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Abstract

In social or organizational networks, it is often observed that different individuals put differ-
ent levels of production effort depending on their position in the network. One possible reason
is reward sharing, which incentivizes particular agents to spend effort in sharing information
with others and increasing their productivity. We model the effort level in a network as a
strategic decision made by an agent on how much effort to expend on the complementary tasks
of information sharing and production. We conduct a game-theoretic analysis of incentive and
information sharing in both hierarchical and general influencer-influencee networks. Our par-
ticular interest is in understanding how different reward structures in a network influence this
decision. We establish the existence of a unique pure-strategy Nash equilibrium in regard to
the choice made by each agent, and study the effect of the quality and cost of communication,
and the reward sharing on the effort levels at this equilibrium. Our results show that a larger
reward share from an influencee incentivizes the influencer to spend more effort, in equilibrium,
on communication, capturing a free-riding behavior of well placed agents. We also address the
reverse question of designing an optimal reward sharing scheme that achieves the effort profile
which maximizes the system output. In this direction, for a number of stylized networks, we
study the Price of Anarchy for this output, and the interplay between information and incentive
sharing on mitigating the loss in output due to agent self-interest.

1 Introduction
The organization of economic activity as a means for the efficient co-ordination of effort is a cor-
nerstone of economic theory. In networked organizations, agents are responsible for two processes :
information flow and productive effort. The primary aspect of networked organization that we study
is the effect of direct and indirect rewards, e.g. due to wages and profit sharing, on the decisions of
agents to work vs. invest effort in explaining tasks to others. That is, we are interested in the trade-
off an agent faces between the complementary tasks of direct effort (or production) and what can
be considered information propagation (or communication) effort, which can benefit others. In our
model, working on a task brings a direct payoff and is costly, whereas investing effort in explaining
a task can improve the productivity of others (depending on the quality of communication in the
network). This can in turn generate additional indirect reward for an agent through reward sharing
incentives.

We model the network as a directed graph, where the direction represents the direction of infor-
mation flow or communication between nodes and the rewards are shared in the reverse direction. Of
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particular interest to us are directed trees, which represent a hierarchy, and are the most prevalent
in organizations and firms. In the first part of the paper, our analysis is focused on hierarchies, and
in the second, we generalize our results to arbitrary directed graphs. Our goal is to understand the
consequences of various organizational parameters on the outcomes of the effort trade-off decision.

In particular, we are interested in the effects of the quality of influence process, communication
and magnitude of reward sharing, on the equilibrium decisions of agents with regard to how they split
time between work and communication efforts. Different networks, such as social and organizational
networks, have different purposes and thus different influence processes. Within firms, organizational
networks are often hierarchical and there is a long history on the role of organizational structure on
economic efficiency going back to Tichy et al. [20] (on social network analysis within organizations).
More recently, Radner [15], Ravasz and Barabási [16], Mookherjee [13] study the role of hierarchies;
see Van Alstyne [21] for a survey of different perspectives. There is also a growing interest in
crowdsourcing, and relevant here, the ability to generate effective networks for solving challenging
problems. Our model also captures some aspects of so called ‘diffusion-based task environments’
where agents become aware of tasks through recruitment [14, 22]. For example, the winner of the
2009 DARPA Red Balloon Challenge adopted an indirect reward scheme where the reward associated
with successful completion of subtasks was shared with other agents in the network [14]. At the
same time modern massive online social networks and online gaming networks1 require information
and incentive propagation to organize activity. In this paper, we draw attention to the interaction
between various aspects of network influence, such as profit sharing [9], information exchange [4],
and influence in networks.

Motivated by the possibility that this phenomenon of splitting effort into production and com-
munication can be understood as a consequence of the strategic behavior of the participants, we
adopt a game theoretic perspective where individual members in a networked organization decide on
effort levels motivated by their self interest. Agents are coordinated by incentives, including both
direct wages and indirect profit sharing. We construct quantitative models of organizations, that
are general enough to capture social and economic networks, but specific enough for us to obtain
insightful results. We quantify the effects of reward sharing and communication quality on the per-
formance of work organizations in equilibrium. For stylized networks, we quantify the welfare cost
that arises because of self-interested behavior, adopting the Price of Anarchy (PoA) framework. In
particular, we study the improvement in PoA that can be obtained through the careful design of
indirect rewards within the network.

1.1 Overview and Main Results

In the first and major part of this work, we study hierarchies where the network is a directed tree.
Each agent decides how to split its effort between (i) production effort, which results in direct payoff
for the agent and indirect reward to other agents on the path from the root to the agent, and (ii)
communication effort, which serves to improve the productivity of his descendants on the tree (e.g.,
explaining the problem to others, conveying insights and the goals of the organization). A natural
constraint is imposed on the complementary tasks of production and communication, such that the
more effort an agent invests in production the less he can communicate. Investing production effort
incurs a cost to an agent, in return for some direct payoff. But committing effort to communication
the can improve productivity of descendants, which in turn improves their output, should they decide
to invest effort in direct work, and thus give an agent a return on investment through an indirect
payoff.

Each agent decides, based on his position in the hierarchy, how to split his effort between pro-

1http://www.eveonline.com/
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duction and communication, in order to maximize the sum of direct payoff and indirect reward,
accounting for the cost of effort. For most of our results we adopt an exponential productivity (EP)
model, where the quality of communication falls exponentially with effort spent in production with
a parameter β. The model has the useful property that a pure-strategy Nash equilibrium always
exists (Theorem 1) even though the game is non-concave. In a concave game, the agents’ payoffs
are concave in their choices (production efforts), and a pure-strategy Nash equilibrium is guaranteed
to exist [18]. We develop tight conditions for the uniqueness of the equilibrium (Theorem 2). In
addition, for the EP model of communication, the Nash equilibrium can be computed in time that
is quadratic in the number of agents, despite the non-concave nature of the problem, by exploiting
the hierarchical structure.

Our next result is that for balanced hierarchies and in the EP model, there exists a threshold
β∗ on communication quality parameter β such that if communication performance is below the
threshold (communication is ‘good enough’) then the PoA is equal to 1 for the optimal reward
sharing scheme, while it can be large otherwise (Theorem 4). For β above this threshold (low quality
communication), we give closed-form bounds on the PoA (Theorem 5), which we show are tight in
special networks, e.g., single-level hierarchies. Thus, even in simple hierarchies, if the communication
is not good enough or incentives are not chosen correctly, the PoA can be large. This highlights the
importance of the design of reward sharing in organizations accounting for both network structure
and communication process.

In the second part, we consider general directed network graphs and establish the existence of
a pure-strategy Nash equilibrium and a characterization for when this equilibrium is unique (The-
orems 6 and 7). We also provide a geometric interpretation of these conditions in terms of the
stability properties of a suitably defined Jacobian matrix (Figure 7). This connection between
control-theoretic stability and uniqueness of Nash equilibrium in network games is an interesting
property of the model.

For ease of reading, some proofs are deferred to the Appendix.

