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Abstract

Classical federated learning (FL) assumes that the clients have a limited amount of
noisy data with which they voluntarily participate and contribute towards learning a
global, more accurate model in a principled manner. The learning happens in a dis-
tributed fashion without sharing the data with the center. However, these methods do
not consider the incentive of an agent for participating and contributing to the process,
given that data collection and running a distributed algorithm locally is costly for the
clients. This question of rationality of contribution has been asked recently in the literature
and some results exist that consider this problem (Murhekar et al., 2023; Karimireddy et
al., 2022). This paper addresses the question of simultaneous parameter learning and incen-
tivizing contribution, which distinguishes it from the extant literature. Our first mechanism
incentivizes each client to contribute to the FL process at a Nash equilibrium and simul-
taneously learns the model parameters. However, this equilibrium outcome can be away
from the optimal, where clients contribute with their full data and the algorithm learns the
optimal parameters. We propose a second mechanism with monetary transfers that is bud-
get balanced and enables the full data contribution along with optimal parameter learning.
Experiments show that these algorithms converge quite fast in practice and yield positive
utility for everyone.

1 Introduction
A high quality machine learning model is built when the model is trained on a large amount
of data. However, in various practical situations, e.g., for languages, images, disease model-
ing, such data is split across multiple entities. Moreover, in many applications, data lies in
edge devices and a model is learnt when these edge devices interact with a parameter server.
Federated Learning (FL) Konečnỳ (2016); McMahan et al. (2017); Kairouz et al. (2021); Zhang
et al. (2021) is a recently developed distributed learning paradigm where the edge devices are
users’ personal devices (like mobile phones and laptops) and FL aims to leverage on-device
intelligence. In FL, there is a center (also known as the parameter server) and several agents
(edge devices). The edge devices can only communicate through the center. However, a ma-
jor challenge of federated learning is data-scarcity, i.e., owing to its limited storage capacity,
the edge devices possesses only a few amounts of data, which may not be sufficient for the
learning task. Hence, the end user participates in a distributed learning process, where she
exploits the data of similar users present in the system.
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In the classical federated learning problem, it is typically assumed that the agents par-
ticipate with all of their data-points voluntarily. However, in the presence of rational users,
such an assumption may not always hold since sampling data is costly for agents. It may
happen that some agents try to contribute very few data-points and try to exploit the system
by learning based on others’ data-points. This phenomenon is called free-riding (Karimireddy
et al., 2022) and disincentivizes honest participants to contribute their data to the FL process.
Hence, naturally, a few recent works have concentrated on designing incentive mechanisms
in federated learning Murhekar et al. (2023); Donahue and Kleinberg (2021); Blum et al. (2021).

One of the most successful use-cases of federated learning is hospital management system.
For instance, in a given geographical region every hospital can sample the medical records
from its patients for disease modeling. To learn the model reliably, each hospital needs to
collect a large amount of data which is generally very expensive. Instead, they might partic-
ipate in a federated learning (FL) process where different hospitals can train the model locally
on their individual datasets but update a consolidated global model parameter. Given that
different hospitals have different capabilities in collecting data, it may be best for certain hos-
pitals not to sample any data and therefore not incur any cost, yet get the learning parameters
from the FL process if there is a sufficient population in the FL who are sharing their learned
parameters. This occurrence of free-riding is not ideal, and an important question is to ask:

“Can a mechanism be designed that incentivizes each user to participate and contribute their maximum
data in FL and simultaneously learn the optimal model parameters?”

In this paper, we address this question in two stages. First, we consider a utility model
of the agents where the accuracy of learning a parameter and the contribution levels of all
the agents give every agent some benefit, while their individual contribution levels lead to
their personal costs. We propose an algorithm namely Updated Parameter Best Response
Dynamics (UPBReD) in the federated learning setting that achieves simultaneous contribution
and learning of the model parameters by the agents. However, this method suffers from a
sub-optimal contribution and therefore the learning is also sub-optimal. In the second stage,
we improve this dynamics by allowing monetary transfer where contributors and consumers
are treated differently using the monetary transfer and incentivizes all agents to contribute
their maximum amount of data to the learning process. This mechanism, namely Two Phase
Updated Parameter Best Response Dynamics (2P-UPBReD), learns the optimal parameters for
all agents and asks the consumers to pay and pays the contributors without keeping any surplus.
2P-UPBReD is distinguished in the fact that it simultaneously learns the optimal model param-
eters, incentivizes full contribution from the agents, yet is quite simple to use in practice.

1.1 Related work

Federated Learning Konečnỳ (2016) has gained significant attention in the last decade or
so. The success story of FL is primarily attributed to the celebrated FedAvg algorithm by
McMahan et al. (2017), where one of the major challenges of FL, namely communication cost
is reduced by local steps. In subsequent works, several other challenges of FL, such as data
heterogeneity Karimireddy et al. (2020b); Ghosh et al. (2020a), byzantine robustness Yin et al.
(2018); Karimireddy et al. (2020a); Ghosh et al. (2021), communication overhead Stich et al.
(2018); Karimireddy et al. (2019); Ghosh et al. (2020b) and privacy Wei et al. (2020); Truex et al.
(2020) were addressed.

Later works focused on incentivizing client participation with advanced aggregation
methods. Cho et al. (2022) proposed dynamically weighting client updates to ensure the
global model outperforms local models. Tastan et al. (2024) used the Shapley value to assess
contributions, while Karimireddy et al. (2022) applied contract theory to maximize fairness in
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data contribution. Gao et al. (2021) addressed fairness by eliminating malicious clients and
rewarding those who enhance performance of the model.

