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ABSTRACT

Wireless sensor networks can often be viewed in terms of a
uniform deployment of a large number of nodes on a region
in Euclidean space, e.g., the unit square. After deployment,
the nodes self-organise into a mesh topology. In a dense,
homogeneous deployment, a frequently used approximation
is to take the hop distance between nodes to be proportional
to the Euclidean distance between them. In this paper, we
analyse the performance of this approximation. We show
that nodes with a certain hop distance from a fixed anchor
node lie within a certain annulus with probability approach-
ing unity as the number of nodes n → ∞.

We take a uniform, i.i.d. deployment of n nodes on a unit
square, and consider the geometric graph on these nodes

with radius r(n) = c

√

ln n

n
. We show that, for a given hop

distance h of a node from a fixed anchor on the unit square,
the Euclidean distance lies within [(1−ǫ)(h−1)r(n), hr(n)],
for ǫ > 0, with probability approaching unity as n → ∞.
This result shows that it is more likely to expect a node, with
hop distance h from the anchor, to lie within this annulus
centred at the anchor location, and of width roughly r(n),
which decreases as n increases. We show that if the radius
r of the geometric graph is fixed, the convergence of the
probability is exponentially fast. Similar results hold for
a randomised lattice deployment. We provide simulation
results that illustrate the theory, and serve to show how
large n needs to be for the asymptotics to be useful.

1. INTRODUCTION
We consider a dense wireless sensor network comprising a

large number of nodes, n, distributed over a region in Eu-
clidean space, e.g., the unit square. If the communication
range of every node is r, the communication topology be-
comes a geometric graph, i.e., each node is connected to
every other node that is at a distance ≤ r. If the node de-
ployment is random in some sense, e.g., uniform i.i.d. deploy-
ment, then the network topology becomes a random geomet-
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ric graph (RGG) (see, e.g., [7]). Given a dense deployment
of nodes, and a topology over them, a frequently used ap-
proximation is to take the minimum number of hops between
nodes (i.e., the hop distance) as a measure of the Euclidean
distance between them. Niculescu and Nath [6], Nagpal et

al. [4] and Yang et al. [9] have used this approximation to
develop techniques for GPS-free localisation in dense wire-
less sensor networks. Yang et al., in particular, make a key
assumption that the ratio of the Euclidean distance between
a node and two anchor nodes is well approximated by the
ratio of the corresponding hop distances.

The relation between the number of hops and the Eu-
clidean distance traversed has been studied analytically in
previous literature. Vural and Ekici [8] have considered an
RGG with radius r, in one dimension. They have studied
the distribution of the maximum possible Euclidean distance
travelled along a line, by a path of a given number of hops,
and have obtained approximations to the mean and variance
of these distributions. A similar analysis has been performed
by Dulman et al. [1], where two dimensional node deploy-
ments have been considered in some detail. To the best
of our knowledge, the approximation of proportionality be-
tween Euclidean and Hop-distance in a dense network still
lacks theoretical formalisation. This has been pointed out
in a recent paper by Li and Liu [3], where the authors con-
sider this as a heuristic even for an isotropic network. We
attempt to formalise this notion of proportionality.

In Section 3, we find bounds on Euclidean distance for a
given hop distance on arbitrary geometric graphs in 2 di-
mensions, and show that for 2-D, the hop distance (HD)
is not a good measure of Euclidean distance (ED). How-
ever, when the node deployment is random, thus yielding
an RGG, HD does become proportional to ED in an ap-
proximate sense. This has been explored in the sections to
follow. For the RGG, nodes are distributed in a uniform i.i.d.
fashion over a unit area A ⊂ R

2, i.e., the location of each
node is uniformly distributed over A, independent of the lo-
cations of the other nodes. On such a deployment of nodes,

we consider the RGG with radius r(n) = c

√

lnn

n
, c > 1√

π
,

which ensures connectedness of the RGG with probability
approaching 1, as n → ∞ (by Gupta and Kumar [2]). We
find in Section 4 that given a HD h from an anchor node
(location fixed) on this RGG, the ED d between the anchor
and nodes that are h hops from the anchor lies within an
interval [(1−ǫ)(h−1)r(n), hr(n)] w.h.p.1, for ǫ > 0, with the

1w.h.p. (with high probability) means that the probability
of the said event → 1 as n → ∞
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Figure 1: An example deployment with 4 anchors.
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Figure 2: Graphical illustration of Dl(v, hl) and
Dl(v, hl) (hl = 5 in the illustration).

convergence rate dictated by the ǫ chosen. This result gives
a theoretical justification for the ED-HD proportionality as-
sumptions of [6] and [9] for h >> 1 and large n. In Section 5,
we show that the rate of convergence can be improved if the
radius r does not vary with n. Of course, we need to choose
n large enough so that the radius for connectivity according
to [2] is smaller than r. We extend both the results for the
case of randomised lattice deployment2 in Section 6.

Our results are via bounds and provide a sufficient con-
dition for the rate of convergence. However in Section 7,
we have considered Poisson deployment in 1-dimension for
which these conditions are necessary and sufficient. Finally
in Section 8, we provide simulation results to illustrate the
theorems.

2. THE GEOMETRIC GRAPH SETTING &

NOTATION
In this section we describe the basic setting for our results,

and also develop the main notation.

Setting:

• n nodes are deployed on a unit 2-dimensional area A.
The node locations are denoted by the vector v =
[v1, v2, · · · , vn] ∈ An, where vi is the location of the
ith node.

• We form the geometric graph G(v, r) by connecting
nodes that are within the distance r of each other.
Then r is called the radius of the geometric graph.