1.2 Prior Work

The study of effort levels in network games, where an agent’s utility depends on actions of neighboring
agents has recently received much attention [7]. For example, Ballester et al. [3] show how the level
of activity of a given agent depends on the Bonacich centrality of the agent in the network, for
a specific utility structure that results in a concave game. Rogers [17] analyzes the efficiency of
equilibria in two specific types of games (i) ‘giving’ and (ii) ‘taking’, where an edge means utility is
sent on an edge. A strategic model of effort is discussed in the public goods model of Bramoullé and
Kranton [5], where utility is concave in individual agents’ efforts, and the structures of the Nash and
stable equilibria are shown. Their model applies to a very specific utility structure where the same
benefit of the ‘public good’ is experienced by all the first level neighbors on a graph. In our model,
the individual utilities can be asymmetric, and depend on the efforts and reward shares in multiple
levels on the graph. Building on these efforts our utility model cleanly separate the effects of two
types of influence, that we termed information and incentives.

The recent DARPA Red Balloon Challenge, and particularly the hierarchical network and specific
reward structure used by the winning MIT team [14], has led to a renewed interest in the analysis
of effort exerted by agents in networks. The winning team’s strategy, utilized a recursive incentive
mechanism. Our results show that, in this case for example, too much reward sharing encourages
managers to ‘free-ride’, i.e. spend more time recruiting or managing and not enough time searching
or working, though we do not study network formation games here.

The literature on strategic social network formation games and organizational design is vast
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[11, 10]. We use the Price of Anarchy (PoA) [12] to measure the sub-optimality in outcome efforts,
as a function of network structure and incentives, due to the self interested nature of agents. In
the network contribution games literature, the PoA has been investigated in different contexts.
Anshelevich and Hoefer [2] consider a model where an agent’s contribution locally benefit the nodes
who share an edge with him, and give existence and PoA results for pairwise equilibrium for different
contribution functions. The PoA in cooperative network formation is considered by Demaine et al.
[6], while Roughgarden [19], Garg and Narahari [8] have considered the question in a selfish network
routing context. Our setting is different from all of these since in our model the strategies are
the efforts of the agents, which distinguishes it from the network formation and selfish routing
literature, and we use multiple levels of information and reward sharing and study utilities that
are asymmetric even for the neighboring nodes in the network, which distinguishes itself from the
network contribution games.

2 A Hierarchical Network Model of Influencer and Influ-

encee

1

2 3

...

θ

root

origin

Figure 1: A typical hierarchical model.

In this section, we formalize a specific version of the hierarchical network model. Let N =
{1, 2, . . . , n} denote a set of agents who are connected over a hierarchy T . Each node i has a set of
influencers, whose communication efforts influence his own direct payoff, and a set of influencees,
whose direct payoffs are influenced by node i. In turn the production efforts of these influencees
endow agent i with indirect payoffs. The origin (denoted by node θ) is a node assumed to be outside
the network, and communicates perfectly with the first (root) node, denoted by 1.

We number nodes sequentially, so that each child has a higher index than his parent, thus the
adjacency matrix is an upper triangular matrix with zeros on the diagonal. Figure 1 illustrates the
model for an example hierarchical network.

The set of influencers of node i consists of the nodes (excluding node i) on the unique path from
the origin to the node, and is denoted by Pθ→i. The set of influencees of node i consists of the nodes
(again, excluding node i) in the subtree Ti below her.

The production effort, denoted by xi ∈ [0, 1], of node i yields a direct payoff to the node, and the
particular way in which this occurs depends on its productivity. The remaining effort, 1 − xi, goes
to communication effort, and improves the productivity of the influencees of the node. The constant
sum of production effort and communication effort models the constraint on an agent’s time, and
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therefore it is enough to write both the direct and indirect payoff of a node as a function of the
production effort xi. In particular, the productivity of a node, denoted by pi(xPθ→i

), depends on the
communication effort (and thus the production effort) of the influencers on path Pθ→i to the node.
The production effort profile of these influences is denoted by xPθ→i

.
It is useful to associate xipi(xPθ→i

) with the value from the direct output of node i. The payoff to
node i comprises two additive terms that capture:

(1) the direct payoff, which depends on the value generated by the direct output of a node and
the cost of production and communication effort, and is modulated by the productivity of the node,
and

(2) the indirect payoff, which is a fraction of the value associated with the direct output of any
influencee j of the node.

Taken together, the payoff to a single node i is:

ui(xi, x−i) = pi(xPθ→i
)f(xi) +

∑

j∈Ti\{i}

hijpj(xPθ→j
)xj. (1)

The first term is the product of the direct payoff and a function f(xi) (which models production
output and cost) and captures the trade-off between direct output and cost of production and com-
munication effort. The second term is the total indirect payoff received by node i due to the output
pj(xPθ→j

)xj of its influencees. We insist that the productivity pj(·) of any node j is non-decreasing
in the communication effort of each influencer, and thus non-increasing in the production effort of
each influencer, and we require ∂

∂xi
pj(xPθ→j

) ≤ 0 for all nodes j, where i is an influencer of j.
Each node i receives a share hij of the value of the direct output of influencee j. The model can

also capture a setting where an agent can only share output he creates, i.e. the total fraction of the
output an agent retains and shares with the influencers is bounded at 1. Let us assume that agent
j retains a share sjj and shares sij with influencers i ∈ Pθ→j. A budget-balance constraint on the
amount of direct value that can be shared requires

∑

i∈Pθ→j∪{j}
sij ≤ 1. Assume that sjj = γ > 0,

for all j, so that each node retains the same fraction γ of its direct output value. Then, the earlier
inequality can be written as,

∑

i∈Pθ→j

sij
γ

≤ 1
γ
− 1. By now defining hij =

sij
γ
, then the whole system

is scaled by a factor γ. In addition to notational cleanliness, this transformation gives the advantage
of not having any upper bound on the

∑

i∈Pθ→j
hij, since any finite sum can always be accommodated

with a proper choice of γ. Let us call the matrix H = [hij ] containing all the reward shares as the
reward sharing scheme.

To highlight our results, we focus on a specific form of the payoff model, namely the Exponential
Productivity (EP) model. A model is an instantiation of the direct-payoff function f(xi) and the
productivity function pi(·). In particular, in the EP model:

f(xi) = xi −
x2
i

2
− b

(1 − xi)
2

2
, (2)

pi(xPθ→i
) =

∏

k∈Pθ→i

µ(Ck)e
−βxk , (3)

where b ≥ 0 is the cost of communication, Ck is the number of children of node k, function µ(Ck) ∈
[0, 1] required to be non-increasing, and β ≥ 0 denotes the quality of communication, with higher
β corresponding to a lower quality of communication. We assume p1 = 1 for the root node. This
models the root having perfect productivity. We interpret the term µ(Ck)e

−βxk as the communication
influence of node k on the agents in his subtree, and this takes values in [0, 1].
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The direct payoff of an agent i is quadratic in production effort xi, and reflects a linear benefit
xi from direct production effort but a quadratic cost x2

i /2 for effort. This is related to the bilinear
payoff model of Ballester et al. [3]. However, here we also consider the cost due to communication,
captured by b(1− xi)

2/2.
The productivity of node j, given by pj(xPθ→j

), where j ∈ Ti \ {i} warrants careful observation.
Here we explain the components of this function and the reasons for choosing them. Consider µ(Ck),
which is non-increasing in the number of children. Ck captures the idea that the effect of the com-
munication effort is reduced if the node has more children to communicate with. An increase in
production effort xk reduces the productivity of influencees of node k. In particular, the exponential
term in the productivity captures two effects: (a) a linear decrease in production effort gives expo-
nential gain in the productivity of influencee, which captures the importance of communication and
management in organizations [1]. Smaller values of β model better communication and a stronger
positive effect on an influencee. (b) We can approximate other models by choosing β appropriately.
Linear productivity corresponds to small values of β. This property is useful when the effects of
production and communication on the payoff are equally important. For large β there is very small
communication quality between agents and the value of communication effort is low.