Monetary incentives were explored by Yu et al. (2020), who dynamically allocated budgets
to maximize utility and minimize inequality. Blockchain-based approaches like Pandey et al.
(2022) incentivized high-quality data contributions under budget constraints, and Yang et al.
(2023) rewarded clients to optimize final model utility. Georgoulaki and Kollias (2023) study
arbitrary utility-sharing in federated learning games, showing it achieves a price of anarchy of
2 and price of stability 1 with budget-balanced payments. Tang and Yu (2023) and Tang and
Yu (2024) use Reinforcement Learning techniques in auction based FL systems with multiple
centers the latter optimizes the centers’ budget to maximize total utility and minimize waiting
time while the former optimizes the agent bids to maximize the accumulated profit while still
producing accurate trained models.

Donahue and Kleinberg (2021) modeled FL as a coalitional game, allowing agents to
form coalitions for joint model training. Ray Chaudhury et al. (2022) uses a novel tech-
nique CoreFed to train a predictor(model) that is core stable i.e. no agents are incentivized
to leave the current FL system and form a different system. Chaudhury et al. (2024) im-
proves/generalizes the previous results by using ordinal utilities instead of cardinal ones.
However, they did not address non-cooperative scenarios where agents strategically select
data contributions.

Mao et al. (2024) model FL as a repeated game where agents can introduce perturbations in
their data. The subgame perfect equilibrium of this game is not socially efficient and they pro-
pose a budget balanced mechanism that is socially efficient and individually rational. Blum
et al. (2021) introduced incentive-aware learning, establishing Nash and envy-free equilibria.
Murhekar et al. (2023) extended this with budget-balanced payments to achieve Nash equilib-
rium through best response dynamics. The budget balanced mechanism they design achieves
the maximum social welfare under agent budget constraints at a Nash equilibrium. However,
they did not account for model performance simultaneously with the data contribution – this
is the gap that our work addresses by considering strategic agent behavior in model training.

1.2 Our contributions

We consider a strategic federated learning problem where the clients (agents) contribute by
sampling data from their data distribution. The quantum of sampling is chosen such that it
maximizes their individual utilities that consist of two opposing forces: (i) individual benefit
and (ii) costs (of data sampling). Moreover, similar to the classical federated learning setting,
the center aims to learn an overall model to maximize total accuracy (to be defined shortly)
simultaneously. Our contributions can be summarized as follows.

• We propose a mechanism called Updated Parameter Best Response Dynamics, UPBReD
(Algorithm 1) that allows simultaneous learning and contribution by the agents in FL.
This mechanism does not use any monetary transfers.

• We show that UPBReD converges to a pure strategy Nash equilibrium (Theorem 1).

• However, the Nash equilibrium can be different from the socially optimal outcome where
agents contribute with their full dataset smax and the center learns the optimal model
parameters wOPT (Example 1).

• We then propose an updated and cleaner two-phase mechanism namely Two Phase Up-
dated Parameter Best Response Dynamics, 2P-UPBReD (Algorithm 2) that allows mone-
tary transfers only among the agents, i.e., budget balanced. The data contributors (those
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who contribute above average quantity of data) get paid and the data consumers (those
who contribute below average quantity of data) make the payments. However, both
types of agents learn the optimal model parameters.

• We show that the Nash equilibrium for 2P-UPBReD now shifts to where all agents make
their maximum contribution of data smax and learn the optimal model parameters wOPT

(Theorem 2).

• Experiments show that UPBReD is suboptimal on average and 2P-UPBReD converges faster
than that for realistic datasets (Figure 2). Even though data consumers are required to
pay in 2P-UPBReD, they still obtain positive utilities (Figure 3).

2 Preliminaries
Consider a federated learning setup where a set of data contributors, given by N =

{1, 2, . . . , n}, is interacting with a center. Each data contributor (agent) i has access to a
private labeled dataset Di, with the size of the dataset given by smax

i = |Di|. The agents
are interested in learning a parameter vector w ∈ Rm from these data so that it helps them
predict some unlabeled data accurately (e.g., to perform a classification task). However, each
individual agent has a limited amount of data, and learning w only from that data may not
be accurate enough. So, they learn this parameter via a federated learner such that the model
is trained on the consolidated data of all the n users. Assume that the datasets are drawn
from the same distribution, e.g., all the agents sample human disease data from a certain
geographical location. However, sampling such data is costly and agent i incurs a cost ci(si)

when she trains the model locally on her dataset of size si ∈ Si := [0, smax
i ]. Under this setup,

each agent i gets a utility based on how much data si she decides to sample and train on.
Hence, the utility is given by

ui(w, si, s−i) = ai(w, si, s−i)− zi(si, s−i), (1)

where s−i is the data chosen by the agents other than i in this federated learning process.
The function ai(w, si, s−i) is the accuracy function, which denotes the benefit to agent i if the
parameter learned by the center is w and the agents contribute by running the federated
learning algorithm on their dataset sizes given by the vector s = (si, s−i). The function
zi(si, s−i) is the effective cost to agent i which may depend on the data contributions of all
agents. In the first part of this paper, we consider the case where the cost is only personal to
agent i, i.e., zi is only a function of agent i’s chosen data size si. In the second part, we assume
that this cost may be additionally taxed or subsidized by the center based on their contributed
data-sizes.

Since the agents are strategic, every agent i’s aim is to maximize her utility by appropri-
ately choosing her strategy si given the strategies s−i of the other players and the parameter
w chosen by the center. The center, on the other hand, is interested in learning the parame-
ter w that maximizes the sum of the accuracies as follows, when all agents contribute their
maximum data-sizes, i.e., smax

i , i ∈ N.

wOPT ∈ argmax
w

∑
i∈N

ai(w, smax
i , smax

−i ). (2)

Note that the goal of the center does not consider the effective costs of the agents since those
are incurred by the agents. We will refer to the term ∑i∈N ai(w, si, s−i) as the social welfare
in this context. We are interested in the question that whether we can design a federated
learning algorithm that can make (smax

i , smax
−i ) a Nash equilibrium of the underlying game

and the center can learn wOPT. In this context, the Nash equilibrium is defined as follows.
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Definition 1 (Nash equilibrium). A pure strategy Nash equilibrium (PSNE) for a given parameter
w is a strategy profile (s∗i , s∗−i) of the agents such that

ui(w, s∗i , s∗−i) ⩾ ui(w, si, s∗−i), ∀si ∈ Si, ∀i ∈ N.