We define anchors as nodes whose locations are known a

priori, e.g., in Figure 1, we have shown 4 anchors b1, b2, b3

and b4, with their positions fixed at the 4 corners of the unit
square A.

2A randomised lattice deployment is obtained as follows.
The area A is partitioned into n equal area “cells”, e.g.,
squares, and one node is placed at a uniformly distributed
random location in each cell.

Notation:

• N = [n] = {1, 2, · · · , n}, the index set of the nodes,
i.e., node i ∈ N has a location vi on A.

• bl = Location of the lth anchor node, l = 1, · · · , L, e.g.,
in Figure 1, L = 4.

• Hl,i(v) = Minimum number of hops of node i from
anchor bl on the graph G(v, r) for the deployment v.

• Dl,i(v) = Euclidean distance of node i from anchor bl

for the deployment v.

Dl(v, hl) = max
{i∈N :Hl,i(v)=hl}

Dl,i(v)

Dl(v, hl) = min
{i∈N :Hl,i(v)=hl}

Dl,i(v)

A graphical illustration of the above two quantities is
given in Figure 2.

• For all j ∈ N , Nj = {k ∈ N : ||vj − vk|| ≤ r, k 6= j}.
This is the neighbour set of node j in G(v, r).

With this setting, given the hop distance hl on G(v, r)
between a node and an anchor, we wish to obtain constraints
on the Euclidean distance of the node from anchor bl.

3. HD-ED RELATIONSHIP IN ARBITRARY

GEOMETRIC GRAPHS
In this section, we evaluate the performance of distance-

hop proportionality in an arbitrary geometric graph with ra-
dius r, where by“arbitrary”we mean that the node locations
are arbitrary. We show that the proportionality approxima-
tion can be arbitrarily coarse.

We define a sequence of nodes {a1, a2, · · · , aK}, where all
ai ∈ N , i = 1, · · · , K, as sequential neighbours iff

Nai
=







{ai−1, ai+1} for i = 2, · · · , K − 1
{ai+1} for i = 1
{ai−1} for i = K
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Figure 3: Condition for sequential neighbours in ar-
bitrary geometric graph.
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Figure 4: Construction to find the lower bound on
Euclidean distance.

We can observe if {a1, a2, a3} have the following properties,
a1a2 = r, a2a3 = r and a1a3 > r,3 they will be sequential
neighbours on G(v, r) (See Figure 3). Then, by using cosine

law in △a1a2a3, we get, a1a3 =
√

r2 + r2 − 2r.r cos γ =

r
√

2(1 − cos γ) > r, for γ > π

3
. Now, to find a bound on

ED for HD hl, we construct a regular polygon with hl + 1
sides, all with length r, as shown in Figure 4. We know that
the total interior angle is (hl + 1 − 2)π = (hl − 1)π. Hence

each angle is (hl−1)π
hl+1

. We see that, (hl−1)π
hl+1

> π

3
, iff hl > 2.

So, for all hop distances hl ≥ 3, each of the internal angles
will be > π

3
. Now we pick two adjacent nodes s and d as

shown in Figure 4. We want the hop distance between them
to be hl, we delete the edge sd and increase all the other
angles by a very small amount δ, hence we get the node
sequence as shown in Figure 5. This sequence of nodes will
be sequential neighbours iff the ED between s and d, i.e.
r1, becomes > r. Now the following lemma says that for a
certain choice of δ, r1 > r with the nodes on the path from
s to d being sequential neighbours.

Lemma 1. For hl > 2 and 0 < δ < 4π

hl+1
, r1 > r

Proof: In Appendix.
Hence s and d cease to be neighbours and the nodes in the

path from s to d still follow the properties of being sequential
neighbours. Assuming other nodes to be more than r from
all the nodes of this set of hl + 1 nodes, the hop distance
between s and d becomes hl, however the Euclidean distance

3Define, ajak = ||vaj
− vak

||

= r
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d
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Figure 5: Achievability of the lower bound.

between them is just more than r, for hl ≥ 3. For hl = 2, a
construction similar to Figure 3 can be done to show that the
distance between s = a1 and d = a3 is just a little more than
r. Hence for any arbitrary geometric graph in 2-dimensions,
given the hop distance between a node and an anchor being
hl ≥ 2, the Euclidean distance can be arbitrarily close but
more than r, which is a trivial lower bound. The upper
bound on ED remains hlr as usual, which can be achieved
by placing the nodes on a straight line r distance from each
other to form a set of hl + 1 sequential neighbours. Hence,
we have proved the following lemma.

Lemma 2. For arbitrary v and hl ≥ 2, r < Dl(v, hl) ≤
Dl(v, hl) ≤ hlr and both bounds are sharp.

Hence the hop distance in an arbitrary geometric graph
on a plane does not provide useful information about the
Euclidean distance between the nodes.

However, the situation changes when the distribution of
nodes has positive density over all points on A, e.g., the node
distribution is uniform i.i.d. or randomised lattice. As we
will find out in the following sections, in a random geometric
graph with a sufficient number of nodes, the hop-distance
serves as a good measure of the Euclidean distance.

4. HD-ED RELATIONSHIP IN RANDOM GE-

OMETRIC GRAPHS
In this section we will provide theoretical results concern-

ing distance-hop proportionality in an RGG. Thus, we now
specialise to the following setting.

Setting:

• n nodes are deployed on a unit area A in the uniform
i.i.d. fashion. The difference with this setup from the
previous section is that the node locations are random,
and are denoted by the random vector V ∈ An, with a
particular realisation being denoted by v. We denote
by P

n(.) the probability measure on An so obtained.

