport. They provide a flexible and
transparent approach for balancing the supply-demand mismatch through pricing. We find ap-
plications of such mechanisms in ride-sharing (Li et al., 2022), allocating charging stations (Rigas
et al., 2020) to public car parking resource problems (Wang et al., 2020). These mechanisms
efficiently allocate scarce resources to those who value them the most. In the case of airport
slot allocation, market based mechanisms provide equal opportunities to the legacy carriers and
new entrants and promote healthy competition. Various market-based mechanisms have been
proposed, such as congestion pricing, auctions, and secondary slot trading. Congestion pricing
favors charging airlines a fee based on several proposed rules such as:

• Pricing based on the marginal cost of delays (Vickrey, 1969; Carlin and Park, 1970)

• Differential pricing across carriers by considering small and large airlines (Brueckner, 2009)

• Pricing based on contributions to the infeasibility of the ideal solution (Castelli et al., 2012)

• Pricing based on passengers types when airlines price discriminates (Czerny and Zhang,
2014)

• Pricing based on the desired amount of delays that airlines are ready to buy (Mehta and
Vazirani, 2020)

Congestion pricing results in considerable welfare gains, which can minimize total delay and
attain ideal slot allocations (Daniel and Harback, 2009; Czerny, 2010). Daniel (2011) reported
that congestion pricing could help in saving $72 million to $105 million annually at Canadian
airports by reducing delays and associated costs. A drawback of congestion pricing is that the
fee must be iteratively varied in time and among different airports depending on the degree
of congestion set up by the airport administration. The other market-based approach widely
discussed in the extant literature is auctioning, where airlines bid for slots (Sheng et al., 2015).
An auction-based mechanism maximizes the airport’s revenue because it allocates slots purely
based on valuation maximization (Harsha, 2009). Basso and Zhang (2010) compared conges-
tion pricing with slot auctions and concluded that there is no clear winner for airport profit
maximization.

Ball et al. (2020) proposed a quantity-contingent-based auction mechanism to allocate the
slots at congested airports. The authors proposed using Vickrey Clarke Groves (VCG) mecha-
nism and imposed a constraint on the accepted bids to control airline’s market power (Vickrey,
1961; Clarke, 1971; Groves, 1973); however, they did not consider issues like individual ratio-
nality and computational complexity. Pertuiset and Santos (2014) used the VCG mechanism to
allocate slots in congested European airports. The properties of the model are similar to VCG
as it ensures efficiency and incentive compatibility. The authors recommended auctioning 10%
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of slots annually, which would eventually phase out and disappear in the historical slots within
a decade. Rosenthal and Eisenstein (2016) used the VCG mechanism to address rescheduling
delayed flight arrivals by constructing a payoff matrix of moving the assigned arrival slots either
earlier or later. The related literature from the auction theory (in other applications) relates to
this work. However, those approach either lead to computational tractability issues (Sandholm
et al., 2005), or low revenue generation, even when the items sold are valuable (Ausubel et al.,
2006). In particular, the VCG mechanism is suitable only when the goal is to achieve efficiency
truthfully (to maximize the sum of participant’s valuations).

This paper has considered multiple objectives relevant to airport slot allocation, e.g.,
congestion-awareness, egalitarianism, strategic guarantees (truthfulness and individual ratio-
nality) and computational tractability. Note that, achieving efficiency can be nonegalitarian,
i.e., it might yield a biased allocation to specific movements because it aims to maximize the
sum of the valuations. Our study on airport slot allocation differs from the VCG or mechanisms
for parking allocation (Wang et al., 2020) in the following ways:

1. We consider the objective to connect remote cities, for which we use a remote city op-
portunity factor (Equation (3)) that works as tunable parameters to ensure increases in
remote city connectivity.

2. Our optimization is congestion-aware and aims to reduce it.

3. We show that these social and efficiency goals can be achieved computationally tractable.

Limitations of market-based approaches: Despite being regarded as the most efficient way
to allocate slots at congested airports, market-based mechanisms have shortcomings. They are
considered detrimental for flights from remote cities due to their low valuations compared to
flights from big cities. The low profitability and inconsistent load factor of movements from
remote cities might limit their ability to win slots at an auction or pay pure market-based
congestion prices. Any mechanism solely based on the money transfers will be unfavorable
to remote communities and exclude of air-service to these cities (Green, 2007; Harsha, 2009;
Sheard, 2014).

Administrative instruments might be warranted to achieve social objectives by ensuring
connectivity to peripheral regions and supporting the population of remote regions. Combining
market-based and administrative instruments leads to a hybrid mechanism, which allocates
the slots based on efficiency (valuation maximization) and ensures slot opportunities for flights
connecting to remote cities. This study addresses this dual goal of valuation-based slot allocation
with remote city connectivity (social objective) at congested airports.

The critical lever for congestion minimization is to limit the number of allocated movements
(landings/take-offs) in a specific slot. The most important decision here is determining the
number of movements to assign based on the trade-off between the cost of delay and resource
use. Our proposed mechanism determines the number of movements in each slot based on the
trade-off between an increase in valuations due to additionally allocated movements and the
resultant increase in congestion cost. It considers a proper balance between flight delays and the
extent of the services offered (the number of flights scheduled). As the number of movements
scheduled in each slot decreases, the congestion level, and the resultant delays would decrease.
Based on a case study of LaGuardia Airport, Li et al. (2010) found that airport congestion can
be minimized by limiting the number of allocated movements in a slot. Similarly, Swaroop et al.
(2012) found that more than two-thirds of the total system delays can be reduced by capping
the slot allocation.

We propose that if the number of movements in a slot is allocated up to a specific limit, it
might not result in significant congestion and delays. However, allocating movements in a slot
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beyond a specific limit will add congestion and delays. Therefore, we have imposed a penalty
in congestion costs for each additional allocated movement beyond a limit. Determining the
allocation limit depends on factors such as weather conditions in a particular season, aircraft
mix and the skill of air traffic controllers and pilots. Historical airport data can be used to
determine these allocation limits.

To our knowledge, ECATS is the first mechanism that simultaneously considers multiple
aspects for slot allocation. The remainder of the paper is organized as follows: Section 3
formalizes the model and the desirable properties and Section 4 and Section 5 present the
mechanism and theoretical properties. We present the experimental results in Section 6 and
conclude the paper in Section 7.

3 Model descriptions and assumptions

We divide the availability of the airport in disjoint time intervals or slots5. Let the set S =
{1, 2, . . . , n} be the set of time slots. Each slot j ∈ S has a capacity Cj , which is the maximum
number of flights or movements that can be accommodated simultaneously, Cj ∈ Z+, ∀j ∈ S.
Let M = {1, 2, . . . ,m} be the set of movements. Every movement has a potentially different
valuation for the different slots in S. The valuation of movement i ∈M for slot j ∈ S is denoted
by vij ∈ R>0. For every movement i ∈M , let vi be the vector of i’s valuations for every slot in
S and V = [vij ], i ∈M, j ∈ S. We represent the set of all feasible allocations of the flights to
the slots as A. An allocation A ∈ A is A = [xij ], i ∈M, j ∈ S, where, xij = 1 if movement i is
assigned slot j and is equal to 0 otherwise. We assume that each movement can be assigned to
at most one slot.

We will use the shorthand vi(A) to denote the valuation of movement i in the allocation A,
i.e., it will be equal to vik, if i is assigned slot k in A, and zero if i is unallocated in A. The
valuation vik implicitly reflects the importance of using the slot k for the agent i. We assume
that the valuation vector vi is private information of the agent i, for all i ∈M .

As a running example to understand our mathematical model better, we consider the typical
airport slot allocation, which happens once every six months. The movements are identified by
their unique flight numbers. We assume that a specific day’s (e.g., say Wednesday) slot j ∈ S
is allocated to a specific movement for that day for these six months, where S denotes the set
of slots of that day.6 This implies that after allocation, the movement will be able to use slot j
of that day of the week for these six months. The valuation vij of agent i for slot j represents
the cumulative value that the slot gives her over these six months. If there are certain times of
the year when there is a disruption in the regular weekly timeslots, e.g., due to popular travel
times or disruption due to pandemics, etc., the current model can be easily extended to allocate
slots during those weeks separately without harming any of the main results of this paper.

Movements, in our discussions, mean the individual flights. While multiple flights may
be run by a specific airline, they are uniquely identified by their flight numbers or callsigns.
Therefore, it is easy to identify movements that are unique and can be considered as the players
in the slot allocation game.

If the preferences of the agents are their private information and the mechanism has no
additional structures (e.g., transfer of individual payoff), the only truthful mechanisms are

5We find that the term ‘windows’ and ‘slot’ are used interchangeably in the literature. Following the definition
of slot provided by Androutsopoulos et al. (2020), Mehta and Vazirani (2020) and Ribeiro et al. (2018), we refer
to each disjoint time interval as a slot with a defined capacity.