This definition is a modification of the standard definition of Nash equilibrium since the
equilibrium profile (s∗i , s∗−i) depends on the parameter w (we do not write it explicitly for
notational cleanliness). Existence of such a PSNE in this context is obvious due to Nash’s
theorem (Nash Jr, 1950). To see this, consider another game Γ′ where the pure strategies are
to pick 0 or smax

i for every i ∈ N. Every mixed strategy of Γ′ is a pure strategy of the original
data contribution game we consider above. Since by Nash’s theorem, a mixed strategy Nash
equilibrium exists for any finite game, PSNE exists in our game. We will refer to the term
PSNE as Nash equilibrium (NE) in the rest of the paper.

We also aim for the following property of a mechanism that involve monetary transfers.

Definition 2 (Budget balance). A mechanism that uses monetary transfers pi(si, s−i) for every
si ∈ Si, i ∈ N is called budget balanced (BB) if ∑i∈N pi(si, s−i) = 0.

This property ensures that the net monetary in or out-flow is zero and the mechanism
only allows monetary redistribution among the agents. In the following section, we consider
the general case where the effective cost is arbitrary.

3 Learning with arbitrary effective costs
In this section, we consider the effective cost of agent i, i.e., zi(si, s−i), to be an arbitrary
function of s = (si, s−i). We know that an alternative interpretation of NE (Definition 1) is a
strategy profile (s∗i , s∗−i) where every agent’s best response to the strategies of the other players
is its own strategy in that profile (see Maschler et al. (2020, e.g.)), i.e.,

s∗i ∈ argmax
si∈Si

ui(w, si, s∗−i), ∀i ∈ N.

Hence, an algorithm that simultaneously updates all agents’ strategies with the best responses
to the current strategies of the other players is called a best response dynamics of a strategic
form game (see Fudenberg (1991, e.g.) for a detailed description). In our problem, this
approach cannot be directly employed since the center also needs to learn and update the
model parameters w as the agents choose their data contributions. We, therefore, propose
a mechanism for federated learning that simultaneously updates both the agents’ strategies
and the center’s choice of w.

In this mechanism, each agent i starts with some initial choices of s0
i and shares that with

the center.1 The center also starts with a w0 and broadcasts that and the entire initial data-
contribution vector s0 with all the agents. In every subsequent iteration t, each agent i locally
computes two quantities: (i) her updated contribution st+1

i by taking one gradient ascent step
w.r.t. her own contribution si, and (ii) the local gradient of agent i’s accuracy component of
the social welfare w.r.t. w. Both are evaluated at the current values of wt and st and sent back
to the center. The center calculates an updated wt+1 that averages (in spirit of the FedAvg
algorithm (McMahan et al., 2017)) all the local gradients sent by the agents. The center then
shares wt+1 and st+1 with all the agents. Formally, the updates are given as follows.

st+1 = st + γg(wt, st, µt), (3)

wt+1 = wt + η g̃(wt, st), (4)

1Note that, only the fraction si is shared with the center and not the data, which is consistent with the principle
of federated learning.
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Algorithm 1 Updated Parameter Best Response Dynamics (UPBReD)

Require: Step size γ, η, initialization w0, s0
i , i ∈ N, number of iterations T.

1: for t = 0, 1, . . . , T − 1 do
2: Center: broadcasts wt, st

3: for agent i ∈ N in parallel do
4: st+1 = st + γg(wt, st, µt)

5: Compute local gradient: dt+1
i = ∇w ai(wt, st+1

i , st
−i), send st+1

i , dt+1
i to the center

6: end for
7: Center:
8: update: wt+1 = wt + η

n ∑i∈N dt+1
i = wt + η g̃(wt, st),

9: end for
10: return wT

where the functions g and g̃ are defined as:

[g(wt, st, µt)]i =
∂

∂si
ui(wt, st) + µt

i , with (5)

µt
i =


− ∂

∂si
ui(wt, st), when either st = 0, ∂

∂si
ui < 0

or st = smax
i , ∂

∂si
ui > 0

0. otherwise

g̃(wt, st) = 1
n ∑i∈N ∇wai(wt, st). (6)

The mechanism is detailed out in Algorithm 1.
Our main result of this section is that under certain concavity and bounded derivative

conditions, Algorithm 1 always converges to a Nash equilibrium. We need a few matrices,
defined as follows for every w and s, to present the result.

G(w, s)ij =
∂2

∂sj∂si
ui(w, s), i, j ∈ N;

G̃(w, s)kℓ =
1
n ∑i∈N

∂2

∂wℓ∂wk
ai(w, s), k, ℓ ∈ {1, . . . , m};

H(w, s)ik =
∂2

∂wk∂si
ui(w, s), i ∈ N, k ∈ {1, . . . , m};

H̃(w, s)kj = ∑i∈N
∂2

∂sj∂wk
ai(w, s), j ∈ N, k ∈ {1, . . . , m}.

(7)

In the following, we state the assumptions.

Assumption 1. Consider the utility functions given by Equation (1) where functions ai, zi, i ∈
N are such that the following properties hold for every w ∈ Rm and s ∈ ∏i∈N Si (the matrices
below are as defined in Equation (7)).

