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Abstract

We propose a collision-avoiding mechanism for a group of
robots moving on a shared workspace. Existing algorithms
solve this problem either (a) in an offline manner using the
source-destination information of all the robots or (b) in an
online manner with cooperative robots. We take a paradigm
shift to the setting with competitive robots, that may strategi-
cally reveal their urgency of reaching the destinations and de-
sign online mechanisms that take decisions on-the-fly, reduc-
ing the overhead of an offline planning. We propose a mech-
anism OMCoRP in this setting that ensures truthful revelation
of the robots’ priorities using principles of economic theory
and provides locally efficient movement of the robots. It is
free from collisions and deadlocks, and handles dynamic ar-
rival of robots. In practice, this mechanism gives a smaller
delay for robots of higher priority and scales well for a large
number of robots without compromising on the path optimal-
ity too much.

Introduction
Collision avoidance is a central problem in various multi-
agent path planning applications, and the problem has been
provided different solutions in different paradigms (Snape
et al. 2010; Chen et al. 2017; Desai et al. 2017, e.g.). In this
paper, we focus on multiple dynamically arriving and inde-
pendently controlled robots that have different priority re-
quirements for moving from their sources to destinations us-
ing a track network. The problem is motivated by many com-
mercial settings where the robots are controlled by indepen-
dent operators, e.g., in autonomous vehicle movements or
shared warehouses for goods dispatch, and have strict dead-
lines of delivery leading to different levels of urgency. In
such settings robots can potentially manipulate for a priori-
tized scheduling. In this paper, we leverage the potential of
online mechanism design to ensure truthful, class-prioritized
dispatch of robots along with other desirable properties like
collision and deadlock avoidance.

Our Approach and Results
We propose an online mechanism that decides the move-
ments when multiple robots come to a near-collision situa-
tion, i.e., the robots try to simultaneously access less amount
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of space. The competitive robots in our setting engage in a
game1 and bid the amount they are willing to pay to get ac-
cess to those spaces. In our protocol, the robots that ‘win’
the game get access to move, but for a payment. Since the
true urgencies of the robots are their private information, the
challenge in designing a protocol that picks the ‘truly’ de-
serving robots as the winners of this game requires truthful
mechanism design approach.

To this end, we consider a quasi-linear payoff model
(Shoham and Leyton-Brown 2008, Chap 10) for the robots
and propose Online Mechanism for Competitive Robot
Prioritization (OMCoRP), which decides the priority plan on-
line during a collision scenario. We show that OMCoRP is
collision-free, deadlock-free, and robust against entry-exit
(Claim 1). Every competitive robot reveals its private in-
formation truthfully under OMCoRP (Theorem 1), does not
have a positive surplus of money, and is locally efficient
(Theorem 2).

Detailed experiments (§) show that OMCoRP (1) scales
well with large number of robots, (2) takes much less run-
ning times compared to the state-of-the-art offline motion
planning algorithms like M* (Wagner and Choset 2011) and
prioritized planning (van den Berg and Overmars 2005),
(3) does differentiated prioritization of different classes of
robots, and (4) handles dynamic arrivals smoothly. The ex-
perimental results show that even if OMCoRP were to be im-
plemented in a cooperative environment (as opposed to the
competitive environment, for which it is designed), it would
still perform reasonably well as an online collision-avoiding
algorithm.

We have simulated our mechanism for up to 500 robots in
Python experimental setup and up to 10 TurtleBots (Garage
2011) using ROS (Quigley et al. 2009). Successful simula-
tion in ROS promises that the proposed mechanism can be
implemented in a real multi-robot system.

Related Work
Robots sharing the same track network (Guizzo 2008;
Bogue 2016; Wulfraat 2016) are prone to collide with each
other. To avoid that collision, primarily three different ap-
proaches are employed in the literature.

1A game is a strategic interaction between multiple self-
interested agents.



In the first approach, static multi-robot planning algo-
rithms are employed to generate the collision-free paths for
all the robots offline (Erdmann and Lozano-Perez 1986;
van den Berg and Overmars 2005; Yu and LaValle 2013;
Turpin, Michael, and Kumar 2014; Wagner and Choset
2011; Saha et al. 2014, 2016, e.g.). However, (a) the compu-
tation time for generating path plans for a large number of
robots may be prohibitively high, and (b) they cannot deal
with the dynamic arrival of new robots to the system with-
out recomputing the whole plan.