• We form the RGG G(v, r(n)) by connecting the nodes
that are within the radius r(n) of each other, where
r(n), the radius of the geometric graph is chosen so



that the network remains asymptotically connected.

We take r(n) = c

√

lnn

n
, c > 1√

π
, a constant; this en-

sures asymptotic connectivity (see [2]).

In Section 4.1, we analyse the distribution of distance from
one anchor node and in Section 4.2, we generalise it for L
anchors.

The choice of the radius, r(n) = c
√

ln n

n
, c > 1√

π
, does not

only guarantee asymptotic connectivity among the nodes,
but also ensures connectivity of the nodes with all the an-
chors. The following lemma states that there will be at least
a node within a distance r(n) of each anchor bl, l = 1, · · · , L
w.h.p. and so the nodes are connected to all the anchors
in a dense network. Define, Bl = {v : ∃ at least one node
within a radius of r(n) from bl}, l = 1, · · · , L.

Lemma 3. limn→∞ P
n
(

∩L
l=1Bl

)

= 1

Proof: P
n
(

∩L
l=1Bl

)

= 1−P
n
(

∪L
l=1B

c
l

)

≥ 1−∑L

l=1 P
n{Bc

l } =

1 − ∑L

l=1(1 − πr2(n))n ≥ 1 − Le−nπr2(n) n→∞−→ 1, since

r(n) = c
√

lnn

n
and 1 − x ≤ e−x.

4.1 Distance distribution from a fixed anchor
bl: Uniform i.i.d. deployment

We make the construction as shown in Figure 6. From bl

(without loss of generality, we can choose l = 1), we draw
a circle of radius hlr(n) centred at bl, this is the maximum
distance reachable in hl hops, by triangle inequality, since
each hop can be of maximum length r(n). All the nodes {i ∈
N : Hl,i(v) = hl} lie within this disk. So, Dl(v, hl) ≤ hlr(n)
for all v. To obtain a lower bound on Dl(v, hl), we construct
blades as shown in Figure 6. We start with one blade. It
will cover some portion of the circumference of the circle
of radius hlr(n); see Figure 6. Construct the next blade
so that it covers the adjacent portion of the circumference
that has not been covered by the previous blade. We go
on constructing these blades until the entire portion of the
circle lying inside the unit square A is covered (see Figure 6).
Let us define,

• J(n) : Number of blades required to cover the part of
the circle within A.

• Bl
j : jth blade drawn from the point bl as shown in

Figure 6, 1 ≤ j ≤ J(n).

On each of these blades, we construct hl strips, shown shaded
in Figure 7, u(n) being the width of the blade and t(n) the
width of the strip. We define the following event.

• Al
i,j = {v: ∃ at least one node in the ith strip of Bl

j}

If a v ∈ Al
i,j , ∀1 ≤ i ≤ hl − 1, 1 ≤ j ≤ J(n), i.e., there

exists at least one node in each of the hl − 1 strips (see
Figure 7) for all the blades Bl

j , then for that v, all nodes at
a distance < (p − q)(hl − 1)r(n) from bl are reachable in at
most hl − 1 hops, hence will have a hop distance ≤ hl − 1 <
hl. So, we have Dl(v, hl) ≥ (p − q)(hl − 1)r(n), for such a
deployment v; see Figure 7. Hence,

{∩J(n)
j=1 ∩hl−1

i=1 A
l
i,j}

⊆ {v : (p − q)(hl − 1)r(n) ≤ Dl(v, hl)

≤ Dl(v, hl) ≤ hlr(n)} (1)

hlr(n)

. . .

J(n) blades
. . .

hl strips in each blade

bl

blade Bl
j

A

Figure 6: Construction using the blades cutting the
circumference of the circle of radius hlr(n).

Blade

· · ·

· · ·

r(n)r(n)

hl
1 2

u(n) =
√

1 − p2r(n)

t(n) = qr(n)

pr(n)

(p − q)(hl − 1)r(n)

hl − 1bl

Bl
j

all nodes that fall here will have hop distance ≤ hl − 1 from bl

Figure 7: The construction with hl hops.

Since 1 > p > q > 0, we can choose p − q to be equal to
1− ǫ, for the given ǫ > 0. So the lower bound in Equation 1
becomes, (p − q)(hl − 1)r(n) = (1 − ǫ)(hl − 1)r(n).

To find the value of J(n), we need to define the following.

• a(n) is the length of the arc of radius hlr(n) that lies
within a blade, drawn taking bl as centre, as shown in
Figure 8.

• α(n) : angle subtended by a(n) at bl , see Figure 8.

Now from Figure 6, we have, J(n) =
⌈

π

2α(n)

⌉

. We also

have from Figure 8, hlr(n)α(n) = a(n) ≥ u(n) =
√

1 − p2r(n).

Hence, α(n) ≥
√

1−p2

hl
. So, J(n) ≤

⌈

πhl

2
√

1−p2

⌉

.



a(n)α(n)

bl u(n)

hlr(n)

Figure 8: Construction to find J(n).

