Self Organisation in Random Geometric Graph models of Wireless Sensor Networks

Swaprava Nath

under the guidance of Prof. Anurag Kumar

ME Final Presentation

Department of Electrical Communication Engineering Indian Institute of Science, Bangalore 560012, India

June 26, 2008

1 Theory

- Review of Geometric Graph (GG)
- Assumptions in Literature
- Motivation for Random GG
- Paradigms of HD-ED Relationship in RGG
- 2 Simulations illustrating Point-Node Theorem

- Theorem Used
- Algorithm: Hop Count-derived Distance-based Localisation (HCDL)
- Performance Comparison
 - 5 Conclusion and Future Work

Theory

- Review of Geometric Graph (GG)
- Assumptions in Literature
- Motivation for Random GG
- Paradigms of HD-ED Relationship in RGG

2 Simulations illustrating Point-Node Theorem

- Theorem Used
- Algorithm: Hop Count-derived Distance-based Localisation (HCDL)
- 4 Performance Comparison
- 5 Conclusion and Future Work

1 Theory

• Review of Geometric Graph (GG)

- Assumptions in Literature
- Motivation for Random GG
- Paradigms of HD-ED Relationship in RGG

2 Simulations illustrating Point-Node Theorem

- Theorem Used
- Algorithm: Hop Count-derived Distance-based Localisation (HCDL)
- 4 Performance Comparison
- 5 Conclusion and Future Work

Node locations can be arbitrary or random

Swaprava (ECE, IISc)

Self Organisation

Definition of Hop Distance (HD)

Area to monitor, \mathcal{A}

Q

Definition of Hop Distance (HD)

Area to monitor, \mathcal{A}

Question: Relation between hop-distance (HD) and Euclidean distance (ED)?

Swaprava (ECE, IISc)

Self Organisation

June 26, 2008 6 / 45

1 Theory

• Review of Geometric Graph (GG)

Assumptions in Literature

- Motivation for Random GG
- Paradigms of HD-ED Relationship in RGG

2 Simulations illustrating Point-Node Theorem

- Theorem Used
- Algorithm: Hop Count-derived Distance-based Localisation (HCDL)
- 4 Performance Comparison
- 5 Conclusion and Future Work

Assumption in HCRL

- Hop Count Ratio-based Localisation (HCRL), proposed by Yang et al. [IEEE SECON 2007]
- Assumption: $d \propto h$, hence $\frac{d_1}{d_2} = \frac{h_1}{h_2}$
- Suppose, node location (x, y), Anchors (x_{01}, y_{01}) and (x_{02}, y_{02})

$$\frac{\sqrt{(x-x_{01})^2 + (y-y_{01})^2}}{\sqrt{(x-x_{02})^2 + (y-y_{02})^2}} \approx \frac{h_1}{h_2} \quad \Leftarrow \text{ Equation of circle}$$

Assumption in PDM

- Proximity Distance Map (PDM), proposed by Lim and Hou [IEEE Infocom 2005]
- *L* anchors, node *i* has HD vector $\mathbf{h}_{\mathbf{i}} \in \mathbb{N}^{L}$
- Assumption: ED vector $\mathbf{d_i} = \mathbf{Th_i}$
- $\bullet~\mbox{ED}$ matrix between anchors, $\textbf{D}=[\textbf{d}_1,\cdots,\textbf{d}_L],$ is known
- $\bullet~$ HD matrix between anchors, $\textbf{H}=[\textbf{h}_1,\cdots,\textbf{h}_L],$ is computed

•
$$\mathbf{D} = \mathbf{T}\mathbf{H} \Rightarrow \mathbf{T} = \mathbf{D}\mathbf{H}^{\mathsf{T}}(\mathbf{H}\mathbf{H}^{\mathsf{T}})^{-1}$$

- This **T** is used for all non-anchor nodes
- Node location estimated from the ED vector $\mathbf{d}_{\mathbf{i}}$

1 Theory

- Review of Geometric Graph (GG)
- Assumptions in Literature
- Motivation for Random GG
- Paradigms of HD-ED Relationship in RGG
- 2 Simulations illustrating Point-Node Theorem