6This ‘day of the week’ allocation is necessary to accommodate the cases where a given flight may not operate
on all days of the week. For example, the movement 6E 5353, operating on Monday, Wednesday, and Friday, will
contest for a slot only on those days.
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dictatorial mechanisms (Roberts, 1979, Thm 7.2). A dictatorial mechanism is to always select
a pre-selected agent’s favorite outcome. Therefore, the use of transfers in some form is inevitable
to ensure the truthfulness of the agents.

The planner decides the allocation A. To ensure truthfulness, the additional structures of
transfers is added. The planner computes and charges payments p = [pi ∈ R]i∈M to each of the
movements. We assume that every agent wants a more valued slot to be assigned to her and
also wants to pay less. Therefore, the net payoff of an agent is assumed to follow a standard
quasi-linear form (Shoham and Leyton-Brown, 2008)

ui((A, p), vi) = vi(A)− pi. (1)

The scheduler does not know the actual valuations of the agents. To achieve an objective based
on the true valuations of the agents, it needs the agents to report their valuations, and then
it decides the allocation and the payments. This leaves the chance for an agent to misreport
her true valuation, e.g., an agent can report a higher valuation to obtain a prioritized slot.
To distinguish, we represent the true valuation and the reported valuations as vij and v′ij ,
respectively. To denote the true valuation profile represented as an m × n real matrix, we use
the shorthand v = (vi)i∈M , and v′ denotes the reported valuation profile. The notation v−i
denotes the valuation profile of the agents except i. Therefore, the decision problem of the
planner is formally captured by the following function.

Definition 1 (Airline Scheduling Function (ASF)). An airline scheduling function (ASF) is a
mapping f : Rm×n → A× Rm that maps the reported valuations to an allocation and payment
for every agent. Hence, f(v′) = (A(v′), p(v′)), where A and p are the allocation and payment
functions respectively 7.

We assume that congestion and delays start kicking in when the number of movements in a
slot exceeds a pre-defined threshold. We propose a division of the slot capacity into two parts:
congestion-free and congestion-prone. Suppose the number of allocated movements in a time
slot j exceeds a defined threshold, (1− λ)Cj . In that case, we say that the slot j is congested.
The determination of the threshold, λ, depends on various factors such as airport infrastructure
and local weather conditions. Historical data can be used to determine this allocation limit.
Therefore, the following term captures the congestion level in the slot corresponding to the
allocation A and is equal to the number of allocated flights in the congestion-prone capacity.

ej(A) =

(∑
i∈M

(xij)− Cj(1− λ)

)+

∀j ∈ S (2)

Our results hold for ej as any linear function of x. The notations and their descriptions are
briefly summarized in the Table 1.

3.1 Remote city opportunity factor

Inadequate air connectivity to metro cities is considered a significant obstacle for the local
economic development of remote cities. It is shown that poor air connectivity services inhibit
local employment growth by limiting the city’s attractiveness for new businesses and reducing
the viability of existing businesses (Brueckner, 2003). In the existing literature, empirical studies
from European Union, the United States, and China have established a positive impact of metro
airport connectivity on remote cities’ regional growth (Brafman and Tennenholtz, 2003; Yao

7We overload the notation A and d to denote both functions and values of those functions, since their use
will be clear from the context.
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Table 1: Notations used in the paper.

Symbol Description

S Set of disjoint time slots, |S| = n
M Set of movements, |M | = m
Cj Capacity of slot j ∈ S
vij Valuation of movement i ∈M for slot j ∈ S (say, e.g., in Indian rupees)
V [vij ], i ∈M, j ∈ S
A Allocation matrix, A = [xij ], i ∈M, j ∈ S,

where, xij = 1 if movement i is assigned slot j and is equal to 0 otherwise.
p p = [pi ∈ R]i∈M , where pi is the payment charged to movement i
λ Fraction of capacity that is considered to be congestion prone
ej(A) Number of allocated flights according to A in the congestion-prone capacity of slot j
g Per-unit congestion cost (in the same unit as the valuations, e.g., Indian rupees)
ρi Remote city opportunity factor of the city to which the movement i is connecting

the concerned airport

and Yang, 2008). A study based on airports in Canada shows an increase of 1126 additional
air-travel passengers can create one person-year of employment (Benell and Prentice, 1993).
Yao and Yang (2008) showed that a 10% increase in population density could lead to a 1.7%
increase in air passenger volume in China. Therefore, the remote cities’ adequate population is
also an important criterion to make air connectivity from remote cities economically viable. By
considering the above two factors (economic progress and population), we propose the following
remote city opportunity factor (RCOF):

ρi = αi
γmax − γi + δ∑

i∈M{γmax − γi}+ δ
+ (1− αi)

ωi − ωmin + δ∑
i∈M{ωi − ωmin}+ δ

(3)

where γ is the social progress index (SPI)8 and ω is the population of the city. γmax takes the
maximum value of SPI, and ωmin is the minimum population among all the cities in consid-
eration. Here αi indicates the relative weight assigned to SPI and population to calculate ρi.
A small factor δ with limδ→0, is added to avoid a division-by-zero error.The value of ρi ranges
between 0 to 1.

The SPI is an innovative way to measure the development of a region. It is a widely
used index measured by the thirty-five indicators related to basic human needs, foundations
of well-being, and opportunities for the city’s progress. The framework is closely coherent
with all sustainable development goals (SDGs) parameters. This rigorous but straightforward
framework makes it an invaluable proxy measure of SDG performance. It captures a wide range
of measures involving social and environmental factors, thus proving to be a monitoring and
guiding mechanism for national policy decisions and assisting businesses in planning corporate
social responsibility activities. The SPI values for various countries and their cities are available
at https://www.socialprogress.org. For India, the social progress performance data of 562
districts is collected and maintained by the Institute for Competitiveness, India. As can be seen
from the above equation, the formulation is designed to prioritize the cities with a lower value
of SPI and a high population to benefit from air connectivity.

8https://www.socialprogress.org/
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3.2 Desirable properties

In this section, we formally define a few desirable properties that an ASF should satisfy.
Since the mechanism can only access the movements’ reported values, for a truly efficient

slot allocation, it is needed that the reported valuations must be the true values. The following
property ensures that every movement is incentivized to reveal the values truthfully.

Definition 2 (Dominant Strategy Truthfulness). An ASF f = (A(·), p(·)) is truthful in dom-
inant strategies if for every vi, v

′
i ∈ Rn>0, i ∈M

vi(A(vi, v−i))− pi(vi, v−i) > vi(A(v′i, v−i))− pi(v′i, v−i).

The inequality above shows that if the true value of agent i is vi, the allocation and payment
resulting from reporting it ‘truthfully’ maximizes her payoff irrespective of the reports of the
other agents.

Consider a mechanism that has a particular objective based on the strategies of each airline
and ensures truthfulness. Is this property enough to ensure that we will achieve the objective
after implementing the mechanism? No. We should also consider the liberty already owned by
the airlines to choose whether or not to participate in the implemented mechanism. Further-
more, if we want to achieve a certain objective that requires each airlines’ collaboration, the
mechanism must ensure that the airlines rationally choose to participate in the mechanism.

The following property ensures that it is always weakly beneficial for every rational agent
to participate in such a mechanism.

Definition 3 (Individual Rationality). An ASF f = (A(·), p(·)) is individually rational if for
every v, and i ∈M

vi(A(vi, v−i))− pi(vi, v−i) > 0.

It is always desirable that a planner does not run into a deficit while implementing the
mechanism. This property is known as weak budget balance and is formally defined as follows.

Definition 4 (Weak Budget Balance). An ASF f = (A(·), p(·)) is weakly budget balanced
(WBB) if for every vi, v

′
i ∈ Rn>0 ∑

i∈M
pi(vi, v−i) > 0.

For a large airport, the number of movements and slots and capacities of slots is large; this
leads to an exponential increase in the size of A. For such a setting, computing the allocations
and payments for each agent can become exponentially expensive. Therefore, we desire to design
a mechanism whose outcome can be computed in time polynomial of input size. We consider
mechanisms that are strongly polynomial as defined below.

Definition 5 (Strongly Polynomial). The algorithm runs in strongly polynomial time if
(Grötschel et al., 1993)

1. the number of arithmetic operations (addition, subtraction, multiplication, division, and
comparison) in the arithmetic model of computation is bounded by a polynomial in the
number of integers in the input instance; and

2. the space used by the algorithm is bounded by a polynomial in the input size.

While defining the above properties, we mention that we have a certain objective that we
want to optimize, maintaining the feasibility constraints of the slot allocation. By ensuring these
properties, we guarantee that the formulation of the optimization problem is not vulnerable to
the rational behavior of the agents. Next, we represent our objective function, which we call
social utility, and the feasibility constraints via an LP formulation. In the following subsection,
we discuss the notion we call social utility.
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3.3 Formulation of the objective function

We have multiple objectives: (a) efficiency (slots should be given to the agents who value them
the most), (b) egalitarian (the process of slot allocation should create equal opportunity to
the remote cities by incentivizing the airlines to increase connectivity with the remote cities
as well), and (c) the allocation should mitigate the congestion at the airport. Achieving all
three objectives simultaneously is not feasible, e.g., an efficient allocation may not always be
egalitarian. Therefore, we try to create a balance between these three objectives.

