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Abstract

Motivated by electric vehicle (EV) charging, we formulate the problem of fair and ef-
ficient allocation of a divisible resource among agents that arrive and depart over time
and consume the resource at different rates. The agents (i.e., the EVs) derive utility from
the amount of charge gained, which depends on their own charging rate as well as that
of the charging outlet. The goal is to allocate charging time at different outlets among
the EVs such that the final allocation is envy-free, Pareto optimal, and in certain contexts,
group-strategyproof. The differences in the charging rates of the outlets and the EVs, and
a continuous time-window where the arrivals and departures occur make this a non-
trivial combinatorial optimization problem. We show possibilities and impossibilities of
achieving a combination of properties such as envy-freeness, Pareto optimality, leximin,
and group-strategyproofness under different operational settings, e.g., when the EVs have
(dis)similar charging technology, or when there are one or more dissimilar charging out-
lets. We complement the positive existence results with polynomial-time algorithms.

1 Introduction
Climate change has pushed all nations across the globe to consider low carbon-emitting solu-
tions for their daily routine. In the transportation sector, the electric vehicles (EV) have received
a significant endorsement by the governments and acceptance from the consumers primarily
because of their carbon-friendly behavior and the subsidies provided by the administration
in promoting them. This has reflected in the growth of the EV market in various geographies,
in particular, in the developing economies (Bank, 2022). However, the growth of the EV mar-
ket has also brought in a different challenge which is not very common in the traditional
transportation sector. The current battery technology of the EVs typically requires frequent
charging (once, or more, in a day for affordable EVs that run continuously during the day),
but each charge takes a significant amount of time (a 20 kW fast charger takes approximately
1.5 hours to charge a 30kWh battery). This time constraint, along with relatively smaller num-
ber of (particularly ‘fast’) charging outlets make the allocation of EVs to the charging outlets
to be an incredibly complicated combinatorial optimization problem. Ensuring this in a fair
and efficient manner is an important and timely problem to consider.

In this paper, we consider the mechanism design problem of efficient and fair scheduling
of EVs in the available charging outlets. We assume that the prices per unit of electricity is
fixed (e.g., by some regulatory authority) and not part of the mechanism. However, the arrival
and departure time as well as the demand of electricity are assumed to be privately known
to the EVs (or their owners). Hence, another objective in this setup is to elicit this private
information truthfully from them.
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Table 1: Summary of results

Identical cars Non-identical cars
Properties Single/Multiple outlet(s) Single outlet Multiple outlets

Envy-freeness+Max-Delivered (Theorem 3, Corollary 1) (Example 2) (Example 3)
(Algorithm 2, 2 LP calls)

Envy-freeness+Pareto-Optimality (Theorem 3) (Theorem 6) ?
(Algorithm 2, 2 LP calls) (Algorithm 3, 2 LP calls)

Envy-freeness+Pareto-Optimality+ (Theorems 1, 2) ? ?
Group-strategyproofness (Algorithm 1, n LP calls)
Leximin+Group-strategyproofness (Theorems 1, 2) (Theorems 4, 5) (Theorems 4, 5)

(Algorithm 1, n LP calls) (Algorithm 1, n LP calls) (Algorithm 1, n LP calls)
Leximin+Envy-freeness+ (Theorems 1, 2) (Example 2) (Example 3)
Group-strategyproofness (Algorithm 1, n LP calls)

Brief overview of the current EV technology The cost-efficient current EV charging tech-
nology (Zheng et al., 2021; Wikipedia, 2023), which is used in most commercial and personal
vehicles at scale, mainly depends on the following four factors: battery size, current battery
charge, vehicle’s maximum charging rate, and charger’s maximum charging rate. Naturally, a larger
battery size requires more time to charge. Though there is a slight non-linearity in the charg-
ing time based on the current charge level, for operational purposes, it is generally a common
practice to assume the charging rate as a constant throughout the duration of the charge. The
effective charging rate of a vehicle is considered to be the minimum of the vehicle’s inward
rate and the charger’s outward rate. In this paper, we consider these points to model the EV
scheduling problem.

1.1 Our contributions

The major contributions of this paper are the following:

1. We propose a continuous-time model of EV charging with different rates of the vehicles
and the outlets. Earlier models (Gerding et al., 2019a; Rigas et al., 2022, e.g.) consider
time to be discrete and charging rates of only one side (EV or charger) of the market. The
difference in vehicle and outlet charging rate model makes it a non-trivial combinatorial
optimization problem.

2. We consider well-studied economic properties such as envy-freeness (EF, adapted to this
setup), Pareto optimality (PO), and group strategyproofness (GSP), and show that for dif-
ferent settings based on the number of outlets and the type of vehicles, only certain
properties are possible to achieve. For instance, we consider cars that have similar
technology and hence an uniform incoming charging rate while there may be multi-
ple different charging outlets providing different outgoing rates of charging. Later we
consider cars with different technologies, and hence, with different incoming charging
rates. The results for all such scenarios are summarized in Table 1.

3. Wherever the properties are possible to achieve, we provide polynomial-time algorithms
to achieve them. The continuous time model also enables us to express the desired goals
such as EF and PO as linear programs, making them computationally tractable.

1.2 Related work

The relevant literature for our work can be roughly classified into two categories. First,
the allocations of divisible resources that involve monetary transfers. The literature in this
strand considers scheduling using payments as a tool to satisfy several objectives (Gerding
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et al., 2011, 2016; Stein et al., 2012; Bilh et al., 2016). The minimization of cost in EV charging
is also addressed in (Mehta et al., 2016; Sun et al., 2016; Liu et al., 2017). De Weerdt et al.
(2017) consider the computational complexity of battery charging algorithms with monetary
payments.

The second category comes from the classical field of scheduling (Pinedo, 2012). Porter
(2004) investigates strategic aspects of maximizing weighted completion in online hard real-
time scheduling where tasks have weights, release times, deadlines, and durations. In the
context of EV charging, Gerding et al. (2019a) provide several fairness guarantees.

The problems we address in this paper are different from both these strands in various
ways. We consider mechanisms without monetary transfers. We primarily consider fairness
and efficiency guarantees, and wherever achievable, also aim for group-strategyproofness.
This combination of properties, particularly with a model inspired by EV charging, has not
been investigated in the literature to the best of our knowledge. The paper closest to ours
is (Gerding et al., 2019a), which considers time to be discrete and charging rates of only EV
side of the market. The authors do not consider properties like leximin, Pareto optimality, or
group-strategyproofness. The properties like leximin and GSP have been investigated before
but in a different domain. Particularly, Bogomolnaia and Moulin (2004) and Kurokawa et al.
(2018) show that in matching problems and under dichotomous preferences, a leximin allo-
cation satisfies PO, EF (classical notion), GSP and proportionality. Additionally, (Kurokawa
et al., 2018) also provides a general framework mentioning four sufficient conditions: convex-
ity, equality, shifting allocations, and optimal utilization, which when satisfied would imply
the above properties. However, the sufficient conditions given by Kurokawa et al. (2018) do
not hold in our setting (see details in the below section). In addition, we provide tractable
algorithms for leximin, which has been shown to be NP-hard in (Kurokawa et al., 2018).

1.2.1 Differences of our setup and results from the related works

Though our problem setup is unique, it resembles a similar framework as the randomized
matching of indivisible items (Bogomolnaia and Moulin, 2004; Kurokawa et al., 2018). While
Kurokawa et al. (2018) also show that some of the conclusions hold even for a general setup,
we show in this section that how our setup does not fall under that general setup and hence
does not inherit those conclusions automatically. Still, we show that some of this properties,
e.g., PO, EF (different from our definition, see the discussion following Definition 2), and GSP,
are possible to achieve in our setup and in a computationally tractable manner.

Kurokawa et al. (2018) provide a general framework with four sufficient conditions: con-
vexity, equality, shifting allocations, and optimal utilization which when satisfied would imply the
properties of PO, EF, GSP, and proportionality. The above implication applies to any domain
of mechanisms without money. We find that even though convexity and shifting allocations
are satisfied for our setup, optimal utilization does not (we skip equality since it is required
only for proportionality which we do not consider in this paper). Also, the EF condition is
different as we discussed earlier. Hence, the conclusions of this paper do not follow from
(Kurokawa et al., 2018). In this section, we highlight the differences in our setting compared
to the the school matching problem Kurokawa et al. (2018), and show which properties are
satisfied and violated.

Our setting contains a divisible resource which needs to be allocated under arrival-
departure constraints with EVs having utility based on the energy that they receive as defined
earlier. Whereas, (Kurokawa et al., 2018) addresses the problem of matching charter schools
to public schools with the former having dichotomous preferences over the public schools.
Also, the EF notion is slightly different as discussed above. Next we consider the properties
one by one.
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It is easy to see that the set of all feasible allocations X in our setting forms a polytope
given by the linear constraints below, and hence satisfies convexity.