In the second approach, the robots independently gener-
ate their trajectories offline without the knowledge about
the trajectories of the other robots (Azarm and Schmidt
1997; Chun, Zheng, and Chang 1999; Jager and Nebel
2001; Pallottino, Scordio, and Bicchi 2004; Olfati-Saber,
Fax, and Murray 2007; Hoffmann and Tomlin 2008; Purwin,
D’Andrea, and Lee 2008; Velagapudi, Sycara, and Scerri
2010; Snape et al. 2010; Desaraju and How 2012; Chen
et al. 2017, e.g.). Hence, the trajectories of the robots are
not collision-free, but are resolved online in a decentral-
ized manner through information exchange among the po-
tentially colliding robots, assuming that the robots will coop-
erate with their movements. If the simultaneous movements
of the robots are not possible, the robots run a distributed
consensus algorithm to find a collision-free plan.

In the third approach, robots bid for their makespan or
demand for resource in an auction-like setting (Lagoudakis
et al. 2005; Bererton, Gordon, and Thrun 2004; Nunes and
Gini 2015; Calliess, Lyons, and Hanebeck 2011). Algo-
rithms designed for such setups do not allow robots to be
owned and controlled by independent agents, and there-
fore do not ensure that these agents bid their privately ob-
served information (makespan or demand of resource) truth-
fully. However, the combinatorial auction reduction of the
MAPF problem (Amir, Sharon, and Stern 2015) does sat-
isfy truthtelling, but it is centralized and therefore has the
same limitations of time complexity and dynamic arrival.
The other strand of literature (Takei et al. 2012; Dhinakaran
et al. 2017) on non-cooperative robots consider other robots
as dynamic obstacles and solve computationally hard mixed
integer programs in a centralized manner.

Problem Setup
Define N := {1, . . . , n} to be the set of robots that are trying
to travel from their sources to destinations over a directed
graph G = (V,E), where V is the vertex set and E is the
edge set. We assume that each vertex has at least one out-
going edge. Time is discrete and is denoted by the variable
t. Every edge in the graph is partitioned into slots where a
robot can stand at any given time step. Every slot is uniquely
numbered with S being the total number of slots. We repre-
sent the k-th slot by xk, k ∈ {1, . . . , S}. We call every ver-
tex having an in-degree of two or more an intersection point,
since robots moving into such vertices cannot guarantee to
avoid a collision without coordinating with each other. An
intersection vertex is a roundabout having a fixed number of
slots, which we call the capacity of the intersection. Every
roundabout can hold robots equal to the number of slots at

any given time and the movement of all the robots is unidi-
rectional (e.g., counter-clockwise). An example of an inter-
section vertex with four incoming and four outgoing edges
is illustrated in Fig. 1. Note that any directed graph with
slotted directed edges can be equivalently represented with
a graph having directed edges and vertices with roundabout
structure.

direction of traffic

spot for robot to stand

cells

detailed structure of the following

vertex-edge configuration

Figure 1: Illustration of a vertex with four incoming and four
outgoing edges.

In an online traversal plan of the robots, every robot de-
cides its path offline based on its private information and
through communication with a local intersection manager
(LIM), i.e., a trusted automated intermediary at every inter-
section. The role of an LIM is to collect the robots’ (near
that intersection) urgency information and coordinate a lo-
cal movement plan when the robots reach near the inter-
section. Let the path of robot i ∈ N be denoted by Pi :=
(xk1

, xk2
, . . . , xkl(i)

), where xkj
’s are the slots of the graph

leading from the source to the destination of i and l(i) is the
length of the path. A collision occurs if more than one robot
simultaneously move into a slot. We assume that a collision
is infinitely costly that each robot wants to avoid. Collision
can occur (a) at an intersection where two robots intend to
move to the same empty slot, or (b) on a slot on an edge
where a robot is stationary and another robot moves into the
same slot. The current location of robot i at t be denoted by
`i(t), and the next intended location by ni(t).

We assume that these robots are independently controlled
(or owned) by agents who have no information about other
robots’ locations, sources, destinations, and priorities. Each
robot has a deadline to reach its destination, which is en-
coded into its value at each time step, i.e., a monetary gain
when the robot is allowed to move in a time step. The pri-
ority of a robot is determined by this number since a robot
with a high value indicates that it has a high urgency to reach
its destination, e.g., robots carrying priority shipping items.

We assume that a robot’s value in each time step is calcu-
lated internally by the entity that controls it by considering
several factors, e.g., its proximity to the deadline, the type
of objects it is carrying (high, if it is carrying a priority ship-
ping item), and all such factors are consolidated into a real
number vi(t) for robot i if it can move to its next location
ni(t) at time t+1. If the robot does not move at t, the value
vi(t) is zero 2. The value vi(t) of robot i is measured in the

2We assume this for simplicity and our results hold even when
the value is non-zero and has the same time complexity.



unit of money that it is willing to pay for its movement at
t+ 1.

