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Geometric Graph

b1 ≡ (0, 0)

Area to monitor, A

b2 ≡ (1, 0)

b3 ≡ (1, 1)b4 ≡ (0, 1)

sample deployment v

r

Neighbours in the
Geometric Graph
G(v, r)

Node locations can be arbitrary or random
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Definition of Hop Distance (HD)
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Question: Relation between hop-distance (HD) and Euclidean distance (ED)?
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Assumption in HCRL

Hop Count Ratio-based Localisation (HCRL), proposed by Yang et al.
[IEEE SECON 2007]

Assumption: d ∝ h, hence d1
d2

= h1
h2

Suppose, node location (x , y), Anchors (x01, y01) and (x02, y02)
√

(x − x01)2 + (y − y01)2
√

(x − x02)2 + (y − y02)2
≈ h1

h2
⇐ Equation of circle
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Assumption in PDM

Proximity Distance Map (PDM), proposed by Lim and Hou [IEEE
Infocom 2005]

L anchors, node i has HD vector hi ∈ N
L

Assumption: ED vector di = Thi

ED matrix between anchors, D = [d1, · · · ,dL], is known

HD matrix between anchors, H = [h1, · · · ,hL], is computed

D = TH ⇒ T = DHT(HHT)−1

This T is used for all non-anchor nodes

Node location estimated from the ED vector di
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HD-ED Relationship in Arbitrary GG

Setting:
I n nodes placed on unit area A arbitrarily
I v = [v1, v2, · · · , vn] ∈ An

I Geometric graph G(v, r) is formed

Notation:
I N = [n] = {1, 2, · · · , n}, the index set of the nodes
I Hl,i(v) = HD of node i from l th anchor on G(v, r), for the deployment

v
I Dl,i(v) = Euclidean distance of node i from anchor bl for the

deployment v.
D l(v, hl) = max

{i∈N :Hl,i (v)=hl}
Dl,i(v)

D l(v, hl) = min
{i∈N :Hl,i (v)=hl}

Dl,i(v)
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Graphical Illustration

sample deployment v

Dl(v, hl)

Dl(v, hl)

bl

Area to monitor, A

These paths are on G(v, r)

Anchor can be anywhere in A, this is an example
lth anchor location
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HD-ED Relationship in Arbitrary GG (Contd.)

Lemma

For arbitrary v and hl ≥ 2, r < D l(v, hl ) ≤ D l(v, hl ) ≤ hl r and both

bounds are sharp.

= r

s

d

A regular hl + 1 sided polygon

γ > π
3

∀hl > 2

= r
all internal angles = γ

3

2

1

hl + 1

= r

s

d

r1 = r + δ′, δ′ > 0

hop distance between s and d = hl

this edge is deleted

all other angles

γ + δ

3

2

1

increase by δ

hl + 1

Figure: Node placement on the right achieves the lower bound of ED

HD does not give useful information about ED in Arbitrary GG
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Paradigms of HD-ED Relationship in RGG

HD-ED Relationship between Fixed Points

HD-ED Relationship between Random Nodes

HD-ED Relationship between Fixed Point and
Random Node
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HD-ED Relationship between Fixed Points

Setting:
I n nodes placed on unit area A Uniform i.i.d.
I Node location vector v = [v1, v2, · · · , vn] ∈ An

I P
n(.) is the probability measure

I Geometric graph G(v, r(n)) is formed

Notation:
I Hb1b2(v) is the hop distance between any two points b1 and b2 on A,

for the sample deployment v

I We will take r(n) = c

√

log n
n

, c >
1√
π
, a constant, to guarantee

asymptotic connectivity (Gupta and Kumar, 1998)

Graphical illustration of hop−distance
between two given points on the unit area

this is counted as one 
hop

d

r(n)

r(n)
node location

this path is on the geometric graph

the minimum number of hops in all such possible paths
connecting the two points is called the hop−distancenode location

2b

b1
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HD-ED Relationship between Fixed Points (Contd.)

Theorem

For all ε, 1 > ε > 0, if c2(ε) ≥ 2

q
√

1−p2
, where p and q are any two

constants satisfying 1 − ε < p < 1 and 0 < q < p − (1 − ε) and p ≥ 2q,

on a unit square A,

lim
n→∞

P
n

{

v : ∀z1, z2 ∈ A,
z1z2

r(n, ε)
≤ Hz1z2(v) <

z1z2

(1 − ε)r(n, ε)

}

= 1

where r(n, ε) = c(ε)
√

log n
n

.

i.e., with high probability, ED between any two points is roughly equal
to HD × radius of the RGG, where the radius is larger than the
critical radius by a constant factor
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HD-ED Relationship between Random Nodes

Setting:
I n nodes placed on unit area A Uniform i.i.d.
I Node location vector v = [v1, v2, · · · , vn] ∈ An

I P
n(.) is the probability measure

I Geometric graph G(v, r(n)) is formed

Notation:
I N = [n] = {1, 2, · · · , n}, the index set of the nodes, i.e., node i ∈ N

has a location vi on A.
I Da,b(v): The Euclidean distance on A between two nodes a and b,

a, b ∈ N , for the sample deployment v.
I Ha,b(v): The hop distance on G(v, r(n)) between two nodes a and b,

a, b ∈ N , for the sample deployment v.