∑j∈Ji ∑k∈M yijkrik ⩽ ci, ∀i ∈ N

∑i∈N xijk ⩽ |Ij|, ∀k ∈ M, j ∈ J

∑k∈M xijk ⩽ |Ij|, ∀i ∈ N, j ∈ J

xijk ⩾ 0, ∀i ∈ N, j ∈ J, k ∈ M.

(1)

Shifting allocations (Kurokawa et al., 2018) is ‘required’ for their notion of EF. Even though
our setting consists of arrival-departure constraints and we adapt the EF notion appropriately,
the shifting allocation requirement is met since it is described over the set of all feasible
allocations. However, our setup does not admit optimal utilization in general, which is required
for EF and GSP. To illustrate this consider the following example.

Example 1. Consider two agents with the following types θ1 = (0, 5, 12), rEV
1 = 3, θ2 =

(0, 5, 8), rEV
2 = 2, and a single charging outlet with rCh = 4. Thus, the effective rates of the

agents are r1 = 3, r2 = 2. Consider the leximin allocation of 2 to agent 1 and 3 to agent
2. Clearly, u1(A2) > u2(A2) which violates Lemma 4 of (Kurokawa et al., 2018) and also the
optimal utilization property.

2 Preliminaries
Consider a set of electric vehicles (EVs) given by N = {1, 2, . . . , n} and a set of charging outlets
M = {1, 2, . . . , m}. The maximum charging rates of the vehicles and the outlets are rEV

i , i ∈ N
and rCh

k , k ∈ M respectively. The rate at which vehicle i will charge when plugged into an
outlet k is given by rik = min{rEV

i , rCh
k }. This model captures the charging aspect of a current

EV technology (Zheng et al., 2021). We consider the vehicles as agents1 and an aggregator
(or an application that manages the charging outlets) in a region as the planner. Agent (EV)
i ∈ N comes with type θi denoted by the triplet (ai, di, ci), where ai and di denote the arrival
and departure times of the EV (within a given time horizon, e.g., a day) and ci is her demand
of electricity. Note that θi is agent i’s private information and the planner needs to elicit
this information. The type profile is denoted by θ and the set of all feasible type profiles
is denoted by Θ. We assume that the planner is non-strategic and its objective is to assign
the power outlets to the EVs satisfying certain desirable goals as discussed in the following
section. When asked about their types, agent i ∈ N reveals θ̂i = (âi, d̂i, ĉi), which may be
different from θi, her true type. Based on the reported types θ̂, we divide the time horizon into
a set of non-overlapping and exhaustive time intervals that cover the earliest arrival and the
latest departure time in the following way. From θ̂, the time checkpoints are identified where
an agent either arrives or departs. Let tstart = min{âi : i ∈ N} and tend = max{d̂i : i ∈ N}
be the earliest arrival and the latest departure times respectively. Let the (ascending) sorted
order of the time checkpoints except for tstart and tend be denoted by t1, t2, . . . , tk(θ̂) such
that ∃i ∈ N,∋ tℓ = ai or di, ∀ℓ = {1, 2, . . . , k(θ̂)}. We denote the collection of intervals2

{[tstart, t1), [t1, t2), . . . , [tk(θ̂), tend]} by I(θ̂) where the active agents remain the same in any
given interval. We use the index j to denote an interval in I(θ̂) and the set of such indices by
J(θ̂). A member of I(θ̂) will be denoted as Ij for j ∈ J(θ̂). When clear from the context, we
will use the shorthand J for J(θ̂). Therefore, the indices of the active intervals of agent i ∈ N
are denoted by Ji := {j ∈ J(θ̂) : Ij ∩ (ai, di) ̸= ∅}. The total time duration of any interval
Ij ∈ I(θ̂) will be denoted by |Ij|.

1We will use the terms ‘EV’ and ‘agent’ interchangeably in this paper.
2Note that, for n agents, the number of intervals is at most 2n − 1.
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The feasible allocation set X An allocation is specified by the three-dimensional matrix
x = [xijk, i ∈ N, j ∈ J, k ∈ M], where xijk denotes the time allocated to agent i in inter-
val j at charging outlet k. We require an allocation to satisfy the following conditions: (1)
the total time allocated to all agents at a given interval at an outlet should be at most the
interval duration, i.e., ∑i∈N xijk ⩽ |Ij|, ∀j ∈ J, ∀k ∈ M, (2) the total time allocated to an
agent i across different outlets at a given interval should be at most the interval duration,
i.e., ∑k∈M xijk ⩽ |Ij|, ∀j ∈ J, ∀i ∈ N, (3) no agent is allocated resource more than its de-
mand, i.e., ∑j∈Ji ∑k∈M xijkrik ⩽ ci, ∀i ∈ N, and (4) the time allocated are non-negative, i.e.,
xijk ⩾ 0, ∀i ∈ N, j ∈ J, k ∈ M. An allocation is said to be feasible if agent i is always allocated
time within her active interval Ji, i.e., xi,j,k > 0 ⇒ j ∈ Ji. Note that an allocation does not
specify the starting and ending time within an interval for a charging outlet. Hence, xijk can
be assigned to i at any time within the j-th interval at k-th charging outlet. We denote the
allocation to agent i by xi := (xijk)j∈J,k∈M, the complete feasible allocation by x = (xi)i∈N , and
the set of all feasible allocations by X. Figure 1 gives an illustrated example.

Time

Active Interval

Active Interval

Type=(2,4,6)

Type=(0,4,8)

Interval 1 Interval 2

Figure 1: Example of the setup with two EVs and two outlets.

The utility function of agent i ∈ N is given by ui : X → R⩾0.3 Formally, ui(x) = ui(xi) =

min{ci, ∑j∈Ji ∑k∈M xijkrik}, ∀i ∈ N. This definition captures the fact that the agent has utility
only for the part of the resource it receives during its active interval at its own rate. More
generally, we define the utility of an agent i ∈ N for any agent h’s allocation xh as follows.
Note, this is computed at i’s charging rate and in i’s active interval.

ui(xh) = min

{
ci, ∑

j∈Ji

∑
k∈M

xhjkrik

}
. (2)

The utility of an agent i for a different agent h’s allocated time, xh, is computed at i’s charging
rate. We emphasize even though we have chosen this model for ease of exposition of our
results in the paper, some of our results extend to the cases where the utility ui, ∀i ∈ N is

3This is the net payoff after subtracting the payments an agent makes for the allocated electricity. In this paper,
we assume that the payment for resources such as electricity is externally decided (e.g., by regulators like the
government) and the planner can only decide the allocation.

5



monotone increasing in the resource allocated to agent i till it reaches its demand ci, i.e.,

ui(xh) = min

{
ci, gi

(
∑
j∈Ji

∑
k∈M

xhjkrik

)}
. (3)

The function gi can be any monotone increasing function. We clarify and provide further
explanation after every result that can be generalized for monotone utility functions.

Given the reported type profile θ̂, the planner decides the allocation which is given by the
function f : Θ → X. We denote the allocation of agent i resulting from f as fi(θ̂). In the next
section, we consider a few desirable properties of this function.

Design Desiderata

We consider allocation mechanisms that satisfy efficiency and fairness properties. The most
common efficiency goal for resource allocation is Pareto optimality, defined as follows.

Definition 1 (Pareto Optimality (PO)). An allocation x ∈ X is Pareto optimal (PO) if there does
not exist y ∈ X such that, ui(y) ⩾ ui(x), ∀i ∈ N and ui′(y) > ui′(x), for some i′ ∈ N. An
allocation function f is PO if for every θ ∈ Θ the allocation f (θ) is Pareto optimal.

On the fairness front, we want our allocation to be EF among the agents. The classical
definition of envy-freeness (Foley, 1966; Gamow and Stern, 1958) for divisible items requires
that the agents should get a payoff for their allocated resource at least as much as that for the
resource allocated to any other agent. Note that in our scenario the resource allocated to an
agent is a time duration at a charging outlet, and an envying agent’s utility is determined by
that resource allocated to her and evaluated for the energy drawn at her own charging rate.
Thus, we say an agent i envies another agent i1’s bundle (xi1) if its valuation for xi1 is greater
than xi when both bundles are evaluated at i’s charging rate. Since the utility of agent i from
xi1 is evaluated only for the active intervals of i, the envy-freeness definition below implies that
agent i does not envy the resource that it can consume from i1’s allocation in its own active
intervals.

Definition 2 (Envy-freeness (EF)). An allocation x is envy-free (EF) if ui(xi) ⩾ ui(xi′) for every
i, i′ ∈ N, where xi and xi′ are the allocations of agents i and i′ respectively. An allocation
function f is EF if f (θ) is EF for every θ ∈ Θ.