The successive product of these exponential terms in the path from root to a node reflects the
fact that a change in the production effort of an agent affects the productivity of the entire subtree
below her. We note that the productivity of node j, where j ∈ Ti\{i}, is not a concave function of xi,
leading to the payoff function ui to be non-concave in xi. Hence the existence of a Nash equilibrium
is not guaranteed a priori through known results on concave games [18]. In the next section we will
demonstrate the required conditions on existence and uniqueness of a Nash equilibrium. For brevity
of notation, we will drop the arguments of productivity pi at certain places where it is understood.

Our results on existence, uniqueness and their interpretations generalize to other network struc-
tures beyond hierarchies, which we show in the later part of the paper. However, despite the math-
ematical simplicity of the EP model, it allows for obtaining interesting results on the importance of
influence, both communication and incentives, and gives insight on outcome efforts in a networked
organization.

2.1 Main Results

The effect of communication efforts between nodes i and j, where i ∈ Pθ→j is captured by the
fractional productivity

pj
pi

defined as, pij(xPi
−

→j
) =

∏

k∈Pi
−

→j
µ(Ck)e

−βxk , (the node i− is the parent

of i in the hierarchy). This term is dependent only on the production efforts in the path segment
between i and j and accounts for ‘local’ effects. We show in the following theorem that the Nash
equilibrium production effort of node i depends on this local information from all its descendants.

Theorem 1 (Existence of a Nash Equilibrium) A Nash equilibrium always exists in the effort
game in the EP model, and is given by the production effort profile (x∗

i , x
∗
−i) that satisfies,

x∗
i =



1− β

1 + b

∑

j∈Ti\{i}

hijpij(x
∗
Pi

−
→j
)x∗

j





+

(4)

Proof: The proof of this theorem uses the Brouwer’s fixed point theorem and is given in Ap-
pendix A. ✷

This theorem shows that the EP model allows us to guarantee the existence of (at least one) Nash
equilibrium. In particular, we can make certain observations on the equilibrium production effort,
some of which are intuitive.
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• If communication improves, i.e., β becomes small, the production effort of each node increases.

• If the cost of management b increases, the production effort of each node increases.

• When reward sharing (hij) is large, agents reduce production effort and focus more on commu-
nication effort, i.e. nodes may over manage or ‘free-ride’.

• The computation of a Nash equilibrium at any node depends only on the production efforts of
the nodes in its subtree. Thus, we can employ a backward induction algorithm which exploits
this property that helps in an efficient computation of the equilibrium (this will be shown
formally in the corollaries later in this section).

We turn now to establishing conditions for the uniqueness of this Nash equilibrium. Let us define
the maximum amount of reward share that any node i can accumulate from a hierarchy T given a
reward sharing scheme H as, hmax(T ) = supi

∑

j∈Ti\{i}
hij. We also define the effort update function

as follows.

Definition 1 (Effort Update Function (EUF)) Let the function F : [0, 1]n → [0, 1]n be defined
as,

Fi(x) =



1− β

1 + b

∑

j∈Ti\{i}

hijpij(xPi
−

→j
)xj





+

.

Note that the RHS of the above expression contains the production efforts of all the agents in
the subtree of agent i. This function is a prescription of the choice of the production effort of agent
i, if the agents below the hierarchy choose a certain effort profile. Hence the name ‘effort update’.

Theorem 2 (Sufficiency for Uniqueness) If β <
√

1+b
hmax(T )

, the Nash equilibrium effort profile

(x∗
i , x

∗
−i) is unique and is given by Equation (4).

Proof: The proof of this theorem shows that F is a contraction, and is given in Appendix A. ✷

Theorem 3 (Tightness) The sufficient condition of Theorem 2 is tight.

Proof: Consider a 3 node hierarchy with nodes 2 and 3 being the children of node 1 (Figure 2).
We show that if the sufficient condition is just violated, it results in multiple equilibria. Let b = 0,
and h12 = h13 = 0.25, therefore hmax(T ) = 0.25. Theorem 2 requires that β < 1/

√
0.25 = 2. We

choose β = 2. The equilibrium efforts for node 2 and 3 are 1. Node 1 solves the following equation
to find the equilibria.

1− x1 = e−2x1 .

This equation has multiple solutions, x1 = 0, 0.797, showing non-uniqueness. ✷

The uniqueness condition indicates that the communication quality needs to be ‘good enough’
(small β) to ensure uniqueness of an equilibrium. It is worth noting that the uniqueness condition
ensures the convergence of the best response dynamics, in which all the players start from any
arbitrary effort profile xinit, and sequentially update their efforts via the function F , to the unique
equilibrium. This is a consequence of the fact that F is a contraction.

We now turn to the computational complexity of a Nash equilibrium. If there are multiple NE,
these complexity results hold for computing a NE. Recall that the equilibrium computation of an
agent requires only the production efforts and the reward structure of its subtree, and we can take
advantage of the backward induction. This observation leads to the following corollaries.
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2 3

1

θ

Figure 2: Tightness of the sufficiency (Theorem 2).

Corollary 1 The worst-case complexity of computing the equilibrium effort for node i is O(|Ti|2).
As a result, The worst-case complexity of computing the equilibrium efforts of the whole network is
O(n2).

Proof: To compute the equilibrium production effort x∗
i , node i needs to compute Equation (4).

This requires to compute the equilibrium efforts for each node in his subtree Ti. Because of the fact
that x∗

i depends only on the equilibrium efforts of the subtree below i, we can apply the backward
induction method starting from the leaves towards the root of this sub-hierarchy Ti. The worst-case
complexity of such a backward induction occurs when the sub-hierarchy is a line. In such a case the
complexity would be |Ti|(|Ti| − 1)/2 = O(|Ti|2). In order to compute the equilibrium efforts of the
whole network, it is enough to determine the equilibrium effort at the root because this would, in the
process, determine the equilibrium efforts of each node in the hierarchy. This is also a consequence of
the backward induction method of computing the equilibrium. The worst-case complexity of finding
the equilibrium effort at the root is O(n2) and therefore the worst-case complexity of computing the
equilibrium efforts of the whole network is also O(n2). ✷

Given the characterization of the Nash equilibrium above, we now move on to questions of char-
acterizing the amount of direct output value generated in equilibrium.

3 On the Price of Anarchy
In this section, we look at how the equilibrium effort level x∗ performs in comparison to the socially
optimal outcome xOPT. We define the optimal effort level as the one that maximizes the social output
of the hierarchy T :

SO(x, T ) =
∑

i∈N

pi(xPθ→i
)xi (5)

Therefore, xOPT ∈ arg max
x
SO(x, T ). This is the direct production effort profile across the network

that maximizes the total direct output value, considering also the effect of communication effort
(induced by lower production effort) on the productivity of other nodes.