Now we compute,

P
n
(

∩J(n)
j=1 ∩hl−1

i=1 A
l
i,j

)

= 1 − P
n
(

∪J(n)
j=1 ∪hl−1

i=1 A
l
i,j

c
)

≥ 1 −
J(n)
∑

j=1

hl−1
∑

i=1

P
n
(

A
l
i,j

c
)

≥ 1 −
⌈

πhl

2
√

1 − p2

⌉

(hl − 1)(1 − u(n)t(n))n

≥ 1 −
⌈

πhl

2
√

1 − p2

⌉

(hl − 1)e−nu(n)t(n)

= 1 −
⌈

πhl

2
√

1 − p2

⌉

(hl − 1)e−nq
√

1−p2r2(n)

n→∞−→ 1 (2)

The first inequality comes from the union bound, the sec-
ond inequality, from the upper bound on J(n). The third
inequality uses the result 1 − x ≤ e−x. We see that if the
node distribution was non-homogeneous with positive den-
sity over all points in A, the term (1 − u(n)t(n))n could
have been replaced by (1 − fminu(n)t(n))n, where fmin is
the minimum density over A and as fmin > 0, the same
convergence result would be true even for non-homogeneous
node placement.

Let us define, Ehl
(n) = {v : (1−ǫ)(hl−1)r(n) ≤ Dl(v, hl)

≤ Dl(v, hl) ≤ hlr(n)}. So, we have, for the given ǫ > 0, and
using Equations 1 and 2,

1 ≥ P
n(Ehl

(n))

≥ P
n
(

∩J(n)
j=1 ∩hl−1

i=1 A
l
i,j

)

≥ 1 − (hl − 1)

⌈

πhl

2
√

1 − p2

⌉

e
−nq

√
1−p2c2 ln n

n (3)

which implies,

0 ≤ 1 − P
n(Ehl

(n)) ≤ (hl − 1)

⌈

πhl

2
√

1 − p2

⌉

e
−q

√
1−p2c2 lnn

(4)
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Figure 9: g(ǫ) vs ǫ plot.

And as n → ∞,

1 − P
n(Ehl

(n))

= O
(

e
−q

√
1−p2c2 ln n

)

= O
(

1

nq
√

1−p2c2

)

(5)

This result is true for any p and q. But we can choose
these constants so that the convergence → 0 of the bound
in Equation 5 is the most rapid, i.e., p and q are chosen so
as to maximise q

√

1 − p2, thus making the upper bound to
reduce at the fastest rate. For the given ǫ > 0, p − q =
1−ǫ ⇒ q = p− (1−ǫ). We can show that, p = arg maxp(p−
(1 − ǫ))

√

1 − p2 =
1−ǫ+

√
(1−ǫ)2+8

4
, q =

−3(1−ǫ)+
√

(1−ǫ)2+8

4
.

Then writing, g(ǫ) = q(ǫ)
√

1 − p2(ǫ), we obtain the follow-
ing theorem,

Theorem 1. For a given 1 > ǫ > 0, and r(n) = c

√

ln n

n
,

c > 1√
π
, P

n(Ehl
(n)) = 1 −O

(

1

ng(ǫ)c2

)

,

where g(ǫ) = q(ǫ)
√

1 − p2(ǫ),

p(ǫ) =
1−ǫ+

√
(1−ǫ)2+8

4
, q(ǫ) =

−3(1−ǫ)+
√

(1−ǫ)2+8

4
.

Remark: A plot of g(ǫ) vs ǫ is given in Figure 9. We
see that g(ǫ) ↓ 0 as ǫ ↓ 0. Hence Theorem 1 says that
limn→∞ P

n(Ehl
(n)) = 1, for any 1 > ǫ > 0, so we can ex-

pect a node having a HD of hl from anchor bl to be within a
distance [(1 − ǫ)(hl − 1)r(n), hlr(n)] from bl in a dense net-
work. We notice that the width of this band of uncertainty
is roughly r(n), which is the unit of distance measurement
on G(v, r(n)). The theorem also says that the rate of con-
vergence is governed by the ǫ chosen, i.e., the smaller the ǫ,
the slower the rate of convergence.

4.2 Distance distribution from fixed anchors
bl, l = 1, · · · , L: Uniform i.i.d. deployment

For L anchors, the question arises whether the hop dis-
tances from the L anchors are feasible or not, e.g., if we
denote a disk with centre a and radius r, by C(a, r) = {z ∈
A : ||z − a|| ≤ r}, then a necessary condition for a feasible

h vector (h = [h1, · · · , hl, · · · , hL] ∈ N
L is the hop distance

vector) is that ∩L
l=1C(bl, hlr(n)) 6= φ (there will be other

feasibility conditions also). We denote the set of all feasible

h vectors by H(n) (note that the feasibility of an h vec-
tor depends on n). We see that ∀h ∈ H(n), ∩L

l=1Ehl
(n) ⊇

∩L
l=1 ∩J(n)

j=1 ∩hl−1
i=1 Al

i,j , which implies that (analysing similar



Figure 10: Graphical illustration of how Theorem 2
yields a location region for a node that is at a HD
hl from anchor bl, 1 ≤ l ≤ 4.

to Equation 2),

P
n
(

∩L
l=1Ehl

(n)
)

≥ P
n
(

∩L
l=1 ∩J(n)

j=1 ∩hl−1
i=1 A

l
i,j

)

≥ 1 −
L
∑

l=1

(hl − 1)

⌈

πhl

2
√

1 − p2

⌉

n
−q

√
1−p2c2

⇒ P
n
(

∩L
l=1Ehl

(n)
)

= 1 −O
(

n
−q

√
1−p2c2

)

Hence we get the following theorem,

Theorem 2. For a given 1 > ǫ > 0, and r(n) = c

√

ln n

n
,

c > 1√
π
, ∀h = [h1, · · · , hl, · · · , hL] ∈ H(n),

P
n
(

∩L
l=1Ehl

(n)
)