Note that our setup departs from the setup of Gerding et al. (2019b) in two aspects: (1) time
is continuous in our model as opposed to discrete there, and (2) the allocation is in terms of
‘time’ as opposed to ‘energy’ (or resource) in Gerding et al. (2019b). This change manifests
both in the utility and the envy-freeness definitions as the agents in our setting compares
two allocations in time versus the allocations in energy. Hence, our results are not directly
comparable to Gerding et al. (2019b). Also, this definition of EF is different from Kurokawa
et al. (2018) as follows. (1) EF in (Kurokawa et al., 2018) considers no arrival and departure
constraints of the agents. (2) The utilities considered are dichotomous, which implies that if
some acceptable set of resources are provided to the agent, it gets a fixed utility. In the EV
setup, the utilities vary based on the different effective rates an agent (EV) gets when it is
assigned in two different charging outlets. This cannot be constructed even with randomized
allocations in the dichotomous domain.

The allocations and the properties above depend on the agent-reported types θ̂, and hence
another desirable property of an allocation function is strategyproofness. This property is
defined in two levels of generality: first, where no individual agent can manipulate their true
type and gain a better allocation irrespective of the reports of the other agents, and second,
where no group of agents can manipulate their true type vector and each gain a strictly better

6



allocation irrespective of the reports of the agents outside the group. The formal definition is
as follows.

Definition 3 (Manipulability). An allocation function f is

• manipulable if there exists θ ∈ Θ and i ∈ N, s.t. ui( f (θ′i , θ−i)) > ui( f (θi, θ−i)) for some θ′i ,
and

• group manipulable if there exists θ ∈ Θ and S ∈ 2N \ ∅, s.t. for every i ∈ S,
ui( f (θ′S, θ−S)) > ui( f (θS, θ−S)), for some θ′S.

We call an allocation function strategyproof (SP) if it is not manipulable, and group strate-
gyproof (GSP) if it is not group manipulable. Note that, since manipulability implies group
manipulability, group strategyproofness implies strategyproofness.

Another fairness condition called leximin occurs in the context of matching problems (Bo-
gomolnaia and Moulin, 2004; Kurokawa et al., 2018), defined as follows.

Definition 4 (Leximin). An allocation is said to be leximin-optimal or leximin if it maximizes
the minimum utility that any agent receives; and subject to this, maximizes the second least
utility, and so on. Formally, let u(1)(x), u(2)(x), . . . , u(n)(x) denote the non-decreasing order of
agent utilities for an allocation x ∈ X. Then, x is leximin if it maximizes the above utilities
in the lexicographic order. Correspondingly, an allocation function f is leximin if f (θ) is a
leximin allocation for every θ ∈ Θ.

Finally, from the planner’s perspective, a desirable objective is to deliver the maximum
amount of resources to the agents. This property is called Max-Delivered (MD) by Gerding et
al. (2019b), defined as follows.

Definition 5 (Max-Delivered (MD)). An allocation x′ is Max-Delivered (MD) if

x′ ∈ argmax
x∈X

∑
i∈N

∑
j∈Ji

∑
k∈M

xijkrik.

Correspondingly, an allocation function f satisfies MD if for every θ ∈ Θ, f (θ) satisfies MD.

In the following sections, we focus on finding allocations that satisfy a combination of the
above properties. If such a combination of properties are achievable, then we focus on finding
a computationally tractable algorithm.

3 Results
Our results are summarized in Table 1 that shows the different paradigms we consider in this
paper. First, we investigate the setting where the EVs have identical charging rates. This is
of practical importance since under a specific EV technology the accepting rates of charging
cables or batteries are highly standardized (Zheng et al., 2021). However, the charging outlets
could be non-identical and we consider them under this scenario. It turns out that the guar-
antees we can provide here also translate to multiple non-identical charging outlets and hence
the results are clubbed into one column. Next, we delve into the more general setting where
EV charging rates can be non-identical. We consider different combination of properties deal-
ing with fairness, efficiency, and strategyproofness and show that some of these combinations
are impossible in certain settings. Wherever feasible, we provide polynomial-time algorithms
to compute them. In the following sections, we analyze the identical and non-identical cars
paradigms separately and present our results.
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3.1 Identical cars: EF, PO, and GSP

In this section, we consider cars with identical charging rates, i.e., rEV
i = r, ∀i ∈ N.

We show that a leximin allocation satisfies Pareto-optimality, envy-freeness, and group-
strategyproofness. We also provide an algorithm to find a leximin allocation in polynomial
time. To prove that a leximin allocation satisfies envy-freeness and group-strategyproofness,
we make use of the following lemma.

Lemma 1. In the identical cars setup, for any feasible allocation x ∈ X, we have ui(xi) ⩾
ui′(xi), for all i, i′ ∈ N.

Proof. Since charging rates of cars are identical, this directly follows from our definition of
utility. Note that for a feasible allocation x ∈ X, an agent i has utility for a bundle xh
at its own charging rate and within its active interval. Thus, for any i, i′ ∈ N we have
ui(xi) = ∑j∈Ji ∑k∈M xijkrk ⩾ ∑j∈Ji′ ∑k∈M xijkrk ⩾ ui′(xi) since active intervals of i′, Ji′ , can at
most span over the entire allocated interval to i, xi, as it is a feasible allocation, i.e., allocates
to i only when it is active.

It is easy to see that the set of all feasible allocations X in our setting forms a polytope
given by a set of linear constraints, and hence satisfies convexity, i.e., if x, y ∈ X ⇒ λx + (1 −
λ)y ∈ X, ∀λ ∈ [0, 1]. We require another result called prefix-optimality (originally proposed
in (Kurokawa et al., 2018)) to prove our claim. Define, for any feasible allocation x ∈ X and
agent i ∈ N, prefix of i in allocation x as prefx(i) = {i′ ∈ N : ui′(xi′) ⩽ ui(xi)}, i.e., the agents
who do not appear after agent i in the leximin order w.r.t. x.

Lemma 2. For any leximin allocation x ∈ X and an agent i ∈ N, there does not exist another x′ ∈ X
such that some agent in prefx(i) realizes a strict gain in utility under x′ while no agent in prefx(i)
realizes a loss in utility.

Proof. Suppose, for contradiction, there exists x′ ∈ X and an agent i ∈ N such that some
agent in prefx(i) realizes a strict gain in utility under x′ while no agent in prefx(i) realizes a
loss in utility. Convexity allows us to construct another feasible allocation y = (1 − ϵ)x + ϵx′,
where 0 < ϵ < 1 − (ui(xi)/ min{uj(xj) : uj(xj) > ui(xi)}) < 1. Observe that for every
agent i′ ∈ prefx(i), ui′(yi′) ⩾ ui′(xi′) and there exists i′′ ∈ prefx(i), such that ui′′(yi′′) >

ui′′(xi′′) (by assumption of x′). Moreover, since y = (1 − ϵ)x + ϵx′ and the utilities are linear
(Equation (2)), we get uj(yj) ⩾ (1 − ϵ)uj(xj), ∀j ∈ N, and due to the choice of ϵ, we have for
every j ∈ N \ prefx(i), (1 − ϵ)uj(xj) > ui(xi).

We next prove that y improves x in the leximin ordering which will result in a contra-
diction. Consider the agents in prefx(i) who improved in y and pick the agent with least
utility in x, i.e., i∗ = argmini′∈prefx(i):ui′ (yi′ )>ui′ (xi′ )

ui′(xi′), and break ties by choosing the agent
with least ui′(yi′). Denote t = |i′ ∈ prefx(i) : ui′(xi′) < ui∗(xi∗)|+ |i′ ∈ prefx(i) : ui′(xi′) =

ui′(yi′) = ui∗(xi∗)| which is the number of agents who have not improved in y and whose util-
ity does not exceed i∗ in x. Due to ui′(yi′) ⩾ (1− ϵ)ui′(xi′) > ui(xi) for every i′ ∈ N \ prefx(i)
(established earlier), it is clear that y strictly improves x at (t + 1)th position in the leximin
ordering.

With these two lemmas, we can now state our first result.

Theorem 1. In the identical cars setup, a leximin allocation is PO, EF, and GSP.

Proof. PO: Any leximin allocation x ∈ X is PO by definition. This is because if we assume that
another y ∈ X Pareto dominates x, then there exists at least one agent whose utility increased
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strictly while weakly improving other agents’ utilities. This also improves the allocation x in
the leximin ordering which will contradict the fact that x is leximin.

EF: Assume that a leximin allocation x ∈ X is not EF. This implies there exist agents
i, i′ ∈ N such that, ui(xi) < ui(xi′). Additionally, ui′(xi′) ⩾ ui(xi′) from Lemma 1 which
implies ui(xi) < ui′(xi′). Now, consider another feasible allocation y such that yi′′ = xi′′ , ∀i′′ ∈
N \ {i, i′} and

yi = argmax
{wi :∑j∈Ji ∑k∈M wijkrk⩽ci ,wijk⩽xi′ jk}

∑
j∈Ji

∑
k∈M

wijkrk.