1. The matrices G(w, s) + λI and G̃(w, s) + λ̃I are negative semi-definite.

2. We assume the following bounds:

(a) ∀i, j ∈ N, |G(w, s)ij| ⩽ L,

(b) ∀k, ℓ ∈ {1, . . . , m}, |G̃(w, s)kℓ| ⩽ L̃,

(c) ∥H(w, s)∥op ⩽ P, where ∥A∥op := inf{c ⩾ 0 : ∥Av∥ ⩽ c∥v∥, ∀v},

(d) ∥H̃(w, s)∥op ⩽ P̃.
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Note that the definition of G and G̃ do not imply the strong concavity of ui or ai. Moreover,
the above assumptions are standard and appeared in the literature before (see Murhekar et al.
(2023)). We define the following expressions for a cleaner presentation.

W1 =
√

1 + γ2n2L2 − 2γλ +
√

P̃2γ2,

W2 =
√

1 + η2m2 L̃2 − 2ηλ̃ +
√

P2η2,

E = ∥g(w0, s0, µ0)∥2 + ∥g̃(w0, s0)∥2,

where w0, s0 are arbitrary, and

T0(w0, s0) =
(

ln E
ϵ

)
/
(

ln 1
W

)
, where W = max{W1, W2}.

(8)

We are now ready to present the main result of this section.

Theorem 1 (UPBReD convergence to NE). Under Assumption 1, UPBReD (Algorithm 1) converges
to a Nash equilibrium. Formally, for a given ϵ > 0, for every initial value (w0, s0) of Algorithm 1, the
gradients ∥g(wT, sT, µT)∥ < ϵ and ∥g̃(wT, sT)∥ < ϵ, for all T ⩾ T0(w0, s0), when the step sizes are
chosen as follows

γ < min
{

1, 1
P̃ , 2λ

n2L2 , λ−P̃
n2L2−P̃2

}
, given λ > P̃,

η < min
{

1, 1
P , 2λ̃

m2 L̃2 , λ̃−P
m2 L̃2−P2

}
, given λ̃ > P.

The theorem provides a guarantee of convergence of Algorithm 1 for any arbitrary initial
condition (w0, s0). It needs to run for a minimum number of iterations T0(w0, s0), with appro-
priate parameters of γ and η that govern the gradient ascent rates of the agents’ and center’s
objectives respectively. Note that for a better convergence, i.e., a smaller ϵ, the algorithm
needs to run longer. The parameter W determines the contraction factor of the recurrence
of ∥g(wt, st)∥2 + ∥g̃(wt, st)∥2 and is chosen to be smaller than unity by choosing γ and η

appropriately. Figure 1 shows feasible regions of γ for certain n, L, λ, P̃.
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(a) P̃ = 1
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(b) λ = 1.1

Figure 1: Shaded regions show the feasible choices of γ for n = 2, L = 1 and P̃ and λ as shown. The
dashed lines show the boundary of the regions in the legends. A similar set of choices is true for η.

Remark 1. Note that the choice of step sizes γ and ν scale inversely with m and n respectively
in the above theorem. Moreover, we impose certain restrictions on λ and λ̃, which may be
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restrictive. In Section 4, we remove such issue and propose a learning algorithm with choices
of γ and ν that do not scale with m or n.

Remark 2. We emphasize that in experiments, sufficiently small and constant values of γ and ν

work. Hence, the implicit choice obtained in the above theorem is an artifact of our theoretical
analysis, and is not a reflection of practical scenarios.

Proof. (of Theorem 1) Consider the first-order Taylor expansions of g and g̃ given as follows.

g(wt+1, st+1, µt+1) = g(wt, st, µt) + G(wt, s′, µt) · (st+1 − st)

+ H(w′, st, µt)(wt+1 − wt),

g̃(wt+1, st+1) = g̃(wt, st) + G̃(w′, st) · (wt+1 − wt)

+ H̃(wt, s′)(st+1 − st),

where s′ = θsst + (1 − θs)st+1, w′ = θwwt + (1 − θw)wt+1, for some θs, θw ∈ [0, 1].
Using the update rules of Algorithm 1 given by Equations (3) and (4), we get

g(wt+1, st+1, µt+1) = g(wt, st, µt) + G(wt, s′, µt) · γg(wt, st, µt)

+ H(w′, st, µt)η g̃(wt, st)

g̃(wt+1, st+1) = g̃(wt, st) + G̃(w′, st) · η g̃(wt, st)

+ H̃(wt, s′)γg(wt, st, µt)

Using triangle inequality on each of these identities, we get

∥g(wt+1, st+1, µt+1)∥2 ⩽ ∥(In×n + γG(wt, s′, µt))g(wt, st, µt)∥2

+ η∥H(w′, st, µt)g̃(wt, st)∥2

∥g̃(wt+1, st+1)∥2 ⩽ ∥(Im×m + ηG̃(w′, st))g̃(wt, st)∥2

+ γ∥H̃(wt, s′)g(wt, st, µt)∥2

(9)

From condition 1 of Assumption 1, we get that v⊤(G + λIn×n)v ⩽ 0, ∀v ∈ Rn and v′⊤(G̃ +

λIm×m)v′ ⩽ 0, ∀v′ ∈ Rm. In particular, for v = g(wt, st, µt) and v′ = g̃(wt, st), we get

g(wt, st, µt)⊤G(wt, s′, µt)g(wt, st, µt) ⩽ −λ∥g(wt, st, µt)∥2
2

g̃(wt, st)⊤G̃(w′, st)g̃(wt, st) ⩽ −λ̃∥g̃(wt, st)∥2
2

(10)

Consider the square of the first term of the RHS of the inequality of g in Equation (9)

∥(In×n + γ.G(wt, s′, µt))g(wt, st, µt)∥2

= ∥g(wt, st, µt)∥2
2 + γ2.∥G(wt, st)g(wt, st, µt)∥2

2

+ 2γg(wt, st, µt)⊤G(wt, s′, µt)g(wt, st, µt)

⩽ ∥g(wt, st, µt)∥2
2 + γ2.n2L2∥g(wt, st, µt)∥2

2 − 2γλ∥g(wt, st, µt)∥2
2

= (1 + γ2.n2L2 − 2γλ)∥g(wt, st, µt)∥2
2

(11)

where the equality comes by expanding the squared norm and the inequality comes from the
facts that