An efficient allocation is to find the allocation A that maximises the sum of valuations of
the movements, i.e.,

argmax
A

∑
j∈S

∑
i∈M

vij xij .

To make a moral decision concerning the distribution of resources, one way is to consider the
well-known Aristotle’s principle of distributive justice (Moulin, 2003), “Equals should be treated
equally, and unequals unequally, in proportion to the relevant similarities and differences.” To
achieve an egalitarian allocation, we utilize the notion of RCOF (Section 3.1). We update the
objective to be the maximisation of the weighted sum of valuations of the movements. The
weights of a movement i is given by the RCOF ρi that depends on the city connected by that
movement i. The RCOF is designed to be higher for the flights connecting the cities with a
lower value of SPI and a high population. The objective to maximise the weighted sum of
valuations, i.e., argmaxA

∑
j∈S

∑
i∈M ρi vij xij , therefore provides more opportunities to such

cities.
We assume there is a constant cost g per unit of congestion. Our objective includes to

minimise the total congestion cost, i.e. argminA
∑

j∈S
∑

i∈M ej(x) g, where, ej(x) (equation (2))
is a measure of the level of the congestion in slot j with respect to the allocation x. Combining
the discussed goals we formulate the following objective function,

argmax
A

∑
j∈S

(∑
i∈M

(ρi vij xij) − ej(x) g

)
(4)

We call the combination of the two terms in expression (4) as social utility. Our objective is to
maximize the social utility while maintaining the constraints. The expression for social utility
captures the three social goals, namely, efficiency, egalitarianism, and congestion-awareness, and
finds a balance between them.

In the following section, we introduce the proposed mechanism.

4 Proposed mechanism

The problem of truthful resource allocation has been studied extensively in mechanism design
with transfers. The Vickrey-Clarke-Groves (VCG) payment rule (Vickrey, 1961; Clarke, 1971;
Groves, 1973) has been one of the most celebrated mechanisms for truthful and efficient resource
allocation among multiple rational agents. One limitation of VCG payment rule is that it applies
only if the social goal is to achieve efficiency. In this paper, we consider a different objective
of maximizing social utility (Equation (4)). Hence, VCG mechanism is not applicable for the
implementation of this social goal. We consider a general form of VCG mechanism, known as
the affine maximizer social choice function.

We propose a Egalitarian and Congestion Aware Truthful Slot allocation (ECATS) mechanism
as an ASF that consists of an allocation function A(·) and a payment function p(·). The
allocation function uses the airlines’ reported valuations for slots and the RCOF to find a
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socially egalitarian allocation where each movement is weighted with its RCOF. It also puts
an additive penalty for congestion and maximizes this affine sum. The following integer linear
program, therefore, computes the optimal allocation.

argmax
A

∑
j∈S

(∑
i∈M

(ρi vij xij) − ej(x) g

)
subject to

∑
i∈M

xij 6 Cj ∀j ∈ S,∑
j∈S

xij 6 1 ∀i ∈M

xij = {0, 1} ∀i ∈M ∀j ∈ S

(5)

The first term of the objective function multiplies each movement’s valuation with their
RCOFs (ρis) to equalize the opportunities to the flights to and from every city. The second
term of the objective function subtracts the total congestion cost to cater to the congestion
problem. The first constraint in the above optimization problem is the capacity constraint of
each slot. The second constraint ensures that none of the movements are assigned to more than
one slot.

Allocation The allocation function A(·) of ECATS computes the LP relaxation of IP (5) as
follows.

argmax
A

∑
j∈S

(∑
i∈M

(ρi vij xij) − ej(x) g

)
subject to

∑
i∈M

xij 6 Cj ∀j ∈ S,∑
j∈S

xij 6 1 ∀i ∈M

xij > 0 ∀i ∈M ∀j ∈ S

(6)

In Section 5, we prove that the solution of the above LP will always be integral and therefore
coincides with the solution of IP (5).

Payment The payment function p(·) in ECATS is given by,

pi(vi, v−i) =


1
ρi

(
hi(v−i)−

( ∑
k∈M\{i}

ρk vk ( A(vi, v−i) )− g
∑
j∈S

ej(A(vi, v−i))
))

ρi > 0

0 ρi = 0

(7)

where,

hi(v−i) =
∑

k∈M\{i}

ρk vk(A(v−i)
)
− g

∑
j∈S

ej(A(v−i))


The payment function for an airline i is proportional to the difference between the value of the
optimal objective function when i is absent and present, respectively. The payment is inspired
by the idea of marginal contributions in the affine maximizers (Roberts, 1979).
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5 Theoretical results

In this section, we present the theoretical guarantees for the properties of ECATS. For better
readability, some of the proofs are deferred to the appendix.

Our first result shows that under ECATS, none of the players can get better utility by misre-
porting her true information.

Theorem 1. ECATS is dominant strategy truthful.

Proof. In terms of utilities, the theorem says,

ui(f(vi, v−i), V ) ≥ ui(f(v′i, v−i), V ), ∀vi, v′i ∈ R|n| ∀i ∈M (8)

Let us assume for the contradiction that, there exist a movement i for which the corresponding
airline has true valuations for the slots as, vi, but misreports it as v′i(the corresponding value
function is v′i), and gets better utility,

ui(f(v′i, v−i), V ) > ui(f(vi, v−i), V ) (9)

Suppose A(v′i, v−i) = x′ and A(vi, v−i) = x∗. By definition of the utility function,

ui(x
∗, V ) = vi(x

∗)− pi(vi, v−i)

= vi(x
∗)− 1

ρi

(
hi(v−i)−

( ∑
k∈M\{i}

ρk vk
(
x∗
)
− g

∑
j∈S

ej(x
∗)
))

= vi(x
∗) +

1

ρi

( ∑
k∈M\{i}

ρk vk
(
x∗
)
− g

∑
j∈S

ej(x
∗)
)
− 1

ρi

(
hi(v−i)

)

=
1

ρi

( ∑
k∈M

ρk vk
(
x∗
)
− g

∑
j∈S

ej(x
∗)
)
− 1

ρi

(
hi(v−i)

)
(10)

and,
ui(x

′, (vi, v−i)) = vi(x
′)− pi(v′i, v−i)

=
1

ρi

( ∑
k∈M

ρk vk
(
x′
)
− g

∑
j∈S

ej(x
′)
)
− 1

ρi

(
hi(v−i)

)
(11)

From inequality 9,

1

ρi

( ∑
k∈M

ρk vk
(
x′
)
− g

∑
j∈S

ej(x
′)
)
− 1

ρi

(
hi(v−i)

)
>

1

ρi

( ∑
k∈M

ρk vk
(
x∗
)
−g
∑
j∈S

ej(x
∗)
)
− 1

ρi

(
hi(v−i)

)
∑
k∈M

ρk vk
(
x′
)
− g

∑
j∈S

ej(x
′) >

∑
k∈M

ρk vk
(
x∗
)
− g

∑
j∈S

ej(x
∗)

The above inequality leads to the contradiction with the fact that x∗ is the socially optimal
allocation. And therefore, the best strategy for airlines is to report the valuations of their
movements truthfully.
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The above result implies that irrespective of the reported valuations of the other movements,
a given movement’s utility is maximized when it reports its valuations truthfully. Our next result
shows that the movements are incentivized to participate in ECATS voluntarily.

Theorem 2. ECATS is individually rational for every movement.

Proof of Theorem 2. Consider the allocation given by A as x∗. The utility of the airline i is,
ui((x

∗, p(V )), V ) = vi(x
∗)−pi(V ) ∀i ∈M . vi(A(V )) ≥ 0, as it is the valuation by the allocation

of slots. If ρi = 0 then ui((x
∗, p(V )), V ) ≥ 0. For the case when ρi > 0, the proof is as follows:

by expanding the expression for p in the definition of utility, we get

ui((x
∗, p(V )), V ) = vi(x

∗)− 1

ρi

(
hi(v−i)−

( ∑
k∈M\{i}

ρk vk(x
∗)− g

∑
j∈S

ej(x
∗)
))

= vi(x
∗)− 1

ρi

(
hi(v−i)

)
+

1

ρi

( ∑
k∈M\{i}

ρk vk( x
∗ )− g

∑
j∈S

ej( x
∗ )
)

=
1

ρi

( ∑
k∈M

ρk vk( x
∗ )− g

∑
j∈S

ej( x
∗ )
)

− 1

ρi

( ∑
k∈M\{i}

ρk vk
(
A(v−i)

)
− g

∑
j∈S

ej(A(v−i) )
)

By adding and subtracting 1
ρi

(vi(A(v−i))),

=
1

ρi

( ∑
k∈M

ρk vk( x
∗ )− g

∑
j∈S

ej( x
∗ )
)

− 1

ρi

( ∑
k∈M

ρk vk
(
A(v−i)

)
− g

∑
j∈S

ej(A(v−i))
)

+
1

ρi
(vi(A(v−i)))

=
( ∑
k∈M

ρk vk(x
∗)− g

∑
j∈S

ej(x
∗)
)
−
( ∑
k∈M

ρk vk
(
A(v−i)

)
− g

∑
j∈S

ej(A(v−i))
)

︸ ︷︷ ︸
≥0

+ vi(A(v−i))︸ ︷︷ ︸
≥0

The difference of first two terms is non-negative by the definition of x∗, the socially optimal
allocation, and the third term is non-negative as it is the valuation by the allocation of slots,
which proves that ECATS is individually rational.