We emphasize that in this paper, we have used the inter-
section of four incoming and outgoing edges (Fig. 1) as a
running example for simplicity and also because this struc-
ture is widely used in real applications, e.g., in warehouses
of Amazon3 or Alibaba4. However, our results are perfectly
general for any directed graph with vertices having a traffic
roundabout and a pre-defined rule of movement (e.g., coun-
terclockwise in the example of Fig. 1).

In this paper, our objective is to design an online mecha-
nism that is formally discussed in the following section.

Online Mechanisms
In an online mechanism, every robot independently finds the
shortest path from its source to destination and follows it.
These paths may not be collision-free. Therefore, an online
mechanism needs to resolve the two aforementioned possi-
ble types of collision when the robots are mobile. The col-
lision between a stationary robot with another that moves in
the same slot on an edge can be easily resolved by equipping
every robot with a sensor that can sense the movement of
the other robot(s) in front of it. High accuracy range-finding
sensors like LiDAR5 provide autonomous robots with such
capability. The main task of collision avoidance and priori-
tization therefore happens at the intersections.

We consider online mechanisms in this setting that aim
to achieve an efficient6 (Shoham and Leyton-Brown 2008,
Chap 10) plan of movement. When robots compete for pri-
oritized movements, a desirable mechanism prioritizes the
robots with higher values over that with lower values –
breaking ties arbitrarily. We provide a formal definition of
‘efficiency’ in ?? .

Since the robots are independently controlled, the value
information, vi(t), i ∈ N , are private to the agents. Colli-
sion mitigation in such scenarios needs a mechanism which
asks each robot to report their values at every collision sce-
nario and plans the movement. Competitive robots can over-
bid its value to ensure that it is prioritized in every collision
scenario.

This is precisely where our approach using the ideas of
mechanism design (Börgers 2015) is useful. In mechanism
design theory, it is known that in a private value setup, if
the mechanism has no additional tool to penalize overbid-
ding, only degenerate mechanisms, e.g., dictatorship (where
a pre-selected agent’s favorite outcome is selected always),
are truthful (Gibbard 1973; Satterthwaite 1975). This nega-
tive result holds irrespective of whether agents’ preferences
are ordinal (representable as an order relation over the out-
comes) or cardinal (agents have a real number to represent
the intensity of the preference). Note that in our setup, the

3Video: https://youtu.be/Ox05Bks2Q3s?t=20
4Video: https://youtu.be/jwu9SX3YPSk?t=37
5https://www.geospatialworld.net/blogs/why-lidar-is-

important-for-autonomous-vehicle/
6In microeconomic theory, the alternative that maximizes the

sum of the values of all the agents is called ‘efficient’ (see (Börgers
2015)).

robot’s preferences are cardinal. A complementary analysis
by Roberts (1979, Thm 7.2) shows that a dictatorship re-
sult reappears under certain mild conditions in a quasi-linear
setting (which is our current setting and is formally de-
fined later), unless monetary transfers are allowed. Money,
in these settings, is used as a means of transferring value
from an agent to another, and it is shown to help by unravel-
ing the true values of the agents. In this paper, we, therefore,
use monetary transfers among the agents to ensure truthful
value revelation at every round.
Robot payoff model: At every time step t, given the current
position of the robots, denote the set of feasible next-time
step configurations by A(t + 1). Hence, for every feasible
configuration a ∈ A(t + 1), robot i’s valuation is given by
vali(a, vi(t)) = vi(t) if robot i is allowed to move to ni(t)
under a, and zero otherwise. The mechanism also recom-
mends robot i to pay pi(t) amount of money. The net payoff
of robot i is given by the widely used quasi-linear formula
(Shoham and Leyton-Brown 2008, Chap 10)

vali(a, vi(t))− pi(t). (1)