D(v, h) = max
{(a,b)∈N 2:Ha,b(v)=h}

Da,b(v)

D(v, h) = min
{(a,b)∈N 2:Ha,b(v)=h}

Da,b(v)
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HD-ED Relationship between Random Nodes (Contd.)

We want bounds on the ED between any pair of nodes which are at a
hop-distance h from each other

Area to monitor, A

Two different pairs of nodes
both h hops away from each other

We want the EDs of all such pairs to be bounded between

RGG is formed with radius r(n)

[kr(n), hr(n)] simultaneously, k < h is a constant
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HD-ED Relationship between Random Nodes (Contd.)

Define,

Eh(n, ε)

=

{

v :

(

(1 − ε)(h − 1) − 1

2

)

r(n, ε) ≤ D(v, h) ≤ D(v, h) ≤ hr(n, ε)

}

Theorem

For 1 > ε > 0, if c2(ε) ≥ 1
g(ε) , where

g(ε) = q(ε)
√

1 − p2(ε), and

p(ε) =
1−ε+

√
(1−ε)2+8
4 ,

q(ε) =
−3(1−ε)+

√
(1−ε)2+8

4 ,

P
n(Eh(n, ε)) = 1 −O

(

n1−c2(ε)g(ε)

lnn

)

Thus, lim
n→∞

P
n(Eh(n, ε)) = 1
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HD-ED Relationship between Fixed Point and Random

Node

Setting:
I n nodes placed on unit area A Uniform i.i.d.
I Node location vector v = [v1, v2, · · · , vn] ∈ An

I P
n(.) is the probability measure

I Geometric graph G(v, r(n)) is formed

Notation:
I N = [n] = {1, 2, · · · , n}, the index set of the nodes
I Hl,i(v) = HD of node i from l th anchor on G(v, r(n)), for the

deployment v
I Dl,i(v) = Euclidean distance of node i from anchor bl for the

deployment v.
D l(v, hl) = max

{i∈N :Hl,i (v)=hl}
Dl,i(v)

D l(v, hl) = min
{i∈N :Hl,i (v)=hl}

Dl,i(v)
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HD-ED Relationship between Fixed Point and Random

Node (Contd.)

We want bounds on the ED between a fixed point and all nodes at a
hop-distance h from the point

We want an upper and a lower bound on the ED

Dl(v, hl)

Dl(v, hl)

bl

Area to monitor, A
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HD-ED Relationship between Fixed Point and Random

Node (Contd.)

Define, Ehl
(n) = {v : (1− ε)(hl − 1)r(n) ≤ D l(v, hl ) ≤ D l (v, hl ) ≤ hl r(n)}

Theorem

For a given 1 > ε > 0, and r(n) = c

√

ln n
n

, c >
1√
π
,

P
n(Ehl

(n)) = 1 −O
(

1

ng(ε)c2

)

where g(ε) = q(ε)
√

1 − p2(ε), p(ε) =
1−ε+

√
(1−ε)2+8

4 ,

q(ε) =
−3(1−ε)+

√
(1−ε)2+8

4 .

Hence, lim
n→∞

P
n(Ehl

(n)) = 1
Since g(ε) ↓ as ε ↓, the rate of convergence slows down
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Proof Techniques (1/4)

hlr(n)

. . .

J(n) blades. . .

hl strips in each blade

bl

blade Bl
j

A

Figure: Construction using the blades cutting the circumference of the circle of
radius hl r(n).
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Proof Techniques (2/4)

Blade

· · ·
· · ·

r(n)r(n)

hl
1 2

u(n) =
√

1 − p2r(n)

t(n) = qr(n)

pr(n)

(p − q)(hl − 1)r(n)

hl − 1bl

Bl
j

all nodes that fall here will have hop distance ≤ hl − 1 from bl

Figure: The construction with hl hops.

Al
i ,j = {v : ∃ at least one node in the i th strip of Bl

j}

{∩J(n)
j=1 ∩hl−1

i=1 Al
i ,j}

⊆ {v : (p − q)(hl − 1)r(n) ≤ D l(v, hl ) ≤ D l(v, hl ) ≤ hl r(n)}
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Proof Techniques (3/4)

P
n
(

∩J(n)
j=1 ∩hl−1

i=1 Al
i ,j

)

= 1 − P
n
(

∪J(n)
j=1 ∪hl−1

i=1 Al
i ,j

c
)

≥ 1 −
J(n)
∑

j=1

hl−1
∑

i=1

P
n
(

Al
i ,j

c
)

≥ 1 − (hl − 1)

⌈

πhl

2
√

1 − p2

⌉

(1 − u(n)t(n))n

≥ 1 − (hl − 1)

⌈

πhl

2
√

1 − p2

⌉

e−nu(n)t(n)