Next, we prove that ECATS is weakly budget-balanced; in other words, ECATS does not require
an outside subsidy to operate.

Theorem 3. ECATS satisfies weakly budget-balance.

Proof. Let x∗ denotes the optimal allocation by Equation (6). Suppose the mechanism is not
weakly budget-balanced. Hence, ∑

i∈M
pi(x

∗) < 0
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For the above inequality to be true, there must exist a movement i ∈ M such that pi(x
∗) < 0.

The pi(x
∗) is computed as,

pi(x
∗) =

1

ρi

hi(v−i)− ∑
k∈M\{i}

(
ρk vk(x

∗)− g
∑
j∈S

ej(x
∗)
)

Denote the optimal allocation when i is not present as x
′
; A(v−i) = x

′
. If pi(x

∗) < 0 then by
expanding the expression for hi(v−i) we get,

1

ρi

 ∑
k∈M\{i}

(
ρk vk(x

′
)− g

∑
j∈S

ej(x
′
)
)
−

∑
k∈M\{i}

(
ρk vk(x

∗)− g
∑
j∈S

ej(x
∗)
) < 0

The ρis are non-negative values hence,∑
k∈M\{i}

(
ρk vk(x

′
)− g

∑
j∈S

ej(x
′
)
)
−

∑
k∈M\{i}

(
ρk vk(x

∗)− g
∑
j∈S

ej(x
∗)
)
< 0 (12)

Without any movement i, any solution to the mechanism with all agents remains feasible and
has positive value. Hence, the inequality (12) contradicts with the definition of x′ which proves
that ECATS satisfies weakly budget-balance.

The following few results show that even if the allocation problem of IP (5) falls in a
computationally intractable class, its special structure can be used to find a tractable solution.

Theorem 4. The allocation of ECATS given by LP (6) has an integral optimal solution and is
polynomially solvable.

Proof. Using the definition of ej in Equation (2), LP (6) can be written as follows

argmax
A,w

∑
j∈S

(∑
i∈M

(ρi vij xij) − wj g

)
subject to

∑
i∈M

xij 6 Cj , ∀j ∈ S∑
j∈S

xij 6 1, ∀i ∈M

∑
i∈M

xij − wj 6 Tj , ∀j ∈ S

xij > 0, wj > 0, ∀i ∈M, ∀j ∈ S

(13)

where, Tj = Cj(1− λ).

Claim 1. The coefficient matrix of optimization problem (13) is totally unimodular (TU).

Proof. First we linearize the variables x and w of the optimization problem into a single vector
x̄ as (x11, x12, . . . , x1n, . . . , xm1, xm2, . . . , xmn, w1, w2, . . . , wn)>. The constraints in the Equa-
tion (13) can be written as Zx̄ 6 b, where, Z(m+2n)×(mn+n) is the coefficient matrix and
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b(m+2n)×1 is the bound vector as shown below.



In×n In×n In×n . . . In×n 0
11×n 0 . . . 0 0 0

0 11×n . . . 0 0 0

0 0
. . . 0 0 0

0 0 0 0 11×n 0
In×n In×n In×n . . . In×n −In×n





x11
...
x1n

...
xm1

...
xmn
w1
...
wn



6



C1
...
Cn
1
...
1
T1
...
Tn


The first n rows of Z has m (n× n) identity matrices followed by (0)n×n. Each of the next m
rows has exactly one (1 × n) vector of all 1s staggered as shown above. The last n rows are
similar to the first n rows with the last n columns being a negative n× n identity matrix.

We use the Ghouila-Houri (GH) characterization (Ghouila-Houri, 1962; de Werra, 1981)
to prove that Z is TU, which says that a matrix Zp×q is TU if and only if any subset R of
rows, R ⊆ {1, 2, · · · , p}, can be partitioned into two subsets R1 and R2, such that,

∑
i∈R1

zij −∑
i∈R2

zij ∈ {1, 0,−1}, where j = 1, 2, . . . , q. In our case, each column of the coefficient matrix
Z has at most three 1 or one −1. Note that, the rows can be easily partitioned into three classes:
class 1 consists of first n rows, class 2 consists of next m rows, class 3 consists of last n rows.
There are three exhaustive cases for the subset R of rows of Z.

1. R consists of rows from all three classes of rows.

2. R consists of rows from any two classes of rows.

3. R consists of rows from exactly one class of rows.

For case 1, we find the two disjoint subsets R1 and R2 of R in an iterative manner. Begin with
the partition where R1 consists of rows from the first two classes of rows of Z in R, and R2

consists of rows from last class rows of Z in R. There can be a situation where for a certain
column j, the sum

∑
i∈R1

zij = 2 and the
∑

i∈R2
zij = 0. This can only happen when for column

j and rows in R1, the sum of zijs where i’s are from the rows from class 1 is 1, for the i’s in
class 2 there exists a row that has n 1s intersecting with j, and the sum of zijs where i’s are
from the rows in R2 has no 1s in j. In such a case, we move that row in class 2 from R1 to R2.
Repeat this procedure for every such column until no such situation exists. This procedure is
guaranteed to converge to a partition of R such that GH conditions are met.

Cases 2 and 3 are straightforward. In case 2, the partition R1 and R2 are the intersections
of R with the respective classes of rows. For case 3, any partition of R satisfies GH conditions.
Hence proved.

The optimization problem in Equation (13) has a TU coefficient matrix, which implies LP (6)
yields an optimal solution in integers and is solvable in polynomial time.

Theorem 4 shows that the solution to the LP relaxation of the allocation problem is without
loss of optimality. LPs are known to be polynomially computable. However, in general, it can be
weakly polynomial, i.e., the space used by the mechanism may not be bounded by a polynomial
in the input size. The forthcoming results show that the solutions of allocation and payments
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Figure 1: Constructed edge-weighted bipartite graph G = (P,Q,E) and b

of ECATS are strongly polynomial. To show this, we reduce (LP 13) to the b-matching problem,
which is known to be strongly polynomial (Anstee, 1987).

Definition 6 (b-Matching Problem (Tamir and Mitchell, 1998)). Consider a graph G = (V,E),
where V is the set of nodes and E is the set of edges. Each edge eu,v ∈ E between any two nodes
u, v ∈ V , has a cost cu,v. Let b = (b1, b2, . . . , b|V |). A b-matching problem for G is to find the
non-negative integer edge weights wu,v which maximises the total cost,

∑
u,v∈V cu,v wu,v where

the sum of weight on edges incident to a node u is no more than bu, ∀u ∈ V .

Theorem 5. The allocation of ECATS, given by LP (6), is implementable in strongly polynomial
time.

Proof. Consider an edge weighted bipartite graph, G = (P,Q,E), where P = M ∪ {tj |j ∈ S}
and Q = S. The edges in E are in two disjoint partitions, E1 and E2. The first partition
is E1 = {(ei,j)|i ∈ M and j ∈ Q}. Set the cost ci,j = ρivij , ∀ei,j ∈ E1, where ρi and vij
are the RCOF and valuation of movement i for slot j respectively. The other partition is
E2 = {etj ,j |tj ∈ P \M and j ∈ Q} having the cost ctj ,j = g, where g is per unit congestion
cost. Define b as, bi = 1 for every i ∈ M , bj = Cj for every j ∈ Q and for every tj ∈ P \M ,
btj = λCj

9. Figure 1 shows the edge-weighted bipartite graph G = (P,Q,E). The red and blue
colored edges denote the subsets E1 and E2 respectively. To make the notations simpler, we
represent ei,j as (i, j). The objective function of the b-matching problem over G (with y being
the optimization variables) is ∑

j∈Q

∑
i∈M

ρivij yi,j +
∑
j∈Q

g ytj ,j

with the constraints,
∑

q∈Q yp,q 6 bp and
∑

p∈P yq,p 6 bq, ∀p ∈ P, ∀q ∈ Q. By the definition of
b-matching problem, the optimal solution y∗ of b-matching of G has,

y∗tj ,j =

{
Cj −

∑
i∈M y∗i,j

∑
i∈M y∗i,j − Cj(1− λ) > 0

λCj
∑

i∈M y∗i,j − Cj(1− λ) 6 0
(14)

The correctness of the above equation can be proved as follows. First, note that for an
optimal solution y∗, if ∃j ∈ S with

∑
i∈M y∗ij < Cj then @i ∈M such that y∗ij < bi and ρivij > g

– because otherwise y∗ij can be increased maintaining the feasibility of the constraints (bi = 1

9This is the size of congestion prone capacity of slot j.
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and bj = Cj) which will increase the value of the objective function, contradicting the optimality
of y∗.