(i) ∥G(wt, st)g(wt, st, µt)∥2
2 ⩽ ∥G(wt, st)∥2

F∥g(wt, st, µt)∥2
2, where ∥A∥F :=

√
∑i ∑j |Aij|2 is

the Frobenius norm of a matrix A and (ii) using Equation (10). By condition 2 of Assump-
tion 1, ∥G(wt, st)∥2

F ⩽ n2L2. Hence, we get

∥(In×n + γ.G(wt, st))g(wt, st, µt)∥
⩽
√

1 + γ2.n2L2 − 2γλ · ∥g(wt, st, µt)∥2
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given the term inside the square root is positive.
Consider the second term of the RHS of the inequality of g in Equation (9), where

∥H(w′, st, µt)g̃(wt, st)∥2
2 ⩽ ∥H(w′, st, µt)∥2

op∥g̃(wt, st)∥2
2

⩽ P2∥g̃(wt, st)∥2
2

by condition 2 of Assumption 1.
Defining α := 1 + γ2.n2L2 − 2γλ, β := P2η2, α̃ := 1 + η2.m2 L̃2 − 2ηλ̃, β̃ := P̃2γ2, and

carrying out a similar analysis for g̃ in Equation (9), we get

∥g(wt+1, st+1, µt+1)∥2 ⩽
√

α∥g(wt, st, µt)∥2 +
√

β∥g̃(wt, st)∥2

∥g̃(wt+1, st+1)∥2 ⩽
√

α̃∥g̃(wt, st)∥2 +
√

β̃∥g(wt, st, µt)∥2
(12)

Adding the inequalities of Equation (12)

∥g(wt+1, st+1, µt+1)∥2 + ∥g̃(wt+1, st+1)∥2

⩽ max{
√

α +
√

β̃,
√

α̃ +
√

β}
(
∥g(wt, st, µt)∥2 + ∥g̃(wt, st)∥2

) (13)

To ensure that the above inequality is a contraction, we need to ensure
√

α +
√

β̃,
√

α̃ +
√

β ∈

(0, 1). These imply (i) 0 < α < 1, 0 < α̃ < 1, (ii)
√

β̃ < 1,
√

β < 1, and (iii)
√

α +
√

β̃ <

1,
√

α̃ +
√

β < 1. We can solve for γ and η from these inequalities and obtain the sufficient
conditions when λ > P̃ and λ̃ > P:

γ < 1
P̃ , γ < 2λ

n2L2 , and γ < λ−P̃
n2L2−P̃2 ,

η < 1
P , η < 2λ̃

m2 L̃2 , and η < λ̃−P
m2 L̃2−P2 .

Notice that from conditions 1 and 2 of Assumption 1, we have that λ < L and λ̃ < L̃. Thus

n2L2 − P̃2 > 0 and m2 L̃2 − P2 > 0. For the γ, η chosen as above, we find W1 =
√

α +
√

β̃ < 1

and W2 =
√

α̃ +
√

β < 1, and hence W = max{W1, W2} < 1. Therefore,

∥g(wt+1, st+1, µt+1)∥2 + ∥g̃(wt+1, st+1)∥2

⩽ W
(
∥g(wt, st, µt)∥2 + ∥g̃(wt, st)∥2

)
.

Recursively iterating over this inequality, we get

∥g(wT, sT, µT)∥2 + ∥g̃(wT, sT)∥2

⩽ WT (∥g(w0, s0, µ0)∥2 + ∥g̃(w0, s0)∥2
)

.

Defining E = ∥g(w0, s0, µ0)∥2 + ∥g̃(w0, s0)∥2 and

T0(w0, s0) =
(

ln E
ϵ

)
/
(

ln 1
W

)
,

we get that for all T ⩾ T0(w0, s0),

∥g(wT, sT, µT)∥2 + ∥g̃(wT, sT)∥2 < ϵ

=⇒ ∥g(wT, sT, µT)∥2 < ϵ, and ∥g̃(wT, sT)∥2 < ϵ.

This completes the proof.
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3.1 Application: effective costs are only personal

One special but practical case of the above setup is when the effective cost is only borne by
the agent. Mathematically, it is represented as zi(si, s−i) = ci(si), ∀si ∈ Si, s−i ∈ S−i, ∀i ∈ N.

We assume convex cost functions ci, ∀i ∈ N, which is a commonly used assumption Li
and Raghunathan (2014) in the literature. This setup is consistent with the assumptions of
Assumption 1, and according to Theorem 1, Algorithm 1 converges to a Nash equilibrium,
which we denote as (w∗, s∗). However, it is possible that none of the following things happen:
(i) s∗ ̸= smax, i.e., the agents do not contribute their entire data for the federated learning pro-
cess, leading to a suboptimal learning, or (ii) w∗ ̸= wOPT (see Equation (2) for the definition),
which is neither the objective of the center nor the agents. The following example shows such
an instance.

Example 1 (NE different from socially optimal). Consider the federated learning setup with
two agents that have linear costs and are trying to learn a model with two parameters. The
accuracy function is identical and is given by ai(w, s) = 1 − (1−w1)

2+(2−w2)
2

s1+s2
, i = 1, 2. The cost

functions for agents 1 and 2 are given by c1(s1) = 0.04 · s1 and c2(s2) = 0.02 · s2 respectively.
The agents’ strategy sets are Si = [0, 5], i = 1, 2. Notice that, at s = smax = (5, 5), the value
of wOPT (see Equation (2)) is (1, 2). It yields an optimal social welfare of 2. However, this is
not an NE, since the derivatives ∂ui/∂si|smax

i
< 0 for both i = 1, 2. Hence, the best response

of each agent is to reduce si. However, from this point, with the choice of γ = 0.25 and
η = 0.25, Algorithm 1 converges to an NE profile of w∗ = (0.5, 1.5), s∗ = (0, 5) that yields a
social welfare of 1.8.