A strategic robot reports its private information vi(t) to max-
imize its net payoff. We assume that the robots are rational,
i.e., choose their actions to maximize their payoff. A mech-
anism in such a setting is defined as follows.
Definition 1 (Mechanism) A mechanism (f :=
[ft]t=1,2,...,p := [pi,t]i∈N,t=1,2,...) is a tuple which
decides the allocation and payment for every robot at every
time step t for the reported values of the players denoted by
v̂1(t), . . . , v̂n(t). Here the allocation function at time t is
given by ft : Rn 7→ A(t + 1) that decides the next location
of every robot i ∈ N , and pi,t : Rn 7→ R denotes the pay-
ment made by the robot. Hence, ft(v̂1(t), . . . , v̂n(t)) and
pi,t(v̂1(t), . . . , v̂n(t)) denote the allocation and payment of
robot i respectively at time step t.
Local intersection management: We assume that a mecha-
nism (f ,p) is implemented by the LIMs at every intersec-
tion. The robots that are either inside or near an intersection
participate in the mechanism and bid their values to the LIM.
At the beginning of each time step t, an LIM collects the bids
of the local robots that sent their bids until t, decides the al-
location ft and collects the payments according to pt. Any
bid that comes after that is considered at step t + 1, and the
LIM provides an option to that robot to update its bid before
t + 1 7. That way the LIM synchronizes the robots which
are not carrying a synchronized clock. In this paper, we con-
sider allocation and payment functions to be stationary, i.e.,
independent of t.
A naı̈ve online mechanism: consider a mechanism which
allows the highest bidder to move whenever two or more
robots intend to enter a common slot. This allocation rule
can be made truthful by adding the following payment rule.
The robot that is prioritized pays the amount equal to the
bid of second highest bidding robot that stops at that time.
This is the well-known second price auction (Vickrey 1961),
which is known to be truthful. Clearly, the robots under this

7This is because if a robot submits its bid at t + ε, with ε > 0
small, it may have a different valuation at t+ 1.



mechanism successfully avoid collision in an online manner.
But, it can lead to the following deadlock scenario. Suppose
the intersection is of four full-duplex paths with four cells at
the intersection (Fig. 2). If there are two robots at the inter-
section and two more are attempting to enter, and both the
entering robots win the auction for those slots, it will lead to
the four cells at the intersection occupied with four robots. If
these robots’ next locations are the current locations of the
robots already in the intersection, none of them can move
under this mechanism (see Fig. 2) and it will lead to a dead-
lock.

auction winning robot

auction winning robot

dashed arrows show the past position

deadlock

and direction of the red robots

Figure 2: Example of a deadlock scenario. Arrows denote
their intended direction of move.

To avoid such a deadlock, a mechanism cannot allow
more than (m − 1) robots to enter an intersection of capac-
ity m. We propose the online mechanism OMCoRP (Online
Mechanism for Competitive Robot Prioritization) to resolve
the issue of deadlock, and also ensure prioritized treatment
of truly deserving robots. It considers the quasi-linear pay-
off model and designs the allocation of slots and payments
to obtain several desirable properties.

Description of OMCoRP
For a given graph G, let the set of indices of the intersection
vertices be represented by K. Denote the cells of intersec-
tion vertex k ∈ K by Ik(V ). OMCoRP has two components:
(a) the primary component runs at the LIMs at every inter-
section; it listens to the messages sent by the robots either
inside or attempting to enter the intersection and decides the
allocation and payment for each of them at every time step,
and (b) a recommendation for a collision-free travel on an
edge. Part (b) is rather straightforward, where each robot is
asked to FOLLOW the robot in front of it or GO if there is
no such robot to follow. We assume that in addition to taking
actions STOP and GO, the robots are also capable of taking
an action FOLLOW, which is defined as follows. In this ac-
tion, a robot follows the robot that is currently obstructing its
movement (call it the leader robot), and if the leader moves
then the follower also moves in the same time step. Hence,
in the remaining part of this section, we will discuss only
part (a) of OMCoRP.
OMCoRP decides when the robots enter an intersection.

Consider intersection k. At every time step t, the LIM at k
finds the set of robots Nk(t) that are either inside the inter-
section or are attempting to enter the intersection. From the
information shared by all the robots (`i(t), ni(t), vi(t)), i ∈
Nk(t), the mechanism allows the LIM to find the feasible

Algorithm 1 OMCoRP run by the LIM at Ik(V ) at time t

1: Input: for every robot i ∈ Nk(t), the current and future
cells `i(t), ni(t), and reported value v̂i(t)

2: Output: decisions for every robot i ∈ Nk(t) to
STOP/GO

3: compute a∗k(t+1) (Equation (2)) and suggest the robots
i ∈ Nk(t) to STOP/GO according to that recommenda-
tion in time t+ 1

4: charge pi(t) (Equation (4)) to every i ∈ Nk(t)
5: collect this money and distribute equally to all j ∈ N \

Nk(t)

next-step configurations Ak(t + 1) at that intersection. The
feasible configurations ensure that there are no more than
(m− 1) robots in the intersection of capacity m at any time
step t. The proposed mechanism picks the configuration

ak ∈ argmax
a∈Ak(t+1)

∑
i∈Nk(t)

vali(a, vi(t)). (2)

The configuration maximizes the sum of the values of all the
robots that are either inside or are entering the intersection.
Denote this maximizer by a∗k(t+1). Similarly, we can define
a sum-value maximizing configuration excluding robot i as
follows.

a
Nk(t)\{i}
k ∈ argmax

b∈ANk(t)\{i}
k (t+1)

∑
j∈Nk(t)\{i}

valj(b, vj(t)).