- Theorem Used
- Algorithm: Hop Count-derived Distance-based Localisation (HCDL)
- 4 Performance Comparison
- 5 Conclusion and Future Work

HD-ED Relationship in Arbitrary GG

Setting:

- ► *n* nodes placed on unit area *A* arbitrarily
- $\mathbf{v} = [v_1, v_2, \cdots, v_n] \in \mathcal{A}^n$
- Geometric graph $\mathcal{G}(\mathbf{v}, r)$ is formed

• Notation:

- $\mathcal{N} = [n] = \{1, 2, \cdots, n\}$, the index set of the nodes
- $H_{l,i}(\mathbf{v}) = \text{HD}$ of node *i* from l^{th} anchor on $\mathcal{G}(\mathbf{v}, r)$, for the deployment \mathbf{v}
- ▶ D_{l,i}(**v**) = Euclidean distance of node *i* from anchor b_l for the deployment **v**.

$$\overline{D}_{I}(\mathbf{v}, h_{I}) = \max_{\{i \in \mathcal{N}: H_{I,i}(\mathbf{v}) = h_{I}\}} D_{I,i}(\mathbf{v})$$
$$\underline{D}_{I}(\mathbf{v}, h_{I}) = \min_{\{i \in \mathcal{N}: H_{I,i}(\mathbf{v}) = h_{I}\}} D_{I,i}(\mathbf{v})$$

Graphical Illustration

Area to monitor, \mathcal{A}

HD-ED Relationship in Arbitrary GG (Contd.)

Lemma

For arbitrary \mathbf{v} and $h_l \ge 2$, $r < \underline{D}_l(\mathbf{v}, h_l) \le \overline{D}_l(\mathbf{v}, h_l) \le h_l r$ and both bounds are sharp.

Figure: Node placement on the right achieves the lower bound of ED

• HD does not give useful information about ED in Arbitrary GG

Self Organisation

Theory

- Review of Geometric Graph (GG)
- Assumptions in Literature
- Motivation for Random GG
- Paradigms of HD-ED Relationship in RGG

- Theorem Used
- Algorithm: Hop Count-derived Distance-based Localisation (HCDL)

- HD-ED Relationship between Fixed Points
- HD-ED Relationship between Random Nodes
- HD-ED Relationship between Fixed Point and Random Node

HD-ED Relationship between Fixed Points

- Setting:
 - ▶ *n* nodes placed on unit area *A* Uniform *i.i.d*.
 - Node location vector $\mathbf{v} = [v_1, v_2, \cdots, v_n] \in \mathcal{A}^n$
 - $\mathbb{P}^{n}(.)$ is the probability measure
 - Geometric graph $\mathcal{G}(\mathbf{v}, r(n))$ is formed
- Notation:
 - ► H_{b1b2}(**v**) is the hop distance between any two points b₁ and b₂ on A, for the sample deployment **v**
 - We will take $r(n) = c\sqrt{\frac{\log n}{n}}$, $c > \frac{1}{\sqrt{\pi}}$, a constant, to guarantee asymptotic connectivity (Gupta and Kumar, 1998)

HD-ED Relationship between Fixed Points (Contd.)

Theorem

For all ϵ , $1 > \epsilon > 0$, if $c^2(\epsilon) \ge \frac{2}{q\sqrt{1-p^2}}$, where p and q are any two constants satisfying $1 - \epsilon and <math>0 < q < p - (1 - \epsilon)$ and $p \ge 2q$, on a unit square A,

$$\lim_{n \to \infty} \mathbb{P}^n \left\{ \mathbf{v} : \forall z_1, z_2 \in \mathcal{A}, \frac{\overline{z_1 z_2}}{r(n, \epsilon)} \le H_{z_1 z_2}(\mathbf{v}) < \frac{\overline{z_1 z_2}}{(1 - \epsilon)r(n, \epsilon)} \right\} = 1$$
where $r(n, \epsilon) = c(\epsilon) \sqrt{\frac{\log n}{n}}$.

