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Wireless sensor networks can often be viewed in terms of a uniform deployment of a large number

of nodes in a region of Euclidean space. Following deployment, the nodes self-organize into a mesh
topology with a key aspect being self-localization. Having obtained a mesh topology in a dense,
homogeneous deployment, a frequently used approximation is to take the hop distance between

nodes to be proportional to the Euclidean distance between them. In this work, we analyze
this approximation through two complementary analyses. We assume that the mesh topology is
a random geometric graph on the nodes; and that some nodes are designated as anchors with
known locations. First, we obtain high probability bounds on the Euclidean distances of all nodes

that are h hops away from a fixed anchor node. In the second analysis, we provide a heuristic
argument that leads to a direct approximation for the density function of the Euclidean distance
between two nodes that are separated by a hop distance h. This approximation is shown, through
simulation, to very closely match the true density function.

Localization algorithms that draw upon the above analyses are then proposed and shown to per-
form better than some of the well-known algorithms present in the literature. Belief-propagation-
based message-passing is then used to further enhance the performance of the proposed localiza-

tion algorithms. To our knowledge, this is the first usage of message-passing for hop-count-based
self-localization.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems; G.3 [Probability and Statistics]: Stochastic
processes

General Terms: Theory, Algorithm, Performance

Additional Key Words and Phrases: Random Geometric Graph, Localization, Belief Propagation

1. INTRODUCTION

We consider a wireless sensor network comprising a large number of nodes, n, dis-
tributed over a fixed (constant area) region in 2-dimensional Euclidean space, e.g.,
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the unit square. If each node is able to communicate perfectly with all the nodes
that are at a distance ≤ r from it, and only with these nodes, the communica-
tion topology becomes a geometric graph. If the node deployment is random, e.g.,
uniform i.i.d. deployment (this means that each node is deployed uniformly over
the region independently of all other nodes), then the network topology becomes a
random geometric graph (RGG) (see, e.g., [Penrose 2003]). Given a deployment of
nodes, and a topology over them, a frequently used approximation is to take the
minimum number of hops between nodes (i.e., the hop distance) as a measure of
the Euclidean distance between them. [Niculescu and Nath 2001], [Nagpal et al.
2003] and [Yang et al. 2007] have used this approximation to develop techniques
for GPS-free localization in dense wireless sensor networks. Yang et al. [Yang
et al. 2007], in particular, make the key assumption that the ratio of the Euclidean
distance (ED) between a node and two anchor nodes is well approximated by the
ratio of the corresponding hop distances1 (HD). Such an approximation of propor-
tionality between Euclidean and Hop-distance in a random geometric graph still
lacks theoretical formalization. This has been pointed out in a recent paper by [Li
and Liu 2007], where the authors consider this as a heuristic even for an isotropic
network.
For geometric graphs over arbitrary node placements, it is easy to see that HD

does not provide a useful measure of ED. Thus, the formal study of the ED-HD
relationship on a random geometric graph (RGG) becomes interesting. We take a
random deployment of n nodes on a unit square, and consider the geometric graph
on these nodes with radius r. There are several points on the plane, bl, 1 ≤ l ≤ L,
with known locations, designated as anchors. There are several nodes that are at a
certain HD, say h, from a fixed anchor node bl. Let us denote the random vector of
the EDs of these nodes by Dl,i1 , Dl,i2 , · · · , Dl,iMl

, where Ml is the random number
of such nodes. In Section 4, we are concerned with characterizing the support of the
joint distribution of Dl,i1 , Dl,i2 , · · · , Dl,iMl

. In particular, we show that, for n nodes
deployed in a given region with fixed area, as n → ∞ with probability approaching
1, the support is the intersection of an annulus of width approximately r, and
the unit square.2 We show that the result holds for critically scaled r ([Gupta and
Kumar 1998]) and for fixed r, and for different node deployments, e.g., uniform i.i.d.
and randomized lattice. To our knowledge this is the first attempt to provide high
probability (with probability approaching 1 as n → ∞) bounds on the Euclidean
distances of all nodes, that are at given hop distances from beacons. We provide
simulation results that illustrate the theory, and serve to show how large n needs
to be for the asymptotics to be useful.
We then turn to studying the marginal distribution of the distance of a node

from an anchor, given that it is at an HD h from that anchor. A detailed overview
of the existing results on the distribution of Euclidean distance traversed for a
given number of hops is provided in Section 5. Then, in this section, we provide
a heuristic derivation that replaces the problem of determining the density of the
ED from the knowledge of the hop count by a task that is more amenable to

1The terms hop count and hop distance will be used interchangeably in this paper.
2In the recent literature, [Ozgur et al. 2007], such a network has been called dense since the node

density increases as n → ∞, in contrast to constant node density networks.
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analysis. The resulting approximate derivation of the density function is shown
through simulation to fit well with the true density function. The assumptions that
we make help us to use the central limit theorem, which explains the reason why
the distribution is Gaussian-like.
Next, two localization algorithms are presented, based, respectively, on the high

probability bounds on ED, and also on the derivation of the approximate marginal
density function discussed above. Through simulation, the algorithms are shown to
outperform some of the better-known hop-count-based localization algorithms that
have appeared in the literature. Finally, we show how our algorithms can be further
improved using belief-propagation-based message-passing techniques wherein the
messages passed correspond to beliefs based on probability. To the best of our
knowledge, this is the first use of belief-propagation for hop-count based localization
techniques.
The paper is organized as follows. Next in this section, we explain the setting

of our problem with a motivating example which also reasons for the assumptions
and analyses. Section 2 introduces notation and the geometric-graph setting. In
Section 3 we briefly mention that in an arbitrary two-dimensional geometric graph,
the HD is not in general a good measure of ED. In Section 4, we present a lower
bound to ED given HD that holds with high probability in different settings. The
approximate derivation of the density function of ED given HD is presented in
Section 5. Localization algorithms based on the theory developed in the previous
sections are provided in Section 6. Belief-propagation-based message passing is
then used to derive algorithms with improved performance in Section 7. Section 8
draws conclusions.

1.1 Motivation for Hop-Distance based Localization

Sensor network localization algorithms can be broadly classified into two categories.

(i) Range based localization: Algorithms under this category assume the availability
of noisy distance measurements between the nodes. These require the motes to be
equipped with hardware that enable them to use Received Signal Strength (RSS),
Time of Arrival (ToA), Time Difference of Arrival (TDoA), Angle of Arrival
(AoA) etc. to obtain an estimate of the true distance between the nodes. There is
a plethora of literature that addresses this class of algorithms. Some of the more
recent work includes popular multidimensional scaling algorithm [Costa et al.
2006], belief propagation based algorithms [Ihler et al. 2005], iterative algorithms
[Khan et al. 2009] etc. We refer the reader to [Langendoen and Reijers 2003] and
to [Guvenc and Chong 2009] for a survey of these algorithms.

(ii) Range-free localization: These algorithms do not assume the availability of
the necessary hardware to obtain distance measurements. Sensor nodes are only
aware of their connectivity to their neighbors, which can be communicated across
the network. Hence a sensor node does not have any Euclidean distance estimate
and could only possibly know how many hops away it is from another node. An
important class of algorithms in this category is the hop-count based algorithms
which attempt to estimate the position of the nodes based on only the number
of hops in the shortest path between pairs of nodes. Existing literature in this
area includes [De et al. 2006], [Niculescu and Nath 2003], [Li and Liu 2007] etc.
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The motivation for considering either class of algorithms strongly depends on the
application scenario and the capability of the sensor nodes. Range based techniques
require that the sensor nodes have additional hardware to estimate the Euclidean
distances and need to expend some energy in the estimation process. Proponents
of range free localization, such as [He et al. 2003], [Hu and Evans 2004], argue
that the higher cost and power consumption of the hardware on the inexpensive
motes and irregular signal transmission characteristics of RSSI prohibit the use of
range based techniques. Availability of additional distance information would only
help, and clearly range based techniques would outperform range free techniques.
However we consider scenarios of large scale deployments as in military applications,
environmental monitoring, etc., where sensor capabilities would possibly be limited
to only communication and physical sensing, and might not include hardware for
making distance measurements. In such situations, range-free localization would be
essential and in this paper we focus on the hop-count based techniques.

2. THE GEOMETRIC GRAPH SETTING & NOTATION

In this section we describe the basic setting for our results, and also develop the
main notation.

Setting:

—n nodes are deployed on a unit 2-dimensional area A. The node locations are
denoted by the vector v = [v1, v2, · · · , vn] ∈ An, where vi is the location of the
ith node.

—We form the geometric graph G(v, r) by connecting nodes that are within the
distance r of each other. Then r is called the radius of the geometric graph.

We define anchors as nodes whose locations are known a priori, e.g., in Figure 1,
we have shown 4 anchors b1, b2, b3 and b4, with their positions fixed at the 4 corners
of the unit square A. The figure also shows the neighbors of a particular node in
geometric graph with radius r.

Notation:

—N = [n] = {1, 2, · · · , n}, the index set of the nodes, i.e., node i ∈ N has a
location vi on A.

—bl = Location of the lth anchor node, l = 1, · · · , L, e.g., in Figure 1, L = 4.

—Nj : The neighbor set of node j in G(v, r). Mathematically, ∀j ∈ N , Nj = {k ∈
N : ||vj − vk|| ≤ r, k 6= j}.

—Hl,i(v) = Minimum number of hops of node i from anchor bl on the graph G(v, r)
for the deployment v.

—Dl,i(v) = Euclidean distance of node i from anchor bl for the deployment v.

Dl(v, hl) := max
{i∈N :Hl,i(v)=hl}

Dl,i(v)

Dl(v, hl) := min
{i∈N :Hl,i(v)=hl}

Dl,i(v)

Given v, these are respectively the maximum and minimum Euclidean distance
for a hop-distance hl from anchor l. A graphical illustration of the maximum
and minimum EDs is given in Figure 2.
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b1 ≡ (0, 0)

Area to monitor, A

b2 ≡ (1, 0)

b3 ≡ (1, 1)b4 ≡ (0, 1)

sample deployment v

r

Neighbours in the
Geometric Graph
G(v, r)

Node locations can be arbitrary or random

Fig. 1. An example deployment of nodes in a
square region A with 4 anchors, one at each
corner. The neighbors of a particular node in
the geometric graph of radius r are also shown.

sample deployment v

Dl(v, hl)

D
l
(v, hl)

bl

Area to monitor, A

These paths are on G(v, r)

Anchor can be anywhere in A, this is an example
lth anchor location

Fig. 2. Graphical illustration of Dl(v, hl) and
Dl(v, hl) with hl = 5.

With this setting, given the hop distance hl on G(v, r) between a node and an
anchor, we wish to obtain constraints on the Euclidean distance of the node from
anchor bl.