In words, the allocation yi picks a ‘maximal feasible’ allocation for i from the allocated re-
source of i′ in x. The allocation of i′ is zero for all j ∈ J, k ∈ M. Note that this can
always be done since i envies i′. Next, using x and y, construct a new allocation y′ s.t.
y′i′′ = ϵyi′′ + (1 − ϵ)xi′′ , ∀i′′ ∈ N, where 0 < ϵ < 1 − ui(xi)/ui′ (xi′ ) < 1. Note that y′ is
also feasible since our feasible allocation set X is convex. Additionally, observe that for y′,
ui′′(y′i′′) = ui′′(xi′′), ∀i′′ ∈ N \ {i, i′} and ui(y′i) > ui(xi). Moreover, ui′(y′i′) > ui(xi) due to the
choice of ϵ. This implies y′ improves x in the leximin ordering which is a contradiction.

GSP: Consider an allocation function f that returns a leximin allocation when all agents
truthfully report their θi = (ai, di, ci), ∀i ∈ N. Let x = f (θ). Suppose that f is not GSP. Then, a
subset of agents S ⊆ N can manipulate their reports to some other θ̂S = ((âi, d̂i, ĉi), i ∈ S) and
each can realize a strict better utility. Let x′ = f (θ̂S, θ−S) be the leximin allocation returned
by the mechanism when agents in S manipulate and u′

i, ∀i ∈ S be the utility induced by the
misreports. Note that, this u′

i is a new utility function perceived by the planner when the
agents in S misreport their types. The utility function changes since the type also includes
the agent’s arrival, departure, and demand information. Essentially, by misreporting, every
agent i ∈ S is perceived as a different agent than i when they report truthfully. Because it
is a profitable deviation, ui(xi) < ui(x′i), ∀i ∈ S. For the misreported case, since the agents
are now perceived as a different agent, Lemma 1 applies and we get: u′

i(x′i) ⩾ ui(x′i) which
implies u′

i(x′i) > ui(xi).
Consider i1 ∈ S to be the manipulator with least utility under x (ties broken arbitrarily)

and i2 ∈ N be an agent that gained under x′ and has least utility under x (note: i2 may be
outside the set S as well). This implies that ui1(xi1) ⩾ ui2(xi2). Since, i2 improved under
x′, from prefix-optimality of x (Lemma 2) there exists i3 ∈ prefx(i2) such that i3 got worse-
off under x′. Pick the agent i3 with least utility under x′, i.e., minimum ui3(x′i3) (ties broken
arbitrarily). It can now be shown that prefix optimality of x′ w.r.t agent i3 is violated as shown
below.

For any manipulator i ∈ S the following holds

u′
i(x′i) ⩾ ui(x′i) > ui(xi) ⩾ ui1(xi1) ⩾ ui2(xi2) ⩾ ui3(xi3) > ui3(x′i3)

This implies no agent that manipulates lies in prefx′(i3). If any other agent l ∈ prefx′(i3) that
reports truthfully is such that ul(xl) < ul(x′l) then we have the following

ui2(xi2) ⩾ ui3(xi3) > ui3(x′i3) ⩾ ul(x′) > ul(xl)

Since l realizes a strict gain in x′ and ul(xl) < ui2(xi2), this contradicts the choice of agent i2.
Thus, for any other agent l ∈ prefx′(i3) that reports truthfully ul(xl) > ul(x′l). This violates
prefix-optimality of leximin allocation x′ w.r.t. agent i3 which concludes the proof.

Given the above result, our objective is to find a leximin allocation in a computation-
ally efficient manner. We solve the leximin allocation by reducing the leximin problem
to another related lexicographic maximization problem (known as the ordered outcomes
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method (Ogryczak and Śliwiński, 2006)) that, in our case, is solved by solving at most n
linear programs sequentially. The other standard algorithm that can be used in our case is
the saturation algorithm (Nace and Pioro, 2008; Elkind and Pasechnik, 2009). However, both
these methods require solving n LPs in the worst case. Note that our leximin problem (given
by Definition 4) can be compactly written as Equation (4) below, where u(l)(x) denotes the
utility of an agent occupying the lth position in lexicographic ordering. The reduction formu-
lates this problem as the lexicographic maximization problem (given by Equation (5)), where
ū(l)(x) denotes the sum of utility of an agents up to lth position in the lexicographic ordering.
This equivalence holds since cumulative criteria is equivalent to the original lexicographic
optimization (Ogryczak and Śliwiński, 2006).

lex max [u(1)(x), u(2)(x), . . . , u(n)(x)], subject to x ∈ X (4)

lex max [ū(1)(x), ū(2)(x), . . . , ū(n)(x)], subject to x ∈ X (5)

Here ‘lex max’ denotes the optimization problem of Definition 4, where these objective func-
tions are solved in the given lexicographic order. Each ū(l)(x) for a given x can be formulated
as LP (6). Note that this an LP for a given x. The dual of the above problem is given by
LP (7) where tl is an unbounded dual variable corresponding to ∑i∈N yli = l and dli is the
non-negative dual variable corresponding to −1 ⩽ −yli.

min ∑i∈N ui(x)yli

s.t. ∑i∈N yli = l

1 ⩾ yli ⩾ 0, ∀i ∈ N

(6)

max ltl − ∑i∈N dli

s.t. dli ⩾ 0, ∀i ∈ N

dli ⩾ tl − ui(x), ∀i ∈ N

(7)

For any given x, it follows from strong duality that the optimal values of the primal and
dual programs are the same. Since the dual program is an LP even when x is a vector/matrix
of variables (because of the linearity of ui’s, Equation (2)), ū(l)(x) can be obtained by solving
the following LP.

max ltl − ∑i∈N dli

s.t. dli ⩾ tl − ui(x), ∀i ∈ N

dli ⩾ 0, ∀i ∈ N, x ∈ X

(8)

Substituting Equation (8) into Equation (5), we get Equation (9). The problem has n2 + n
additional variables and n2 constraints excluding the feasibility constraints (where n is the
number of agents) which, as mentioned before, can be solved by solving at most n linear
programs sequentially (Ogryczak et al., 2005). Algorithm 1 shows the procedure.

lex max [t1 − ∑i∈N d1i, 2t2 − ∑i∈N d2i, . . . , ntn − ∑i∈N dli]

s.t. ui(x) ⩾ tl − dli, ∀i, l ∈ N

dli ⩾ 0, ∀i, l ∈ N, x ∈ X.

(9)

From the discussion above, we conclude the following result.

Theorem 2. In the identical cars setup, Algorithm 1 provides a polynomial-time leximin allocation
among the EVs.
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ALGORITHM 1: leximin allocation
Input: Reported types θ̂i = (âi, d̂i, ĉi), ∀i ∈ N
Output: A feasible allocation f (θ̂) ∈ X

1 Reduce the leximin problem (4) to lexicographic optimization problem (9).
2 Solve (9) with the parameters given by θ̂ using the solveLexOpt() to find the optimal solution x∗

3 return x∗ as the final resource allocation
4 Procedure solveLexOpt()

Input: Lexicographic maximization problem with parameters given by θ̂

Output: A feasible allocation f (θ̂) ∈ X
5 for l ∈ N do
6 Solve the following linear program

max ltl − ∑i∈N dli

s.t. ui(x) ⩾ tm − dmi, ∀ i ∈ N, m ⩽ l

dmi ⩾ 0, ∀ i ∈ N, m ⩽ l, x ∈ X

mtm − ∑i∈N dmi ⩾ mt∗m − ∑i∈N d∗mi, ∀ i ∈ N, m < l

Denote t∗l and d∗li, ∀i ∈ N as the optimal solution to the above LP
7 end
8 return x∗ as the final resource allocation

3.2 Identical Cars: EF and PO

Though Algorithm 1 gives an allocation that satisfies PO, EF, and GSP, it requires solving n
LPs in sequence. If our desired objectives do not include GSP, e.g., in a situation where the
arrival-departure times and the desired charging levels are verifiable by the planner, we can
find an algorithm that achieves EF and PO by solving two LPs in the identical cars setting.