Consider case 1 of Equation (14),
∑

i∈M y∗ij−Cj(1−λ) > 0:
∑

i∈M y∗i,j is the total weight on
the red edges. The remaining weight Cj −

∑
i∈M y∗i,j is less than λCj and, as @i ∈M such that

y∗ij < bi and ρivij > g therefore, adding all the remaining weight to y∗tj ,j is always (a) within

the constraints of b-matching and (b) maximize the value of the objective function.
Consider case 2 of Equation (14),

∑
i∈M y∗ij − Cj(1 − λ) ≤ 0: the remaining weight Cj −∑

i∈M y∗i,j is more than λCj . But, y∗tj ,j can not be greater than λCj as btj = λCj . The optimal
solution is to add the remaining weight to y∗tj ,j within the constraint btj = λCj for j.

Our next result formally reduces the allocation problem of ECATS into a b-matching problem.
We do that via a lemma, that constructs a solution x for our problem from the solution y of
b-matching of G as, xi,j = yi,j , for i ∈ M and j ∈ S. Similarly, we construct a solution y for
b-matching of G from a solution x for our problem as, yi,j = xi,j , for ei,j ∈ E1 and, ytj ,j using
Equation (14) for etj ,j ∈ E2.

Lemma 1. Let y∗ is a solution for b-matching for graph G and x∗ is s.t. x∗i,j = y∗i,j, ∀i ∈ M
and ∀j ∈ Q. Then, x∗ is the optimal solution for the LP in Equation (6) iff y∗ is an optimal
solution for b-matching for graph G.

Proof. First, we prove that if y∗ is an optimal solution for b-matching for graph G, then x∗ is
an optimal solution for the LP in Equation (6).

Suppose the above lemma is not true and the optimal solution for LP in Equation (6) is x̄
but not x∗. Then, for the value of objective function in Equation (6),

∑
j∈S

(∑
i∈M

(ρi vij x̄i,j) − ej(x̄) g

)
>
∑
j∈S

(∑
i∈M

(
ρi vij x

∗
i,j

)
− ej(x

∗) g

)

using the definition of ej(x) from Equation (2),

∑
j∈S

(∑
i∈M

ρi vij x̄i,j

)
− g

∑
j∈S

max
(∑
i∈M

x̄i,j − Cj(1− λ), 0
)

>
∑
j∈S

(∑
i∈M

ρi vij x
∗
i,j

)
− g

∑
j∈S

max
(∑
i∈M

x∗i,j−Cj(1− λ), 0
)

We divide the set of slots S in two disjoint subsets S1, S2 with respect to x̄ such that, S1 =
{j|
∑

i∈M x̄i,j −Cj(1− λ) > 0} and S2 = {j|
∑

i∈M x̄i,j −Cj(1− λ) 6 0}. Similarly, divide S in
two disjoint subsets S3, S4 with respect to x∗ such that, S3 = {j|

∑
i∈M x∗i,j − Cj(1 − λ) > 0}

and S4 = {j|
∑

i∈M x∗i,j − Cj(1− λ) 6 0}.

∑
j∈S

(∑
i∈M

ρi vij x̄i,j

)
+ g

∑
j∈S1

(
Cj − λCj −

∑
i∈M

x̄i,j

)

>
∑
j∈S

(∑
i∈M

ρi vij x
∗
i,j

)
+ g

∑
j∈S3

(
Cj − λCj −

∑
i∈M

x∗i,j

)
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Adding g
∑

j∈S λCj on both sides of the above inequality,

∑
j∈S

(∑
i∈M

ρi vij x̄i,j

)
+ g

∑
j∈S1

(
Cj −

∑
i∈M

x̄i,j

)
+ g

∑
j∈S2

λCj

>
∑
j∈S

(∑
i∈M

ρi vij x
∗
i,j

)
+ g

∑
j∈S3

(
Cj −

∑
i∈M

x∗i,j

)
+ g

∑
j∈S4

λCj

Let ȳ is a solution of b-matching for G corresponding to the solution x̄ of LP in Equation (6),
then the expression at right side in above inequality is the value of objective function for b-
matching problem, where ∀j ∈ S1 the case 1 of Equation (14) is true and ∀j ∈ S2 case 2 of
Equation (14) is true. The above inequality implies that the value of the objective function of
the b-matching problem for solution ȳ is more than that for y∗. Therefore, the above inequality
contradicts with y∗ being the optimal solution of the b-matching for graph G, which implies
that x∗ is the optimal solution for the LP in Equation (6).

To prove the other direction of Lemma 1, we construct y∗ from the optimal solution x∗ for
the LP in Equation (6) as, y∗i,j = x∗i,j , for ei,j ∈ E1 and, y∗tj ,j using Equation (14) for etj ,j ∈ E2.
The proof follows by similar argument in the reverse order.

Lemma 1 shows that for every instance of the LP in Equation (6), there exists an instance
of b-matching problem such that the optimal solution of that instance of b-matching problem
gives the optimal solution for LP in Equation (6). Therefore, LP in Equation (6) is solvable
in strongly polynomial time as there exists a combinatorial, strongly polynomial algorithm to
solve the b-matching problem (Anstee, 1987).

As the computation of payment for an airline i ∈ M requires computation of a socially
optimal allocation ∀j ∈M \ {i} using the LP in Equation (6), we get Corollary 1.

Corollary 1. The computation of payments for all the airlines is implementable in strongly
polynomial time.

Following the Theorem 5 and Corollary 1, we get Theorem 6.

Theorem 6. There is a combinatorial strongly polynomial time algorithm for computing the
allocation and payments f = (A, p) in ECATS.

Discussion Our analysis here assumes that a movement is possible to be scheduled in any
slot. The cases of infeasible slots for a movement can be accommodated in this model by
assigning a large negative valuation for those slots such that the allocation mechanism never
picks such slots. There is, however, one additional constraint that involves a minimum gap in
the schedule of two movements that are served via the same aircraft. Generally, movements
are paired, i.e., every arriving movement also has a complementary departing movement and
the allocation needs to have a minimum time gap between these two movements. This gives
rise to a sufficiently complicated optimization problem as presented in Appendix A. We are
able to show that the properties like truthfulness, egalitarianism, congestion reduction, and
weak budget balance properties will continue to hold in this modified scenario as well. We
have also experimentally checked that the computational complexity is polynomial. However,
the rigorous proof of tractability is left as a future exercise. The detailed discussion of this
extension is presented in Appendix A.
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6 Experimental results

In this section, we investigate the performance of ECATS in real-world scenarios. While ECATS

satisfies several desirable properties of a slot allocation mechanism, its performance with varying
congestion costs, use of remote city opportunity factor (RCOF) and relevance are not theoreti-
cally captured, calling for an experimental study.

For the experiment, we obtain data from two airports in India (Indira Gandhi International
Airport (DEL) and Chennai International Airport (MAA)). DEL and MAA are major hub
airports and the busiest in India. In 2018, DEL managed approximately 70 million passengers
and was the 12th busiest airport in the world and the sixth busiest in Asia. It is designated
as a level 3 airport and has three near-parallel runways. The MAA has a handling capacity of
22.5 million passengers and is the 49th busiest airport in Asia. Both airports are coordinated10;
however the traffic movement in DEL is almost four times that of MAA. The purpose of choosing
these two airports is to evaluate the performance of ECATS for the allocation and payments under
different demand/congestion profiles.

We also compare ECATS with (a) the Current allocation, i.e., the current movement to slot
allocation, and (b) the PSAM proposed by Ribeiro et al. (2018) that complies with the IATA
guidelines. The AAI monitors the current allocation where the coordination process is initiated
when the coordinator provides each airline with the details of their historical slots. The slots are
allotted according to grandfathering rights, where priority is given to historic slots. The PSAM
model optimizes slot allocation decisions based on slot availability and airline slot requests while
accounting for various preferences and requirements in the IATA guidelines. It minimizes the
number of slot requests rejected or displaced. The results show that slot allocation significantly
reduces flight displacement to accommodate all requests.

6.1 Data collection and processing

We collect the flight schedule data with landing and take-off slot details, city of ar-
rival/departure, flight number, and service provider. We obtain the flight movement data11

from January 21 to 25, 2020. An average of 867 movements occurred daily for DEL and 220 for
MAA.12 Based on the data, we obtain the input dataset of a single day and apply ECATS for
experimental analysis. The details of obtaining a single-day dataset are as follows.