3. HD-ED RELATIONSHIP IN ARBITRARY GEOMETRIC GRAPHS

In this section, we briefly review a result on the HD-ED relation in an arbitrary ge-
ometric graph with radius r, where by “arbitrary” we mean that the node locations
are arbitrary. It has been shown in [Nath and Kumar 2008] that the proportionality
approximation can be arbitrarily coarse in this scenario. The authors have proved
the following lemma.

Lemma 1. For arbitrary v and hl ≥ 2, r < Dl(v, hl) ≤ Dl(v, hl) ≤ hlr and both
bounds are sharp.

Where ‘sharp’ means both bounds are achievable. In [Nath and Kumar 2008], ex-
amples are provided that validate the sharpness of the bounds in the above lemma.

However, hop-distance serves as a good measure of the Euclidean distance when
the distribution of nodes has positive density over all points on A, e.g., the node
distribution is uniform i.i.d. or randomized lattice. We will provide support for this
assertion via rigorous analyses in the following sections.

4. HIGH PROBABILITY BOUNDS ON ED GIVEN THE HD

In this section, we will consider random geometric graphs (RGG) and address the
following problem. Given an HD value, say h, from an anchor node, in general,
there are several nodes that are at HD h from that anchor. Can we provide an
interesting characterization of a subregion of the deployment region in which all
nodes with an HD of h from that anchor will lie, with a probability approaching
1, as the number of deployed nodes, n, increases to ∞? Such a characterization is
obviously useful for localization.
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4.1 Random Geometric Graphs with Critical Scaling of Radius

We now specialize to the following setting.

Setting:

—n nodes are deployed on a unit area A in the uniform i.i.d. fashion. The difference
with this setup from the previous section is that the node locations are random,
and are denoted by the random vector V ∈ An, with a particular realization
being denoted by v. We denote by P

n(.) the probability measure on An so
obtained.

—We form the RGG G(v, r(n)) by connecting the nodes that are within the radius
r(n) of each other, where r(n), the radius of the geometric graph is chosen so that

the network remains asymptotically connected. We take r(n) = c
√

lnn
n

, c > 1√
π
,

a constant; this ensures asymptotic connectivity (see [Gupta and Kumar 1998]).
For a finite number of nodes, the radius which ensures connectivity depends on
the node placements. For a given node placement, we will call this radius as
critical radius and the graph so obtained as critical graph.

In Section 4.1.1, we analyze the distribution of distance from one anchor node
and in Section 4.1.2, we generalize it for L anchors.

The choice of the radius, r(n) = c
√

lnn
n

, c > 1√
π
, does not only guarantee

asymptotic connectivity among the nodes, but also ensures connectivity of the
nodes with all the anchors. The following lemma states that there will be at least a
node within a distance r(n) of each anchor bl, l = 1, · · · , L w.h.p. and so the nodes
are connected to all the anchors for large n. Define, Bl = {v : ∃ at least one node
within a radius of r(n) from bl}, l = 1, · · · , L.

Lemma 2. limn→∞ P
n
(

∩L
l=1Bl

)

= 1

Proof: P
n
(

∩L
l=1Bl

)

= 1 − P
n
(

∪L
l=1B

c
l

)

≥ 1 − ∑L
l=1 P

n{Bc
l } = 1 − ∑L

l=1(1 −
πr2(n))n ≥ 1− Le−nπr2(n) n→∞−→ 1, since r(n) = c

√

lnn
n

and 1− x ≤ e−x.

4.1.1 High probability ED bound given HD from an anchor bl: Uniform i.i.d.
deployment. We make the construction as shown in Figure 3. From bl (without loss
of generality, we can choose l = 1), we draw a circle of radius hlr(n) centered at bl,
this is the maximum distance reachable in hl hops, by triangle inequality, since each
hop can be of maximum length r(n). All the nodes {i ∈ N : Hl,i(v) = hl} lie within
this disk. So, Dl(v, hl) ≤ hlr(n) for all v. To obtain a lower bound on Dl(v, hl), we
construct blades as shown in Figure 3. We start with one blade. It will cover some
portion of the circumference of the circle of radius hlr(n); see Figure 3. Construct
the next blade so that it covers the adjacent portion of the circumference that
has not been covered by the previous blade. We go on constructing these blades
until the entire portion of the circle lying inside the unit square A is covered (see
Figure 3). Let us define,

—J(n) : Number of blades required to cover the part of the circle within A.

—Bl
j : jth blade drawn from the point bl as shown in Figure 3, 1 ≤ j ≤ J(n).
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hlr(n)

. . .

J(n) blades. . .

hl strips in each blade

bl

blade Bl
j

A

Fig. 3. Construction using the blades cutting the circumference of the circle of radius hlr(n).

Blade

· · ·

· · ·

r(n)r(n)

hl
1 2

u(n) =
√

1 − p2r(n)

t(n) = qr(n)

pr(n)

(p − q)(hl − 1)r(n)

hl − 1bl

Bl
j

all nodes that fall here will have hop distance ≤ hl − 1 from bl

Fig. 4. The construction with hl hops.

On each of these blades, we construct hl strips
3 , shown shaded in Figure 4, u(n)

being the width of the blade and t(n) the width of the strip. We define the following
event.

—Al
i,j = {v: ∃ at least one node in the ith strip of Bl

j}

If a v ∈ Al
i,j , ∀1 ≤ i ≤ hl − 1, 1 ≤ j ≤ J(n), i.e., there exists at least one node in

each of the hl−1 strips (see Figure 4) for all the blades Bl
j , then for that v, all nodes

at a distance < (p−q)(hl−1)r(n) from bl are reachable in at most hl−1 hops, hence
will have a hop distance ≤ hl − 1 < hl. So, we have Dl(v, hl) ≥ (p− q)(hl − 1)r(n),
for such a deployment v; see Figure 4. Hence,

{∩J(n)
j=1 ∩hl−1

i=1 Al
i,j}

⊆ {v : (p− q)(hl − 1)r(n) ≤ Dl(v, hl) ≤ Dl(v, hl) ≤ hlr(n)} (1)

3A construction with improved convergence rate based on lens-shaped areas rather than rectan-

gular strips is presented in Appendix A.
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a(n)α(n)

bl u(n)

hlr(n)

Fig. 5. Construction to find J(n).

Since 1 > p > q > 0, we can choose p− q to be equal to 1− ǫ, for the given ǫ > 0.
So the lower bound in Equation 1 becomes, (p−q)(hl−1)r(n) = (1−ǫ)(hl−1)r(n).
To find the value of J(n), we need to define the following.

—a(n) is the length of the arc of radius hlr(n) that lies within a blade, drawn
taking bl as center, as shown in Figure 5.

—α(n) : angle subtended by a(n) at bl , see Figure 5.

Now from Figure 3, we have, J(n) =
⌈

π
2α(n)

⌉

. We also have from Figure 5,

hlr(n)α(n) = a(n) ≥ u(n) =
√

1− p2r(n). Hence, α(n) ≥
√

1−p2

hl
. So, J(n) ≤

⌈

πhl

2
√

1−p2

⌉

.

Now we compute,

P
n
(

∩J(n)
j=1 ∩hl−1

i=1 Al
i,j

)

= 1− P
n
(

∪J(n)
j=1 ∪hl−1

i=1 Al
i,j

c
)

≥ 1−
J(n)
∑

j=1

hl−1
∑

i=1

P
n
(

Al
i,j

c
)

≥ 1−
⌈

πhl

2
√

1− p2

⌉

(hl − 1)(1− u(n)t(n))n

≥ 1−
⌈

πhl

2
√

1− p2

⌉

(hl − 1)e−nu(n)t(n)

= 1−
⌈

πhl

2
√

1− p2

⌉

(hl − 1)e−nq
√

1−p2r2(n)

n→∞−→ 1 (2)

The first inequality comes from the union bound, the second inequality, from the
upper bound on J(n). The third inequality uses the result 1− x ≤ e−x.
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Let us define, Ehl
(n) = {v : (1−ǫ)(hl−1)r(n) ≤ Dl(v, hl) ≤ Dl(v, hl) ≤ hlr(n)}.

So, we have, for the given ǫ > 0, and using Equations 1 and 2,

1 ≥ P
n(Ehl

(n))

≥ P
n
(

∩J(n)
j=1 ∩hl−1

i=1 Al
i,j

)

≥ 1− (hl − 1)

⌈

πhl

2
√

1− p2

⌉

e−nq
√

1−p2c2 lnn
n (3)

which implies,

0 ≤ 1− P
n(Ehl

(n)) ≤ (hl − 1)

⌈

πhl

2
√

1− p2

⌉

e−q
√

1−p2c2 lnn (4)

And as n → ∞,

1− P
n(Ehl

(n))

= O
(

e−q
√

1−p2c2 lnn
)

= O
(

1

nq
√

1−p2c2

)

(5)

This result is true for any p and q. But we can choose these constants so that
the convergence → 0 of the bound in Equation 5 is the most rapid, i.e., p and q are
chosen so as to maximize q

√

1− p2, thus making the upper bound to reduce at the
fastest rate. For the given ǫ > 0, p − q = 1 − ǫ ⇒ q = p − (1 − ǫ). We can show

that, p = argmaxp(p− (1− ǫ))
√

1− p2 =
1−ǫ+

√
(1−ǫ)2+8

4 , q =
−3(1−ǫ)+

√
(1−ǫ)2+8

4 .

Then writing, g(ǫ) = q(ǫ)
√

1− p2(ǫ), we obtain the following theorem,

Theorem 1. For a given 1 > ǫ > 0, and r(n) = c
√

lnn
n

, c > 1√
π
, Pn(Ehl

(n)) =

1−O
(

1
ng(ǫ)c2

)

,

where g(ǫ) = q(ǫ)
√

1− p2(ǫ),

p(ǫ) =
1−ǫ+

√
(1−ǫ)2+8

4 , q(ǫ) =
−3(1−ǫ)+

√
(1−ǫ)2+8

4 .

Remark 1: Convergence rate in the above result: A plot of g(ǫ) vs ǫ is given in
Figure 6. We see that g(ǫ) ↓ 0 as ǫ ↓ 0. Hence Theorem 1 says that limn→∞ P

n(Ehl
(n)) =

1, for any 1 > ǫ > 0, so we can expect a node having a HD of hl from anchor bl
to be within a distance [(1 − ǫ)(hl − 1)r(n), hlr(n)] from bl in a dense network.
We notice that the width of this band of uncertainty is roughly r(n), which is the
unit of distance measurement on G(v, r(n)). The theorem also says that the rate
of convergence is governed by the ǫ chosen, i.e., the smaller the ǫ, the slower the
rate of convergence.
Remark 2: An alternate construction: The rate of convergence of Pn(Ehl

(n))
to unity can be made more rapid through an improved construction that replaces
the strips used in the discussion here with lens-shaped areas derived from the in-
tersection of circles as shown in Appendix A. While the appendix deals with lower
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g(ǫ)

g(ǫ) vs ǫ plot

ǫ

Fig. 6. g(ǫ) vs ǫ plot.

bounds to the ED of a single node based on its known HD, the derivation can be
extended to provide a global lower bound to the ED between all pairs of nodes in
a deployment that are separated by the same HD.