To begin with, we find a PO allocation which can be obtained by solving LP (10) for
a given reported type profile θ̂. In this setting, the charging rate of the cars is given by
rEV

i = r > 0, ∀i ∈ N and different charging outlets k ∈ M have non-identical rates rCh
k . Thus,

the effective rate for each agent is rik = rk, ∀i ∈ N, ∀k ∈ M.

max ∑i∈N ∑j∈J ∑k∈M xijkrk

s.t. x ∈ X.
(10)

Clearly, the feasible region of LP (10) is a polytope (see the definition of X in Section 2),
and additionally, it is non-empty. Hence, there is always an optimal solution to this. Our
following result shows that LP (10) is both necessary and sufficient for PO. In addition, the
objective function of the LP is equivalent to the MaxDelivered objective defined by Gerding et
al. (2019b) (Definition 5). Denote the optimal solution of LP (10) as x∗, OPT(θ̂). We then solve
the second LP given by LP (11) that ensures the same optimal value of resource allocated in
addition to ensuring EF.

max ∑i∈N ∑i′∈N zii′

s.t. y ∈ X, zii′ ⩾ 0, ∀i, i′ ∈ N

∑i∈N ∑j∈J ∑k∈M yijkrk = OPT(θ̂),

∑j∈Ji ∑k∈M yijkrk ⩾ zii′

∑j∈Ji′ ∑k∈M yi′ jkrk ⩾ zii′

}
∀i, i′ ∈ N.

(11)
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ALGORITHM 2: Identical cars: PO and EF
Input: Reported types θ̂i = (âi, d̂i, ĉi), ∀i ∈ N
Output: A feasible allocation f (θ̂) ∈ X

1 Solve LP (10) with the parameters given by θ̂ to find the optimal solution x∗

2 Calculate OPT(θ̂) = ∑i∈N ∑j∈J ∑k∈M x∗ijkrk

3 Use OPT(θ̂) in LP (11) with the parameters given by θ̂

4 Solve to find its optimal solution (y∗, z∗)
5 Return y∗ as the final resource allocation

This new LP introduces another n2 variables zii′ , ∀ i, i′ ∈ N. The feasible region of LP (11)
is a polytope, and additionally (y, z) = (x∗, 0) is a feasible solution, and hence, an optimal
solution exists. We show that solving these two LPs in succession (given by Algorithm 2)
ensures PO and EF.

Lemma 3. In the identical cars setup, an allocation is PO if and only if it is an optimal solution of
LP (10).

Proof. Consider that the optimal solution of linear program (10) to be x′ which is not PO. This
implies there exists a PO allocation x∗ such that

∑j∈J ∑k∈M x∗ijkrk ⩾ ∑j∈J ∑k∈M x′ijkrk, ∀ i ∈ N

∑j∈J ∑k∈M x∗i′ jkrk > ∑j∈J ∑k∈M x′i′ jkrk, ∃ i′ ∈ N

As a result, ∑i∈N ∑j∈J ∑k∈M x∗ijkrk > ∑i∈N ∑j∈J ∑k∈M x′ijkrk. However, x′ is the optimal so-
lution that maximizes our objective function which leads to a contradiction. For the re-
verse direction, assume that a PO allocation x is not the optimal solution to the linear pro-
gram. This implies there exists x∗ an optimal solution such that ∑i∈N ∑j∈J ∑k∈M x∗ijkrk >

∑i∈N ∑j∈J ∑k∈M xijkrk. Additionally, x∗ is also Pareto efficient from the forward direction
proof. However, since the charging rates are identical among agents and all PO allocation
are non-wasteful re-allocations of time done on a one to one basis, such a strict aggregate
improvement is not possible. Thus, a PO allocation is always an optimal solution.

Corollary 1. In the identical cars setup, an allocation is MaxDelivered if and only if it is PO.

Theorem 3. In the identical cars setup, Algorithm 2 provides a PO and EF allocation of the resources.

Proof. Pareto optimality (PO) follows directly from Lemma 3. For EF, we provide a proof
by contradiction. Assume that the optimal solution (z∗, y∗) of LP (11) does not produce
an EF allocation. This implies there exist two agents p, q ∈ N such that p envies q i.e.,
∑j∈Jp ∑k∈M y∗pjkrk < min{cp, ∑j∈Jp ∑k∈M y∗qjkrk}. We next prove that a reallocation of time
between q and p where p gains utility (while maintaining the feasibility and PO constraints)
can strictly improve the optimal solution z∗. In particular, we reallocate between p and q
such that p gains and the sorted order (based on the utility, i.e., ∑j∈Ji ∑k∈M y∗ijkrk, ∀i ∈ N) of
the agents in the resultant allocation remains the same as in y∗. This reallocation is always
possible due to Lemma 4. This will result in a contradiction. First, we prove the following
lemma.

Lemma 4. In identical cars setup, if in an allocation x, an agent p envies q, then a reallocation
between p and q is possible such that p gains utility and the sorted order (based on the utility, i.e.,
∑j∈Ji ∑k∈M xijkrk, ∀i ∈ N) of the agents in the resultant allocation remains same as in x.
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Proof. Since agent p envies q under x, we have ∑j∈Jp ∑k∈M xpjkrk < min{cp, ∑j∈Jp ∑k∈M xqjkrk}
which also implies we have at least one common interval where both agents are active. Denote
the set of common intervals as Jpq.
Case 1: If some ϵ > 0 can be reallocated directly from q to p in any of the common intervals
jpq ∈ Jpq, and outlet k′ ∈ M, then choose the reallocation amount (time) δ from q to p in
(jpq, k′) as follows.

S = {i | ∀ i ∈ N, ∑j∈Ji ∑k∈M xijkrk < ∑j∈Jq ∑k∈M xqjkrk}

U = {i | ∀ i ∈ N, ∑j∈Ji ∑k∈M xijkrk > ∑j∈Jp ∑k∈M xpjkrk}

α = mins∈S ∑j∈J ∑k∈M(xqjk − xsjk)rk

β = mins∈U ∑j∈J ∑k∈M(xsjk − xpjk)rk

γ = cp − (∑j∈Jp ∑k∈M xpjkrk)

δ = min{α, β, γ, ϵ}/(2 max
k∈M

{rk}) (12)

Note that α ensures q’s utility remains more than that of agent preceding it in the sorted
order and β ensures p’s utility remains less than that of agent succeeding it in the sorted
order after the reallocation. The values γ and ϵ make sure feasibility is not violated. Finally,
maxk∈M{rk} is just chosen to avoid any higher charging rate multiplier while converting time
to utility. Due to our choice of δ time, the sorted order based on utilities remains the same
as in y∗. Also for the same reason, constraints ∑j∈Ji ∑k∈M yijkrik ⩽ ci, ∀i ∈ N is satisfied. The
feasibility constraints ∑i∈N yijk ⩽ |Ij|, ∀j ∈ J, k ∈ M and ∑k∈M yijk ⩽ |Ij|, ∀i ∈ N, j ∈ J are
also met as time is reallocated on a one to one basis in (jpq, k′) from q to p. Finally, since the
charging rates are identical and time is reallocated on a one to one basis in (jpq, k′) from q to
p, the Pareto optimality condition ∑i∈N ∑j∈J ∑k∈M yijkrk = OPT(θ̂) also continues to hold.
Case 2: If case 1 is not possible, then since p envies q, we have ∑j∈Jp ∑k∈M ypjkrk < cp.
Additionally, since p cannot receive time from q it has to be the case that ∑k∈M xpjk = |Ij|, ∀j ∈
Jpq i.e., p’s allocation in every interval jpq ∈ Jpq across outlets has reached the limit |Ij|. In this
case, the following lemma holds.

Lemma 5. In identical cars setup, if under an allocation x an agent p envies q and a direct reallocation
from q to p is not possible, then there exists k′, k′′ ∈ M such that p is allocated at k′ in some jp ∈ Jpq

and q is allocated at k′′ in some jq ∈ Jpq, and p prefers an allocation in k′′ over k′.

Proof. Denote k̄ = argmax{k∈M:∑j∈Jpq xqjk>0} rk , and suppose there does not exist k′, k′′ ∈ M

such that p is allocated at k′ in some jp ∈ Jpq and q is allocated at k′′ in some jq ∈ Jpq, and p
prefers an allocation in k′′ over k′. Then we have

∑
j∈Jp

∑
k∈M

xpjkrk ⩾ ∑
j∈Jpq

∑
k∈M

xpjkrk = ∑
j∈Jpq

∑
k∈M

|Ij|rk

Also, from our assumption,

∑
j∈Jpq

∑
k∈M

|Ij|rk ⩾ ∑
j∈Jpq

∑
k∈M

|Ij|rk̄

Finally,
∑

j∈Jpq

∑
k∈M

|Ij|rk̄ ⩾ ∑
j∈Jpq

∑
k∈M

xqjkrk = ∑
j∈Jp

∑
k∈M

xqjkrk

The above leads to a contradiction since p envies q.
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Due to the above Lemma 5, for this case we reallocate the same δ (defined in 12) time
from q to p at (k′′, jq) and δ from p to q at (k′, jp) (note k′, k′′, jp, jq are all as defined in lemma
5). Again, due to our choice of δ time, the sorted order based on utilities remains the same
as in y∗ and constraints ∑j∈Ji ∑k∈M yijkrik ⩽ ci, ∀i ∈ N is satisfied. The feasibility constraints
∑i∈N yijk ⩽ |Ij|, ∀k ∈ M, j ∈ J and ∑k∈M yijk ⩽ |Ij|, ∀i ∈ N, j ∈ J are also met as time is
reallocated on a one to one basis in both (k′, jp) and (k′′, jq). Finally, since the charging rates
are identical and time is reallocated on a one to one basis in (k′, jp) and (k′′, jq), the pareto
optimality condition ∑i∈N ∑j∈J ∑k∈M yijkrk = OPT(θ̂) also continues to hold. This conclude
the proof of Lemma 4.