We will consider cases where the equilibrium is unique, hence, the price of anarchy is given by:

PoA =
SO(xOPT, T )

SO(x∗, T )
. (6)

The goal of this section is to understand the effect of reward sharing schemes on the PoA for
different network structures and parameters. The following theorem shows that if the reward sharing
is not properly designed, the PoA can be arbitrarily large. We first consider a single-level hierarchy
(see Figure 3). To simplify the analysis, we also assume that the function µ(C1) = 1, irrespective
of the number of children of node 1. By symmetry, we consider a single value h, such that h12 =
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h13 = . . . = h1n = h. We refer to this model as FLAT. We will return to this model later as well, after
presenting our results for more general balanced hierarchies. We first consider what happens when
there is bad communication (β large) and no profit sharing (h = 0), between node 1 and its children.

1

. . .2 n

θ

Figure 3: FLAT hierarchy.

Theorem 4 (Large PoA) For n ≥ 3, the PoA is n−1
2

in the FLAT hierarchy when β = ln(n − 1)
and h = 0.

Proof: For FLAT, the social output is given by, SO(x, FLAT) =
∑n

i=2 e
−βx1xi + x1. We see that

β = ln(n − 1) ≥ − ln
(

1− 1
n−1

)

, for all n ≥ 3. The optimal effort profile xOPT = (0, 1, . . . , 1)
maximizes the social output (stated in Corollary 2, for the proof see Lemma 6 in Appendix B).
Hence the optimal social output is n − 1. However, for reward sharing factor h = 0, we get the
equilibrium effort profile from Equation (4) to be x∗ = (1, 1, . . . , 1). This yields a social output of
(n− 1)e−β + 1. Hence the PoA is n−1

(n−1)e− ln(n−1)+1
= n−1

2
. ✷

However, if h is chosen appropriately, e.g. if it were chosen to be large positive, the equilibrium
effort profile given by Equation (4) would have been closer to that of the optimal. Hence PoA could
have been reduced and made closer to 1.

This raises a natural question: is it always possible to design a suitable reward sharing scheme
that can make PoA = 1 for any given hierarchy? In order to answer that, we define the stability of
an effort profile x.

Definition 2 (Stable Effort Vector) An effort profile x = (x1, . . . , xn) is stable, represented by
x ∈ S, if x ≥ 0, and there exists a reward sharing matrix H = [hij ], hij ≥ 0, such that,

∑

j∈Ti\{i}

aij(x)hij ≥ 1− xi;
∑

j∈Ti\{i}

hij ≤
1 + b

β2
, ∀i ∈ N. (7)

Where, aij(x) =
β

1+b
pij(xPi

−
→j
)xj, for all j ∈ Ti \ {i}, and zero otherwise.

The inequalities capture a required balance between incentives and information flow. In the first
inequality, for a fixed communication factor β and cost coefficient b, the term aij(·) is proportional to
the fractional output (fractional productivity × production effort) of an agent j. After multiplying
with hij, this is the effective indirect output that i receives from j. The RHS of the inequality can be
interpreted as the communication effort of agent i. Hence, this inequality says that the total indirect
benefit should be at least equal to the effort put in by a node for communicating the information to
its subtree. If we consider that the agents share information based on the reward share they receive,
the flow of information and reward forms a closed loop. The second inequality says that the closed
loop ‘gain’ of the information flow (β2) and the reward share accumulated by agent i (

∑

j∈Ti\{i}
hij)

should be bounded by the cost of sharing the information. The closed loop ‘gain’ is essentially the
reward that an agent accumulates due to his communication effort through his descendants. We can
connect a stable effort vector with the Nash equilibrium of the effort game.
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Lemma 1 (Stability-Nash Relationship) If an effort profile x = (x1, . . . , xn) is stable, it is the
unique Nash equilibrium of the effort game.

Proof: Let x is a stable effort profile. So, there exists a reward sharing matrix H = [hij ], hij ≥ 0,
s.t. Equation (7) is satisfied with x. Also x ≥ 0. Therefore, reorganizing the first inequality of
Equation (7) and noting the fact that xi ≥ 0, ∀i ∈ N , we get,

xi =



1−
∑

j∈Ti\{i}

aij(x)hij





+

, ∀i ∈ N.

Under the condition given by the second inequality of Equation (7), the Nash equilibrium is unique
and is given by the above expression (recall Theorem 2). Hence, x is the unique Nash equilibrium
of this game. ✷

Now it is straightforward to see that the stability of xOPT is sufficient for PoA to be 1. Hence,
we can write the following lemma.

Lemma 2 (No Anarchy) Any reward sharing matrix that makes xOPT stable provides a PoA of 1.

An important question is then: how efficiently can we check if a given effort profile x is stable or
not? The answer is that we can solve the following feasibility linear program (LP) for a given effort
profile:

min 1

s.t.

∑

j∈Ti\{i}
aij(x)hij ≥ 1− xi,

∑

j∈Ti\{i}
hij ≤ 1+b

β2 ,

hij ≥ 0, ∀j,







∀i ∈ N.
(8)

If a solution exists to the above LP, we conclude that x is stable. Linear programs can be
efficiently solved and therefore checking an effort profile for stability can be done efficiently.

3.1 Effect of communication on the PoA in general hierarchies

1 2 3 4 5

1.2

1.4

1.6

1.8

2

2.2

β

P
o

A

Number of Nodes = 7

Figure 4: PoA as a function of communication factor β.

In the previous section, we have seen that for a given communication factor β, one can determine
if there exists a reward sharing scheme H for a hierarchy that makes the PoA = 1. We are also
interested in understanding how the PoA depends upon the communication factor β, when such an
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H does not exist, that is, if feasibility LP (Equation (8)) does not return a feasible H and xOPT /∈ S.
In such a scenario, we cannot guarantee PoA to be unity.

For any given reward sharing matrix H , there is an equilibrium effort profile x∗(H). We can thus
solve for Hmax ∈ arg maxH:x∗(H)∈S SO(x∗(H)), which leads to an equilibrium effort profile x∗(Hmax)
that is stable and maximize the social output. When we cannot find a reward sharing scheme to set
PoA = 1, Hmax is the choice of reward sharing that minimizes the PoA.

Figure 4 shows a simulation where for each β we generated a large number of random 7 node
hierarchical networks. For each choice, we found the optimal reward sharing matrix Hmax. The plot
shows the mean PoA with standard error around it. We see from the simulation that as β increases, it
limits the reward share among the agents (second inequality of Equation (7)). This shrinks the set of
stable effort profiles S, and gives rise to an increase in the PoA. This again highlights the importance
of efficient communication in organizational hierarchies. In the next section we make this intuition
more formal, by deriving bounds on the PoA for such general (possibly) unstable hierarchies.

3.2 Price of Anarchy in Balanced Hierarchies

In this section we consider a simple yet representative class of hierarchies, namely the balanced
hierarchies, and analyze the effect of communication on PoA and provide efficient bounds. Hierarchies
in organizations are often (nearly) balanced, and the FLAT or linear networks are special cases of the
balanced hierarchy (depth = 1 or degree = 1). Hence, the class of balanced hierarchies can generate
useful insights. In addition, the symmetry in balanced hierarchies allows us to obtain interpretable
closed-form bounds and understand the relative importance of different parameters.