= 1 −O
(

1

ng(ǫ)c2

)

where g(ǫ) = q(ǫ)
√

1 − p2(ǫ),

p(ǫ) =
1−ǫ+

√
(1−ǫ)2+8

4
, q(ǫ) =

−3(1−ǫ)+
√

(1−ǫ)2+8

4

This theorem tells us that for a feasible h, the node lies
within the intersection of the annuli of inner and outer radii
(1−ǫ)(hl−1)r(n) and hlr(n) respectively, centred at anchors
bl, 1 ≤ l ≤ L, with a probability that scales as shown in the
above theorem. A graphical illustration of this is shown in
Figure 10 for L = 4. This result motivates us to develop
localisation schemes that use the hop-distance information
from a few fixed anchor nodes. An example of the applica-
tion of this theory to node localisation has been discussed
in Chapter 6 of [5], where the author has shown a scheme of
GPS-free localisation depending on the hop distances of the
nodes from a finite number of fixed anchor nodes.

5. HD-ED RELATIONSHIP IN RANDOM GE-

OMETRIC GRAPHS: FIXED RADIUS

The scaling of r(n) with n as shown in the previous section
ensures asymptotic connectivity and increases the precision
in localisation as n → ∞. But in a wireless sensor net-
work the radius r of the RGG on which hop-distances are
measured often corresponds to the radio range for a given
transmit power, and hence does not decrease with n. So, it is
meaningful to use a fixed radius r for the RGG and it is de-
noted by G(v, r). But for connectivity, we need to use num-
ber of nodes sufficient to make the network connected (i.e.,

the radius should scale with n like r(n) = c

√

lnn

n
, c > 1√

π
, a

constant; see [2] ), i.e., need at least n0 = inf{n : r(n) ≤ r}
nodes. Using a constant value for radius r, and redefining
Ehl

= {v : (1 − ǫ)(hl − 1)r ≤ Dl(v, hl) ≤ Dl(v, hl) ≤ hlr},
where the hop distance is measured on the RGG G(v, r), we
can show (along similar lines as for Equation 2),

1 ≥ P
n(Ehl

)

≥ P
n
(

∩J
j=1 ∩hl−1

i=1 A
l
i,j

)

≥ 1 − (hl − 1)

⌈

πhl

2
√

1 − p2

⌉

e
−nq

√
1−p2r2

(6)

where J ≤
⌈

πhl

2
√

1−p2

⌉

. Which implies, as n → ∞,

1 − P
n(Ehl

)

= O
(

e
−nq

√
1−p2r2

)

(7)

Hence, limn→∞ P
n(Ehl

) = 1. So, for L anchors, we will get
∀h ∈ H (note that the set of feasible h vectors, H, does not
scale with n in this case),

1 − P
n(∩L

l=1Ehl
)

= O
(

e
−nq

√
1−p2r2

)

(8)

Hence we get the following theorem.

Theorem 3. For a given 1 > ǫ > 0, and r fixed, ∀n ≥
n0 = inf{n : r(n) ≤ r}, ∀h = [h1, · · · , hl, · · · , hL] ∈ H,

P
n
(

∩L
l=1Ehl

)

= 1 −O
(

e
−ng(ǫ)r2

)

where g(ǫ) = q(ǫ)
√

1 − p2(ǫ),

p(ǫ) =
1−ǫ+

√
(1−ǫ)2+8

4
, q(ǫ) =

−3(1−ǫ)+
√

(1−ǫ)2+8

4

Remark: We see that,

for all h ∈ H, lim
n→∞

P
n
(

∩L
l=1Ehl

)

= 1

but with an exponential convergence rate compared to the
power law scaling in the previous section. But it also says
that the precision of localisation remains fixed at r rather
than increasing with n like in the previous section.

6. EXTENSION TO RANDOMISED LATTICE

DEPLOYMENT
In the previous sections we analysed the performance of

ED-HD proportionality approximation for uniform i.i.d. de-
ployment. In this section we will prove a similar result for



the randomised lattice deployment. In randomised lattice
node deployment, the unit area is split into n cells each of
area 1

n
, and in each cell exactly one node is deployed, uni-

formly over the cell area. The locations of the nodes in
two different cells are independent of each other. We de-

note by P
(n)
RL(.) the probability measure on An so obtained

(this is different from the uniform i.i.d. measure P
n(.)). We

will show that, for this deployment also the above theorems
hold. Here we consider the case in which the radius r(n) of
the RGG scales with n as defined before. For fixed r, the
theorem is valid too, which can be proved in a similar way
as done in Section 5.

We have the following notation,

• S
i,j

k : area belonging to the ith strip of jth blade (refer
to Figures 6 and 7) of area u(n)t(n) that falls in the
kth cell of the randomised lattice structure.

Thus,
∑n

k=1 S
i,j

k = u(n)t(n), ∀1 ≤ i ≤ hl − 1, 1 ≤ j ≤
J(n). Since a single node is uniformly distributed over each
cell whose area is 1

n
,

P
n
RL

(

A
l
i,j

c
)

=
n
∏

k=1

(

1 − S
i,j

k
1
n

)

=
n
∏

k=1

(

1 − nS
i,j

k

)

We see that,

n
∑

k=1

(

1 − nS
i,j

k

)

= n(1 − u(n)t(n))
∀1 ≤ i ≤ hl − 1
∀1 ≤ j ≤ J(n)

Now, we know that the arithmetic mean is no smaller than
the geometric mean. It follows that,

P
n
RL

(

A
l
i,j

c
)

=

n
∏

k=1

(

1 − nS
i,j

k

)

≤
(

1

n

n
∑

k=1

(1 − nS
i,j

k )

)n

= (1 − u(n)t(n))n (9)

Hence we get (analysing similar to Equation 2, 3, 4 and 5)
the following theorem,

Theorem 4. For a given 1 > ǫ > 0, and r(n) = c

√

ln n

n
,

c > 1√
π
, P

n
RL(Ehl

(n)) = 1 −O
(

1

ng(ǫ)c2

)

,

where g(ǫ) = q(ǫ)
√

1 − p2(ǫ),

p(ǫ) =
1−ǫ+

√
(1−ǫ)2+8

4
, q(ǫ) =

−3(1−ǫ)+
√

(1−ǫ)2+8

4
.