Remark 3: Non-homogeneous node deployment : If the node distribution was
non-homogeneous with positive density over all points inA, the term (1−u(n)t(n))n

in Equation 2 could have been replaced by (1− fminu(n)t(n))
n, where fmin is the

minimum density over A and as fmin > 0, the same convergence result would be
true even for non-homogeneous node placement.

Remark 4: Random node failures : After the network is set up, nodes may fail.
Let γ denote the probability that a node is ‘good’, i.e., does not fail. From the
derivation in Equation 2 it can be seen that the negative exponent in the right
hand side of Equation 4 just gets multiplied by γ, thus not affecting the ensuing
theorem. The intuition is simple, in the limit as n → ∞ there are enough nodes in
the ‘strips’, so that in spite of failures, the probability of finding at least one path
to the anchor still approaches 1.

4.1.2 High probability ED bound given HD from L anchors bl, l = 1, · · · , L:
Uniform i.i.d. deployment. For L anchors, the question arises whether the hop
distances from the L anchors are feasible or not, e.g., if we denote a disk with
center a and radius r, by C(a, r) = {z ∈ A : ||z − a|| ≤ r}, then a necessary
condition for a feasible h vector (h = [h1, · · · , hl, · · · , hL] ∈ N

L is the hop distance
vector) is that ∩L

l=1C(bl, hlr(n)) 6= φ (there will be other feasibility conditions also).
We denote the set of all feasible h vectors by H(n) (note that the feasibility of an h

vector depends on n). We see that ∀h ∈ H(n), ∩L
l=1Ehl

(n) ⊇ ∩L
l=1 ∩

J(n)
j=1 ∩hl−1

i=1 Al
i,j ,
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Fig. 7. Graphical illustration of how Theorem 2 yields a location region for a node that is at a
HD hl from anchor bl, 1 ≤ l ≤ 4.

which implies that (analyzing similar to Equation 2),

P
n
(

∩L
l=1Ehl

(n)
)

≥ P
n
(

∩L
l=1 ∩J(n)

j=1 ∩hl−1
i=1 Al

i,j

)

≥ 1−
L
∑

l=1

(hl − 1)

⌈

πhl

2
√

1− p2

⌉

n−q
√

1−p2c2

⇒ P
n
(

∩L
l=1Ehl

(n)
)

= 1−O
(

n−q
√

1−p2c2
)

Hence we get the following theorem,

Theorem 2. For a given 1 > ǫ > 0, and r(n) = c
√

lnn
n

, c > 1√
π
, ∀h =

[h1, · · · , hl, · · · , hL] ∈ H(n),

P
n
(

∩L
l=1Ehl

(n)
)

= 1−O
(

1

ng(ǫ)c2

)

where g(ǫ) = q(ǫ)
√

1− p2(ǫ),

p(ǫ) =
1−ǫ+

√
(1−ǫ)2+8

4 , q(ǫ) =
−3(1−ǫ)+

√
(1−ǫ)2+8

4

This theorem tells us that for a feasible h, the node lies within the intersection
of the annuli of inner and outer radii (1 − ǫ)(hl − 1)r(n) and hlr(n) respectively,
centered at anchors bl, 1 ≤ l ≤ L, with a probability that scales as shown in the
above theorem. A graphical illustration of this is shown in Figure 7 for L = 4. The
concentric circles denote the ED bounds given the HD from a certain anchor, and
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the shaded intersection of these annuli denote the location of the node with high
probability. This result motivates us to develop localization schemes that use the
hop-distance information from a few fixed anchor nodes which has been described
in the Section 6.

4.2 Random Geometric Graphs with Fixed Radius

The scaling of r(n) with n as shown in the previous section ensures asymptotic
connectivity and increases the precision in localization as n → ∞. But in a wireless
sensor network the radius r of the RGG on which hop-distances are measured often
corresponds to the radio range for a given transmit power, and hence does not
decrease with n. So, it is meaningful to use a fixed radius r for the RGG and
it is denoted by G(v, r). But for connectivity, we need to use number of nodes
sufficient to make the network connected (i.e., the radius should scale with n like

r(n) = c
√

lnn
n

, c > 1√
π
, a constant; see [Gupta and Kumar 1998] ), i.e., need

at least n0 = inf{n : r(n) ≤ r} nodes. Using a constant value for radius r, and
redefining Ehl

= {v : (1 − ǫ)(hl − 1)r ≤ Dl(v, hl) ≤ Dl(v, hl) ≤ hlr}, where the
hop distance is measured on the RGG G(v, r), we can show (along similar lines as
for Equation 2),

1 ≥ P
n(Ehl

)

≥ P
n
(

∩J
j=1 ∩hl−1

i=1 Al
i,j

)

≥ 1− (hl − 1)

⌈

πhl

2
√

1− p2

⌉

e−nq
√

1−p2r2 (6)

where J ≤
⌈

πhl

2
√

1−p2

⌉

. Which implies, as n → ∞,

1− P
n(Ehl

)

= O
(

e−nq
√

1−p2r2
)

(7)

Hence, limn→∞ P
n(Ehl

) = 1. So, for L anchors, we will get ∀h ∈ H (note that the
set of feasible h vectors, H, does not scale with n in this case),

1− P
n(∩L

l=1Ehl
)

= O
(

e−nq
√

1−p2r2
)

(8)

Hence we get the following theorem.

Theorem 3. For a given 1 > ǫ > 0, and r fixed, ∀n ≥ n0 = inf{n : r(n) ≤ r},
∀h = [h1, · · · , hl, · · · , hL] ∈ H,

P
n
(

∩L
l=1Ehl

)

= 1−O
(

e−ng(ǫ)r2
)

where g(ǫ) = q(ǫ)
√

1− p2(ǫ),

p(ǫ) =
1−ǫ+

√
(1−ǫ)2+8

4 , q(ǫ) =
−3(1−ǫ)+

√
(1−ǫ)2+8

4
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Remark: We see that,

for all h ∈ H, lim
n→∞

P
n
(

∩L
l=1Ehl

)

= 1

but with an exponential convergence rate compared to the power law scaling in the
previous section. But it also says that the precision of localization remains fixed at
r rather than increasing with n like in the previous section.

4.3 RGGs on Randomized Lattice Node Deployment

In the previous sections we analyzed the performance of ED-HD proportionality
approximation for uniform i.i.d. deployment. In this section we will prove a similar
result for the randomized lattice deployment. In randomized lattice node deploy-
ment, the unit area is split into n cells each of area 1

n
, and in each cell exactly one

node is deployed, uniformly over the cell area. The locations of the nodes in two

different cells are independent of each other. We denote by P
(n)
RL(.) the probability

measure on An so obtained (this is different from the uniform i.i.d. measure Pn(.)).
We will show that, for this deployment also the above theorems hold. Here we
consider the case in which the radius r(n) of the RGG scales with n as defined
before. For fixed r, the theorem is valid too, which can be proved in a similar way
as done in Section 4.2.
We have the following notation,

—Si,j
k : area belonging to the ith strip of jth blade (refer to Figures 3 and 4) of area

u(n)t(n) that falls in the kth cell of the randomized lattice structure.

Thus,
∑n

k=1 S
i,j
k = u(n)t(n), ∀1 ≤ i ≤ hl − 1, 1 ≤ j ≤ J(n). Since a single node

is uniformly distributed over each cell whose area is 1
n
,

P
n
RL

(

Al
i,j

c
)

=

n
∏

k=1

(

1− Si,j
k
1
n

)

=

n
∏

k=1

(

1− nSi,j
k

)

We see that,

n
∑

k=1

(

1− nSi,j
k

)

= n(1− u(n)t(n))
∀1 ≤ i ≤ hl − 1
∀1 ≤ j ≤ J(n)

Now, we know that the arithmetic mean is no smaller than the geometric mean. It
follows that,

P
n
RL

(

Al
i,j

c
)

=
n
∏

k=1

(

1− nSi,j
k

)

≤
(

1

n

n
∑

k=1

(1− nSi,j
k )

)n

= (1− u(n)t(n))n (9)

Hence we get (analyzing similar to Equation 2, 3, 4 and 5) the following theorem,

Theorem 4. For a given 1 > ǫ > 0, and r(n) = c
√

lnn
n

, c > 1√
π
, Pn

RL(Ehl
(n)) =

1−O
(

1
ng(ǫ)c2

)

,

where g(ǫ) = q(ǫ)
√

1− p2(ǫ),

p(ǫ) =
1−ǫ+

√
(1−ǫ)2+8

4 , q(ǫ) =
−3(1−ǫ)+

√
(1−ǫ)2+8

4 .
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Hence, limn→∞ P
n
RL(Ehl

(n)) = 1. Following a similar analysis as in Section 4.1.2
for L anchors, we can state the following theorem for randomized lattice node
deployment.