• i.e., with high probability, ED between any two points is roughly equal to HD \times radius of the RGG, where the radius is larger than the critical radius by a constant factor

HD-ED Relationship between Random Nodes

- Setting:
 - ▶ *n* nodes placed on unit area *A* Uniform *i.i.d.*
 - Node location vector $\mathbf{v} = [v_1, v_2, \cdots, v_n] \in \mathcal{A}^n$
 - $\mathbb{P}^{n}(.)$ is the probability measure
 - Geometric graph $\mathcal{G}(\mathbf{v}, r(n))$ is formed

• Notation:

- $\mathcal{N} = [n] = \{1, 2, \cdots, n\}$, the index set of the nodes, i.e., node $i \in \mathcal{N}$ has a location v_i on \mathcal{A} .
- D_{a,b}(**v**): The Euclidean distance on A between two nodes a and b, a, b ∈ N, for the sample deployment **v**.
- *H_{a,b}*(**v**): The hop distance on *G*(**v**, *r*(*n*)) between two nodes *a* and *b*, *a*, *b* ∈ *N*, for the sample deployment **v**.

$$\overline{D}(\mathbf{v},h) = \max_{\{(a,b)\in\mathcal{N}^2:H_{a,b}(\mathbf{v})=h\}} D_{a,b}(\mathbf{v})$$

$$\underline{D}(\mathbf{v},h) = \min_{\{(a,b)\in\mathcal{N}^2:H_{a,b}(\mathbf{v})=h\}} D_{a,b}(\mathbf{v})$$

HD-ED Relationship between Random Nodes (Contd.)

• We want bounds on the ED between any pair of nodes which are at a hop-distance *h* from each other

HD-ED Relationship between Random Nodes (Contd.)

Define,

$$E_h(n,\epsilon) = \left\{ \mathbf{v} : \left((1-\epsilon)(h-1) - \frac{1}{2} \right) r(n,\epsilon) \le \underline{D}(\mathbf{v},h) \le \overline{D}(\mathbf{v},h) \le hr(n,\epsilon) \right\}$$

Self Organisation

Theorem

Swaprava (ECE, IISc)

For
$$1 > \epsilon > 0$$
, if $c^{2}(\epsilon) \ge \frac{1}{g(\epsilon)}$, where
 $g(\epsilon) = q(\epsilon)\sqrt{1-p^{2}(\epsilon)}$, and
 $p(\epsilon) = \frac{1-\epsilon+\sqrt{(1-\epsilon)^{2}+8}}{4}$,
 $q(\epsilon) = \frac{-3(1-\epsilon)+\sqrt{(1-\epsilon)^{2}+8}}{4}$,
 $\mathbb{P}^{n}(E_{h}(n,\epsilon)) = 1 - \mathcal{O}\left(\frac{n^{1-c^{2}(\epsilon)}g(\epsilon)}{\ln n}\right)$
Thus, $\lim \mathbb{P}^{n}(E_{h}(n,\epsilon)) = 1$

HD-ED Relationship between Fixed Point and Random Node

- Setting:
 - ► *n* nodes placed on unit area *A* Uniform *i.i.d.*
 - Node location vector $\mathbf{v} = [v_1, v_2, \cdots, v_n] \in \mathcal{A}^n$
 - $\mathbb{P}^{n}(.)$ is the probability measure
 - Geometric graph $\mathcal{G}(\mathbf{v}, r(n))$ is formed
- Notation:
 - $\mathcal{N} = [n] = \{1, 2, \cdots, n\}$, the index set of the nodes
 - ► H_{l,i}(**v**) = HD of node *i* from Ith anchor on G(**v**, r(n)), for the deployment **v**
 - ▶ D_{l,i}(**v**) = Euclidean distance of node *i* from anchor b_l for the deployment **v**.

$$\overline{D}_{I}(\mathbf{v}, h_{I}) = \max_{\{i \in \mathcal{N}: H_{I,i}(\mathbf{v}) = h_{I}\}} D_{I,i}(\mathbf{v})$$
$$\underline{D}_{I}(\mathbf{v}, h_{I}) = \min_{\{i \in \mathcal{N}: H_{I,i}(\mathbf{v}) = h_{I}\}} D_{I,i}(\mathbf{v})$$

HD-ED Relationship between Fixed Point and Random Node (Contd.)