So, our objective in this paper is to allow monetary transfer among the agents so that we
get the best of both worlds: (a) We achieve convergence to a Nash equilibrium of (wOPT, smax),
where all agents to contribute their entire data and center learns the optimal parameter, and
(b) the transfers are budget balanced, i.e., the center does not accumulate any money – it is
used just to realign the agents’ utilities to reach the desired Nash equilibrium. We discuss
this mechanism in the following section.

4 Welfare maximization with monetary transfers
In this section, we consider the scenario where the center can make a payment pi(si, s−i) to
agent i to alter her utility function. Therefore, the effective cost of agent i becomes

zi(si, s−i) = ci(si)− pi(si, s−i). (14)

Note that, the payment can be either positive or negative, which determines whether the
agent is subsidized or taxed respectively. It is reasonable to expect that the data contributors
of the federated learning process are subsidized for their data contribution while the data
consumers are charged payment for obtaining the learned parameter. We assume that the
accuracy function ai is monotone non-decreasing in si. This assumption captures the fact that
the benefit to an agent increases when she contributes more data to the learning process. We
choose the following payment function:

pi(s) = β

(
si −

1
n − 1 ∑

j ̸=i
sj

)
, (15)

where β is a parameter of choice. Note that this payment mechanism is budget balanced by
design, since ∑i∈N pi(si, s−i) = 0, ∀si ∈ Si, s−i ∈ S−i. With payment, the utility of agent i

10



becomes:

ui(w, s) = ai(w, s)− ci(si) + β

(
si −

1
n − 1 ∑

j ̸=i
sj

)
. (16)

Since we chose the payment to be linear in s, and ci(si) is convex in si, the effective payment zi

is convex in s. However, in this section, we are also interested in the quality of the NE in terms
of social welfare and want to reach the desired NE where s∗i = smax

i , ∀i ∈ N and w∗ = wOPT.

4.1 Convergence to the NE (wOPT, smax)

In this setup, we first prove that the utility of every agent i can be made strictly increasing in
her own contribution si in the following manner.

Lemma 1 (Increasing utility). If the accuracy function ai is monotone non-decreasing in si for all i ∈
N, there exists a payment function given by Equation (15) that ensures that the utility of every agent
is increasing in her own data contribution, i.e., ∂

∂si
ui(w, si, s−i) > 0, ∀si ∈ (0, smax

i ), ∀i ∈ N, ∀w.

Proof. From Equation (16), we get the derivative of the utility function for si ∈ (0, smax
i ) (note

that this holds only for the interior of Si, the derivative at the boundaries are zero by definition
of Equation (5)) to be [g(w, s, µ)]i =

∂
∂si

ui(w, s) = ∂
∂si

ai(w, s)− c′i(si)+ β. Since the cost function
is convex, its derivative is increasing in si and hence we have c′i(si) ⩽ c′i(s

max
i ), ∀si ∈ Si and

∀i ∈ N. Choose in Equation (15) the parameter β > maxi∈N c′i(s
max
i ), where c′i(si) =

d
dsi

ci(si).
Therefore

[g(w, s, µ)]i =
∂

∂si
ai(w, s)− c′i(si) + β

⩾ ∂
∂si

ai(w, s)− c′i(s
max
i ) + β > 0.

The last inequality holds since we have ∂
∂si

ai(w, s) ⩾ 0 and β > c′i(s
max
i ), ∀i ∈ N.

Remark 3. Throughout this paper, we use β > maxi∈N c′i(s
max
i ).

This lemma implies that even in Algorithm 1 if we apply the above payment, s will
converge to the maximum value smax. However, unlike Algorithm 1, in this section we
provide an algorithm which gives the step sizes of the gradient ascents in a more con-
crete manner and is, therefore, a superior one. In order to keep the convergence rate
same as Theorem 1, we assume that the negative2 social welfare function at smax, given by
f (w, smax) = − 1

n ∑i∈N ai(w, smax), is M-smooth and ν-strictly convex in w. These properties
are formally defined below.

Definition 3 (M-smoothness). A function f : Rm → R is M-smooth if for all x, x′ ∈ Rm

f (x′) ⩽ f (x) + ⟨∇x f (x), x′ − x⟩+ M
2
∥x − x′∥2

2.

Definition 4 (ν-strictly convex). A function f : Rm → R is ν-strictly convex if for all x, x′ ∈ Rm

f (x′) ⩾ f (x) + ⟨∇x f (x), x′ − x⟩+ ν

2
∥x − x′∥2

2.

We propose a two-phase algorithm given by Algorithm 2. The algorithm, in the first
phase, incentivizes the agents to contribute smax, and in the second phase, converges to wOPT.
Note that in the first phase of Algorithm 2, every agent runs a gradient ascent step. Thanks to
the increasing utility property (Lemma 1), we have an increasing sequence of st

i for all i ∈ N.

2We negate the welfare so that we can consider functions as convex to apply the results of convex analysis
easily.
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Algorithm 2 Two Phase Updated Parameter Best Response Dynamics (2P-UPBReD)

Require: Step size γ, η, initialization w0, s0
i , i ∈ N, number of iterations T.

1: Center: broadcasts w0, s0, set t = 0 ▷ begin phase 1
2: while s ̸= smax do
3: Center: broadcasts st

4: for agent i ∈ N in parallel do
5: st+1

i = st
i + γ[g(w0, st, µt)]i

6: Sends st+1
i to the center

7: end for
8: t = t + 1
9: end while ▷ end phase 1

10: for t = 0, 1, . . . , T do ▷ begin phase 2
11: Center: broadcasts wt

12: for agent i ∈ N in parallel do
13: Compute local gradient: dt+1

i = ∇w ai(wt, smax
i , smax

−i ), send dt+1
i to the center

14: end for
15: Center:
16: update: wt+1 = wt + η

n ∑i∈N dt+1
i = wt + η g̃(wt, smax),

17: end for
18: return wT ▷ end phase 2

Moreover, from the definition of [g(w0, st, µt)]i it is ensured that smax
i is the fixed point of this

gradient ascent update. Hence after a finite number of iterations, every agent reaches smax
i .