Theorem 5. For a given 1 > ǫ > 0, and r(n) = c
√

lnn
n

, c > 1√
π
, ∀h =

[h1, · · · , hl, · · · , hL] ∈ H(n),

P
n
RL

(

∩L
l=1Ehl

(n)
)

= 1−O
(

1

ng(ǫ)c2

)

where g(ǫ) = q(ǫ)
√

1− p2(ǫ),

p(ǫ) =
1−ǫ+

√
(1−ǫ)2+8

4 , q(ǫ) =
−3(1−ǫ)+

√
(1−ǫ)2+8

4

4.4 RGGs with Poisson Distributed Number of Nodes, Uniform i.i.d. Deployment

Here we consider another kind of deployment, where we pick the number of nodes
with the distribution Poisson(n) and deploy these nodes uniformly over the area
A. The number of nodes falling in A is a random variable with mean n, and since
we are throwing the picked nodes uniformly over A, the nodes falling in disjoint
areas are independent and Poisson distributed with rate proportional to the area
considered. Hence, for disjoint strips with area u(n)t(n) each and the number
of node selection being Poisson(n), the number of nodes falling in each strip is
Poisson(nu(n)t(n)), independent and identically distributed. Let the probability
law associated with this kind of deployment be denoted by P

n
Po(.). Let us focus our

attention to a certain blade Bl
j as shown in Figure 4 pivoted at the anchor location

bl. We also denote the maximum and minimum Euclidean distance traveled by

a hl hop path within this blade by D
Bl

j

l (v, hl) and D
Bl

j

l (v, hl) respectively. Now,
ensuring at least one node in each of the hl − 1 strips of Bl

j will ensure the event

E
Bl

j

hl
(n) = {v : (1− ǫ)(hl − 1)r(n) ≤ D

Bl
j

l (v, hl) ≤ D
Bl

j

l (v, hl) ≤ hlr(n)} also occurs.
So, we have for the given ǫ > 0,

1 ≥ P
n
Po(E

Bl
j

hl
(n))

≥ P
n
Po

(

∩hl−1
i=1 Al

i,j

)

=
(

1− e−nu(n)t(n)
)hl−1

=
(

1− n−c2q
√

1−p2
)hl−1

(10)

The second inequality comes because {v ∈ ∩hl−1
i=1 Al

i,j} ⊆ {v ∈ E
Bl

j

hl
(n)} and the

first equality comes because of the independence of the number of nodes due to
Poisson deployment and disjoint strips. Since in this deployment we are not using
the union bound, the expression for probability is exact. Hence the bound on the

probability of the event E
Bl

j

hl
(n) is tighter, yet the rate of convergence follows the

power law (e−nu(n)t(n) = n−q
√

1−p2c2).
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1000 nodes, prob lower bound = 0.37, ǫ = 0.4

b1

Predicted region for h = 5, on G(V, r(n)). Uniform i.i.d.Predicted region for h = 5, on G(V, r(n)), Uniform i.i.d.

b1

1000 nodes, prob lower bound = 0.37, ǫ = 0.4

Fig. 8. 1000 nodes, Pn(E1(n)) ≥ 0.37.

Predicted region for h = 5, on G(V, r(n)), Uniform i.i.d.

5000 nodes, prob lower bound = 0.79, ǫ = 0.4

b1

Fig. 9. 5000 nodes, Pn(E1(n)) ≥ 0.79.
Variation with the number of nodes: locations of nodes that are 5 hops away from an anchor

(b1) at the origin (marked as X). The dots denote the true node locations for such a deployment
with the hop distance as shown. The thin dashed lines show the ED bounds given by

Theorem 1, the thick solid line shows ED (h1 − 1)r(n) from b1; ǫ = 0.4, r(n) = 4
√

π

√

lnn
n

.

4.5 Simulation Results

In this section, we illustrate Theorem 1 through some simulation examples. We
deploy n nodes in the uniform i.i.d. fashion on the unit square A, and form the

geometric graph G(v, r(n)), where r(n) = 4√
π

√

lnn
n

. We also have 4 anchors at the

4 corners of A.
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n r(n) EDLB D1 D1 EDUB PLB EP

1000 0.1876 0.4494 0.6934 0.9053 0.9362 0.37 1

2000 0.1391 0.3336 0.5196 0.6678 0.6950 0.61 1

3000 0.1166 0.2796 0.4313 0.5590 0.5826 0.70 1

4000 0.1028 0.2465 0.3761 0.4929 0.5136 0.75 1

5000 0.0931 0.2235 0.3428 0.4559 0.4655 0.79 1

6000 0.0859 0.2062 0.3123 0.4191 0.4295 0.81 1

Table I. Euclidean Distance Lower Bound (EDLB) = (1− ǫ)(h1 − 1)r(n) and Euclidean Distance
Upper Bound (EDUB) = h1r(n) are found from Theorem 1. D1 and D1 are the maximum and
minimum EDs from anchor 1 given the hop-distance h1 = 5. The theoretical Probability Lower

Bound (PLB) = 1 − (h1 − 1)

⌈

πh1

2
√

1−p2(ǫ)

⌉

e−ng(ǫ)r2(n), and the Empirical Probability (EP) is

found from this experiment. r(n) = 4
√

π

√

lnn
n

, ǫ = 0.4.

Illustration of Theorem 1 with increasing n for a fixed ǫ and HD:

We fix ǫ = 0.4 and hop-distance h1 = 5 from anchor b1 located at the bottom-left
corner of the unit square A. The results are summarized in Table I and illustrate
how the theoretical bounds given in Theorem 1 become tighter as we increase the
number of nodes n, keeping the hop-distance h1 and ǫ fixed.

Figures 8 and 9 show the theoretical bounds given by Theorem 1, and only those
nodes are shown that have a hop-distance h1 = 5 from anchor b1, for 1000 and
5000 nodes, respectively. We notice that, for this range of values of n, while the
maximum Euclidean distance, D1, is quite close to the upper bound (obtained from
the triangle inequality), the lower bound is loose when compared to the minimum
Euclidean distance, D1. Indeed, all the node locations lie well within the bounds,
and, in fact, (h − 1)r(n) (the thick solid quarter circle in the figures) could serve
as a good approximation to D1, but this bound is certainly not met with a high
probability. The theoretical lower bound on the probability of the upper and lower
bounds being respected is seen to be increasing to 1 as the number of nodes, n, is
increased.
Remark: The looseness of the lower bound on the Euclidean distance is because

of the way the bound is obtained. First, the condition employed in the construction
of the lower bound in Figure 4 is only a sufficient one. Moreover, we have used the
union bound to get the bound on probability, which further weakens the bound.

Illustration of Theorem 1 with decreasing HD for a fixed n and a fixed

lower bound on probability:

We have fixed the number of nodes n = 5000 and also fixed the lower bound on
probability that the node lies within the bound of [(1− ǫ)(h1 − 1)r(n), h1r(n)] (as
given by Theorem 1) at 0.80. Figures 10, 11 and 12 show that as we decrease the
hop-distance h1, the bound on the ED becomes tighter, which implies that if we
keep the lower bound fixed, the ǫ that achieves that lower bound will be smaller
for smaller hop-distances, as predicted by Theorem 1.

Illustration of convergence in probability for the geometric graph with

fixed radius:

We fix the radius of the graph G(v, r), r = 0.1 and take h1 = 5, ǫ = 0.36. The

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.



Theory and Algorithms for Hop-Count-Based Localization · 127

5000 nodes, prob lower bound = 0.80, ǫ = 0.48

Predicted region for h = 10, on G(V, r(n)), Uniform i.i.d.

b1

Fig. 10. h1 = 10, ǫ = 0.48.

b1

5000 nodes, prob lower bound = 0.80, ǫ = 0.46

Predicted region for h = 8, on G(V, r(n)), Uniform i.i.d.

Fig. 11. h1 = 8, ǫ = 0.46.

Predicted region for h = 5, on G(V, r(n)), Uniform i.i.d.

5000 nodes, prob lower bound = 0.80, ǫ = 0.42

b1

Fig. 12. h1 = 5, ǫ = 0.42.

Fig. 13. Variation with hop distance: 5000 nodes were deployed in a uniform i.i.d.
fashion. The dots denote the true node locations for such a deployment with the
hop distance (from the anchor b1 marked as X) as shown. The thin dashed lines
show the ED bounds given by Theorem 1, the thick solid line shows ED (h1−1)r(n)

from b1; P
n(E1(n)) ≥ 0.80. r(n) = 4√

π

√

lnn
n

.

simulation results are summarized in Table II, which shows that for smaller n, the
lower bound of probability (as given by Equation 6) is weak, but the convergence
rate, due to its exponential nature, is very rapid with increase in n.
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n EDLB D1 D1 EDUB PLB EP

1000 0.2560 0.3483 0.4574 0.5000 0.0000 1

2000 0.2560 0.3479 0.4677 0.5000 0.0000 1

3000 0.2560 0.3775 0.4835 0.5000 0.0000 1

4000 0.2560 0.3741 0.4843 0.5000 0.2906 1

5000 0.2560 0.3831 0.4897 0.5000 0.7733 1

6000 0.2560 0.3705 0.4826 0.5000 0.9275 1

Table II. Radius r = 0.1, h1 = 5, ǫ = 0.36. The theoretical PLB = 1 − (h1 −

1)

⌈

πh1

2
√

1−p2(ǫ)

⌉

e−ng(ǫ)r2 . Abbreviations are as defined in Table I.

5. DISTRIBUTION OF PAIRWISE ED GIVEN THE HD

In Section 4 we provided a characterization of the support of the joint distribution of
the locations of all nodes that are at a given HD from an anchor. In this section we
turn our attention to a (more refined) characterization of the marginal distribution
of the ED of a node from an anchor, when we are given the HD of the node from
the anchor.

5.1 Results in the literature

There are several results in the literature that deal with the probability density
functions relating the ED and the HD under various settings and assumptions. A
brief overview of the different results is discussed in this section.

[Ta et al. 2007b], [Ta et al. 2007a], [Vural and Ekici 2005] address the problem of
obtaining the probability density function (pdf) of the pairwise ED given HD. Ta
et al. [Ta et al. 2007b], [Ta et al. 2007a], obtain a recursive expression for the pdf of
the pairwise ED given the HD under certain independence assumptions. The pdf
they derive becomes equal to the exact distribution for hop counts 1 and 2. For
higher hop-counts, simulation results match well with the analytical results and
they also discuss an empirical correction that further improves the distribution.
However, the expressions that they derive are recursive in nature and hence would
be difficult to compute as the hop count increases.
Vural et al. [Vural and Ekici 2005] obtain the distribution of the maximum

distance traveled in a given number of hops. One dimensional sensor networks are
considered and the approximate mean, variance etc are calculated. Gaussianity
of the distribution is commented upon but the central limit theorem cannot be
applied as successive hops are dependent in their construction. They also present a
discussion on obtaining the kurtosis of the distribution relating it to the Gaussian
distribution. Results relating the distribution of the maximum distance traveled in
a given number of hops and the distribution of ED given HD are obtained. Using
these results the density function of the HD given ED is derived. The recursive
equation is difficult to compute for hop-counts more than 5. A direction propagation
model is proposed for 2D networks, but no analysis is provided.
Dulman et al. [Dulman et al. 2006] also consider the problem of obtaining the

distribution of the pairwise HD given ED for the cases of 1D and 2D networks. For
the 1D case, exact recursive expressions are obtained for the mean of the distribu-
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tion. For 2D case, an approximate algorithm is discussed and a recursive formula
for the distribution is obtained. Since the distribution is difficult to compute, two
approaches for computing the distribution are discussed and simulation results are
presented, comparing the simulated and the approximated distribution. A local-
ization algorithm using Least Squares Method, which makes use of the variances of
the distribution is discussed.