We consider a balanced d-ary tree of depth D. By symmetry, the efforts of the nodes that are at
the same level of the hierarchy are same at both equilibrium and optimality. This happens because
of the fact that in the EP model, both the equilibrium and optimal effort profile computation follows
a backward induction method starting from the leaves towards the root. Since the nodes in the same
level of the hierarchy is symmetric in the backward induction steps, they have identical effort profiles.

With a little abuse of notation, we denote the efforts of each node at level i by xi. We start
numbering the levels from root, hence, there are D + 1 levels. Note that there are a few interesting
special cases of this model, namely (a) d = 2: balanced binary tree, (b) D = 1: flat hierarchy, (c)
d = 1: line. We assume, for notational simplicity only, that the function µ(Ck) = 1, for all Ck,
though our results generalize. This function is the coefficient of the productivity function. µ(Ck) = 1
also models organizations where each manager is assigned a small team and there is no attenuation
in productivity due to the number of children. In order to present the price of anarchy (PoA) results,
we define the set ξ:

ξ(β) =

{

x : x =

[

1− 1

β
e−βx

]+
}

. (9)

This set is the set of possible equilibrium effort levels for agents at the penultimate level of the
EP model hierarchy when β > 1. Note that this set is a singleton, when β > 1. Depending on β,
we define a lower bound φ(d, β) on the contribution of an agent toward the social output, and a
sequence of nested functions ti, where d is the degree of each node.

φ(d, β) = max

{

1

β
(1 + ln(dβ)), dβ + (1− dβ)ξ(β)

}

,

t1(d, β) = φ(d, β), t2(d, β) = φ(d · φ(d, β), β), . . . , tD(d, β) = φ(d · tD−1(d, β), β).

(10)
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Figure 5: Bounds on PoA for FLAT, d = 6,D = 1.

Theorem 5 (Price of Anarchy) For a balanced d-ary hierarchy with depth D, as β increases, we
can show the following price of anarchy results.

When 0 ≤ β ≤ 1, PoA = 1,

and when 1 < β < ∞, PoA ≤ dD

tD(d, β)
.

(11)

Proof: See Appendix B. ✷

As opposed to our choice of lower bound φ, a näıve lower bound of 1
β
(1+ln(dβ)) can also be used.

However, this gives a weaker bound for any hierarchy. As an example, we demonstrate the weakness
for FLAT (recall Figure 3) in Figure 5 (the FLAT hierarchy is a balanced tree with D = 1, d = n− 1).
Figure 5 shows that the bound given by our analysis is tight for FLAT, indicating the value of the
analysis and also gives intuition to the shape of the effect of |beta on the PoA.

We can then have the following corollaries of Theorem 5,

Corollary 2 (Optimal Effort) For the FLAT hierarchy, if 0 ≤ β < − ln
(

1− 1
n

)

, the optimal effort
profile is where all nodes put unit effort. When − ln

(

1− 1
n

)

≤ β < ∞, the optimal changes to the
profile where the root node puts zero effort and each other node puts unit effort.

Corollary 3 For the FLAT hierarchy, when 0 ≤ β ≤ 1, PoA = 1, and when 1 < β < ∞, PoA
≤ n

φ(d,β)
.

The second corollary above makes rigorous the intuition that when β is small enough the optimal
x can be achieved by choosing a small enough reward share h. However, when β grows, in order
to ensure uniqueness of the Nash equilibrium, the choice of h becomes limited (as it has to satisfy
≤ (1 + b)/β2) resulting in a PoA, as captured in Figure 5.

4 A General Network Model of Influencer and Influencee
In this section, we show that the results on existence and uniqueness of a pure strategy Nash equi-
librium generalize to a much broader setting of agents as influencer and influencees interacting over
an arbitrary network.

Suppose that the agents are connected over a (possibly non-hierarchical) network G. Each node
i has a set of influencers, denoted by Ri (generalizing Pθ→i), and a set of influencees, Ei (general-
izing Ti \ {i}). We import the notation from Section 2 with their exact or analogous meanings for
productivity pi(xRi

) and reward sharing scheme H . Now, the payoff function of agent i is given by,

12



ui(xi, x−i) = pi(xRi
)f(xi) +

∑

j∈Ei

hijpj(xRj
)xj . (12)

We assume that f is a strictly concave function, and is continuously differentiable. We will refer
to the product of effort xi and productivity pi(xRi

) as the output, and denote it by yi. In this context,
we do not impose any condition on the nature of the productivity function pi(·), and as before, this
game is also not necessarily a concave game and the existence of a Nash equilibrium is not always
guaranteed.

4.1 Results

The payoff function given by Equation (12) induces a game between the influencers and the influ-
encees. In addition, as before, every agent faces a trade-off when deciding how much production and
communication effort to exert. We will need the following facts.

Fact 1 If a function is continuously differentiable and strictly concave, its derivative is continuous
and monotone decreasing.

Fact 2 A continuous and monotone decreasing function is invertible and the inverse is also contin-
uous and monotone decreasing.

Using the above two facts, we see that the inverse of f ′ exists and is monotone decreasing. Let
us denote f ′−1 by ℓ. Let us define two functions g and T similar to that defined in Section 2.

gi(x) =
∑

j∈Ei

hij

(

− 1

pi(xRi
)

∂pj(xRj
)

∂xi

xj

)∣

∣

∣

∣

x

, (13)

T (x) = min{max{0, x}, 1}. (14)

Fact 3 The function T is continuous.

Lemma 3 (Necessary condition for Nash equilibrium) If a Nash equilibrium exists for the ef-
fort game in a influencer-influencee network, the effort profile (x∗

i , x
∗
−i) must satisfy,

x∗
i = T ◦ ℓ ◦ gi(x∗), ∀i ∈ N. (15)

To illustrate what this necessary condition means, let us assume, for simplicity, that we do not
hit the edges of the truncation function T . Therefore we can rewrite Equation (15) as,

f ′(x∗
i ) =

∑

j∈Ei

hij

(

− 1

pi

∂pj
∂xi

xj

)∣

∣

∣

∣

x
∗

=
∑

j∈Ei

hij

(

− 1

pi

∂yj
∂xi

)∣

∣

∣

∣

x
∗

(16)

Where yj = pjxj is the output of node j. We have dropped the arguments of pi and pj for brevity
of notation. The expression on the LHS is the rate of change of direct benefit for agent i. The RHS
is the rate at which the passive output of agent i changes w.r.t. his effort xi and productivity pi. If
the LHS is larger, the agent would gain more at the margin by increasing xi. This is because the
derivative (−∂yj/∂xi) is non-negative since ∂pj/∂xi is always non-positive. Similarly, if the RHS was
larger, the agent could gain at the margin by decreasing xi. Hence Equation (16) resembles a rate
balance equation (or demand-supply curve) where the rate of effective direct payoff matches the rate
of passive payoffs.
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Figure 6: Free riding phenomenon of a node having higher EFOR from the influencees.