= 1 − (hl − 1)

⌈

πhl

2
√

1 − p2

⌉

e−nq
√

1−p2r2(n)

= 1 − (hl − 1)

⌈

πhl

2
√

1 − p2

⌉

n−q
√

1−p2c2 n→∞−→ 1
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Proof Techniques (4/4)

We take p − q = 1 − ε, and maximise q
√

1 − p2

Gives p(ε) =
1−ε+

√
(1−ε)2+8

4 , q(ε) =
−3(1−ε)+

√
(1−ε)2+8

4

Define g(ε) = q(ε)
√

1 − p2(ε), Hence,

P
n{v : (1 − ε)(hl − 1)r(n) ≤ D l (v, hl ) ≤ D l (v, hl ) ≤ hl r(n)}

= 1 −O
(

1

ng(ε)c2

)
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1000 nodes : 5 hops
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1000 nodes, prob lower bound = 0.37, epsilon = 0.4

Predicted region for h = 5, on G(V,r(n)), Uniform i.i.d.

Figure: The dashed line shows the ED bounds given by the point-node theorem,
the solid line shows ED (h1 − 1)r(n) from b1 for 1000 nodes, 5 hops, ε = 0.4,

P
n(E1(n)) ≥ 0.37. r(n) = 4√

π

√

ln n
n

.
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5000 nodes : 5 hops
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Predicted region for h = 5, on G(V,r(n)), Uniform i.i.d.

Figure: The dashed line shows the ED bounds given by the point-node theorem,
the solid line shows ED (h1 − 1)r(n) from b1 for 5000 nodes, 5 hops, ε = 0.4,

P
n(E1(n)) ≥ 0.79. r(n) = 4√

π

√

ln n
n

.

Swaprava (ECE, IISc) Self Organisation June 26, 2008 30 / 45



5000 nodes : 10 hops
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Figure: The dashed line shows the ED bounds given by the point-node theorem,
the solid line shows ED (h1 − 1)r(n) from b1 for 5000 nodes, 10 hops,

P
n(E1(n)) ≥ 0.80. r(n) = 4√
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√

ln n
n

.
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Theorem Used

For localisation we need multiple (say L) anchors

hop-distance vector, h = [h1, · · · , hl , · · · , hL] ∈ NL

For L anchors, all possible h vectors are not feasible

H(n): set of all feasible h vectors (it depends on n)

Recall, Ehl
(n) = {v : (1 − ε)(hl − 1)r(n) ≤ D l(v, hl ) ≤ D l(v, hl ) ≤ hl r(n)}

Theorem

For a given 1 > ε > 0, and r(n) = c

√

ln n
n

, c >
1√
π
,

∀h = [h1, · · · , hl , · · · , hL] ∈ H(n),

P
n
(

∩L
l=1Ehl

(n)
)

= 1 −O
(

1

ng(ε)c2

)

where g(ε) = q(ε)
√

1 − p2(ε),

p(ε) =
1−ε+

√
(1−ε)2+8

4 , q(ε) =
−3(1−ε)+

√
(1−ε)2+8

4
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Illustration
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−
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−
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4
−

1)r(n
)
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−

ε
)(

h
3
−

1)
r
(n
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(1 −
ε)(h1
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)

the node lies in
this region w. p.
1 −O(n−g(ε)c2)
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Algorithm: Hop Count-derived Distance-based Localisation

(HCDL)1

STEP 1: (Initialisation) Each node finds the hop-distance vector
h = [h1, · · · , hL]

STEP 2: (Region of Intersection) For a certain node, set an ε,
small enough, and find the region of intersection formed by the annuli
of radii [(1− ε)(hl − 1)r(n), hl r(n)] centred at the l th anchor location,
l = 1, · · · ,L

STEP 3: (Terminating Condition)

I IF there is an intersection, declare the centroid of the region of
intersection as the estimate of the node. GO TO STEP 4.

I ELSE increase ε by an amount k , 0 < k < 1. GO TO STEP 2.

STEP 4: (Repetition) Repeat STEP 2 to STEP 3 for all n nodes.

STEP 5: STOP

1This is a joint work with Venkatesan N.E. and Prof. P. Vijay Kumar
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HCRL (Yang et al. 2007): Localisation Error Pattern
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PDM (Lim and Hou, 2005): Localisation Error Pattern
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HCDL: Localisation Error Pattern
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Cumulative Distribution of Error
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Conclusion and Future Work

Assumed a Geometric Graph model of the Wireless Sensor Network

HD is not a good measure for ED for arbitrary node placements

Three paradigms of HD-ED proportionality for random node
placements

I Sufficiency theorems for ED-HD relationships in point-point, node-node
and point-node paradigms

I For point-point and node-node cases, the radius of the GG is larger
than the critical radius

I For point-node case, theorem is valid for critical radius too

For point-node theory, given HD = h, (1 − ε)(h − 1)r < ED ≤ hr

with high probability

Proposed algorithm HCDL based on this theory

Performs better than HCRL and PDM
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Thank You
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