[Miller 2001] and [Bettstetter and Eberspaecher 2003] consider the problems of
obtaining the absolute probability density functions of the ED and the HD. Miller
[Miller 2001] obtains the absolute pdf of the link distance. Link distance is the
distance between any two random nodes whose locations are i.i.d in a rectangular
field. Results are obtained for the uniform case, where the sensor location co-
ordinates are uniform i.i.d and extended to the Gaussian case where the sensor
location co-ordinates are Gaussian. Bettstetter et al. [Bettstetter and Eberspaecher
2003] consider the problem of obtaining the absolute pdf of the hop counts (P (H =
h)). The exact distribution is obtained for hop counts 1 and 2. An upper bound
is obtained for the cumulative density function (P (H ≤ h)), which is evaluated
asymptotically and compared with simulation results. Bounds on the expected HD
are also obtained.

[De et al. 2006], [Zorzi and Rao 2003] obtain bounds for HD given ED and
average HD given ED. These are for the forwarding algorithm that they use. De
et al. [De et al. 2006] propose a greedy algorithm where one attempts to minimize
the remaining distance to the destination in each hop. Lower and upper bounds
on the HD as relative to the ED are obtained. Zorzi et al. [Zorzi and Rao 2003]
propose a geographic packet forwarding algorithm (GeRaF) using hop-counts, and
the average number of hops to reach the destination as a function of the distance is
derived. A random topology where nodes could be following a sleep-wake cycle is
considered. The node closest to the destination is chosen as the relay node in each
hop. Bounds on the expected number of hops are derived using Wald’s Lemma and
the lower bound is shown to be tight through simulations. A practical protocol for
the proposed GeRaF scheme is also discussed.

Ding et al [Ding et al. 2008] view the problem of localization as a standard ED
matrix completion problem. Given the upper bounds, lower bounds and noisy
versions of the different distances between the sensors and anchors, and amongst
sensors, and the exact distances amongst the anchors nodes, one can formulate a
weighted least squares problem with suitably defined weights. This problem has
been studied in literature and the authors apply semi-definite programming to solve
the problem.

Kuo et al [Kuo and Liao 2007] considers the problem of obtaining the HD dis-
tribution for a mobile node network. Note that since mobiles are roaming around
there is only a notion of initial distance between the sender and the receiver. A
flooding algorithm is considered and its analysis is provided.

In the present paper, we consider the problem of obtaining the distribution of ED
given the HD. Our approach differs from prior approaches in the literature in the
following respects. For the distribution of the ED given HD, the greedy algorithm
that we propose is similar to the direction-propagation model discussed in [Vural
and Ekici 2005]; the authors do not however, carry out the analysis for this model
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and leave it as a future research topic. The region in which we choose our next hop
sensor node is different from that proposed by Vural et al. By splitting the analysis
along x and y co-ordinates we are able to carry forward the analysis. The greedy
algorithm proposed in [De et al. 2006], aims to minimize the remaining distance
at each stage, whereas we maximize the distance progressed in each step. [De
et al. 2006] obtain bounds on the HD and not the distribution per se whereas we
are interested in obtaining an approximation to the distribution. The assumptions
made in our derivation enable us to use the central limit theorem to provide an
explanation as to why the observed distribution is Gaussian-like. While, as a result
of the assumptions, there is some deviation in the derived distribution from the
true distribution, the derivation presented here does allow one to quickly obtain
the distribution without need of recursive calculations. This could be useful in
practice, when the distributions are used in practice for self-localization.
Following this, we propose two algorithms for localization based on our theo-

retical results, and discuss how belief propagation (BP) could be used to obtain
improvements. [Ihler et al. 2005] discuss the use of BP for self-localization in a gen-
eral setting. However to the best of our knowledge, we have not seen any published
work that discusses the use of BP for hop-count-based localization algorithms.

5.2 The setting

Our interest here is in determining the pdf of the Euclidean distance Dl,i(v) of
the ith node from the lth anchor node, given that the hop-count Hl,i(v) = hl.
Given the intractable nature of this problem, we will determine instead, the pdf of
Dl,i(v) given the hop-count as determined by a greedy algorithm presented below.
Thus we regard the hop-count as determined by the greedy algorithm to be a good
approximation to the true hop count and we provide below, a heuristic argument
as well as simulations to back up this claim.
For the purposes of this analysis, we will assume the center of the unit area to

have coordinates (0, 0) and the presence of just a single anchor node located at
the center, thereby staying away from edge effects in the analysis. Without loss
of generality, we assume the node vi to be located at coordinates (d, 0). Since the
distribution is independent of the value of i we will drop subscripts and write D(v)
and H(v) in place of Dl,i(v), Hl,i(v) and h in place of hl. However, we shall retain
the subscript in vi.
Let C(u) denote a circle of radius r , r(n) centered at a point u in the unit area,

CH(u) denote the half circle centered at u along the positive x-axis (i.e., the right
half of a circle centered at u) and let S(u) denote the segment of the circle C(u)
cut out by a chord whose midpoint has coordinates given by u+( r2 , 0). (see Fig. 14
below.). When a deployment v is such that the region S(u), for u in the unit area,
contains at least one node, we define the “furthest node” in the segment S(u) as
the node in S(u) having largest x-coordinate and we use the notation φ(S(u),v)
to denote the coordinates of this node 4. Starting with the anchor node located at
the origin, we next attempt to define a succession of nodes vij , j = 0, 1, · · · , h− 1

4Ties can be broken for instance, by selecting the node whose y-coordinate has smallest magnitude.
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u

CH(u)

u+

(

r

2
, 0

)

S(u)

Fig. 14. Circle and associated segment.

as follows:

vi0 = (0, 0)

vij = φ(S(vij−1
),v), j ≥ 1.

In terms of this notation, let us define the event GEh as simply the event that
the node vi ∈ CH(vih−1

), i.e.,

(d, 0) ∈ CH(vih−1
),

(see Fig. 15). When this event occurs, we will say that the hop-count as determined
by the greedy algorithm equals h. Note that this is well-defined since vi ∈ CH(vih−1

)
is possible only for one value of h, by nature of the greedy algorithm.

The reasoning behind our belief that the change in conditioning from the event
H(v) = h to event GEh will leave the density function ofD(v) essentially unchanged
is simply that it seems reasonable to assume that one will hit upon a path from
anchor node to node vi with least hop count if when proceeding node-by-node from
anchor node to node, at every stage, we select as the next node, the node that takes
us farthest along in the direction of the node vi. The reason for choosing segments
in which the chord defining the segment is at distance r

2 from the origin is to ensure
that any two distinct segments S(vik),S(vil) are disjoint. As n becomes large, with
high probability, there will be a node in S(vij ) at each stage.
We now proceed to compute the density function of the distanceD(v) conditioned

upon the event GEh. For this purpose, we will first evaluate the probability that
the hop count to reach the point (d, 0) using the greedy algorithm is h. We will
then use the Bayes rule to obtain the density function of D(v).
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Fig. 15. Evolution of the greedy algorithm.

5.3 Determining the Density Function of D(v)

Let N nodes with locations given by {v1, v2, · · · , vN} be deployed in a unit area
where N is Poisson with mean n, i.e., N ∼ Poi(n). Let (xi, yi) denote the x and y
coordinates of the ith node vi, i.e., vi = (xi, yi) (note that i is fixed here from our
assumption in the beginning of this derivation). Given a particular deployment v,
let the nodes vij be as defined above and let there be Nj nodes in segment S(vij ).
We shall neglect the probability that there are no nodes in a particular segment
which is very small for the large density of nodes that we consider. Set

S(vij ) = {(xij , yij ) + (Xj,k, Yj,k) | 1 ≤ k ≤ Nj},
φ(S(vij ),v) = (xij+1

, yij+1
) = (xij , yij ) + (Xj , Yj),

where

Xj = max{Xj,k | 1 ≤ k ≤ Nj}.

so that

xij+1
= xij +Xj ,

yij+1
= yij + Yj .

The area of the segment S(0) can be computed as the difference between the areas
of the corresponding sector and triangle and is hence given by

1

2
r2

2π

3
−

√
3r

2
× r

2
= r2

(

π

3
−

√
3

4

)

, As.

The probability that there is no node in a segment is given by (1 − As)
n. r

needs to be at least c
√

ln(n)
n

for a graph to be connected where c is a constant. For

large n this probability can be shown to be O( 1
n
) which is small, thus justifying our

assumption of at least one node in the segment.
It can be easily shown that, the density function of any of the random variables
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Xj,k is given by

fXj,k
(x) =

{

2
As

√
r2 − x2 r

2 ≤ x ≤ r

0 else.

The distribution of Xj is now obtained as follows. From our assumptions we
have that all segments S(vij ), 1 ≤ j ≤ h− 1 are nonempty. We thus have

FXj,k
(x) =

∫ x

r
2

2
√
r2 − t2

As

dt.

Since

∫ a2

a1

√

r2 − t2dt =
r2

2

[

sin−1(
a2
r
) +

a2
r

√

1− a22
r2

− sin−1(
a1
r
)− a1

r

√

1− a21
r2

]

,

we get

FXj,k
(x) =

1

(π3 )−
√
3
4

[

sin−1(
x

r
) +

x

r

√

1− x2

r2
− π

6
−

√
3

4

]

.

Consider the joint pdf FXj ,Nj
(x, l) = P (Xj ≤ x,Nj = l). We have

FXj ,Nj
(x, l) = FXj |Nj

(x|l)P (Nj = l).

We have

FXj |Nj
(x|l) = P (max(Xj,1....Xj,Nj

) ≤ x|Nj = l),

= P (max(Xj,1....Xj,l) ≤ x),

= (FXj ,k(x))
l.

FXj
(x) = ENj

FXj ,Nj
(x, l),

= E
[

(FXj,k
(x))Nj

]

=

∞
∑

l=1

(nAs)
lexp(−nAs)

l!
(FXj,k

(x))l.

Upon differentiating, we get

fXj
(x) =

∞
∑

l=1

(nAs)
lexp(−nAs)

(l − 1)!

[

1

(π3 )−
√
3
4

]l

[

sin−1(
x

r
) +

x

r

√

1− x2

r2
− π

6
−

√
3

4

]l−1
2
√
r2 − x2

r2
, r

2 ≤ x ≤ r
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and fXj
(x) = 0 else. By marginalizing, we find that

fYj
(y) =

∫

fXj ,Yj
(x, y)dx,

=

∫

fXj
(x)fYj |Xj

(y|x)dx,

=

∫

√
r2−y2

−
√

r2−y2

fXj
(x)

1

2
√
r2 − x2

dx.