Hence, limn→∞ P
n
RL(Ehl

(n)) = 1. Following a similar
analysis as in Section 4.2 for L anchors, we can state the
following theorem for randomised lattice node deployment.

Theorem 5. For a given 1 > ǫ > 0, and r(n) = c

√

ln n

n
,

c > 1√
π
, ∀h = [h1, · · · , hl, · · · , hL] ∈ H(n),

P
n
RL

(

∩L
l=1Ehl

(n)
)

= 1 −O
(

1

ng(ǫ)c2

)

where g(ǫ) = q(ǫ)
√

1 − p2(ǫ),

p(ǫ) =
1−ǫ+

√
(1−ǫ)2+8

4
, q(ǫ) =

−3(1−ǫ)+
√

(1−ǫ)2+8

4

7. ED BOUND ON A SINGLE BLADE WITH

POISSON DEPLOYMENT
Here we consider another kind of deployment, where we

pick the number of nodes with the distribution Poisson(n)
and deploy these nodes uniformly over the area A. The num-
ber of nodes falling in A is a random variable with mean n,
and since we are throwing the picked nodes uniformly over
A, the nodes falling in disjoint areas are independent and
Poisson distributed with rate proportional to the area con-
sidered. Hence, for disjoint strips with area u(n)t(n) each
and the number of node selection being Poisson(n), the num-
ber of nodes falling in each strip is Poisson(nu(n)t(n)), in-
dependent and identically distributed. Let the probability
law associated with this kind of deployment be denoted by
P

n
Po(.). Let us focus our attention to a certain blade Bl

j as
shown in Figure 7 pivoted at the anchor location bl. We also
denote the maximum and minimum Euclidean distance trav-

elled by a hl hop path within this blade by D
Bl

j

l (v, hl) and

D
Bl

j

l (v, hl) respectively. Now, ensuring at least one node in

each of the hl−1 strips of Bl
j will ensure the event E

Bl
j

hl
(n) =

{v : (1−ǫ)(hl−1)r(n) ≤ D
Bl

j

l (v, hl) ≤ D
Bl

j

l (v, hl) ≤ hlr(n)}
also occurs. So, we have for the given ǫ > 0,

1 ≥ P
n
Po(E

Bl
j

hl
(n))

≥ P
n
Po

(

∩hl−1
i=1 A

l
i,j

)

=
(

1 − e
−nu(n)t(n)

)hl−1

=

(

1 − n
−c2q

√
1−p2

)hl−1

(10)

The second inequality comes because {v ∈ ∩hl−1
i=1 Al

i,j} ⊆
{v ∈ E

Bl
j

hl
(n)} and the first equality comes because of the

independence of the number of nodes due to Poisson deploy-
ment and disjoint strips. Since in this deployment we are not
using the union bound, the expression for probability is ex-

act. Hence the bound on the probability of the event E
Bl

j

hl
(n)

is tighter, yet the rate of convergence follows the power law

(e−nu(n)t(n) = n−q
√

1−p2c2).

8. SIMULATION RESULTS
In this section, we illustrate Theorem 1 through some sim-

ulation examples. We deploy n nodes in the uniform i.i.d.
fashion on the unit square A, and form the geometric graph

G(v, r(n)), where r(n) = 4√
π

√

lnn

n
. We also have 4 anchors

at the 4 corners of A.

Illustration of Theorem 1 with increasing n for a
fixed ǫ and HD:

We fix ǫ = 0.4 and hop-distance h1 = 5 from anchor b1

located at the bottom-left corner of the unit square A. The
results are summarised in Table 1 and illustrate how the
theoretical bounds given in Theorem 1 become tighter as we
increase the number of nodes n, keeping the hop-distance h1

and ǫ fixed.
Figures 11 and 12 show the theoretical bounds given by

Theorem 1, and only those nodes are shown that have a hop-
distance h1 = 5 from anchor b1, for 1000 and 5000 nodes,
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Figure 11: Locations of nodes that are 5 hops
away from an anchor (b1) at the origin; 1000 nodes
were deployed in a uniform i.i.d. fashion. The
thin dashed lines show the ED bounds given by
Theorem 1, the thick solid line shows ED (h1 −
1)r(n) from b1; ǫ = 0.4, P

n(E1(n)) ≥ 0.37. r(n) =
4√
π

√

ln n

n
.
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5000 nodes, prob lower bound = 0.79, epsilon = 0.4

Predicted region for h = 5, on G(V,r(n)), Uniform i.i.d.

Figure 12: Locations of nodes that are 5 hops
away from an anchor (b1) at the origin; 5000 nodes
were deployed in a uniform i.i.d. fashion. The
thin dashed lines show the ED bounds given by
Theorem 1, the thick solid line shows ED (h1 −
1)r(n) from b1; ǫ = 0.4, P

n(E1(n)) ≥ 0.79. r(n) =
4√
π

√

lnn

n
.