Let us define the effective fractional output rate (EFOR) at x as
∑

j∈Ei
hij

(

− 1
pi

∂yj
∂xi

)∣

∣

∣

x

. In some

settings, e.g., if pi(xRi
) =

∏

k∈Ri
(1− xk), the fractional output rate

(

− 1
pi

∂yj
∂xi

)

can be independent of

the production effort of i, i.e., xi. In such settings, Equation (16) shows that if the EFOR of node
i increases, the equilibrium for node i will move in a direction that decreases production effort xi.
This happens because the slope of f in equilibrium is always non-negative and its increase leads to
a smaller xi because of the concavity of f . This phenomenon is graphically shown in Figure 6. This
shows that the nodes having a higher EFOR, which is a function of the network position of an agent,
can free-ride on the production efforts of the influencees.

Following Definition 1, we define the effort update function (EUF) F : [0, 1]n → [0, 1]n for the
general setting as, F (x) = T ◦ ℓ ◦ g(x), where T ◦ ℓ operates on the vector function g element-wise.
Therefore, the question of existence of a Nash equilibrium of this effort game is the same as asking
the question if the following fixed point equation has a solution: x = F (x).

In the following, we provide a sufficient condition for existence of the Nash equilibrium, and its
uniqueness.

Lemma 4 For pi > 0, for all i ∈ N , and continuously differentiable, F (x) is continuous.

Proof: Given pi > 0, for all i ∈ N , and is continuously differentiable. Therefore, the function g,
defined in Equation (13), is continuous in x. Using Facts 2 and 3, we see that the functions ℓ and T
are continuous. Hence, F ≡ T ◦ ℓ ◦ g is continuous in x. ✷

Theorem 6 (Sufficient Condition for a Nash Equilibrium) For pi > 0, for all i ∈ N , and
continuously differentiable, the effort game has at least one Nash equilibrium.

Proof: The Nash equilibrium of the effort game is same as the fixed point of the equation, x = F (x).
Since F is continuous (Lemma 4), Brouwer’s fixed point theorem immediately ensures a fixed point
of the above equation to exist. Hence, the effort game has at least one Nash equilibrium. ✷

Let us use the shorthand G ≡ ℓ ◦ g. The following theorem provides a sufficient condition for the
uniqueness of the Nash equilibrium.

Theorem 7 (Sufficient Condition for unique Nash Equilibrium) If sup
x0
|∇G(x0)| < 1, then

the Nash equilibrium effort profile (x∗
i , x

∗
−i) is unique and is given by Equation (15).

Proof: The key here is to show that F is a contraction. We follow the steps of Theorem 2 as
follows:

||F (x)− F (y)|| ≤ ||G(x)−G(y)|| ≤ |∇G(x0)| · ||x− y||.
This is a contraction as sup

x0
∇|G(x0)| < 1. ✷
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4.1.1 Interpretation of the sufficient condition of the uniqueness

The sufficient condition given by Theorem 7 is a technical one. We now discuss an interesting
geometric interpretation of this condition. By the Taylor expansion of G with first order remainder
term, we get,

G(x)−G(y) = ∇G(x0) · (x− y).

Where x0 lies on the line joining x and y. Using singular value decomposition, we get, ∇G(x0) =
U0Σ0V

⊤
0 . Therefore, for each pair of points x and y, we can transform the space of efforts with a

pure rotation as follows.

G(x)−G(y) = U0Σ0V
⊤
0 · (x− y),

⇒ U⊤
0 (G(x)−G(y)) = Σ0 · (x̄− ȳ), where x̄ = V ⊤

0 x, ȳ = V ⊤
0 y

⇒ R(x̄)−R(ȳ) = Σ0 · (x̄− ȳ), where R ≡ U⊤
0 GV0.

Hence, for any pair of points x and y, we can rotate the space so that the effect of the deviation to
x from y can be captured by a weight on each of the coordinates in the rotated space. Here, the
diagonal matrix Σ0 contains the weights along its diagonal.

Theorem 7 says that for any point x0, if the absolute value of all the elements of this diagonal
matrix is smaller than unity, the uniqueness of the Nash equilibrium is guaranteed. Let us denote
the rotated vector of x0 by z0 := V ⊤

0 x0. The diagonal elements can be written w.r.t. the vectors in
the rotated space as,

(Σ0)ii =
∑

j∈Ei

hij

(

− 1

pi

∂2pj
∂z2i

zj

)∣

∣

∣

∣

z0

=
∂EFOR(z0)

∂zi,0
.

In other words, the diagonal elements are the rate of change of EFOR at z0. Having the rate of
change of EFOR bounded by 1 is a sufficient condition for a unique Nash equilibrium. One can think
of the EFOR as the product of two effects: (1) the rate of change in productivity, which increases
the payoff of the influencees, (2) the reward share hij ’s. The sufficient condition essentially says that
the net effect should not be too large in order to guarantee unique equilibrium.

Figure 7 shows a graphical illustration of the phenomenon in polar co-ordinates, where the di-
rections represent that of the vectors. The results say that if for any vector, the singular values of
the Jacobian matrix of G at that point lies entirely within the unit ball, then there exists an unique
Nash equilibrium. This is similar to the feedback loop gain of a feedback controller, where the closed
loop gain being smaller than unity ensures stability. We find this natural parallel between notions
of stability (from control theory) and uniqueness of Nash equilibria interesting.

5 Conclusions and Future Work

In this paper, we build on the papers by Bramoullé and Kranton [5], Ballester et al. [3] and develop
an understanding of effort levels in influence networks. Taking a game theoretic perspective, we
consider a general utility model which results in a non-concave game, but are able to show results
on the existence and uniqueness of Nash equilibrium efforts and when this Nash equilibrium can be
reached by agents’ best response dynamics. For hierarchical networks, we focused on the EP model
where we develop closed form expressions and bounds on the PoA. These results give us the insight
that communication in hierarchies should be good enough to allow for the design of efficient networks.
At the same time, for a given network structure and communication level, the profit sharing has to be
designed appropriately to minimize the PoA. If reward sharing is too high, then managers free-ride
resulting in a large PoA, an observation we believe is novel to our work.
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Figure 7: Geometric interpretation of the condition for uniqueness of the Nash equilibrium.

The connection between matrix stability and uniqueness of Nash equilibria that arose in our
work, is of particular interest to us for future research. In particular, for the case of quadratic
cost functions there was a direct interpretation of the uniqueness condition in terms of a Jacobian
matrix stability. This stability property is directly related to the contraction property that shows that
agents following local updates on effort levels will converge to the Nash equilibrium another desirable
property. Pursuing these connections in the investigation of organizational network formation games
is an important direction of future research.

APPENDIX

A Proofs for the Exponential Productivity Model

Proof of Theorem 1 Proof: First we show that if a Nash equilibrium profile (x∗
i , x

∗
−i) exists for

the effort game, it must satisfy Equation (4). For notational convenience, we drop the arguments
of pi and pij , which are functions of xPθ→i

and xPi
−

→j
respectively. Each agent i ∈ N solves the

following optimization problem.

maxxi
ui(xi, x−i)

s.t. xi ≥ 0
(17)

Combining Equations (1), (2), and (3), we get,

ui(xi, x−i) = pi(xPθ→i
)

(

xi −
x2
i

2
− b

(1 − xi)
2

2

)

+
∑

j∈Ti\{i}

hijpj(xPθ→j
)xj.