Since the deployment is Poisson and the nodes are chosen from disjoint areas, it
follows that the random-variable pairs, (X0, Y0), · · · , (Xh−2, Yh−2) are i.i.d.
Let µx, µy and σ2

x, σ
2
y be the means and variances ofXj and Yj respectively. Then,

from the central limit theorem we get that the sum xih−1
= X ∼ N(hµx, hσ

2
x)

and yih−1
= Y ∼ N(hµy, hσ

2
y). Note that the only dependence relation amongst

the random variables in this collection of 2(h−1) random variables is that between
the two random variables constituting a pair (Xj , Yj). Let Xj = rj cos(αj) and
Yj = rj sin(αj). From symmetry about the x-axis, we have

E(Yj) = 0.

Thus we obtain

E(XY ) =
∑

i

∑

j

E(XiYj)

=
∑

j

E(XjYj)

=
∑

j

E

(

r2j
sin(2αj)

2

)

=
∑

j

∫

rj

r2jfRj
(rj)E

(

sin(2αj)

2
|Rj = rj

)

drj

= 0,

since

E

(

sin(2αj)

2
|Rj = rj

)

= 0.

It follows from this and the fact that E(Y ) = 0 that

E ([X − E(X)][Y − E(Y )]) = 0.

ThusX and Y are uncorrelated. Since they are Gaussian, they are also independent.
The probability that the node vi located at location (d, 0) ∈ CH(vih−1

) is reachable
in h hops is obtained by integrating over all the points (x, y) such that (d, 0) ∈
CH((x, y)). Thus we have

P (H(v) = h|d,GEh) =

∫

x

∫

y

fX,Y (x, y)I{(d,0)∈CH((x,y))}dxdy
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Using Bayes rule, the density function of the distance is obtained as follows

fD(v)(d|GEh) =
P (H(v) = h|d,GEh)fD(d)

P (H(v) = h|GEh)
.

Assuming a circularly symmetric unit area, since the points are uniformly dis-
tributed we get

fD(d) = 2πd

P (H(v) = h|GEh) =

∫

d

P (H(v) = h|d,GEh)fD(d)dd.

The simulation results comparing the derived density function and the simulated
density functions are shown in Figure 16. The simulated density function is obtained
by averaging over a large number of Poisson deployments with mean node density
of n = 8000. It can be seen that the density functions match pretty well at
when the number of hops is large. However, when the number of hops is small,
the density functions do not match quite that well. This is because the Gaussian
approximation following from an application of the central limit theorem does not
hold quite as well in the case of lower hop counts. This also means that we cannot
then ignore the correlation between the variables Xj and Yj random variables for
small hop counts. However, it is theoretically hard to characterize the discrepancy
in the distributions for lower hop counts, since the correlation is hard to characterize
analytically. In a large network with sparsely spread out anchor nodes, one expects
that the hop counts would be large enough for the approximation to be valid.

5.4 Distribution of the location given the hop-count

In the previous section we obtained the distribution of the distance, Dl,i(v) = d, of
the ith node, with co-ordinates vi = (xi, yi) given that the hop-count Hl,i(v) = h
from the lth anchor node with co-ordinates bl = (ul, vl) as determined by the
greedy algorithm, or else, equivalently, the distribution of the distance, Dl,i(v) = d
conditioned on the event GEh. It is clear that the knowledge of the hop-count does
not provide any information on the direction of the ith node. Thus based on the
fact that the node location is uniform i.i.d, we have the following:

xi = ul +Dl,i(v) cos(α)

yi = vl +Dl,i(v) sin(α).

where α ∼ U(0, φ) and φ depends on the location of the anchor node. If the anchor
node is at the center of the field then φ = 2π. If the anchor node is at the corner
of a square field then, φ = π

2 . We have:

fDl,i(v),α(d, α | GEh) = fDl,i(v)(d | GEh)fα(α).

Using transformation of variables we get the following:

fVi|Hl,i(v)(xi, yi | GEh) = fDl,i(v),α

(

‖ vi − bl ‖, tan−1

(

yi − vl
xi − ul

)

| GEh

)

1

|J | .

6. ALGORITHMS FOR SELF-LOCALIZATION

Based on the theory discussed in the previous sections, we propose two algorithms
for self-localization, namely, Hop Count derived ED Bounds based Localization
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Fig. 16. Simulation results comparing the derived and simulated density functions. The simula-

tions are for Poisson deployment with mean node density of 8000 nodes per unit area.

(HCBL) and Hop Count derived ED Distribution based Localization (HCDL). Sim-
ulation results show that these algorithms outperform some of the well known algo-
rithms present in literature. We then use Belief Propagation (BP) to improve the
performance of these algorithms. Based on this we get two algorithms HCBL-BP
and HCDL-BP.
We emphasize that the algorithms mentioned here take as input the geomet-

ric graph with radius r(n). Getting such a graph from the radio graph, i.e., the
graph formed by neighbor relation induced by inter-node radio communication, is
a different question altogether and is not addressed here. In [Acharya et al. 2010],
a technique is provided for obtaining an approximation to the critical geometric
graph, whose radius r(n) is the smallest such that the resulting graph is connected.
In [Narayanaswamy et al. 2002], a distributed protocol named COMPOW has been
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introduced, which constructs a critical geometric graph with nodes operating at a
common power level. On obtaining such a graph, we find hop distances between the
nodes and the anchors using the distributed Bellman-Ford algorithm; see [Kurose
and Ross 2010]. Once the algorithm converges, we get the hop-distances of the
nodes from the anchors and also the inter-anchor hop-distances.

Furthermore, for the following algorithms, we need an estimate of the r(n) at
the center (note that the nodes do not estimate this, since we have moved all the
computation to a central hub which knows the hop distances of all nodes from
the anchors). An estimate can be made by obtaining the hop distances between
the anchors, for which the locations are known and hence the Euclidean distances
between them. The known Euclidean distances along with hop distances between
the anchors, provides an estimate of the radius of the geometric graph.

6.1 Hop Count derived ED Bounds based Localization (HCBL)

The setting and notation are the same as in Section 2. Theorem 1 and Theorem
2, explore the relationship between the HD and the ED. From Theorem 2, a node
having HDs hl from the anchors bl, l = 1, · · · , L, lies with high probability in the
region of intersection of the bands [(1 − ǫ)(hl − 1)r(n), hlr(n)]; see Figure 7. This
is the basic idea behind HCBL. However, the simulation results in Figures 11 to 12
suggest a smaller ǫ than that suggested by theory. The following is the algorithm
that we propose.

The HCBL Algorithm:

STEP 1: (Initialization) Given the geometric graph G(v, r(n)), each node finds
the minimum hop-distances from the L anchors and sets up its own h = [h1, · · · , hL]
vector, where hl is the hop distance of the node from the lth anchor bl (This can
be carried out by the Bellman-Ford algorithm).
STEP 2: (Region of Intersection) For a given node, given its h vector as found

from STEP 1, set an ǫ, small enough, and find the region of intersection formed by
the annuli of radii {(1− ǫ)(hl − 1)r(n), hlr(n)} centered at the lth anchor location,
l = 1, · · · , L.
STEP 3: (Terminating Condition) Check if the region of intersection is non-

empty, otherwise increase the value of ǫ5. For a finite number of nodes n and a
small enough ǫ, it is possible that the annuli do not have a common region. A
graphical illustration is given in Fig. 7 for 4 anchors. The value of ǫ for which an
intersection is found, can be different for different nodes. Hence, this step can be
stated as follows.
IF there is an intersection, declare the centroid of the region of intersection as

the estimate of the node. GO TO STEP 4.
ELSE increase ǫ by an amount δ, 0 < δ < 1. GO TO STEP 2.
STEP 4: (Repetition) Repeat STEP 2 to STEP 3 for all n nodes.
STEP 5: STOP

5We could use the ǫ as proposed by our theory. However, since the bounds are not tight, the

performance of the algorithm would be poor.
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Time complexity of HCBL: Assuming that given a region of intersection, the
computation of the centroid takes constant time, the time complexity to find the
hop distances of n nodes from the L anchors is O(n2). Hence, STEP 1 completes
in O(n2) time. After getting the hop distances, we are increasing the ǫ in each
iteration and if there is an intersection in the annuli, we compute the centroid,
which is an O(1/δ) (δ is the step size of the increment of ǫ) computation. So, for
each node the time complexity of the STEPS 2 to 4 is O(1/δ). For n nodes, it is
O(n/δ). Hence, the time complexity of HCBL algorithm is O(n2)+O(n/δ). There
is a tradeoff for the choice of δ since a small δ will increase the accuracy of the
localization but the time complexity of HCBL will be higher whereas a larger value
will converge HCBL faster at the cost of reduced accuracy.
The performance of this algorithm is shown in Figure 21. The x-axis of the plot

is the localization error. The y-axis is the cumulative density function of the error.
The performance is compared with two other algorithms, Proximity Distance Map
(PDM) by [Lim and Hou 2005] and Hop Count Ratio based Localization (HCRL)
by [Yang et al. 2007]. Distance Vector hop (DV-hop) by [Niculescu and Nath
2003], is shown to be better than HCRL and hence we do not plot DV-hop in our
simulations. It can be seen that HCBL performs better than the other algorithms.

6.2 Hop Count derived ED Distribution based Localization (HCDL)

The setting and notation are the same as in Section 2. In the previous section, we
obtained an approximation to the density function of the node location given the
hop-count. For the case when there are L anchor r nodes, every node i, will have
a hop-tuple {Hl,i(v)}Ll=1. If one could obtain access to the density function of the
node location, one could then proceed to derive the Minimum Mean Square Er-
ror(MMSE) estimate of the node location and this is the basic principle behind the
Hop-Count-derived, ED-Distribution-based Localization (HCDL) technique. There
are two issues however. The first is that we do not have access to the true density
function of node location, but only to an approximate version of it. We handle
this by simply working with the approximate density function as if it were the true
density function. The second issue is that if there are L anchor nodes, and each
node is aware of its hop count with respect to each of the L anchor nodes, then
it would have L estimates of the density function of its node location, leading to
the question of how one would proceed to fuse these L pieces of information. We
answer this below.
Let fVi|{Hl,i(v)}L

l=1
(vi | {hl,i}Ll=1) denote the distribution of the ith node location

given its hop-count tuple. We then have the following:

fVi|{Hl,i(v)}L
l=1

(vi | {hl,i}Ll=1) =
f({hl,i}Ll=1 | vi)f(vi)

f({hl,i}Ll=1)
using Bayes rule

∝ f({hl,i)}Ll=1 | vi)
≈ ΠL

l=1f(hl,i | vi)
∝ ΠL

l=1fVi|Hl,i(v)(vi | hl,i).