Assume that y′′ is the resultant allocation that is constructed in Lemma 4. Additionally,
denote the the loss in utility for agent q as ∆. Note this is also equal to the gain in utility for
agent p since the charging rates are identical. We now show that the y′′ increases the objective
function of our linear program and thereby contradicts the optimality of (z∗, y∗).

Note that for any optimal solution z∗, y∗ either of constraint

∑
j∈Ji

∑
k∈M

yijkrk ⩾ zii′

∑
j∈Ji′

∑
k∈M

yi′ jkrk ⩾ zii′

will be tight for each zii′ as the LP (11) is a maximization problem and zii′ , ∀i, i′ ∈ N are upper
bounded. If this does not hold the objective function ∑i∈N ∑i′∈N zii′ can be strictly increased
in value which will contradict the fact that z∗, y∗ is an optimal solution. In particular, for any
i, i′ ∈ N if ui(y) < ui′(y) then ∑j∈Ji ∑k∈M yijkrk ⩾ zii′ will be the tight constraint. We say this
in words as "agent i forms the tight constraint for zii′".

Since under y′′ the sorted order based on utility is the same as in y∗, for any i, i′ ∈ N the
agent forming the tight constraint remains unchanged. Moreover, only allocations of p and q
have altered. Thus, it is sufficient to look at constraints where agent p and q form the tight
constraints to examine the change in objection function value under y′′.

Denote

Sq = {i | ∀ i ∈ N, ∑j∈Ji ∑k∈M y∗ijkrk ⩾ ∑j∈Jq ∑k∈M y∗qjrk}

Sp = {i | ∀ i ∈ N, ∑j∈Ji ∑k∈M y∗ijkrk ⩾ ∑j∈Jp ∑k∈M y∗pjkrk}

Agent q forms tight constraints for zql , zlq, ∀l ∈ Sq since uq(y′′) < ul(y′′), ∀l ∈ S2. Thus, a
∆ decrease in q’s utility, decreases z∗ql , z∗lq, ∀l ∈ Sq values by ∆. The total decrease if |Sq| = s′ is
2s′∆. Likewise, agent p forms tight constraints for zpl , zlp, ∀l ∈ Sp since up(y′′) < ul(y′′), ∀l ∈
Sp. Thus, the addition of ∆ to utility of p will increase z∗pl , z∗lp, ∀l ∈ Sp (which includes agents
in {Sq ∪ p}) by a quantity of ∆. The total increase would be at least 2(s′+ 1)∆. Thus, under y′′,
the objective function undergoes a net increase of at least 2∆ over z∗. This is a contradiction as
z∗ is the optimal solution, and therefore, linear program (14) produces an EF allocation.

Discussions We can extend this result to the case where utilities are monotone (Equa-
tion (3)) increasing in the energy received by agents. The allocation x returned by Algo-
rithm 2 ensures that for any i, i′ ∈ N ∑j∈Ji ∑k∈M xijkrk ⩾ min{ci, ∑j∈Ji ∑k∈M xi′ jkrk}. Since
gi(∑j∈Ji ∑k∈M xijkrik) ⩾ min{ci, gi(∑j∈Ji ∑k∈M xi′ jkrik)} for any monotone increasing function
gi, i.e., the relative preference in utility is equivalent to the relative preference in the amount
of resource allocated, Algorithm 2 will also guarantee EF for monotone utilities. For the
similar reason, PO holds as well.
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3.3 Non-identical cars

Unlike the case of identical cars, a leximin allocation may not be EF for this setting. Addi-
tionally, MaxDelivered also conflicts with leximin and EF. We demonstrate through counter-
examples the above conflicting objectives for single outlet as follows.

Example 2 (Impossibility of leximin with EF and MaxDelivered: Single outlet). Consider two
agents with the following types θ1 = (0, 5, 12), rEV

1 = 3, θ2 = (0, 5, 8), rEV
2 = 2, and a single

charging outlet with rCh = 4. Thus, the effective rates of the agents are r1 = 3, r2 = 2. A
leximin allocation would allot time of 2 to agent 1 and 3 to agent 2, an EF allocation would
allot 2.5 to each agent, and a max-delivered allocation would allot 4 to agent 1 and 1 to agent
2.

Example 3 (Impossibility of leximin with EF and MaxDelivered: Multiple outlets). Say we
have two agents having the following types θ1 = (0, 4, 16), rEV

1 = 4 and θ2 = (0, 4, 8), rEV
2 = 2

and a two charging outlets with rCh
1 = 4, rCh

2 = 1. Thus, the effective rates are r11 = 4, r21 =

2, r12 = r22 = 1. A leximin allocation would allot time of 1 to agent 1 and 3 to agent 2 at
outlet 1 and 3 to agent 1 and 1 to agent 2 at outlet 2 which clearly is not EF. An EF and PO
allocation would allot 2 to each agent at each outlet, and a max-delivered allocation would
allot 4 to agent 1 at outlet 1 and 4 to agent 2 at outlet 2 (see Figure 2).

Time Time Time

Leximin MaxDeliveredEnvy-free

Active Interval

Active Interval

Type=(0,4,16)

Type=(0,4,8)

Figure 2: Impossibility of leximin with EF and MaxDelivered

Note, however, a leximin allocation for this case still satisfies PO and GSP, stated formally
below. The proof follows same arguments for those two properties as in Theorem 1 and
therefore are omitted.

Theorem 4. In the non-identical cars setup, a leximin allocation satisfies PO and GSP.

In this setting EF fails to satisfy because Lemma 1 is violated. Note that both EF and GSP
use Lemma 1, but GSP uses it for the same agent with a misreported type but the charging rate
remains unchanged. But, EF uses the lemma for two different agents with possibly different
charging rates. Due to the above set of results, we investigate leximin-optimal allocations
separately from PO and EF allocations.

For the linear utilities (Equation (2)), leximin allocations can be found using Algorithm 1
even for non-identical cars. Note that the optimization problem Equation (9) that Algorithm 1
solves sequentially is based on any linear utility functions ui(x), ∀i ∈ N and does not make
any assumption on cars being identical or non-identical. Since the utilities are linear in both
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the scenarios, the linear constraints of the LP takes care of the non-identical rates of the cars
as well. Hence, we get the following result.

Theorem 5. In the non-identical cars setup, Algorithm 1 provides a leximin allocation of resources.

However, extending the algorithm for finding EF and PO allocation (Algorithm 2) seems
non-trivial. We examine the single-outlet case and present an LP based algorithm and leave
the problem of multiple-outlet case for future investigation.

3.3.1 Single charging outlet

As before, to solve for a PO and EF allocation we start with PO allocation. A PO allocation
can be obtained by solving LP (13) for a given reported type profile θ̂. Since we consider only
one outlet we drop the index k ∈ M. In addition, since we consider non-identical cars rEV

i > 0
may be distinct for different i ∈ N. Thus, the effective rate for each agent is rik = ri, ∀i ∈ N.

max ∑i∈N ∑j∈J xij

s.t. x ∈ X.
(13)

The feasible region of LP (13) is a polytope and non-empty. Hence, there is always an optimal
solution to LP (13). Our first result below shows that LP (13) is an exact linear program for
PO for non-identical single outlet case.

Lemma 6. In the non-identical cars single-outlet setup, an allocation is PO if and only if it is an
optimal solution of LP (13).

Proof. To prove the forward direction, assume that the LP (13) provides a solution x′ which is
not PO. This implies that there exists x∗ which is a PO allocation such that

∑j∈J x∗ijri ⩾ ∑j∈J x′ijri, ∀ i ∈ N

∑j∈J x∗i′ jri′ > ∑j∈J x′i′ jri′ , ∃ i′ ∈ N

As a result, ∑i∈N ∑j∈J x∗ij > ∑i∈N ∑j∈J x′ij. However, x′ is the optimal solution which maxi-
mizes the objective function. This leads to a contradiction. For the reverse direction, assume
that a PO allocation x is not the optimal solution to the linear program. This implies there
exists x∗ an optimal solution such that ∑i∈N ∑j∈J x∗ij > ∑i∈N ∑j∈J xij. Additionally, x∗ is also
Pareto optimal from the forward direction proof. However, since PO allocation are non-
wasteful re-allocations of time done on a one to one basis, such a strict improvement of the
objective function is not possible. Thus, a PO allocation is always an optimal solution.