(3)

Denote this sum-value maximizing configuration except i by
a
∗,Nk(t)\{i}
k (t+ 1). Define the payment as the difference

pi(t) :=
∑

j∈Nk(t)\{i}

valj(a
∗,Nk(t)\{i}
k (t+ 1), vj(t))

−
∑

j∈Nk(t)\{i}

valj(a∗k(t+ 1), vj(t)). (4)

We are now ready to present our proposed mechanism
OMCoRP. For the LIM of intersection k at time t, it is de-
scribed in Algorithm 1. The mechanism is repeated at every
t at every intersection k ∈ K until each robot reaches its
destination.
OMCoRP is the standard Vickery-Clarke-Groves (VCG)

mechanism (Vickrey 1961; Clarke 1971; Groves 1973) run
among the robots in Nk(t) at every time step t. It is known
that repeated version of the VCG mechanism may not satisfy
all the properties of the static version. However, we discuss
later in this section why OMCoRP induces a fresh instance
of the VCG mechanism in every time step in our setup and
therefore differs from the repeated VCG.

Note that in the algorithm, we have assumed that the cur-
rent and next locations `i(t), ni(t) of robot i ∈ Nk(t) are
known to the LIM. This can either be measured or asked
from the robot i itself. The robots will be reporting it truth-
fully since if this is misreported, the LIM will plan the move-
ments according to the misreported locations. This may lead
to a plan where some other robot is suggested to move into



a location which is the current location of the misreporting
robot. This will lead to a collision. Since the robots cannot
communicate with each other in our model and that the col-
lisions are infinitely costly, the best response for every robot
is to report the locations truthfully. Hence in the rest of the
paper, we will consider that the robots can misreport only in
their valuations.

Also in Step 5 of Algorithm 1, the consolidated payment
collected by the LIM at intersection k at t from all the robots
at that intersection is distributed equally to the robots that
were not part of intersection k at t. Therefore, OMCoRP does
not accumulate money from the agents.

Few Observations on the Mechanism
In this section, we make a few observations on the purpose
of the LIMs and the difference of OMCoRP with a repeated
VCG mechanism.
Efficacy of the LIMs: The whole computational burden of
finding a collision-free path in OMCoRP is divided between
the LIMs and the robots unlike that of a central planner in
centralized motion planning algorithms. However, the local
computations at the LIMs and the robots are minimal and
they satisfy certain important properties as we will see in
the following sections.
OMCoRP does not require the robots to have a synchro-

nized clock. Each robot either FOLLOWs the robot in front
of it (if present) or continues its movement according to the
shortest path plan when on the edges of the graph. When
robot i reaches an intersection, it stops and transmits the req-
uisite bid to the LIM and waits for the LIM’s signal before
moving. This makes OMCoRP a locally synchronized online
mechanism.

It is worth discussing the need of the LIMs, since the lo-
cal decisions of movement at the intersections could have
been coordinated by the robots themselves in a decentral-
ized manner. They could exchange messages of their cur-
rent, intended future locations, and valuations, and compute
the local plan of movement at every robot’s end. There are
two disadvantages of this approach. In this mode, each robot
repeats the computation held at the LIM. But most impor-
tantly, the VCG mechanism employed here is designed for
simultaneous actions of the players, which keeps the com-
munication among the players and computation by the LIM
simpler. It does not work if the robots can take sequential
actions (picks action after observing the action of others).
In practice, for the decentralized approach (a) perfect syn-
chronization among the messages of the robots is needed
which is difficult to achieve in practice, and (b) the adver-
sarial robots may not synchronize deliberately since the last
mover has advantages in sequential actions. Hence, we need
a trusted arbitrator like the LIM that receives the informa-
tion of the robots and communicates the movement plan, but
does not reveal the reported information to the other robots.
Difference with the repeated VCG: The LIMs do not share
the reported information of the robots to one another, hence
a robot can only learn the movement of the other robots and
infer their relative valuations across the rounds. E.g., if robot
A moves in a round where robot B is kept stationary, then
B learns that A had a higher valuation. However, if both A

and B move or remains stationary in a round, they would
not learn their relative valuations as they only communicate
with the LIM. If we focus on a pair of robots taking part in
OMCoRP at an intersection at t, they may or may not have
competed for a slot in the intersection (‘compete’ means that
in a feasible allocation both of them cannot be allowed to
move). If they competed, only then they could learn about
the relative valuation of the other robot. But it is easy to see
that under OMCoRP if the pair of robots compete in a time
step t, they do not again compete in any future time step
t′ > t. This is because if two robots cannot simultaneously
be a part of a feasible allocation in any time step, one of them
will move under this mechanism, and in future time steps,
the same pair of robots will not compete again for a slot in
the intersection. This is how OMCoRP avoids the repeated
interaction of the robots.