The third approximation can be justified as follows. Suppose that the anchor
nodes are spaced sufficiently far apart (i.e., have large angular separation), given
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the location vi and the location of the anchor nodes, Hl,i(v) depends only on the
distribution of the nodes linking the anchor node6 l and location vi. Suppose that
the subsets of nodes linking the node vi to the L anchor nodes are pairwise disjoint,
then since the node locations are assumed to be i.i.d the above approximation is
justified. Note that the pair-wise disjoint assumption holds well when the anchor
nodes are well separated in terms of angular separation. For example the anchors
could be aligned along the periphery of the field maximally spaced apart. They
could also be placed inside the field, in a deterministic hexagonal pattern, etc.
However we do not quantify as to how far apart the anchors need to be placed for
this assumption to hold and is more of an approximate derivation. In practice for
a military setting, anchors are usually base stations that are placed at the corners
of the area that is accessible and sensors are thrown in the inaccessible areas (as in
our simulations) for which the algorithm seems to work well in simulations.

Given the hop count tuple {Hl,i(v)}Ll=1, we know the distribution of
fVi|{Hl,i(v)}L

l=1
(vi | {hl,i}Ll=1) and thus we know the marginals f(xi | {hl,i}Ll=1)

and f(yi | {hl,i}Ll=1). Hence the MMSE estimate of the location is given by

x̂i,MMSE = E(Xi|{Hl,i(v)}Ll=1).

ŷi,MMSE = E(Yi|{Hl,i(v)}Ll=1).

Thus the HCDL proceeds as follows. Each node initially gets the hop-count tuple
from the anchor nodes. Based on the probability distribution, the node calculates
its MMSE estimate. Simulation results show that this algorithm has the best
performance amongst all the better-known algorithms to be found in the literature.
The advantage of this approach is that if the distribution is a good approximation
of the true distribution, then this algorithm gives the best possible mean-square
performance with respect to any hop-count based approaches.

6.3 Simulation results

The simulation results for all the algorithms are shown in Fig. 17. The x-axis
is the localization error and the y-axis is the cumulative density function (cdf) of
the errors. The simulation setting is as follows. A set of nodes are uniformly de-
ployed over a unit area. The number of nodes is Poisson distributed with mean
n = 1000. The localization algorithms are run over the critical graph. The loca-
tion estimates of the nodes are obtained and the location errors are stored for the
different algorithms. The location errors are the standard mean square errors in
localization calculated as ||vi − v̂i||2 where vi is the location of the ith node and
v̂i is its estimate and ||.||2 is the standard L2 norm. The experiment is repeated
many times and the error cdf is obtained by averaging over the error cdf’s of the
individual deployments. Note that the localization errors are normalized, since the
node deployment is over a unit area. For these simulation results, the experiment
has been carried out four times. It can be seen that the error performance of both
the algorithms is better than PDM and HCRL. To the best of our knowledge we are
not aware of any theoretical work that characterizes the best possible achievable
error cdf or lower bounds on the error in localization for localization for hop-count

6Note that the anchor node locations are assumed to be known.
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based approaches. Usually the Cramer Rao Lower bound is used as a benchmark
to compare the performance of any algorithm. However this requires the knowl-
edge of the exact probability distribution of the hop-distances as a function of the
true distances which as we saw is hard to obtain. Hence we restrict ourselves to
comparing our results with existing algorithms in the literature.
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Fig. 17. Location error cdf for different approaches.

7. BELIEF PROPAGATION BASED ALGORITHMS

In a scenario in which every node vi knows its hop counts {Hl,i(v)}Ll=1, we have
shown how the node can use this set of hop counts to estimate its location. This
however raises the question: could a node use the hop counts of its neighbors
to improve the estimate of its own location ? We answer this question in the
affirmative in this section by showing how one can use belief propagation (BP) to
improve estimates of node location. We will abbreviate and write Hl,i in place of
Hl,i(v).
BP algorithms, also often referred to as message-passing algorithms, have been

extensively used in the literature to obtain significant performance improvements,
as can be seen from the impact of turbo and low-density parity-check codes upon the
literature in coding theory [Aji and McEliece 2002], [Kschischang et al. 2001]. In
a scenario where the available information is distributed, BP provides a framework
that permits efficient data fusion. Pearl’s [Pearl 1988] book is a classic reference
which deals with BP in detail. There has also been some interesting work on using
BP for self-localization in sensor networks [Ihler et al. 2005]. Here, the authors
discuss localization for range based localization techniques but one does not have
a parametric model for the observations. There has been some work in trying to
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understand BP in loopy networks [Crick and Pfeffer 2003], [Yedidia et al. 2003],
[Yedidia et al. 2001]. In the present work, we structure the computation in such a
way that the resultant graph is acyclic.

7.1 BP for hop-count based localization

Our aim in this subsection, is to use belief propagation to improve localization
accuracy of a node in the network by incorporating knowledge of certain select hop
counts in the network. We make two assumptions with heuristic justification, that
make the problem tractable and which lead to an acyclic graphical model to which
belief propagation can then be applied. Simulations, presented in the subsection
following, show that this approach can significantly increase localization accuracy.

Let va be a node7 whose hop-distance set to the L anchors, is given by {Hl,a}Ll=1.
This means that with respect to a fixed anchor node bl, there are (Hl,a − 1) nodes
on the minimum hop-count path bl to node a. Let {vli}µl

i=1 be a subset of these
nodes selected in such a way that the sequence of nodes from bl to node va reads
as

(vl1, vl2, · · · , vlµl
),

in that order; thus vl1 is closest to anchor node bl. Within this chain of nodes, it
is clear that, for j > i, node vlj knows the minimum hop count to it from node
vli and we will extend the hop-count notation and write Hli,lj to denote this hop
count. Also, we will use Hlµl,a to denote the hop count from the last node in this
chain to node va. The selection of the nodes in the chain will be carried out keeping
in mind the need to select those hop counts that result in a stronger link between
hop count and Euclidean distance. Fig. 18 illustrates the setting for the case of 4
anchor nodes, i.e., L = 4. We collect together the set of relevant hop counts into
three disjoint sets:

—Hanchor, which denotes the set of minimum hop counts of the nodes in Fig. 18 to
the anchors, i.e.,

Hanchor = {Hl,lj | 1 ≤ l ≤ L, 1 ≤ j ≤ µl}
⋃

{Hl,a | 1 ≤ l ≤ L},

—Hinter, which denotes the set of minimum inter-node hop counts between adjacent
nodes in Fig. 18, in the direction anchor node to node va, i.e.,

Hinter = {Hli,lj | 1 ≤ l ≤ L, 1 ≤ i < j ≤ µl},
—Htarget, which denotes the set of minimum hop counts between nodes vlµl

and
node va in Fig. 18, i.e.,

Htarget = {Hlµl,a | 1 ≤ l ≤ L}.
We set

H = Hanchor ∪Hinter ∪Htarget.

In the belief-propagation-based computation to follow, we will make the following
assumptions:

7We will often refer to a node by its location.
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—Dependency-only-through-minimum-Hop-Count (HCD) assumption: Under this
assumption, given H, the location of two nodes are dependent on each other only
if the minimum hop count between the two nodes is known. The justification here
being that given knowledge of hop counts to the anchor nodes, knowledge of node
vi’s location strongly affects a second node vj ’s location only if the minimum hop
count between vi and vj is known.

—Closest-Neighbor Dependency (CND): Here we address the situation when hop
counts of a node vli to both anchor node bl and node vlj are known and node vli
lies on a minimum-hop-count path leading from node vlj , j > i, to the anchor
node bl. In this situation, we assume that vlj is independent of bl given knowledge
of vli. A similar situation arises when hop counts of a node vlk to both node vli
and node vlj , i < j < k, are known and node vlj lies on a minimum-hop-count
path leading from node vli to the node vlk. Again, in this situation, we assume
that vlk is independent of vli given knowledge of vlj . The justification in both
instances being that knowledge of the hop count to a geographically closer node
is likely to render obsolete, information conveyed by the hop distance to the more
distant node.

Fig. 18. Chain of nodes along which beliefs are passed.

Our interest is in determining the density function

f(va | H),

under the assumption that the location {bl}Ll=1 of the anchor nodes is fixed and
known. We shall now illustrate the computation under these two assumptions, of
f(va | H) for a sample network as shown in Figure. 19. We will compute f(va | H)
by first computing f(va, v11, v12, v21, v22 | H) and then marginalizing to obtain
the desired density function by integrating over v11, v12, v21, v22. For the example
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network of Figure. 19, we have

Hanchor = {Hl,11, Hl,12, Hl,21, Hl,22, Hl,a | l = 1, 2}
Hinter = {H11,12, H21,22}
Htarget = {H12,a, H22,a}.

Fig. 19. Sample belief propagation network with two anchor nodes.

By making use of our HCD and CND assumptions above, the problem can be
presented as one of marginalizing a product function [Aji and McEliece 2002]:

f(va|H) =

∫

v11,v12,v21,v22

f(v11|H)f(v12|v11,H)f(v21|H)f(v22|v21,H)

f(va|v12, v22,H)dv11dv12dv21dv22.

The distributive law can be applied to yield an efficient, message-passing solution,
which in the present instance means reorganizing the sequence of marginalizations
in the form:

f(va|H) =

∫

v12,v22

f(va|v12, v22,H)dv12dv22

∫

v11

f(v11|H)f(v12|v11,H)dv11

∫

v21

f(v21|H)f(v22|v21,H)dv21.

The sequence of marginalizations is most easily derived from the corresponding
junction tree, shown in Fig. 20, in which the dotted lines indicate the stages in
which marginalization of the different variables takes place. Such a junction tree
can always be constructed as it is derived from the directed acyclic graph (DAG)
representing factorization of the joint probability density function according to:

f(va, v11, v12, v21, v22 | H) = f(v11 | H)f(v12 | v11,H)f(v21 | H)f(v22 | v21,H), f(va | v12, v22,H),
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see [Aji and McEliece 2002] for details. While we have presented this by example,
the technique clearly carries over to the general situation.

b1 v11

v11 v12

b2 v21

v21 v22

v12 v22

v1

C1

C2

C3

C4

C5

Fig. 20. Junction Tree associated to the marginalize-a-product function problem.

Let us now specialize the density functions for the cases of HCDL-BP and HCBL-
BP.
Messages for HCDL-BP: For the case of HCDL-BP, whenever we need to evaluate

a density function of the form f(va | vlµl
, Hlµl,a), i.e., the density function of a node

va given the location of a second node vlµl
and the minimum hop count between

the two nodes, we will make use of the the density function expressions derived in
Section 5. We will also have to compute density functions of the form

f(va | {vlµl
}Ll=1, {Hlµl,a}Ll=1).