Table 1: Euclidean Distance Lower Bound (EDLB)
= (1 − ǫ)(h1 − 1)r(n) and Euclidean Distance Up-
per Bound (EDUB) = h1r(n) are found from Theo-
rem 1. D1 and D1 are the maximum and minimum
EDs from anchor 1 given the hop-distance h1 = 5.
The theoretical Probability Lower Bound (PLB) =

1 − (h1 − 1)

⌈

πh1

2
√

1−p2(ǫ)

⌉

e−ng(ǫ)r2(n), and the Empiri-

cal Probability (EP) is found from this experiment.

r(n) = 4√
π

√

ln n

n
, ǫ = 0.4.

n r(n) EDLB D1 D1 EDUB PLB EP

1000 0.1876 0.4494 0.6934 0.9053 0.9362 0.37 1

2000 0.1391 0.3336 0.5196 0.6678 0.6950 0.61 1

3000 0.1166 0.2796 0.4313 0.5590 0.5826 0.70 1

4000 0.1028 0.2465 0.3761 0.4929 0.5136 0.75 1

5000 0.0931 0.2235 0.3428 0.4559 0.4655 0.79 1

6000 0.0859 0.2062 0.3123 0.4191 0.4295 0.81 1

respectively. We notice that, for this range of values of n,
while the maximum Euclidean distance, D1, is quite close to
the upper bound (obtained from the triangle inequality), the
lower bound is loose when compared to the minimum Eu-
clidean distance, D1. Indeed, all the node locations lie well
within the bounds, and, in fact, (h− 1)r(n) (the thick solid
quarter circle in the figures) could serve as a good approx-
imation to D1, but this bound is certainly not met with a
high probability. The theoretical lower bound on the proba-
bility of the upper and lower bounds being respected is seen
to be increasing to 1 as the number of nodes, n, is increased.

Illustration of Theorem 1 with decreasing HD for a
fixed n and a fixed lower bound on probability:

We have fixed the number of nodes n = 5000 and also fixed
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5000 nodes, prob lower bound = 0.80, epsilon = 0.48

Predicted region for h = 10, on G(V,r(n)), Uniform i.i.d.

Figure 13: Locations of nodes that are 10 hops away
from an anchor (b1) at the origin; 5000 nodes were
deployed in a uniform i.i.d. fashion. The thin dashed
lines show the ED bounds given by Theorem 1,
the thick solid line shows ED (h1 − 1)r(n) from b1;

P
n(E1(n)) ≥ 0.80. r(n) = 4√

π

√

lnn

n
.

the lower bound on probability that the node lies within the
bound of [(1−ǫ)(h1−1)r(n), h1r(n)] (as given by Theorem 1)
at 0.80. Figures 13, 14 and 15 show that as we decrease
the hop-distance h1, the bound on the ED becomes tighter,
which implies that if we keep the lower bound fixed, the ǫ
that achieves that lower bound will be smaller for smaller
hop-distances, as predicted by Theorem 1.

Illustration of convergence in probability for the ge-
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Figure 14: Locations of nodes that are 8 hops away
from an anchor (b1) at the origin; 5000 nodes were
deployed in a uniform i.i.d. fashion. The thin dashed
lines show the ED bounds given by Theorem 1,
the thick solid line shows ED (h1 − 1)r(n) from b1;

P
n(E1(n)) ≥ 0.80. r(n) = 4√

π

√

ln n

n
.

Table 2: Radius r = 0.1, h1 = 5, ǫ = 0.36. The the-

oretical PLB = 1 − (h1 − 1)

⌈

πh1

2
√

1−p2(ǫ)

⌉

e−ng(ǫ)r2

. Ab-

breviations are as defined in Table 1.
n EDLB D1 D1 EDUB PLB EP

1000 0.2560 0.3483 0.4574 0.5000 0.0000 1

2000 0.2560 0.3479 0.4677 0.5000 0.0000 1

3000 0.2560 0.3775 0.4835 0.5000 0.0000 1

4000 0.2560 0.3741 0.4843 0.5000 0.2906 1

5000 0.2560 0.3831 0.4897 0.5000 0.7733 1

6000 0.2560 0.3705 0.4826 0.5000 0.9275 1

ometric graph with fixed radius:
We fix the radius of the graph G(v, r), r = 0.1 and take

h1 = 5, ǫ = 0.36. The simulation results are summarised
in Table 2, which shows that for smaller n, the lower bound
of probability (as given by Equation 6) is weak, but the
convergence rate, due to its exponential nature, is very rapid
with increase in n.

9. CONCLUSION
In this paper, we have formally studied the often used

heuristic that HD on a geometric graph on a plane is pro-
portional to the ED. For arbitrary 2-D node placements, we
saw in Lemma 2, that for HD h ≥ 2, r < ED ≤ hr and this
is not even roughly proportional to HD. For homogeneous
random deployments, we have found that for given HD h,
(1−ǫ)(h−1)r < ED ≤ hr w.h.p. (this is true even for a non-
homogeneous node placement with a positive density over all
points of the area). Our proof techniques rely on a certain
geometric construction and the union bound. The param-
eter ǫ provides a trade-off between ED-HD proportionality
and the rate of convergence of the desired probability to 1.
This result holds for both uniform i.i.d. (Theorem 1) and
randomised lattice (Theorem 4) node placements. We also
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Figure 15: Locations of nodes that are 5 hops away
from an anchor (b1) at the origin; 5000 nodes were
deployed in a uniform i.i.d. fashion. The thin dashed
lines show the ED bounds given by Theorem 1,
the thick solid line shows ED (h1 − 1)r(n) from b1;

P
n(E1(n)) ≥ 0.80. r(n) = 4√

π

√

lnn

n
.

provide Theorems 2, 3 and 5, that can be useful for GPS-
free localisation. Simulation results show that the actual
probability of ED-bounds being respected is much closer to
1 than that provided by our bounding arguments. Given an
HD, h, the simulations suggest that [(h−1)r, hr] could serve
as a good approximation to the interval in which the EDs of
the nodes lie; however, this might not be a high probability
bound. In our future work, we seek more precise bounds
on the ED with a provably higher probability of being re-
spected.