Before advancing to the desirable properties, here is the
summary of the features and assumptions of OMCoRP. (1)
All robots are locally synchronized in time via an LIM,
which receives the messages from the local robots and cre-
ates the plan of movement online. The robots do not need
to carry a synchronized clock for OMCoRP. (2) The model
and results are for any arbitrary directed (direction show-
ing the flow of traffic) graph. The examples and experiments
are on specific graphs that represent real-world configura-
tions. (3) Each robot has a geometry that fits well within a
slot and does not collide with a robot in a different slot. (4)
Robots are equipped with sensors that allow them to execute
the FOLLOW action (see discussion in the beginning of ?? ).

Design Desiderata
In an online robot path planning algorithm, the agents
choose their own route from the source to the destination.
The collision avoidance mechanism ensures a protocol that
is applied locally at a potential colliding scenario. The prop-
erty desirable in such a setting is a locally efficient prioriti-
zation.
Definition 2 (Local Efficiency) A robotic collision avoid-
ance mechanism (f ,p) is locally efficient if for every time t,
every intersection k ∈ K, it chooses an allocation that max-
imizes the sum value of all the robots in Nk(t). Formally, it
picks ∀t, ∀k ∈ K

f(vi(t), i ∈ Nk(t)) ∈ argmax
a∈Ak(t+1)

∑
i∈Nk(t)

vali(a, vi(t)).

However, in a multi-agent setting, vi(t)’s of the robots are
unknown to the mechanism, which can only access the re-
ported values v̂i(t)’s. Therefore, the following property en-
sures that the robots are incentivized to ‘truthfully’ reveal
these information.
Definition 3 (Dominant Strategy Truthfulness) A mecha-
nism (f ,p) is truthful in dominant strategies if for every t,
vi(t), v̂i(t), v̂−i(t)

8, and i ∈ N

vali(f(vi(t), v̂−i(t)), vi(t))− pi(vi(t), v̂−i(t))

> vali(f(v̂i(t), v̂−i(t)), vi(t))− pi(v̂i(t), v̂−i(t)).
8We use the subscript −i to denote all the agents except agent

i, therefore, v−i := (v1, . . . , vi−1, vi+1, . . . , vn).



The inequality above shows that if the true value of robot i is
vi(t), the allocation and payment resulting from reporting it
‘truthfully’ maximizes its payoff irrespective of the reports
of the other robots (hence the name dominant strategy).

Since we consider mechanisms with monetary transfer, an
important question is whether it generates a surplus amount
of money. The following property ensures that there is nei-
ther surplus nor deficit.
Definition 4 (Budget Balance) A mechanism (f ,p)
is budget balanced if for every t and (vi(t), v−i(t)),∑

i∈N pi(vi(t), v−i(t)) = 0.
In the context of online robot path planning, a mechanism

that is robust against robot failures is highly desirable. Also,
it is desirable if a robot can start its journey when other
robots are already in motion, and the mechanism does not
need other robots to re-compute their path plan.
Definition 5 (Entry-Exit Robustness) A mechanism (f ,p)
is robust against entry or exit of the robots if (a) it allows
newly arrived robots to join immediately, and (b) the prop-
erties satisfied by the mechanism at a given time step with
the existing robots are unaffected by an addition or deletion
of a robot.
Offline, centralized collision avoidance mechanisms that
compute the paths for all robots and recommend those paths
to the robots are not robust against entry or exit. With ev-
ery addition or deletion of a robot, the plan has to be re-
computed. On the other hand, entry-exit robustness is not a
consequence of a mechanism being online. Online-ness only
implies that the decisions are taken on on-the-spot by either
the robots or the LIMs. It does not restrict the way in which
they interact with each other. Based on the interaction, the
plan may not be robust against entry-exit, as the following
example shows.
Example 1 (Online but not Entry-Exit Robust)
Consider the following online version of the priori-
tized planning (PP) algorithm (van den Berg and Overmars
2005). Before beginning to move, the robots send their iden-
tities on a common channel (assume that there is a wired
broadcast channel connecting all the starting positions) and
determine their relative priorities, but this common channel
is not available when they are on the move. The robot with
the highest priority computes its path and broadcasts it
(the priority order is fixed beforehand and is a common
knowledge of all the robots). After listening to that plan,
the second highest priority robot plans its path considering
the former as a dynamic obstacle and broadcast, and the
process continues for robots of the next priorities. After all
robots compute their plans in this decentralized manner,
they leave their parking slots and follow their pre-decided
plan of movement. If new robots are added during the
movement of these robots, the online algorithm can admit
them in the movements, but cannot ensure that all other
robots who have a lower priority than the newly entered
one will update their path plans accordingly. Thereby,
this online version of the PP algorithm cannot ensure the
priorities among all the participants which is guaranteed by
the offline PP algorithm if all robots started simultaneously.
Hence, this scheme is not robust against entry-exit.