Note that in this phase the model parameter w0 remains unchanged.
In the second phase of the algorithm, we update the model parameter wt. Note that since

all the agents contribute the maximum amount of data they own, this phase is simply pure
federated learning (without incentive design). As such, each agent now computes the local
gradient dt+1

i and sends it to the center. The center then aggregates the gradients and take a
gradient ascent step with learning rate η. The center then broadcasts the updated parameter
to the agents and the process continues.

We now provide the convergence guarantees of Algorithm 2. Before that, let us discuss
the assumptions as discussed in Section 3.1.

Assumption 2. Consider the utility functions given by Equation (1) where functions ai, ci, i ∈
N are such that the following properties hold.

1. The function ai(w, si, s−i) is monotone non-decreasing in si for every w, s−i, i ∈ N.

2. The function ci(si) is convex and differentiable everywhere for si ∈ Si, i ∈ N.

3. The negative social welfare function at smax, f (w, smax), is M-smooth and ν-strictly con-
vex in w, with M > ν.

In expected utility theory in microeconomics, cardinal utility function of risk-averse agents
is assumed to be concave Pemberton and Rau (2011); Li and Raghunathan (2014); Murhekar
et al. (2023) which the above assumptions imply. Also, the smoothness and strong convexity
assumptions have featured in several previous papers on FL Karimireddy et al. (2020b); Yin et
al. (2018). The main result of this section is as follows.

12



Theorem 2 (2P-UPBReD convergence to the optimal NE). Suppose Assumption 2 holds and we
consider the utility function with payment scheme given in Equation (16) with β > maxi∈N c′i(s

max
i ).

Then, for every w ∈ Rm and s ∈ ∏i∈N Si, 2P-UPBReD (Algorithm 2) converges to the Nash equilib-
rium (wOPT, smax) and is budget balanced. In particular, for any given ϵ > 0, we have

1
n ∑i∈N ai(wOPT, smax)− 1

n ∑i∈N ai(wT, smax) < ϵ

and sT = smax in T = κ + T0 iterations provided we choose γ = c (an universal constant) and
η = 1/M with

κ ⩾ max
i

{
smax

i − s0
i

c ∆i

}
(17)

T0 >

(
ln

f (w0, smax)− f (wOPT, smax)

ϵ

)/(
ln

1
1 − ν

M

)
(18)

where, f (w, s) := − 1
n ∑i∈N ai(w, s) and ∆i = β − c′i(s

max
i ).

Proof sketch. In phase 1, we show that the utilities are strictly increasing for every agent, and
therefore, the algorithm reaches the state (w0, smax). Phase 2 is a gradient descent on f (·, smax)

which leads w to converge to wOPT in T0 iterations due to the smoothness and strict convexity
of f . □

Proof. Phase 1. Note that the derivatives of the utility of agent i ∈ N is given by

[g(w0, st, µt)]i =
∂

∂si
ui(w0, st)

= ∂
∂si

ai(w0, st)− ∂
∂si

ci(si) + β

⩾ ∂
∂si

ai(w0, st)− ∂
∂si

ci(smax
i ) + β.

(19)

The inequality follows since ci is convex and differentiable everywhere in Si and its derivative
is a non-decreasing function of si. This implies that the maximum value of ci(si) is reached
at si = smax. For the choice of β > maxi∈N c′i(s

max
i ), we get ∆i := β − c′i(s

max
i ) > 0. Since, ai is

non-decreasing in si, we get that the RHS of Equation (19) is positive. Hence

[g(w0, st, µt)]i > 0,

implying that at every step of this phase, the utility function increases for every agent. Ap-
plying the update rule for s given by Algorithm 2 in phase 1, we get

st+1 = st + γg(w0, st, µt) ⩾ st + ∂
∂si

ai(wt, st) + ∆i,

and applying the inequality repeatedly for t iterations yields

st
i ⩾ s0

i + γ(t∆i + ∑t
k=0

∂
∂si

ai(w0, sk)).

Let li = smax
i − s0

i . We have,

st
i ⩾ smax

i − li + γ(t∆i + ∑t
k=1

∂
∂si

ai(sk, wk))

⩾ smax
i − li + γt∆i
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where non-decreasingness of ai w.r.t. si is used. Substituting t = κ where κ ⩾ li
∆iγ

, we obtain

sκ
i ⩾ smax

i − ki + γ∆i(
ki

∆iγ
)

⩾ smax
i − ki + ki

⩾ smax
i

sκ
i ⩾ smax

i

(20)

Since, st
i ⩽ smax

i for all t and i ∈ N, we conclude that sκ
i = smax

i for all i ∈ N. Hence, smax is a
fixed point of the update st+1 = st + γg(w0, st, µt) at the end of phase 1.

Phase 2 For t > κ, we can focus on the second phase of the algorithm. From the fixed point
property of smax, we can now focus entirely on the function f (w, smax) = − 1

n ∑i∈N ai(w, smax).
From the algorithmic description, the second phase is just a simple gradient descent, run
by the center, on f (w, smax). This is easy to see since at every iteration the center gets dt+1

i
from all the agents i ∈ N, aggregates them and construct g̃(wt, smax), which is the gradient
of f (w, smax) computed at wt. We denote f (w, smax) with f (w) in this part for notational
cleanliness.