• We want bounds on the ED between a fixed point and all nodes at a hop-distance *h* from the point

Area to monitor, $\ensuremath{\mathcal{A}}$

Swaprava (ECE, IISc)

Self Organisation

HD-ED Relationship between Fixed Point and Random Node (Contd.)

$$\mathsf{Define}, \ E_{h_l}(n) = \{ \mathbf{v} : (1 - \epsilon)(h_l - 1)r(n) \le \underline{D}_l(\mathbf{v}, h_l) \le \overline{D}_l(\mathbf{v}, h_l) \le h_l r(n) \}$$

Theorem

For a given
$$1 > \epsilon > 0$$
, and $r(n) = c \sqrt{\frac{\ln n}{n}}$, $c > \frac{1}{\sqrt{\pi}}$,

$$\mathbb{P}^n(E_{h_l}(n)) = 1 - \mathcal{O}\left(\frac{1}{n^{g(\epsilon)c^2}}\right)$$

where
$$g(\epsilon) = q(\epsilon)\sqrt{1-p^2(\epsilon)}$$
, $p(\epsilon) = \frac{1-\epsilon+\sqrt{(1-\epsilon)^2+8}}{4}$,
 $q(\epsilon) = \frac{-3(1-\epsilon)+\sqrt{(1-\epsilon)^2+8}}{4}$.

Hence, $\lim_{\epsilon \to \infty} \mathbb{P}^n(E_{h_l}(n)) = 1$ Since $g(\epsilon) \downarrow$ as $\epsilon \downarrow$, the rate of convergence slows down

No.

Proof Techniques (1/4)

Figure: Construction using the blades cutting the circumference of the circle of radius $h_l r(n)$.

Proof Techniques (2/4)

Figure: The construction with h_l hops.

 $A'_{i,j} = \{\mathbf{v} : \exists \text{ at least one node in the } i^{th} \text{ strip of } \mathcal{B}'_j\}$

$$\{ \cap_{j=1}^{J(n)} \cap_{i=1}^{h_l-1} A_{i,j}^l \}$$

 $\subseteq \{ \mathbf{v} : (p-q)(h_l-1)r(n) \leq \underline{D}_l(\mathbf{v},h_l) \leq \overline{D}_l(\mathbf{v},h_l) \leq h_lr(n) \}$

Proof Techniques (3/4)

$$\mathbb{P}^{n} \left(\bigcap_{j=1}^{J(n)} \bigcap_{i=1}^{h_{l}-1} A_{i,j}^{l} \right) = 1 - \mathbb{P}^{n} \left(\bigcup_{j=1}^{J(n)} \bigcup_{i=1}^{h_{l}-1} A_{i,j}^{l} \right)$$

$$\geq 1 - \sum_{j=1}^{J(n)} \sum_{i=1}^{h_{l}-1} \mathbb{P}^{n} \left(A_{i,j}^{l} \right)$$

$$\geq 1 - (h_{l}-1) \left[\frac{\pi h_{l}}{2\sqrt{1-p^{2}}} \right] (1 - u(n)t(n))^{n}$$

$$\geq 1 - (h_{l}-1) \left[\frac{\pi h_{l}}{2\sqrt{1-p^{2}}} \right] e^{-nu(n)t(n)}$$

$$= 1 - (h_{l}-1) \left[\frac{\pi h_{l}}{2\sqrt{1-p^{2}}} \right] e^{-nq\sqrt{1-p^{2}r^{2}}(n)}$$

$$= 1 - (h_{l}-1) \left[\frac{\pi h_{l}}{2\sqrt{1-p^{2}}} \right] n^{-q\sqrt{1-p^{2}c^{2}}} \xrightarrow{n \to \infty} 1$$