Note that we have relaxed the constraint from 0 ≤ xi ≤ 1. The first additive term in the utility
function has the peak at xi = 1. The second term has eβxi in the pj, which is decreasing in xi.
Therefore, the optimal xi that maximizes this utility will be ≤ 1. Hence, in this problem setting, the
optimal solution for both the exact and the relaxed problems is the same. So, it is enough to consider
the above problem. For this non-linear optimization problem, we can write down the Lagrangian as
follows.

L = ui(xi, x−i) + λixi, λi ≥ 0.
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The KKT conditions for this optimization problem (17) are:

∂L
∂xi

= 0,⇒ ∂

∂xi

ui(xi, x−i) + λi = 0, (18)

λixi = 0, complementary slackness. (19)

Case 1: λi = 0, then from Equation (18) we get,

pi(1− xi + b(1 − xi)) +
∑

j∈Ti\{i}

hij

∂pj
∂xi

xj = 0

⇒ pi(1 + b)(1− xi)− β
∑

j∈Ti\{i}

hijpjxj = 0

⇒ 1− xi =
β

1 + b

∑

j∈Ti\{i}

hijpijxj , with pij as defined

⇒ xi = 1− β

1 + b

∑

j∈Ti\{i}

hijpijxj . (20)

Case 2: λi > 0, then from Equation (19) we get xi = 0, and from Equation (18), ∂
∂xi

ui(xi, x−i) < 0.
Carrying out the differentiation as in Equation (20) and combining with (21) we get,

0 = xi > 1− β

1 + b

∑

j∈Ti\{i}

hijpijxj . (21)

xi =



1− β

1 + b

∑

j∈Ti\{i}

hijpijxj





+

.

Since this condition has to hold for all nodes i ∈ N , the equilibrium profile (x∗
i , x

∗
−i) must satisfy the

above equality. The question now is whether a Nash equilibrium exists at all for this effort game. Let
us recall the function F from Definition 1, which is the composition of the following two functions.

gi(x) = 1− β

1 + b

∑

j∈Ti\{i}

hijpijxj , T (y) = max(0, y).

We recall that, for the EP model, pij =
∏

k∈Pi
−

→j
µ(Ck)e

−βxk . Therefore, the function gi is continuous.

Also, T is continuous, and Fi ≡ T ◦ gi. Therefore, Fi is also continuous, for all i ∈ N . We also know
that if for all i ∈ N , Fi is continuous, then F is continuous too. Therefore, we can apply Brouwer’s
fixed point theorem to conclude that the fixed point equation x = F (x) has at least one solution.
For the effort game, any fixed point of this equation is a Nash equilibrium. Hence the equilibrium
always exists for the effort game with EP model, and is given by Equation (4). ✷

Proof of Theorem 2
We prove this theorem via the following Lemma.

Lemma 5 If β <
√

1+b
hmax(T )

, the function F is a contraction.

Proof: The Taylor series expansion of g with a first order remainder term is as follows. There
exists a point x0 that lies on the line joining x and y, such that,

g(x) = g(y) +∇g(x0) · (x− y).
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Where, ∇g(x0) is the Jacobian matrix.

∇g(x0) =







∂g1
∂x1

. . . ∂g1
∂xn

...
. . .

∂gn
∂x1

. . . ∂gn
∂xn







∣

∣

∣

∣

∣

∣

∣

x0

In order to show that F is a contraction, we note that F is a truncation of g. Hence, ||F (x)−F (y)|| ≤
||g(x)− g(y)||, for all x,y ∈ [0, 1]n. Let us consider the following term,

||F (x)− F (y)|| ≤ ||g(x)− g(y)|| ≤ |∇g(x0)| · ||x− y|| (22)

Where the matrix norm |∇g(x0)| is the largest singular value of the Jacobian matrix ∇g(x0). We
see that in our special structure in the problem, this matrix is upper triangular, hence the diagonal
elements are the singular values. Suppose, the k-th diagonal element yields the largest singular value.

|∇g(x0)| =
∂gk
∂xk

∣

∣

∣

∣

x0

=
β2

1 + b

∑

j∈Tk\{k}

hkjpkjxj

∣

∣

∣

∣

∣

∣

x0

⇒ sup
x0

|∇g(x0)| ≤
β2

1 + b
· hmax(T ) < 1, since β2 <

1 + b

hmax(T )
.

The first inequality above holds due to the fact that pkj’s and xj ’s are ≤ 1, and by the definition of
hmax(T ). Hence, from Equation (22), we get that F is a contraction. ✷

Proof: [of Theorem 2] Brouwer’s fixed point theorem only guarantees the existence of a fixed point,
which implies that the Nash equilibrium exists. Under the sufficient condition given by Lemma 5,
the fixed point of x = F (x) is unique. Therefore, the Nash equilibrium is also unique, and is given
by Equation (4). ✷
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APPENDIX

B Proofs of the price of anarchy results in balanced hierar-

chies
Proof of Theorem 5

We prove this theorem via the following lemma, which finds out the optimal effort profile for β
above a threshold.

Lemma 6 (Optimal Efforts) For a balanced d-ary hierarchy with depth D, any optimal effort
profile has xOPT

D+1 = 1. When − ln
(

1− 1
d

)

≤ β < ∞, the optimal effort profile is xOPT

i = 0, ∀i =
1, . . . , D, and xOPT

D+1 = 1.

Proof: The social outcome for a given effort vector x on the balanced hierarchy is as follows. Since,
the hierarchy is understood here, we use SO(x) instead of SO(x, BALANCED).

SO(x) = x1 + de−βx1x2 + d2e−β(x1+x2)x3 + · · ·+ dDe−β(
∑D

i=1 xi)xD+1.

It is clear that for any effort profile of the other nodes the effort at the leaves that maximizes the
above expression is xD+1 = 1. This proves the first part of the lemma. Hence we can simplify the
above expression by,

SO(x) = x1 + de−βx1x2 + d2e−β(x1+x2)x3 + · · ·+ dDe−β(
∑D

i=1 xi)

= x1 + de−βx1x2 + · · ·+ dD−1e−β(
∑D−1

i=1 xi)(xD + de−βxD) (23)

≤ x1 + de−βx1x2 + · · ·+ dD−1e−β(
∑D−1

i=1 xi) · d.
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The last inequality occurs since β ≥ − ln
(

1− 1
d

)

, and xD = 0 meets this inequality with a equality.
Also since β ≥ − ln

(

1− 1
d

)

implies that β ≥ − ln
(

1− 1
dk

)

, for all k ≥ 2, the next inequality will
also be met by xD−1 = 0 as shown below.

SO(x) = x1 + de−βx1x2 + · · ·+ dD−1e−β(
∑D−1

i=1 xi) · d
= x1 + de−βx1x2 + · · ·+ dD−2e−β(

∑D−2
i=1 xi)(xD−1 + d2e−βxD−1)

≤ x1 + de−βx1x2 + · · ·+ dD−2e−β(
∑D−2

i=1 xi) · d2.