Such densities can be evaluated (we make use of our CND assumption above here)
according to:

f(va | {vlµl
}Ll=1, {Hlµl,a}Ll=1) ∝ f(va, {vlµl

}Ll=1 | {Hlµl,a}Ll=1)

= f(va | {Hlµl,a}Ll=1)
L
∏

l=1

f(vlµl
| va, Hlµl,a)

∝
L
∏

l=1

f(va | vlµl
, Hlµl,a)

since

f(va | {Hlµl,a}Ll=1) = f(va)
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is assumed to be uniform and hence not a function of va. In the above derivation,
the ∝ sign at each step indicates that the constant of proportionality is independent
of va.

Messages for HCBL-BP: For the case of HCBL-BP, the density functions are
defined as follows. The density function f(va | vlµl

, Hlµl,a), of a node va given the
location of a second node vlµl

and the minimum hop count between the two nodes,
would be the uniform distribution over the support

{va | ‖va − vlµl
‖ ∈ [(1− ǫ)(Hlµl,a − 1), Hlµl,a]}.

To evaluate a density function of the form

f(va | {vlµl
}Ll=1, {Hlµl,a}Ll=1),

we will use a uniform distribution over the support

{va ∈
⋂

l

{va | ‖va − vlµl
‖ ∈ [(1− ǫ)(Hlµl,a − 1), Hlµl,a]}}.

In other words, we take the node location va to be uniform over the intersection of
the bands dictated by the different hop-counts from given locations.

Computational cost of BP: It is easy to observe that the message passed by
a node is independent of the node to be localized. The message passed by a node
to its neighbor is the posteriori probability of the location of the neighbor. Thus
the communication cost of a node is kO(log n) where k is a constant which depends
on the resolution of the region over which the posterior probability is given. For
example if the entire region is split into p squares and the node has to be localized
to a square, then k = p.

7.2 Simulation results

The simulation results for all the algorithms are shown in Fig. 21. The x-axis is the
localization error and the y-axis is the cumulative density function of the errors. The
sample error-vector plots or ‘Mikado’8 diagrams over a particular deployment for the
different approaches are shown in Fig. 22. The simulation set-up is as follows. The
number of nodes deployed in an unit square is taken to be Poisson with mean n =
1000. The algorithms are run over the critical graph. The performance is obtained
by averaging the errors over different node locations and multiple deployments.
HBP = 5 in these simulations. The average error cdf is obtained over four node
deployments. We can see that BP gives significant improvements over the previous
algorithms. Since the experiment is repeated for a lesser number of trials, the
performance of PDM and HCBL is not clearly distinguishable. But this is clearer
in Figure 17.

8Mikado is the ancient name for the game commonly called pick-up sticks. Here sticks of different
colors are dropped and the players need to pick up each stick without disturbing the others. The
error patterns generated here look like the fallen sticks in a game of Mikado, hence our use of this

name.
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Fig. 21. cdf for location error for each of the localization algorithms HCRL, PDM, HCDL, HCBL,

HCDL-BP and HCBL-BP.

There are a few points noted here. It is possible that in individual cases of node
locations BP might worsen the location error. However on a average BP provides
improvements. Also, here we have just a single iteration of BP. In practice, one
could have multiple iterations of BP with the posterior probabilities of the node
locations obtained in one iteration can be used as prior probabilities in the next
iteration.

8. CONCLUSIONS

In this paper, we have formally studied the often used heuristic that HD on a
geometric graph on a plane is proportional to the ED. For arbitrary 2-D node
placements, we saw in Lemma 1, that for HD h ≥ 2, r < ED ≤ hr and this is not
even roughly proportional to HD. For homogeneous random deployments, we have
found that for given HD h, (1− ǫ)(h− 1)r < ED ≤ hr w.h.p. (this is true even for
a non-homogeneous node placement with a positive density over all points of the
area). Our proof techniques rely on a certain geometric construction and the union
bound. The parameter ǫ provides a trade-off between ED-HD proportionality and
the rate of convergence of the desired probability to 1. This result holds for both
uniform i.i.d. (Theorem 1) and randomized lattice (Theorem 4) node placements.
We also provide Theorems 2, 3 and 5, that can be useful for GPS-free localization.
Simulation results show that the actual probability of ED-bounds being respected
is much closer to 1 than that provided by our bounding arguments. Given an HD,
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Fig. 22. Error vector plots (‘Mikado diagrams’) for the different approaches for a sample node
deployment.
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h, the simulations suggest that [(h − 1)r, hr] could serve as a good approximation
to the interval in which the EDs of the nodes lie; however, this might not be a high
probability bound.
In the second part of the paper we discuss the problem of obtaining the pdf of

the pairwise Euclidean distance given the hop distance. A survey of the existing
results in the literature is provided. Using a greedy algorithm, we heuristically
obtain the distance distribution given the hop-count and show a close match with
the simulation results. Our assumptions help us to invoke the central limit theorem,
and thus we are easily able to obtain the approximate probability density functions
for different hop-counts. The simulation results match well for larger hop count
values, which is expected due to the nature of the central limit theorem.

We propose two algorithms HCBL and HCDL whose motivation arise from the
developed theory and show that the performance is better than some of the pro-
posed algorithms in literature. We then discuss the utility of belief propagation in
obtaining performance improvements over the proposed algorithms.
In our future work, we seek more precise bounds on the ED with a provably

higher probability of being respected. We would also like to develop theories and
algorithms for anisotropic networks.
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A. A LOWER BOUND WITH IMPROVED CONVERGENCE RATE

Previously, in Section 4.1, a lower bound to the Euclidean distance between any
two nodes separated by a HD h was derived by considering the case when there was
at least one node in each rectangular strip within each blade shown in Figure 4.
It turns out that the rate at which the probability of the lower bound holding
converges to 1 can be improved by replacing the rectangular strips by lens-shaped
areas and this is the derivation presented here.
For simplicity, we confine ourselves to a setting where there is just a single anchor,

located at the center of the unit area, thereby allowing us to stay clear of any edge
effects. We adopt a coordinate system in which the coordinates of this center are
(0, 0). The interest here is in a lower bound to the Euclidean distance Dl,i(v), given
hop distance Hl,i(v). Without loss of generality, we assume i = 1, so that we can
abbreviate and write D(v) and H(v) in place of Dl,i(v) and Hl,i(v) respectively.
We will also write r in place of r(n).
Given that H(v) = h, the triangle inequality gives us the upper bound D(v) ≤

hr. We will now provide a corresponding lower bound to D(v) that holds with high
probability with this probability converging to 1 at a rate faster than that in the
case of the blades-and-strips argument.
We have the construction as shown in Figure 23 shows a collection of intersecting

circles drawn in the unit plane. All circles have centers that are located along the x-
axis. The circles at the two ends have radius r (we term these big circles) while the
circles in the middle have half this radius (and are termed small circles). The circles
are drawn as follows. First, a big circle is drawn centered a the origin (i.e., from the
location of the anchor). We next draw a small circle such that the intersection of
the big circle, the small circle and the x-axis, is a line segment of width δr. We then
draw a collection (h − 4) additional small circles such that the distance between
the centers of any two adjoining small circles equals αr(n) , 0 ≤ α ≤ 1. Finally, we
draw a big circle such that the intersection between the rightmost small circle, the
big circle on the right and the x-axis is symmetrically, a line segment of width δr.
We will refer to the intersection of two adjoining circles as a lens. Thus there

are a total of (h − 2) lenses in all, which we will label as lenses L1 through Lh−2,
running from left to right. Unlike the (h − 4) lenses in the middle, the two lenses
L1, Lh−2 at either end are asymmetric. Let as and aas denote the areas of the
symmetric and asymmetric lenses respectively.
Next let us define Ai, 1 ≤ i ≤ (h− 2) as the event that there is at least one node

in lens Li. Let Γ be the intersection event under which the deployment v is such
that v ∈ Ai, ∀1 ≤ i ≤ h− 2. Then whenever v ∈ Γ, there exists at least one node
in each of the h− 2 lenses (see Figure 23). It follows then from the figure that for
v ∈ Γ, all nodes at a distance < ((h− 4)α+ 3− 2δ)r(n) from the fixed anchor are
reachable in at most h − 1 hops, hence will have a hop distance ≤ h − 1 < h. So,
we have D(v) ≥ ((h − 4)α + 3 − 2δ)r, for such a deployment v; see Figure 23. It
follows then that D(v) ≥ ((h − 4)α + 3 − 2δ)r given H(v) = h with probability
≥ Pr(Γ).
We will now proceed to lower bound the probability of the event Γ and show that
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Fig. 23. Construction using lenses.

it converges to unity at a rate that is more rapid than for the case when one used
strips in place of lenses. While one could attempt to optimize the choice of δ, we
have for the ease of calculations, taken δ = 1−α (i.e., the width of each the (h−2)
lenses is now the same), which causes the lower bound on the Euclidean distance
to equal r(n)((h− 2)α+ 1). For this choice of δ, we have the lower bound:

P(Γ) = P
n
(

∩h−2
i=1 Ai

)

= 1− P
n
(

∪h−2
i=1 A

c
i

)

≥ 1−
h−2
∑

i=1

P
n (Ai

c)

= 1−
[

h−3
∑

i=2

P
n (Ai

c) + P
n (A1

c) + P
n (Ah−2

c)

]

= 1− [(h− 4)(1− as)
n + 2(1− aas)

n]

≥ 1−
[

(h− 4)e−nas + 2e−naas
]

≥ 1− (h− 2)e−nas since as < aas

= 1− (h− 2)n−g′(ǫ,h)c2

n→∞−→ 1 (11)

We can carry out simple calculations to find out the expressions for as and aas.

as =
r2(n)

2
(θ − αβ) θ = cos−1 α, β =

√

1− α2

aas = r2(n)

(

φ1 −
sin 2φ1

2

)

+
r2(n)

4

(

φ2 −
sin 2φ2

2

)
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Fig. 24. Comparison of the exponents for hop counts 5 and 20.

Where,

φ1 = cos−1

(

3

4
− δ

2
− 3

2(6− 4δ)

)

φ2 = cos−1

(

3

2
− δ − 3

6− 4δ

)

δ = 1− α

For comparing this result with that of the previous, we put the lower bound on
the Euclidean distance to be the following.

(h− 1)(1− ǫ)r(n) = r(n)((h− 2)α+ 1)

α = 1− h− 1

h− 2
ǫ

hence, g′(ǫ, h) = 1
2 (θ − αβ). It depends on h as α depends on h. In Figure 24 , we

show the convergence rate exponents g(ǫ) and g′(ǫ, h). For same ǫ, the exponent
g′(ǫ, h) > g(ǫ), which shows that the rate of convergence is more rapid than in the
case of the blades-and-strips argument. As a reference point, we note that since
the probability of a circular area of radius r(n) containing a node at its center, but
not having a node anywhere else is on the order of n−1, no lower bound can be
guaranteed to hold with probability that converges to 1 at a rate faster than 1

n
.
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