Swaprava (ECE, IISc)

Self Organisation

Proof Techniques (4/4)

• We take
$$p - q = 1 - \epsilon$$
, and maximise $q\sqrt{1-p^2}$
• Gives $p(\epsilon) = \frac{1-\epsilon+\sqrt{(1-\epsilon)^2+8}}{4}$, $q(\epsilon) = \frac{-3(1-\epsilon)+\sqrt{(1-\epsilon)^2+8}}{4}$
• Define $g(\epsilon) = q(\epsilon)\sqrt{1-p^2(\epsilon)}$, Hence,
 $\mathbb{P}^n\{\mathbf{v}: (1-\epsilon)(h_l-1)r(n) \le \underline{D}_l(\mathbf{v}, h_l) \le \overline{D}_l(\mathbf{v}, h_l) \le h_lr(n)$
 $= 1 - \mathcal{O}\left(\frac{1}{n^{g(\epsilon)}c^2}\right)$

}

Theory

- Review of Geometric Graph (GG)
- Assumptions in Literature
- Motivation for Random GG
- Paradigms of HD-ED Relationship in RGG

2 Simulations illustrating Point-Node Theorem

- Theorem Used
- Algorithm: Hop Count-derived Distance-based Localisation (HCDL)
- 4 Performance Comparison
- 5 Conclusion and Future Work

1000 nodes : 5 hops

Figure: The dashed line shows the ED bounds given by the point-node theorem, the solid line shows ED $(h_1 - 1)r(n)$ from b_1 for 1000 nodes, 5 hops, $\epsilon = 0.4$, $\mathbb{P}^n(E_1(n)) \ge 0.37$. $r(n) = \frac{4}{\sqrt{\pi}} \sqrt{\frac{\ln n}{n}}$.

5000 nodes : 5 hops

Figure: The dashed line shows the ED bounds given by the point-node theorem, the solid line shows ED $(h_1 - 1)r(n)$ from b_1 for 5000 nodes, 5 hops, $\epsilon = 0.4$, $\mathbb{P}^n(E_1(n)) \ge 0.79$. $r(n) = \frac{4}{\sqrt{\pi}} \sqrt{\frac{\ln n}{n}}$.

Swaprava (ECE, IISc)

Self Organisation

5000 nodes : 10 hops

Figure: The dashed line shows the ED bounds given by the point-node theorem, the solid line shows ED $(h_1 - 1)r(n)$ from b_1 for 5000 nodes, 10 hops, $\mathbb{P}^n(E_1(n)) \ge 0.80. \ r(n) = \frac{4}{\sqrt{\pi}} \sqrt{\frac{\ln n}{n}}.$

Swaprava (ECE, IISc)

Self Organisation

Theory

- Review of Geometric Graph (GG)
- Assumptions in Literature
- Motivation for Random GG
- Paradigms of HD-ED Relationship in RGG
- 2 Simulations illustrating Point-Node Theorem

- Theorem Used
- Algorithm: Hop Count-derived Distance-based Localisation (HCDL)
- 4 Performance Comparison
- 5 Conclusion and Future Work

Theory

- Review of Geometric Graph (GG)
- Assumptions in Literature
- Motivation for Random GG
- Paradigms of HD-ED Relationship in RGG

2 Simulations illustrating Point-Node Theorem

3 Application in Localisation

• Theorem Used

- Algorithm: Hop Count-derived Distance-based Localisation (HCDL)
- 4 Performance Comparison
- 5 Conclusion and Future Work

Theorem Used

- For localisation we need multiple (say L) anchors
- hop-distance vector, $\mathbf{h} = [h_1, \cdots, h_l, \cdots, h_L] \in \mathbb{N}^L$
- For L anchors, all possible h vectors are not feasible
- $\mathcal{H}(n)$: set of all *feasible* **h** vectors (it depends on *n*)

Recall, $E_{h_l}(n) = \{ \mathbf{v} : (1 - \epsilon)(h_l - 1)r(n) \le \underline{D}_l(\mathbf{v}, h_l) \le \overline{D}_l(\mathbf{v}, h_l) \le h_lr(n) \}$