This inequality is also achieved by xD−1 = 0. We can keep on reducing the terms from the right in
the RHS of the above equation, and in all the reduced forms, xi = 0, i = D − 1, D − 2, . . . , 1 will
maximize the social output expression. Hence proved. ✷

Proof: [of Theorem 5] Case 1 (0 ≤ β ≤ 1): From Lemma 6, xD+1 = 1 for optimal effort. However,
for any equilibrium effort profile xD+1 = 1 as well. Therefore we consider the equilibrium effort of
the nodes at level D.

xD = 1− β

1 + b
de−βxDhD,D+1. (24)

The constraint for unique equilibrium demands that dhD,D+1 ≤ (1+b)/β2, which makes β

1+b
dhD,D+1 ≤

1/β, while 1/β ≥ 1. So, we have the liberty of choosing the right hD,D+1 to achieve any xD ∈ [0, 1],
and in particular, the xOPT

D . We apply backward induction on the next level above.

xD−1 = 1− β

1 + b
[de−βxD−1xDhD−1,D + d2e−β(xD−1+xD)hD−1,D+1].

The constraints are dhD−1,D + d2hD1,D+1 ≤ (1 + b)/β2. We claim that any xD−1 ∈ [0, 1] is achievable
here as well. To show that, put hD−1,D = 0. The above equation becomes then,

xD−1 = 1− β

1 + b
d2e−β(xD−1+xD)hD−1,D+1

= 1− β

1 + b
d2e−βxD−1

1 + b

dβhD,D+1
hD−1,D+1, from the earlier expression

= 1− dhD−1,D+1

hD,D+1
e−βxD−1

This again can satisfy any xD−1, since the coefficient of the exponential term can be made anywhere
between 0 and 1. It can be made 0 by choosing hD−1,D+1 = 0, and 1 by choosing

dhD−1,D+1

hD,D+1
= 1 which

is feasible, since d2hD−1,D+1 = dhD,D+1 ≤ (1 + b)/β2.
In the similar way we can continue the induction till the root and can make x∗ = xOPT. Hence,

PoA = 1.
Case 2 (1 < β < ∞): We note that this region of β falls in the region specified by Lemma 6.

Hence the optimal effort is 1 for all the leaves and 0 for everyone else. Hence, the optimal social
output is given by dD. The equilibrium effort for the leaves, xD+1 = 1. However, Equation (24) may
not be satisfiable for any xD since 1/β < 1. In order to push the solution as close to zero as possible,
we choose hD,D+1 = (1+ b)/β2, and plug it in Equation (24), and the solution is given by ξ(β) (recall
Equation (9)) and the solution set is singleton under this condition. The social output is dD, which
is the numerator of the PoA expression. The denominator is given by the social output at the Nash
equilibrium, which we will try to lower bound. From Equation (23), for the equilibrium, we know
that xD = ξ(β). Therefore,

xD + de−βxD = xD + dβ(1− xD) = dβ + (1− dβ)ξ(β).
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At the same time, we see that the leftmost expression is convex in xD, which can be lower bounded
by the minima, given by,

xD + de−βxD ≥ 1

β
(1 + ln(dβ)).

Combining the two, a tight lower bound of the expression would be,

xD + de−βxD ≥ max

{

1

β
(1 + ln(dβ)), dβ + (1− dβ)ξ(β)

}

= φ(d, β).

Plugging this lower bound in Equation (23), we see that,

SO(x)

≥ x1 + de−βx1x2 + · · ·+ dD−1e−β(
∑D−1

i=1 xi) · φ(d, β)
= x1 + de−βx1x2 + · · ·+ dD−2e−β(

∑D−2
i=1 xi) · (xD−1 + dφ(d, β)e−βxD−1)

Let us consider the last term within parenthesis.

xD−1 + dφ(d, β)e−βxD−1

= xD−1 + dφ(d, β)
β

ξ(β)
(1− xD−1)

≥ xD−1 + dφ(d, β)β(1− xD−1), as ξ(β) ≤ 1

= dφ(d, β)β + (1− dφ(d, β)β)xD−1

≥ dφ(d, β)β + (1− dφ(d, β)β)ξ(β)

The first equality comes since we can make the equilibrium xD−1 s.t., xD−1 = 1− ξ(β)
β
e−βxD−1, by

choosing dhD−1,D = (1+b)/β2, d2hD−1,D+1 = 0. Also, since ξ(β) ≤ 1, we conclude, xD−1 ≥ xD = ξ(β),
which gives the second inequality above. On the other hand, using the fact that the expression
xD−1+dφ(d, β)e−βxD−1 is convex in xD−1, it can be lower bounded by, 1

β
(1+ln(dφ(d, β)β)). Combining

this and the above inequality, we get the following.

SO(x) ≥ x1 + de−βx1x2 + · · ·+ dD−2e−β(
∑D−2

i=1 xi) · φ(d · φ(d, β), β)
... repeating the steps above

≥ tD(d, β), as defined in Equation (10).

Therefore the PoA ≤ dD

tD(d,β)
. ✷

C Proofs for general networks
Proof of Lemma 3 Proof: We follow the line of proof of Theorem 1. Each agent i ∈ N is solving
the following optimization problem.

maxxi
ui(xi, x−i)

s.t. 0 ≤ xi ≤ 1
(25)

This is a non-linear optimization problem. Hence we can write down the Lagrangian as follows.

L = ui(xi, x−i) + λixi + γi(1− xi), λi, γi ≥ 0.

21



The KKT conditions are necessary for this optimization problem (25), which are the following.

∂L
∂xi

= 0,

⇒ ∂

∂xi

ui(xi, x−i) + λi − γi = 0, (26)

λixi = 0, γi(1− xi) = 0. (27)

Case 1: λi = 0, γi = 0, then from Equation (26) we get,

∂

∂xi

ui(xi, x−i) = 0

⇒ pif
′(xi) +

∑

j∈Ei

hij

∂pj
∂xi

xj = 0

⇒ f ′(xi) =
∑

j∈Ei

hij

(

− 1

pi

∂pj
∂xi

xj

)

= gi(x)

⇒ xi = ℓ ◦ gi(x), from the definition of ℓ (28)

Case 2: λi > 0, γi = 0, then from Equation (27) we get xi = 0, and from Equation (26),

∂

∂xi

ui(xi, x−i) < 0.

Carrying out the differentiation as in Equation (20), we get,

f ′(xi) < gi(x) ⇒ 0 = xi > ℓ ◦ gi(x), since f is concave

⇒ xi = T ◦ ℓ ◦ gi(x), where T is the truncation function. (29)

Case 3: λi = 0, γi > 0, then from Equation (27) we get xi = 1, and from Equation (26),

∂

∂xi

ui(xi, x−i) > 0.

Carrying out similar steps as before, we get,

f ′(xi) > gi(x) ⇒ 1 = xi < ℓ ◦ gi(x)
⇒ xi = T ◦ ℓ ◦ gi(x), where T is the truncation function. (30)

Case 4: λi > 0, γi > 0, this cannot happen since it will lead to a contradiction 0 = xi = 1. Therefore,
combining Equations (28), (29), and (30), we get,

x∗
i = T ◦ ℓ ◦ gi(x∗), ∀i ∈ N.

Hence proved. ✷
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