Denote the optimal solution of LP (13) as x∗, OPT(θ̂). Given OPT(θ̂), we solve LP (14)
for solving a PO and EF allocation. Again, the feasible region of the above linear program
is a polytope, and additionally (y, z) = (x∗, 0) is a feasible solution, and hence, an optimal
solution exists.

max ∑i∈N ∑i′∈N zii′

s.t. y ∈ X, zii′ ⩾ 0, ∀i, i′ ∈ N

∑i∈N ∑j∈J yij = OPT(θ̂),

∑j∈Ji
yij ⩾ zii′

∑j∈Ji′
yi′ j ⩾ zii′

}
∀i, i′ ∈ N.

(14)

Algorithm 3 solves these two LPs in sequence and ensures PO and EF. Note, this algorithm is
different from Algorithm 2 as it optimizes over time instead of utilities. Particularly, note that
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ALGORITHM 3: Non-identical cars: PO and EF
Input: Reported types θ̂i = (âi, d̂i, ĉi), ∀i ∈ N
Output: A feasible allocation f (θ̂) ∈ X

1 Solve LP (13) with the parameters given by θ̂ to find the optimal solution x∗

2 Calculate OPT(θ̂) = ∑i∈N ∑j∈J x∗ij
3 Use OPT(θ̂) in LP (14) with the parameters given by θ̂

4 Solve to find its optimal solution (y∗, z∗)
5 Return y∗ as the final resource allocation

PO optimization is a max-flow problem. But LP (13) obtains PO by maximizing the aggregate
flow of time, while LP (10) obtains PO by maximizing the aggregate flow of utilities or energy
(since utilities are linear in time, given by Equation (2), and therefore this LP also achieves
MaxDelivered). Likewise, LP (14) ensures EF by achieving parity w.r.t. time among agents
(see the last two constraints) subject to feasibility, while the same is achieved by LP (11) by
ensuring parity w.r.t. utilities. Note that this optimization w.r.t. time can be done only because
of a single outlet and fails in the case of multiple outlets as maximum flow of aggregate time
does not imply PO and parity w.r.t. time does not result in EF.

Theorem 6. In the non-identical cars single outlet setup, Algorithm 3 provides a PO and EF allocation
of the resources.

Proof. Pareto optimality (PO) follows directly from Lemma 6. For EF, we provide a proof
by contradiction. Assume that the optimal solution (z∗, y∗) of LP (14) does not produce an
EF allocation. This implies there exist two agents p, q ∈ N such that p envies q’s bundle
i.e., ∑j∈Jp

y∗pj ⩽ min{cp/rp, ∑j∈Jp
y∗qj}. We next prove that a reallocation of time from q and p

where p gains time (while maintaining the feasibility and PO constraints) can strictly improve
the optimal solution z∗. In particular, we reallocate between p and q such that p gains and
the sorted order (based on the aggregate time allotted, i.e., ∑j∈Ji

y∗ij, ∀i ∈ N) of the agents in
the resultant allocation remains the same as in y∗.

Since agent p envies q under y∗, we have ∑j∈Jp
y∗pjrp < min{cp, ∑j∈Jp

y∗qjrp} which also
implies we have at least one common interval where both agents are active. Denote the set of
common intervals as Jpq. Due to p’s envy towards q, some ϵ > 0 can be reallocated directly
from q to p in one of the common intervals jpq ∈ Jpq. We choose the reallocation amount
(time) δ from q to p in jpq as follows.

S = {i | ∀ i ∈ N, ∑j∈Ji
y∗ij < ∑j∈Jq

y∗qj}

U = {i | ∀ i ∈ N, ∑j∈Ji
y∗ij > ∑j∈Jp

y∗pj}

α = mins∈S ∑j∈J(y∗qj − y∗sj)

β = minu∈U ∑j∈J(y∗uj − y∗pj)

γ = cp/rp − ∑j∈Jp
y∗pj

δ = min{α, β, γ, ϵ}/2 (15)

Note that α ensures q’s aggregate time allotted remains more than that of agent preceding
it in the sorted order and β ensures p’s aggregate time allotted remains less than that of
agent succeeding it in the sorted order under the reallocation. The values γ and ϵ make sure
feasibility is not violated. Due to our choice of δ time, the sorted order based on aggregate
time allotted remains the same as in y∗. Also for the same reason, constraints ∑j∈Ji

yijri ⩽
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ci, ∀i ∈ N is satisfied. The feasibility constraints ∑i∈N yij ⩽ |Ij|, ∀j ∈ J and pareto optimality
condition ∑i∈N ∑j∈J yijri = OPT(θ̂) also holds as time is reallocated on a one to one basis in
jpq from q to p.

Assume that y′′ is the resultant allocation of the reallocation above. Additionally, denote
the the loss in time for agent q as ∆. Note this is also equal to the gain in time for agent
p. We now show that y′′ increases the objective function of our linear program and thereby
contradicts the optimality of (z∗, y∗).

Note that for any optimal solution z∗, y∗ either of constraint

∑
j∈Ji

yij ⩾ zii′

∑
j∈Ji′

yi′ j ⩾ zii′

will be tight for each zii′ as the LP (14) is a maximization problem and zii′ , ∀i, i′ ∈ N are upper
bounded. If this does not hold the objective function ∑i∈N ∑i′∈N zii′ can be strictly increased
in value which will contradict the fact that z∗, y∗ is an optimal solution. In particular, for any
i, i′ ∈ N if ∑j∈Ji

yij < ∑j∈Ji′
yi′ j then ∑j∈Ji

yij ⩾ zii′ will be the tight constraint. We say this in
words as “agent i forms the tight constraint for zii′”.

Since under y′′ the sorted order based on aggregate time allotted is the same as in y∗, for
any i, i′ ∈ N the agent forming the tight constraint for zii′ remains unchanged. Moreover, only
allocations of p and q have altered. Thus, it is sufficient to look at constraints where agent p
and q form the tight constraints to examine the change in objection function value under y′′.

Denote

Sq = {i | ∀ i ∈ N, ∑j∈Ji
y∗ij ⩾ ∑j∈Jq

y∗qj}

Sp = {i | ∀ i ∈ N, ∑j∈Ji
y∗ij ⩾ ∑j∈Jp

y∗pj}

Agent q forms tight constraints for zql , zlq, ∀l ∈ Sq since ∑j∈Jq
y′′qj < ∑j∈Jl

y′′l j, ∀l ∈ Sq.
Thus, a ∆ decrease in q’s allotted time, decreases z∗ql , z∗lq, ∀l ∈ Sq values by ∆. The total
decrease if |Sq| = s′ is 2s′∆. Likewise, agent p forms tight constraints for zpl , zlp, ∀l ∈ Sp since
∑j∈Jp

y′′pj < ∑j∈Jl
y′′l j, ∀l ∈ Sp. Thus, the addition of ∆ to aggregate time of p will increase

z∗pl , z∗lp, ∀l ∈ Sp (which includes agents {Sq ∪ p}) by a quantity of ∆. The total increase would
be at least 2(s′ + 1)∆. Thus, under y′′, the objective function undergoes a net increase of at
least 2∆ over z∗. This is a contradiction as z∗ is the optimal solution, and therefore, linear
program LP (14) produces an EF allocation.

Discussion Even for this scenario, the results can be extended when the utilities are mono-
tone increasing in the energy received by agents (Equation (3)). This again follows from the
fact that the relative preference in utility is equivalent to the relative preference in the amount
of resource allocated. In other words, for any i, i′ ∈ N ∑j∈Ji

xijri ⩾ min{ci, ∑j∈Ji
xi′ jri} implies

gi(∑j∈Ji
xijri) ⩾ min{ci, gi(∑j∈Ji

xi′ jri)} for any monotone increasing function gi which leads
to EF. A similar argument holds for PO as well.

4 Outlet switches
Since the allocations given by our algorithms only provide the time xijk to an EV i, in interval
j, at outlet k, a natural question on the number of switches the EVs need (from one outlet to
another) arises.

Firstly, given an allocation x ∈ X which provides the time xijk to an EV i, in interval j, at
outlet k, we determine how these amounts will be scheduled within each (interval, outlet) pair
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Figure 3: Example for schedule and outlet switch

among agents. This is required to count the number of outlet switches for EVs. For instance,
consider the following example, where we have two agents with types as θ1 = (0, 5, 3), θ2 =

(2, 5, 2), and charging rates as rEV
1 = rEV

2 = 1. Additionally, we have a single charging outlet
with rCh = 1 (hence k = 1 and we drop that index for this example). Thus, the effective
rates of agents are r1 = r2 = 1. Consider the following allocation matrix, where the rows and
columns correspond to the EVs and intervals respectively.

x =

[
2 1
0 2

]
(16)

Figure 3 shows two possible schedules for the allocation x. But there are infinitely many
schedules possible for the same allocation which can be constructed by scheduling the
amounts in the second interval x12 = 1, x22 = 2 in to several disjoint time chunks instead
of one contiguous chunk for the agents. In general, there always exists at least one schedule
for an allocation x given by our algorithm as feasibility constraints are maintained.