Theorem

For a given
$$1 > \epsilon > 0$$
, and $r(n) = c\sqrt{\frac{\ln n}{n}}$, $c > \frac{1}{\sqrt{\pi}}$,
 $\forall \mathbf{h} = [h_1, \cdots, h_l, \cdots, h_L] \in \mathcal{H}(n)$,

$$\mathbb{P}^n\left(\cap_{l=1}^L E_{h_l}(n)\right) = 1 - \mathcal{O}\left(\frac{1}{n^{g(\epsilon)c^2}}\right)$$

where
$$g(\epsilon) = q(\epsilon)\sqrt{1-p^2(\epsilon)}$$
,
 $p(\epsilon) = \frac{1-\epsilon+\sqrt{(1-\epsilon)^2+8}}{4}, q(\epsilon) = \frac{-3(1-\epsilon)+\sqrt{(1-\epsilon)^2+8}}{4}$

Swaprava (ECE, IISc)

Illustration

Swaprava (ECE, IISc)

June 26, 2008 35 / 45

Theory

- Review of Geometric Graph (GG)
- Assumptions in Literature
- Motivation for Random GG
- Paradigms of HD-ED Relationship in RGG
- 2 Simulations illustrating Point-Node Theorem

- Theorem Used
- Algorithm: Hop Count-derived Distance-based Localisation (HCDL)
- 4 Performance Comparison
- 5 Conclusion and Future Work

Algorithm: Hop Count-derived Distance-based Localisation $(HCDL)^1$

- **STEP 1: (Initialisation)** Each node finds the hop-distance vector $\mathbf{h} = [h_1, \cdots, h_L]$
- STEP 2: (Region of Intersection) For a certain node, set an ϵ , small enough, and find the region of intersection formed by the annuli of radii $[(1 \epsilon)(h_l 1)r(n), h_lr(n)]$ centred at the l^{th} anchor location, $l = 1, \dots, L$
- STEP 3: (Terminating Condition)
 - IF there is an intersection, declare the centroid of the region of intersection as the estimate of the node. GO TO STEP 4.
 - **ELSE** increase ϵ by an amount k, 0 < k < 1. GO TO **STEP 2**.

STEP 4: (Repetition) Repeat STEP 2 to STEP 3 for all n nodes. STEP 5: STOP

Theory

- Review of Geometric Graph (GG)
- Assumptions in Literature
- Motivation for Random GG
- Paradigms of HD-ED Relationship in RGG
- 2 Simulations illustrating Point-Node Theorem

Application in Localisation

- Theorem Used
- Algorithm: Hop Count-derived Distance-based Localisation (HCDL)

Performance Comparison

5 Conclusion and Future Work

HCRL (Yang et al. 2007): Localisation Error Pattern

PDM (Lim and Hou, 2005): Localisation Error Pattern

HCDL: Localisation Error Pattern

Cumulative Distribution of Error

Theory

- Review of Geometric Graph (GG)
- Assumptions in Literature
- Motivation for Random GG
- Paradigms of HD-ED Relationship in RGG

2 Simulations illustrating Point-Node Theorem

- Theorem Used
- Algorithm: Hop Count-derived Distance-based Localisation (HCDL)
- 4 Performance Comparison
- 5 Conclusion and Future Work

Conclusion and Future Work

- Assumed a Geometric Graph model of the Wireless Sensor Network
- HD is not a good measure for ED for *arbitrary* node placements
- Three paradigms of HD-ED proportionality for random node placements
 - Sufficiency theorems for ED-HD relationships in point-point, node-node and point-node paradigms
 - For point-point and node-node cases, the radius of the GG is larger than the critical radius
 - For point-node case, theorem is valid for critical radius too
- For point-node theory, given HD = h, $(1 \epsilon)(h 1)r < ED \le hr$ with high probability
- Proposed algorithm HCDL based on this theory
- Performs better than HCRL and PDM