6.1.1 Slot capacities

We found ample literature where researchers have imposed constraints on 15-min intervals to
allocate airport resources (Ribeiro et al., 2018; Zografos et al., 2012; Cheung et al., 2021). The
AAI and IATA have also recognized slots to be a 15 min intervals. In line with the practice and
literature, we divide the 24h of each day into slots (15-min time intervals) for each day of the
collected data.

Obtaining the airport’s exact capacity parameter is an active research area. Airports’ capac-
ity depends on available resources, weather conditions, and many other factors. Airports can
also declare capacity based on historical data. Therefore, several methods have been proposed to
have a quantifiable measure. The existing allocation methods consider the capacities estimated

10Coordinated airports are the ones where landing airlines have to acquire landing rights and ensure their
operation during a specific time period. The slots are administered by the airport operator or a government
aviation regulator. Landing/takeoff demand at these airports exceeds its capacity.

11https://www.flightradar24.com
12We chose these dates to obtain the normal air movement patterns before COVID-19 and also because the

data were most detailed during this period.
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by airport authorities. Since, we did not have access to such data, we estimated the capacity
for this experiment using the historical number of movements for each slot in an airport. The
capacity is estimated in two steps: (i) we consider the maximum number of movements (arriving
or departing) in a specific slot for five consecutive days (mentioned before), and (ii) we take the
average of those maxima to find airport’s capacity. This capacity is treated as the capacity of
each slot of that airport. We want to emphasize that even though this is a specific heuristic
to produce the slot capacity (which we have chosen for reasons explained below), none of the
central results, e.g., truthfulness, and social utility, is affected by this choice. We provide an
example to illustrate the steps better. Suppose, the 9:00 to 9:15 AM slot has 15, 12, 14, 15,
and 16 movements in the five consecutive days we collected the data. We take the maximum,
i.e., 16, at the end of step i, and take the average of those maxima for all the 24× 4 slots of a
day as the capacity of each airport slot. A natural question might arise as to why we did not
take the maximum of all such maxima for the slot capacity. In such a case, the capacities will
be so high that none of the movements in our dataset will ever witness congestion (since we are
calculating the capacity from the same dataset).

We divide the airport’s slot capacity into two parts by setting a threshold of (1−λ) fraction
of the slot capacity. We consider the slot congestion-free if the number of movements is less
than or equal to this threshold, and congestion-prone otherwise. For the experiments, we assume
λ = 0.2.

6.1.2 Valuations

The movement valuations are the private information of the airlines and are not publicly shared.
The movement valuation for a slot is the cumulative value the slot gives over six months. Hence,
the valuation can be estimated by computing the revenue from one-time travel multiplied by
the number of times the flight service in the six months in that slot.

To estimate the revenue earned by the airline for an origin-destination pair and a slot, we
require three parameters: the ticket prices, the aircraft’s capacity, and the average load factor13.
We use the following expression to compute the revenue:

Revenue earned by a movement = average of the ticket fare of the movement across five days

× average load factor of the movement

× capacity of the aircraft used by the movement.

For example, if an Indigo flight (movement) operates A320neo, with a seating capacity of
194, from DEL to Mumbai airport (BOM) at 09:15 with an average ticket fare of Indian Rupees
(|) 3, 000 and a load factor of 90%, the revenue for that movement, in the slot 09:15, will be
|3, 000× 194× 0.9 = |523, 800.

Since airlines use dynamic pricing, we have considered average fares. Moreover, our the-
oretical guarantees are independent of average fare calculations. The ticket price data were
collected from a booking website14 for five consecutive days. For the aircraft capacity and load
factor data of different destinations, we refer to the annual financial results of two public airlines
(Indigo and SpiceJet).

However, the revenue obtained in the above steps provides us with the data points only
for those slots in which the flight operates, because we can access the ticket fares from the
booking websites only for the current allocation. Using an example, We explain the procedure
to fill in the missing data points. Let a movement i operate only at slot 9:00-9:15. Then, to

13The load factor is a metric to measure the percentage of available seating capacity filled with passengers.
14www.ixigo.com
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estimate the revenue of i at other slots (say 9:45-10:00), we consider the revenue of the other
operating flights in the slot 9:45-10:00 because we have already estimated their revenue for
slot 9:45-10:00. We generate a histogram of the revenues of all such flights, which functions
as an empirical distribution for the revenues earned by the movements in that slot. Then, we
uniformly randomly choose a value from the histogram and fix it as the revenue of i for slot
9:45-10:00. We follow these steps for each slot for which we do not have the ticket fare in the
collected data. This way, we estimate the revenue of every movement for each slot of the day,
capturing the ticket fare variation across different time slots.

In the experiments, we have an input dataset for a single day. Therefore, we consider the
valuation of a movement for a slot as equal to the revenue earned by that movement in that
slot of a day. In other words, to compute the valuation, we do not multiply the number of
times the flight services in the next six months in that slot. For consistency, the payments
calculated using the mechanism are also only for a single day. Notice that the experimental
analysis remains consistent even after valuations and payments are scaled up by multiplying by
a constant. This result is because the mechanism is applied per day for a week, and the same
allocation of a week is replicated for the next six months. Since the ticket prices are in Indian
Rupees (INR), the valuation unit is also INR.

Note that the experimental setup will remain unchanged even if we generate vijs using other
data points or methods. The valuation estimated for the experiment in this study ensures that
the results can be related to a real-world airport operation. The model’s properties including
truthfulness and improvement in social and individual utilities, are unaffected by the choice of
the valuations and will hold for any airport with a different air traffic volume and valuations
of any kind. Therefore, this experiment’s valuations are not too tightly dependent on the
estimated data valuations. Also, the timing of data collection does not affect the experimental
setup because the effect will be similar for all movements.

6.1.3 RCOF

To calculate the RCOF (Equation (3)), we require two types of data:

1. The social progress index (SPI) of the origin/destination cities.

2. The population of the cities.

The Institute for Competitiveness, India15 provided the SPI data. The population data is
obtained from the Office of the Registrar General and Census Commissioner, India16. We keep
the parameter α = 0.2 to compute the RCOF for the experiments.

6.1.4 Summary of data

On plotting the average daily movements of the two airports (see Figure 2), we observe that
flight movements are approximately four times higher in DEL than in MAA. The flight schedule
has a higher variation under the current allocation, with a few time slots having numerous
allocated movements, and ECATS provides a comparatively uniform flight movement with fewer
fluctuations. A stable air traffic movement minimizes operational quality losses and improves
airport resource allocation. Airports witness situations when terminals are clogged because of
the misallocation of airport resources—in other words, avoiding traffic fluctuations and having a
stable traffic movement will aid in the optimal use of airport resources. Incorporating congestion
cost is vital in the evenness of slot allocations, discussed in the following subsection.

15https://competitiveness.in
16https://censusindia.gov.in
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Figure 2: Average daily movements in the two airports.
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Figure 3: Individual utility of the movements at Delhi (DEL) airport.

6.2 Effect of congestion costs on individual and social utilities

We study the effect of congestion costs at individual and social levels. We define the individual
utility as the sum of utilities (i.e., the difference of valuation and payment for each movement)
of each movement divided by the total number of allotted movements. The social utility is the
value of the objective function in the optimization problem given by Equation (5). Note that
since the valuations are in INR, the unit of the utilities is also INR. We find that the individual
utility decreases with congestion costs. However, the utility is still significantly higher than
the other two mechanisms (Figures 3 and 4). Furthermore, each movement’s utility is positive
even with the increasing congestion cost, which signifies that the airlines stand to gain by
participating in the proposed mechanism.
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Figure 4: Individual utility of the movements at Chennai (MAA) airport.
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Figure 5: Social utility versus congestion cost: Delhi airport.

We also observe that the individual utility is comparable for the case of different connection
types (metro, capital, and remote cities). The result shows airlines will gain similar utility
by operating in trunk routes or connecting to remote cities. The individual utility for ECATS

decreases but is unchanged for the other two mechanisms because there was no direct consid-
eration of valuation maximization and congestion costs for slot allocations in the PSAM and
current allocations.

Figures 5 and 6 show that the social utility decreases with the increase in congestion costs.
As the congestion cost increases, ECATS considers the trade-off between allocating slots above
the threshold capacity (and increasing congestion) and rejecting the slot request. Only move-
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Figure 6: Social utility versus congestion cost: Chennai airport.
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Figure 7: Social utility and average payment versus congestion cost: Delhi airport.

ments with high valuations are allocated to these slots, and those with low values are rejected.
We see that the social utility of ECATS is higher than PSAM because the latter focuses on
minimizing the displacement of the requested slot and does not consider the congestion cost
at the time of allocation. We divide the 24h into four intervals of 6h each for better analysis
and representation. We observe that even for time intervals from 12 to 6 AM, where valuations
are the lowest, ECATS performs better than PSAM and the current allocation. Also, the so-
cial utility is comparable across different time intervals and shows a similar trend in all cases.
These experiments demonstrate that a value-sensitive allocation like ECATS can improve both
the individual and social utility by a significant amount.
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Figure 8: Social utility and average payment versus congestion cost: Chennai airport.