Note that the gradient descent is run with initialization wκ (which is same as w0 as given
by first phase of the algorithm). We exploit the strong convexity and smoothness of f (w, smax).
Running the second phase for T0 iterations, using Wright and Recht (2022), we obtain

f (wT0)− f (wOPT) ≤ (1 − ν
M )T0 [ f (w0)− f (wOPT)].

Hence, for f (wT0)− f (wOPT) < ϵ, we require

T0 >
(

ln f (w0)− f (wOPT)
ϵ

)/ln 1(
1− ν

M

)
 ,

which proves the theorem.

We present a few observations here.

Remark 4 (γ and rationality). Phase 1 of Algorithm 2 achieves the optimal contribution smax

without updating the learning parameter w. The speed of convergence of this phase depends
on the parameter γ = c, which can be interpreted as the minimum rationality level of the
society. For instance, if all agents are sufficiently rational, i.e., c is large, they may converge
to smax in a single iteration. However, the algorithm converges even if agents are boundedly
rational. In Phase 2 of the algorithm, the agents stop updating their contributions and only
updates the gradients di and the center accumulates them to update wt.

Remark 5. The convergence rate is O(ln 1/ϵ) which is same as that of Algorithm 1. However,
Algorithm 2 is cleaner in terms of the phases of convergence, the choices of the step sizes γ, η,
and yields a guarantee to converge to the desired NE (wOPT, smax).

Thanks to the smoothness and strong convexity properties of f (·, smax), we can show that
running Algorithm 2 guarantees that the model iterate wT converges to wOPT at an exponential
speed as well.

Corollary 1 (Iterate Convergence). With the same setup as above and γ = c (universal constant),
η = 2

M+ν , we obtain

∥wT − wOPT∥2 < ϵ, and sT = smax,

where T = κ + T̃0, with the same κ as in Equation (17) and T̃0 >
(

ln ∥w0−wOPT∥2
ϵ

)
/
(

ln 1+ ν
M

1− ν
M

)
.
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Proof. The proof of this follows in the same lines as Theorem 2. Using the choice of β, we
first ensure that with κ steps, we obtain sκ

i = smax
i for all i ∈ N. Now, the framework is same

as minimization of a strongly convex and smooth function f (w) with initialization wκ = w0.
Using Wright and Recht (2022), with η = 2

M+ν , we obtain the iterate convergence, namely

∥wT̃0 − wOPT∥2 ≤
(

1− ν
M

1+ ν
M

)T̃0
∥w0 − wOPT∥2. Taking log both sides implies the result.

5 Experiments
Our results in Sections 3 and 4 guarantee convergence of Algorithms 1 and 2 to a pure Nash
equilibrium. However, it uses bounds that may be weaker than the actual convergence of
the algorithms. It is therefore important to ask how quickly these FL algorithms converge in
practice with real datasets.

When the dataset is non-homogeneously split across the agents, another important question
is to quantify the amount of payment and utilities each agent gets in Algorithm 2. We address
all these questions through experiments in this section.

In the first experiment, we arbitrarily sample data from the MNIST dataset (Lecun et al.,
1998) and assign 200 distinct data points to all agents, i.e., smax

i = 200, ∀i ∈ N. We assume the
accuracy function to be given by

ai(w, s) = ri − bi ·
Li(w, s)
∥s∥1

,

where ri = 1, bi = 1, Li is a loss function, and ∥ · ∥1 is the L1-norm. The agents are training
a fully connected neural network with one hidden layer (Simard et al., 2003) and the loss
function Li(w, s) is the cross-entropy loss of that network when the model parameter is w and
the agents choose the contribution vector s. The accuracy function captures the dependence of
both the parameter vector w and the strategy vector s. The gradient of the accuracy function
shared with the center captures the gradient of the loss function scaled by the inverse of
the total chosen data-size of all agents. This scaling factor represents the fact that higher
contribution from the agents imply a better accuracy for all agents and is also empirically
observed in Kaplan et al. (2020). The constant terms ri and bi are agent specific and affect the
accuracies linearly.

For every agent i, we consider a linear cost ci · si, where ci = 0.005, ∀i ∈ N. We choose β

for 2P-UPBReD to be 1. Learning rates for UPBReD are γ = 0.5, η = 0.5, and for 2P-UPBReD, we
choose γ = 10, η = 0.5. We run both algorithms for an error margin of ϵ = 0.01. Figure 2
shows the results. The convergence time plots were generated by running the experiment
40 times with different (w0, s0) for every number of agents. All experiments are run on 48
Intel(R) Xeon(R) Platinum 8168 CPUs with 24 cores and 2 threads per core. The total number
of parameters in the model used were 50890, with the hidden layer having 64 neurons.

In the second experiment, we consider a non-homogeneous data distribution among the
agents. The accuracy function parameters are ri = 3, bi = 1, cost gradients of each agent is
ci = 0.005, and β = 0.01. The dataset of size 2750 is distributed as 50, 100, 150, . . . , 500 among
n = 10 agents. The utilities and payments in 2P-UPBReD is calculated and shown in Figure 3.
This plot shows that 2P-UPBReD rewards data contributors with payments taken from the data
consumers, even though both types of agents get positive utilities.

6 Conclusions and future work
In this paper, we proposed UPBReD that ensures convergence to a Nash equilibrium and si-
multaneous convergence of the model parameters w. However, such a model parameter can
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be off from the optimal wOPT, and we proposed an updated two-phase mechanism 2P-UPBReD
that ensures full contribution from the agents and convergence to wOPT. The trade-off is that
in the second case, we need to use monetary transfer, though, these transfers can be only
internal, i.e., within the agents.

An immediate future work of this paper is to consider a maximum budget constraint for
each agent. The mechanism can only charge that amount of payment at max and ensure some
approximation to the properties that we provide here. Also, in realistic situations, all agents
do not sample their data from the same distribution. Hence an extension to this work where
data owners can cluster and learn the optimal parameters for their cluster will be another
important future work.
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