In the following section, we show that our proposed
mechanism satisfies all these properties. In ?? , we con-
sider a real warehouse setting and exhibit the performance
of OMCoRP in practice.

Theoretical guarantees
The property of truthfulness is important in the multi-agent
setting since it ensures that the allocation decision is taken
on the true values of vi(t)’s and the actual locally efficient
allocations were done.

Theorem 1 OMCoRP is dominant strategy truthful.

Proof : This proof is a standard exercise in the line of the
proof for Vickery-Clarke-Groves (VCG) mechanism (Vick-
rey 1961; Clarke 1971; Groves 1973). OMCoRP follows the
VCG allocation and payment locally at every intersection
calculated by the LIM. Hence, the payoff of robot i at in-
tersection k is given by (for brevity of notation, we hide the
time argument in every function and write a∗k as a∗k(vi, v−i))

vali(a∗k(vi, v̂−i), vi)− pi(vi, v̂−i)

=
∑
j∈Nk

valj(a∗k(vi, v̂−i), v̂j)−
∑

j∈Nk\{i}

valj(a
∗,Nk\{i}
k , v̂j)

>
∑
j∈Nk

valj(a∗k(v̂i, v̂−i), v̂j)−
∑

j∈Nk\{i}

valj(a
∗,Nk\{i}
k , v̂j)

= vali(a∗k(v̂i, v̂−i), vi)− pi(v̂i, v̂−i).

The first equality is obtained by writing and reorganizing the
expression for pi. The inequality holds since by definition∑

j∈Nk
valj(a∗k(vi, v̂−i), v̂j) >

∑
j∈Nk

valj(ak, v̂j) for
every ak; in particular, we chose a∗k(v̂i, v̂−i). The last
equality is obtained by reorganizing the expressions again.
�

OMCoRP redistributes the generated money from a partic-
ular intersection k to the robots who are not part of it at that
time step (see Step 5 of Algorithm 1). Clearly, this does not
affect the truthfulness properties. The generated surplus be-
fore redistributing can be shown to be always non-negative.9
The allocation of OMCoRP, given by Equation (2), maxi-
mizes the sum-value at every intersection. Therefore, it is
locally efficient. Hence we get the following theorem.

Theorem 2 OMCoRP is budget balanced and locally effi-
cient.

OMCoRP satisfies certain properties by construction. The
following claim summarizes them and we explain it below.

Claim 1 OMCoRP is collision-free, locally deadlock-free,
and robust against entry or exit.

In OMCoRP, each robot near an intersection point does
message exchange with the LIM, and then move syn-
chronously according to the recommendation of the LIM.

9The intuition for this claim is that the absence of a robot re-
duces congestion, which leads to the other robots being allowed to
move. This increases the sum of the values of the other robots in
the absence of that robot. We skip a formal proof of this fact.



The LIM computes the allocation which keeps one slot in the
intersection empty (by definition of the allocation set Ak).
Thus the robots avoid collision and deadlock.

Note that OMCoRP depends only on the values reported
by the robots that are already in an intersection or are about
to enter it. A newly entered robot can at most take part in
such an interaction, but cannot change the way other robots
in other intersections interact with each other. Hence, the
properties that those robots were satisfying, e.g., truthful-
ness, budget balance, efficiency etc., before the entry of this
robot continue to be satisfied. Hence we get the claim.

In the following section, we investigate the performance
of OMCoRP in real-world scenarios.