6.3 Effect of congestion costs on payments

One of the main features of ECATS is the payment function making mechanism truthful. In
this section, we study the effect of congestion costs on the resulting average payments of the
movements that are allocated a slot. Each movement’s payment is calculated using Equation (7).
Figures 7 and 8 show an uptrend of average payments, which is expected because a higher
congestion cost introduces more competition among the movements for the slots. The social
utility is also plotted in these figures to reference the payment scales. Figure 7 and 8 depict the
increasing payment with congestion costs and the decreasing social utility, whereas Figures 5
and 6 compare the social utility across different mechanisms.

6.4 RCOF and its impact

The flights to metro cities and financial hubs have a high valuation since the ticket prices and
load factors are high, giving them an advantage if the allocation is solely based on valuation.
The ticket fare and demand for remote routes are comparatively less due to their low purchasing
power or the cap imposed by government intervention. Hence, we provide equal opportunities
to remote cities, using the RCOF from Equation (3) in the slot allocation process. It assigns
a higher value to cities with a low SPI and a considerable population to benefit from air con-
nectivity. Since the RCOF is multiplied by the valuations of the movements in the objective
function of Equation (5), the chances of allocation of the remote cities in larger airports increase
and simultaneously, the factor 1/ρi in the payment function leads to a lower payment for such
flights.

We observe that the individual utilities of the flights to and from remote cities are comparable
to the metro cities despite their low valuations ( Figures 3 and 4), for Delhi and Chennai airports.
This happens because the average slot payment for metro cities is higher than in non-metro
state capitals, which is higher than in remote cities. Hence, ECATS is more egalitarian among
the flights irrespective of the origin/destination.

From the regulator’s viewpoint, ECATS offers opportunities for flights from remote cities and
provides an incentive for airlines to operate in public service offering routes, which are otherwise
neglected without regulatory intervention. However, between two cities with the same ρi value,
the city with a high valuation will win the slot. Moreover, our mechanism is not unfavorable
to metro cities as our RCOF calculation; we also incorporated the population of the cities.
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The metro cities with a higher population will have more slots. The policymaker can adjust
the relative SPI weight and population to decide how much importance they want to give to
remote connectivity. Moreover, when a city progresses on the economic front, its SPI value
improves, leading to similar ρi values for most cities, reducing the difference given by γmax− γi
(SPImax − SPIi), thus reducing the preferential treatment of the city. Overall, the social
progress gap improves with the development of cities, and an administrative approach might
not be required. Therefore, the ECATS will evolve and move toward a purely market-based
mechanism.

Figure 7 and 8 show that increasing congestion costs leads to more average airline payments.
Higher payments mean more internalization of airlines’ congestion costs, which they earlier
imposed on society, which has positive benefits to society regarding lower environmental and
noise pollution and less waiting time for passengers. As shown, social utility decreases with
an increase in congestion cost because we have only considered airline utilities in social utility
calculations. Since airlines pay more by internalizing the congestion cost, their utilities go down.
However, with reduced congestion, airlines will save more aircraft use, crew members and less
fuel burn.

The social utility generated using ECATS is 20%-30% higher than PSAM and current alloca-
tion (Table 2). It is interesting to note that PSAM allocation performs better than the existing
allocation by 10%-15%, whereas our mechanism outperforms PSAM. The properties of ECATS
help us consider the congestion costs and RCOF in the objective function and incentivize a
truthful value revelation by the airlines. The payment mechanism also considers congestion
costs and RCOF, thereby driving airlines to operate in less congested slots and connect to
remote cities. This study is the first to consider all three goals and provide a truthful and
individually rational mechanism for airport slot allocation.

Table 2: Percent improvement in social utility of ECATS vis-a-vis Current and PSAM based
allocations.

Chennai (MAA) Airport Delhi (DEL) Airport

% Improvement w.r.t.

Time
Interval

Congestion
Cost (in
INR)

Current
allocation

PSAM al-
location

Current
allocation

PSAM al-
location

6AM -
12PM

15000 29.9% 4.6% 35.1% 6.2%
20000 28.4% 4.8% 33.5% 6.4%
25000 26.6% 5.1% 31.7% 6.4%
30000 24.3% 5.6% 30.4% 6.9%

12PM
- 6PM

15000 29.9% 12.3% 43.2% 10.2%
20000 29.1% 12.6% 42.4% 10.3%
25000 28.4% 13.2% 41.1% 10.5%
30000 27.0% 13.4% 39.6% 10.8%

6PM -
12AM

15000 36.9% 11.4% 34.2% 7.1%
20000 37.8% 11.5% 33.3% 7.3%
25000 38.9% 12.0% 31.9% 7.6%
30000 39.9% 12.8% 29.9% 8.0%

12AM
- 6AM

15000 28.7% 19.2% 32.1% 8.4%
20000 29.7% 19.6% 30.5% 8.7%
25000 31.0% 20.6% 28.5% 8.9%
30000 32.4% 21.6% 26.5% 9.2%
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7 Conclusions

This study examined the slot allocation process from multiobjective viewpoint. We started by
considering of two major problems of the airline industry, congestion and regional connectivity.
We combined the features of market-based and administrative instruments in a single dominant
strategy incentive compatible mechanism with efficiency and social connectivity goals. The
proposed mechanism provides a flexible and transparent approach to slot allocation and the
analytical results offer meaningful policy implications. The mechanism is solvable in polynomial
time. The study has several managerial and practical implications which are discussed.

First, the proposed mechanism provides a fine balance between three competing goals: ef-
ficiency, remote city connection and congestion mitigation. From an airport’s perspective, the
proposed model optimizes the slot allocation based on movement valuation and congestion costs.
Therefore, airport managers have an efficient model that allocates slots to movements based on
valuations. From a policymaker’s perspective, the model also considers regional connectivity
by incorporating RCOF. The population weights and SPI of the cities can be flexibly changed
based on policymakers’ goal. It provides equal opportunity to flights from metro and small
cities because we find the average utility of flights comparable to the experimental results. Fur-
thermore, the relationship between airport capacity and congestion is examined using variable
capacity. It captured the phenomena of congestion when the capacity used exceeded its limits.
The ‘threshold limit’ of airport capacity can be adjusted for different airports because it depends
on factors such as aircraft types and technology. The ‘threshold limit’ could be an upper limit
for the airport’s uncongested capacity. Our mechanism brings in flexibility where:

• congestion and its associated cost can be tuned based on the airport’s historical congestion
data.

• threshold limit of capacity can be adjusted for different airports.

• the mechanism can be tweaked according to the objective of airport/priority of the policy
maker, as it provides adjustable weights of SPI and population of the remote city, which
caters to social obligations for slot allocation.

This study’s second contribution comes from the methodology used in solving the proposed for-
mulation. Solving the objective function for maximizing social welfare using the affine maximiser
is an efficient and effective approach to mechanism design. The affine maximizer mechanisms
are strategy-proof and individually rational (the agents’ valuations for the chosen allocations
are nonnegative). Therefore, our mechanism is incentive compatible with dominant strategies.
No player can receive better utilities by misreporting their true valuation for the slots. The
formulation is polynomial solvable because LP relaxation yields an optimal solution in integers
in polynomial time.

This study’s third contribution is its payment rule. The payment rule captures the external-
ity imposed by a movement on the others. It is calculated as the difference between the social
welfare generated without the movement and the sum of the weighted valuations of all other
airlines if it participates in the allocation. The resulting payment captures two properties:

• The contribution of a specific movement to congestion

• The type of connectivity it provides (metro city, non-metro capital city or small city.)

Further, a policy maker viewpoint, the model aligns with the current practice of submitting
slot requests at each airport. The slot requests currently submitted to airports contain informa-
tion on flight numbers, arrival and departure times, and flight routes. The proposed model runs
with only this information and does not require a change in this process. Regarding tricking the
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mechanism, we have proven that the only dominant strategy for airlines is to reveal their true
values. The process relies on participants’ truthfulness, which significantly contributes to policy
making. The model also caters to the problem of airlines participation as we have proven the
model’s individual rationality property. Thus, ECATS is designed to solve airport’s congestion
and remote cities’ connectivity problems simultaneously.

The mechanism is designed to assign low payments to remote city connections, encouraging
airlines to operate on remote routes. Moreover, the high payment value for trunk routes dis-
courages airlines from increasing frequency on only metro routes. The mechanism also considers
the congestion externality imposed by a movement and charges a fee based on the movement’s
contribution. Hence, the payment mechanism emulate properties of the Pigouvian tax, used to
correct inefficient markets by imposing a fee equal to the marginal cost of the negative external-
ity. The proposed payment also drives our mechanism to be incentive-compatible and charge a
higher cost to movements with negative externalities.