Acknowledgements

This work was supported by a research grant from DRDO,
Government of India. We are grateful for useful discussions
with Rajesh Sundaresan, Srikant Iyer, Srivathsa Acharya,
N. E. Venkatesan and P. Vijay Kumar.

10. REFERENCES
[1] Stefan Dulman, Michele Rossi, Paul Havinga, and

Michele Zorzi. On the hop count statistics for randomly
deployed wireless sensor networks. Int. J. Sensor

Networks, I(1/2), 2006.

[2] Piyush Gupta and P. R. Kumar. Critical power for
asymptotic connectivity in wireless networks. Stochastic

Analysis, Control, Optimization and Applications, 1998.

[3] Mo Li and Yunhao Liu. Rendered Path: Range-free
localization in anisotropic sensor networks with holes.
In Proceedings of Mobicom. ACM, September 2007.

[4] Radhika Nagpal, Howard Shrobe, and Jonathan
Bachrach. Organizing a global coordinate system from
local information on an ad hoc sensor network. In
IPSN. IEEE, 2003.

[5] Swaprava Nath. Self Organisation in Random
Geometric Graph models of Wireless Sensor Networks.
Master’s thesis, Indian Institute of Science, Bangalore,
INDIA, June 2008.



r1

rr

r

d

s

φ

φ′

φ′ φ

φ

φ

φ

φ

r

r

rr

Figure 16: φ = (hl−1)π
hl+1

+ δ and φ′ = (hl−1)π
hl+1

− (hl−1)
2

δ.

[6] D. Niculescu and B. Nath. Ad hoc positioning system
(aps). In IEEE Globecom. IEEE, Nov. 2001.

[7] M. D. Penrose. Random Geometric Graphs. Oxford
University Press, 2003.

[8] Serdar Vural and Eylem Ekici. Analysis of hop-distance
relationship in spatially random sensor networks. In
Mobihoc. ACM, 2005.

[9] Sungwon Yang, Jiyoung Yi, and Hojung Cha. HCRL: A
Hop-Count-Ratio based Localization in wireless sensor
networks. In IEEE SECON. IEEE, 2007.

APPENDIX

Proof of Lemma 1: The setting for this lemma is as de-
scribed in Section 3 and as depicted in Figure 5. We had
an hl + 1 sided regular polygon with sides of length r. We
deleted a certain edge sd and increased all angles except the
two adjacent to the deleted edge by a small amount δ. The
resulting figure is as shown in Figure 16. The length of edge
sd in this new figure is r1. We restate the lemma.

Lemma: For hl > 2 and 0 < δ < 4π

hl+1
, r1 > r

Proof: Each of the internal angles except the adjacent

angles of sd is φ = (hl−1)π
hl+1

+ δ (see Figure 16) and angles

adjacent to sd are φ′ = 1
2
[total internal angle−(hl−1)×φ] =

1
2

[

(hl − 1)π − (hl − 1)
(

(hl−1)π
hl+1

+ δ
)]

= (hl−1)π
hl+1

− (hl−1)
2

δ,

hl > 2. It can be easily proved4 that the angle bisectors
of all these internal angles meet at the point c as shown in
Figure 17. Now, we apply sine rule in the triangles △sdc and
△sp1c, where p1 is the adjacent node of s other than d (see
Figure 17). z is the length of the line segment connecting s
and c. For △sdc,

r1

sin(π − φ′)
=

z

sin φ′

2

z =
r1

2 cos φ′

2

(11)

and for △sp1c,

z

sin φ

2

=
r

sin(π − φ

2
− φ′

2
)

z =
r sin φ

2

sin
(

φ+φ′

2

) (12)

4It can be shown that (π−φ′)+2(π− φ

2
− φ′

2
)+(hl −2)(π−

φ) = 2π

d

s
r

z

π − φ′

p1

φ′

2

π −
φ

2
−

φ′

2

c

r1

φ

2

Figure 17: c is the point where the angle bisectors
meet.

Eliminating z from these two equations, we get,

r1 =
2r sin φ

2
cos φ′

2

sin φ

2
cos φ′

2
+ cos φ

2
sin φ′

2

Now we have, φ−φ′

2
= hl+1

4
δ and φ+φ′

2
= (hl−1)π

hl+1
− (hl−3)

4
δ.

Hence, to show,

r1 > r

⇒ r1 − r > 0

⇒ r
sin φ−φ′

2

sin φ+φ′

2

> 0

⇒ r
sin hl+1

4
δ

sin
(

(hl−1)π
hl+1

− (hl−3)
4

δ
) > 0 (13)

For the numerator to be positive, π >
hl+1

4
δ > 0 ⇒ 4π

hl+1
>

δ > 0. For the denominator, the condition is 4(hl−1)π
(hl+1)(hl−3)

>

δ > 0, for hl ≥ 3. Together, the condition on δ is 4π

hl+1
>

δ > 0, to have r1 > r, for hl > 2 (since hl−1
hl−3

> 1 and so,
4(hl−1)π

(hl+1)(hl−3)
> 4π

hl+1
, ∀hl ≥ 3). Hence proved.