Figure 3 shows that the number of outlet switches for agents depends on our choice of
scheduling among all possible schedules. The first schedule requires no switches for any
agent, whereas for the second schedule, EV 1 requires one switch and EV 2 requires no
switch. Thus, we first find a feasible schedule for the given allocation x in order to count the
number of switches. Formally, we say an EV incurs a switch if:

• It disconnects from the current outlet and connects to a different outlet for its next
scheduled time chunk.

• It disconnects from the current outlet and reconnects to the same outlet for its next
scheduled time chunk but with a break.

For our simulations, we create a very simple schedule using the method outlined below
and count the number of switches for EVs as detailed above. Note that this may not be
the optimal schedule, i.e., the schedule that achieves the minimum number of switches for
a given allocation x ∈ X. But we empirically show that even for this simple schedule the
average number of switches per EV is roughly constant.

4.1 Scheduling method

Our method uses a serial dictatorship over the agents for allocating at each (outlet, interval)
pair to get a feasible schedule. We fix an ordering among agents and then, for each (outlet,
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Figure 4: Serial dictatorship scheduling

interval) pair we schedule the allocation amount for agents in that order one by one. If
unoccupied time chunks (contiguous or non-contiguous) that amount to xijk (for the given
agent, interval, outlet triplet) are available, and if it is possible to schedule (see Example 4 for
this point) the current agent in these spaces, then we schedule the agent in those unoccupied
spaces starting from the lowest available time checkpoint in the horizon until xijk is fulfilled.
Note that for single outlet case, a contiguous unoccupied time chunk that amounts to xijk is
always available for each agent at every (outlet, interval) pair when using serial dictatorship.
This can also be seen in the example considered above (Figure 3). However, for the multiple
outlet case the time chunks scheduled for each agent at every (outlet, interval) pair may not
always be contiguous. Example 4 and Figure 4 explains this in detail.

Example 4. Consider three agents with the following types θ1 = (0, 4, 2), rEV
1 = 1, θ2 =

(0, 4, 3), rEV
2 = 1, θ3 = (0, 4, 3), rEV

3 = 1 and two charging outlets with rCh
1 = rCh

2 = 1. Thus,
the effective rates of the agents are r1 = r2 = r3 = 1. Note that we have only one interval
(hence j = 1 and we drop that index for this example). Additionally, consider the following
allocation Equation (17), where the rows and columns correspond to the EVs and outlets
respectively.

x =

1 1
3 0
0 3

 (17)

Using serial dictatorship (order 1, 2, 3) for scheduling agents at each (outlet, interval) we
get the schedule shown in Figure 4 which shows step by step progress of our scheduling
method. Note that agent 3 is allocated non-contiguous time chunks at outlet 2 even though
a contiguous chunk could have been allocated to both agents at outlet 2. This is a result of
applying serial dictatorship and fixing a schedule for (outlet 1, interval 1) and then using
serial dictatorship for (outlet 2, interval 2) subject to the previous fixed schedule.

Note that for outlet 2, even though the lowest available time checkpoint was zero, it was
not ‘possible’ to schedule that to agent 1. Hence, agent 1 is scheduled only from the point
where the same agent is not scheduled to any other outlet.

If feasible unoccupied time chunks (contiguous or non-contiguous) that amount to xijk (for
the given agent, interval, outlet triplet) are not available to the current agent under considera-
tion, then we first schedule the agent in as many feasible unoccupied time spaces as possible
starting from the lowest available time checkpoint in the horizon. For the remaining amount,
we create a feasible unoccupied space for the current agent by rescheduling the allocation of
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Figure 5: Serial dictatorship re-scheduling

one of the agents that precedes the current agent is the ordering. Example 5 and Figure 5
explains the above procedure for a particular case.

Example 5. Consider three agents with the following types θ1 = (0, 4, 2), rEV
1 = 1, θ2 =

(0, 4, 2), rEV
2 = 1, θ3 = (0, 4, 4), rEV

3 = 1 and two charging outlets with rCh
1 = rCh

2 = 1. Thus,
the effective rates of the agents are r1 = r2 = r3 = 1. Note that we have only one interval
(hence j = 1 and we drop that index for this example). Additionally, consider the following
allocation, where the rows and columns correspond to the EVs and outlets respectively.

x =

1 1
1 1
2 2

 (18)

Using serial dictatorship (order 1, 2, 3) for scheduling agents at each (outlet, interval) we get
the schedule shown in Figure 5 which shows step by step progress of our scheduling method.
Note that in the final step we reschedule agent 1’s allocation amount at outlet 2 to a different
unoccupied space to create a feasible unoccupied time space for agent 3 where it can be
scheduled for the remaining amount.

In general, we might have to reschedule a set agents instead of just one agent in order to
create a feasible unoccupied space for the current agent. Additionally, such a rescheduling is
always possible since x ∈ X is a feasible allocation.

4.2 Simulation setup and empirical results

For our experiments we consider a 6 hour time horizon over which EVs arrive for charging.
We divide our analysis in to two parts. Firstly, we fix the number of charging outlets and
analyze the switches incurred as we vary the number of EVs. Secondly, we fix the number of
EVs and analyze the switches as we vary the number of outlets. For both the parts, we run
100 instances for each simulation case and plot averaged results of the total switches incurred,
maximum switches incurred by any agent, and the average switches incurred by any agent.
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We run the above simulations for the multiple outlet identical cars setting using both the
leximin Algorithm 1 and the PO and EF Algorithm 2, and present our results separately in
Figure 6 and Figure 7 respectively.

For each instance of a simulation case we generate data as follows. On the EV side, we
pick arrival time ai uniformly at random within the 6 hour time horizon for each agent. For
setting the departures di, we assume that EVs will be available for charging for some multiple
of 15 minutes which is sampled uniformly at random from [1, 2, . . . , 24]. We do this since
each charging takes a significant amount of time (a 20 kW fast charger takes approximately
1.5 hours to charge a 30kWh battery). We set the charging rates of outlets rCh

k by sampling
uniformly at random from [1, 2, . . . , 10] and set the charging rates of EVs to constant 5 (the
mean of possible rates of outlets) as cars are identical. Using ai, di, ri, we set the demand ci as
a fraction of di − ai (picked uniformly at random) times the charging rate of EV. We then run
our algorithms, generate a schedule using the method outlined above and plot the number of
switches for EVs for that schedule.

The results for Algorithm 1 show that for a fixed number of charging outlets, the total
number of switches grow almost linearly with the number of agents. More importantly,
we see that both the maximum number of switches incurred by any agent and the average
number of switches incurred by any agent is roughly constant and saturates as the number
of agents grow. On the other hand, for a fixed number of EVs, we observe that increasing
the number of outlets does not add any value in terms of the number of switches incurred
by EVs. The results for Algorithm 2 are similar to the leximin algorithm and follow the same
inferences.

5 Conclusion and future work
In this paper, we have solved a deterministic static EV scheduling problem with continuous-
time arrival-departure model. The model of our paper considers specific details of the
EV charging method and develops it accordingly. The objectives we addressed are of
envy-freeness, Pareto optimality, and group-strategyproofness. We have provided LP-based
tractable solutions whenever these properties are simultaneously achievable, and provided
counterexamples where they are incompatible.

There are some open questions as we have pointed out in Table 1.While those are some
immediate future works to this paper, the other interesting direction is to find the allocation
that satisfies the desirable properties and requires minimum outlet switches. Establishing a
concrete theoretical upper bound on the number of switches required between outlets is also
an important future work. Another interesting direction is to extend this model for dynamic
arrivals and departures of the EVs and ensure similar properties. Fair and efficient allocation
of electricity is crucial for commercial transportation at large scale, and an algorithmic devel-
opment of this problem will help cities and nations to adopt EV technology faster and come
closer to carbon-neutrality.
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Figure 6: The number of switches for the leximin allocation (Algorithm 1). The plots on the top row show
the number of switches (on the y-axis, log scale) for different number of EVs (on the x-axis) when the number
of outlets remain fixed, and the plots on the bottom row show number of switches (on the y-axis, log scale) for
different number of outlets (on the x-axis) when the number of EVs remain fixed.
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Figure 7: The number of switches for the PO + EF allocation (Algorithm 2). The plots on the top row show
the number of switches (on the y-axis, log scale) for different number of EVs (on the x-axis) when the number
of outlets remain fixed, and the plots on the bottom row show number of switches (on the y-axis, log scale) for
different number of outlets (on the x-axis) when the number of EVs remain fixed.
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