We have also shown that ECATS is weakly budget-balanced, meaning the planner does not
require any external subsidy to operate and might even earn revenue. The sum of the pay-
ments made by all airlines will be either positive or equal to zero. In practice, airports earn
revenue from aeronautical and commercial activities, where commercial operations contribute
65% ± 10% percent of the total airport revenues. Sometimes, airports use concession revenue
to subsidize aeronautical activities. Therefore, ‘weakly budget-balance’ is a sufficient and ac-
ceptable property for ECATS applications.

Limitations and future research directions

There are various possible ways to extend the work. Future studies can extend the literature
on slot allocation by incorporating these limitations into their models. We considered a single
airport for slot allocation and future studies might consider multiple airports for slot allocations
simultaneously. Congestion in a single slot has a cascading effect on subsequent movements, and
future studies might consider the rolling capacity constraint for different slots. In our remote
city connectivity factor, we considered the SPI and population of the cities. Future studies
could incorporate the availability of other transportation modes such as rail, road and water
into these cities.
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Hebdomadaires des Séances de l’Académie des Sciences (Paris), 254:1192–1194, 1962.

Green, J. R. and Laffont, J.-J. Incentives in Public Decision Making. North-Holland, 1979.

Green, R. K. Airports and economic development. Real estate economics, 35(1):91–112, 2007.

Grötschel, M., Lovász, L., and Schrijver, A. Complexity, oracles, and numerical computation.
In Geometric Algorithms and Combinatorial Optimization, pages 21–45. Springer, 1993.

Groves, T. Incentives in teams. Econometrica, 41:617–631, 1973.

Harsha, P. Mitigating airport congestion: market mechanisms and airline response models. PhD
thesis, Massachusetts Institute of Technology, 2009.

Horton, W. British airways cuts threaten crown jewel of slots at london heathrow and
gatwick, May 2020. URL https://www.forbes.com/sites/willhorton1/2020/05/04/

british-airways-cuts-threaten-crown-jewel-of-slots-at-london-heathrow-and-gatwick/

#359a052b7cdf.

IATA. Worldwide slot guidelines, eighth ed, 2017. URL https://www.iata.org/policy/

slots/Documents/wsg-8-english.pdf.

Leandro, F., Andrade, A. R., and Kalakou, S. Designing aviation networks under public service
obligations (pso): A case study in greece. Journal of Air Transport Management, 93:102042,
2021.

Li, R., Nie, Y., and Liu, X. Auction-based permit allocation and sharing system (a-pass) for
travel demand management. Transportation Science, 56(2):322–337, 2022.

Li, Z.-C., Lam, W. H., Wong, S., and Fu, X. Optimal route allocation in a liberalizing airline
market. Transportation Research Part B: Methodological, 44(7):886–902, 2010.

Mehta, R. and Vazirani, V. V. An incentive compatible, efficient market for air traffic flow
management. Theoretical Computer Science, 818:41–50, 2020.

Moulin, H. Fair division and collective welfare. MIT press, 2003.

31

https://www.faa.gov/air_traffic/by_the_numbers/media/Air_Traffic_by_the_Numbers_2020.pdf
https://www.faa.gov/air_traffic/by_the_numbers/media/Air_Traffic_by_the_Numbers_2020.pdf
https://www.forbes.com/sites/willhorton1/2020/05/04/british-airways-cuts-threaten-crown-jewel-of-slots-at-london-heathrow-and-gatwick/#359a052b7cdf
https://www.forbes.com/sites/willhorton1/2020/05/04/british-airways-cuts-threaten-crown-jewel-of-slots-at-london-heathrow-and-gatwick/#359a052b7cdf
https://www.forbes.com/sites/willhorton1/2020/05/04/british-airways-cuts-threaten-crown-jewel-of-slots-at-london-heathrow-and-gatwick/#359a052b7cdf
https://www.iata.org/policy/slots/Documents/wsg-8-english.pdf
https://www.iata.org/policy/slots/Documents/wsg-8-english.pdf
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Appendices

A Maintaining a minimum time gap between arrival and de-
parture of the same movement (flight)

The arrival of a movement generally has an associated departure. The two movements are to
be operated sequentially by the same aircraft, at the same airport, The time that passes from
landing until take off for a new flight is called the turnaround time. During the turnaround
time aircraft is serviced (i.e., cleaned, re-fuelled, etc.), and new passengers embark. We modify
our model to include the turnaround time constraint for which both an arrival and a departure
time have been stipulated. The arrival time is separated from a departure by at least a fixed
time interval that we assume to be ∆.

To maintain the constraint of the turn around time between related arrival-departure flights,
we define an |M | × |M | infeasibililty matrix denoted by F . For i, i′ ∈M , if i is an arrival flight,
i′ is a departing flight and, if i′ uses the same aircraft used by i then, Fii′ = 1 otherwise Fii′ = 0.
If Fii′ = 1, i′ must be assigned to a slot only if i is assigned a slot and the slot assigned to
i′ must be after j + ∆, where ∆ ∈ Z≥0. Notice that the matrix F can be decided before the
mechanism as it is independent of the allocation and payment function.

A.1 The modified mechanism

The mechanism takes the arrival-departure constraint information of the movements as an input
through the matrix F .

Allocation function: The allocation function corresponding to the Equation (5) is as
follows.

argmax
A

∑
j∈S

∑
i∈M

(ρi vij xij) − ej(x) g

subject to
∑
i∈M

xij 6 Cj ∀j ∈ S,∑
j∈S

xij 6 1 ∀i ∈M

Fii′

xij +
∑

j′∈S∩[1,j+∆]

xi′j′

 6 1 ∀i, i′ ∈M ∀j ∈ S

Fii′

∑
j′∈S

xi′j′ −
∑
j∈S

xij

 6 0 ∀i, i′ ∈M

xij = {0, 1} ∀i ∈M ∀j ∈ S

(15)

In Equation (15), the first and second set of constraints are same as that in Equation (5).
The third set of constraints ensures that a pair (i, i′) of movements with Fii′ = 1, the movements
are never both allocated to the slots in range (j, j + ∆). In other words, if i is allocated to a
slot j then, i′ is never allocated a slot between 1 and j+∆. The fourth set of constraint ensures
that for an arrival-departure pair of movements (i, i′) where Fii′ = 1, the departure flight i′ is
never assigned a slot unless the arrival flight i gets a slot.

The LP relaxation of Equation (15) after expanding the expression of ej (as done in Equa-
tion (6)) is as follows:

34



argmax
A,w

∑
j∈S

∑
i∈M

(ρi vij xij) − wj g

subject to
∑
i∈M

xij 6 Cj , ∀j ∈ S∑
j∈S

xij 6 1, ∀i ∈M

∑
i∈M

xij − wj 6 Tj , ∀j ∈ S

Fii′

xij +
∑

j′∈S∩[1,j+∆]

xi′j′

 6 1 ∀i, i′ ∈M ∀j ∈ S

Fii′

∑
j′∈S

xi′j′ −
∑
j∈S

xij

 6 0 ∀i, i′ ∈M

xij > 0, wj > 0, ∀i ∈M, ∀j ∈ S

(16)

where, Tj = Cj(1− λ).
Payment function: The expression for payment function in the modified mechanism is

same as that in Equation (7). However, to compute the allocation A(·) used in Equation (7),
the Equation (16) is used.

A.2 Social and strategic guarantees

Notice that, the objective function of optimization problem (equation (16)) solved for allocation
is same as that in Equation (6). This implies that our social goals such as, egalitarianism,
congestion-awareness are maintained in the modified mechanism as the Equation (16) finds the
optimal allocation among the feasible allocations that maximises the social utility (equation (4)).

As there is no change in the expression for payment and the objective function of the
optimization problem for allocation, the proofs for Theorems 1 to 3 discussed in Section 5
remain intact. Hence, the theoretical guarantees regarding the implementation of the objectives,
truthfulness, individual rationality, and weak budget-balance remain valid after the addition of
the constraints to maintain the minimum time gap between arrival and departure of the same
aircraft.

A.3 Experimental validation of total unimodularity

We have experimentally checked the total unimodularity of the coefficient matrix of Equa-
tion (16) on a variety of numeric input instances. We vary for the number of slots (n) from 1 to
500, number of movements (m) from 1 to 50, the minimum turn-around for movements using
same aircraft (∆) from 1 to n. For each instance of such (m,n,∆), we arbitrary generate the
matrix F . The coefficient matrix has no dependency with the capacity of the slots hence, we fix
the capacity of each slot to 10. Similarly, for other parameters (e.g., RCOF, per unit congestion
cost, etc) which do not alter the coefficient matrix, we fix arbitrarily generated constant values
to them. In the experiments we found that that, for all these input instances, the solution of
Equation (16) is integral. This gives us some intuition that the coefficient matrix is TU, and
if so, Equation (16) can be solved in polynomial time, and the solutions correspond to that
of Equation (15). However, we leave the theoretical proof for the total unimodularity of the
coefficient matrix of Equation (16) as a future exercise.
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