Experiments
While OMCoRP satisfies several desirable properties of a
collision avoidance mechanism, its scalability, time com-
plexity to find a collision-avoiding path, and differentiated
treatment with different classes of robots are not theoreti-
cally captured. This is why an experimental study is called
for. Note that the mechanisms that fall in the third set of ap-
proaches in § either only use the bidding part of the auctions
and not the payment which is essential to guarantee truthful-
ness in an auction (Lagoudakis et al. 2005; Bererton, Gor-
don, and Thrun 2004; Nunes and Gini 2015; Calliess, Lyons,
and Hanebeck 2011) or is a reduced combinatorial auction
of a centralized offline algorithm (Amir, Sharon, and Stern
2015). In either way they are incomparable with OMCoRP,
which is truthful and online. We compare OMCoRP with two
widely used offline path planning algorithms for multi-agent
path finding – (a) M* (Wagner and Choset 2011): optimal,
but has a significant time complexity, and (b) prioritized
planning (PP) (van den Berg and Overmars 2005): subop-
timal, but has low time complexity.

To evaluate OMCoRP experimentally, we use a 2-D rectan-
gular workspace representing a track network. An example
of such a workspace of size 16 × 16 is shown in Fig. 3. A
robot picks and delivers an object from and to a cell in the
service area. Each robot follows the traffic rules in the road
network, and moves along with the directions of the arrows
from the source to the destination. Note that this network can
be represented as a grid graph with edges in both directions
over the grid. It can change its direction only within an in-
tersection cell, but its options are restricted by the available
traffic directions in that particular intersection cell.

For the experiments, time is slotted and we assume that
the robots move synchronously according to that slotted time
system. We will use two measures to evaluate the perfor-
mance of OMCoRP: (a) makespan, which is the maximum
number of time steps to reach the destination from the source
for all the robots, and (b) total cost, which is the sum of the
number of time steps for all the robots to reach their desti-
nations.

A robot is generated uniformly at random from one of
the three classes: economy, regular, and premium having
weights 0.02, 0.065, and 0.2 respectively.10 At every time
step, the true valuation of a robot entering an intersection is

10Weights are increasing with a rough multiplying factor of 3.25.

Figure 3: Illustration of a 16× 16 workspace.

assumed to be (twait + 1) × w, where twait is the wait time
of the robot till that instant and w is the weight as described
above. All the robots start simultaneously in all the sections
except ?? , where arrivals are dynamic.

We have implemented OMCoRP in Python. The simula-
tions have been performed in a 64-bit Ubuntu 14.04 LTS
machine with Intel(R) Core TM i7-4770 CPU @3.40 GHz
× 20 processors and 128 GB RAM. Each run for a specific
number of robots and the workspace size is performed 20
times to calculate the average of the result. The source and
goal locations of the robots are selected independently and
uniformly at random from the cells of the service area.

Scalability
We evaluated the scalability of OMCoRP on workspaces of
four different sizes: 100 × 100, 198 × 198, 401 × 401 and
499 × 499,11 and for different number of robots between
10 and 500. Fig. 4 shows how the computation time of
OMCoRP varies with the number of robots and the size of
the workspace. The computation time of OMCoRP is the sum
of two components: (a) time for an offline path computation
and (b) the time required to run the online mechanism at dif-
ferent LIMs (given by Algorithm 1). In our experiments, we
assumed that the robots computed their paths to reach the
destination using A* algorithm (Hart, Nilsson, and Raphael
1968). As this computation can take place in parallel, we
count the maximum of the path computation times for all the
robots as the offline computation time (part (a)). For part (a),
we assume that each time step begins with a tiny duration
when the online component of the mechanism executes at
an intersection. We assume that the remaining time in a time
step is sufficient for a robot to move into its intended slot.
We take the product of this tiny duration with the makespan
to find the total time spent in part (b). The tiny duration has
been decided based on extensive simulation with different
reasonably-sized workspaces and robot populations.

Comparison with static multi-robot planning
algorithms
We compare the performance of OMCoRP with that of
M* (Wagner and Choset 2011) and prioritized planning
(PP) (van den Berg and Overmars 2005), two state-of-the-
art multi-robot path planning algorithms. The goal of these

11These numbers ensure a regular pattern of the workspace of
Fig. 3.
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Figure 4: Offline and online components of the computa-
tion time of OMCoRP. The numbers on the bars show the
workspace width for each number of robots.

experiments is to show that though OMCoRP has been de-
signed for competitive robots, it is also effective as an on-
line planning mechanism for a cooperative multi-robot sys-
tem. In that case, we can omit the payment component of
OMCoRP as we do not need to ensure the truthfulness of
the participating robots. The original version of M* ensures
the optimality of the generated multi-robot plan in terms of
the total cost. However, a variant of M* called inflated M*
can produce a sub-optimal plan faster than the original M*.
OMCoRP is also compared with inflated M*. The PP algo-
rithm also does not provide any optimality guarantee, but
can generate collision-free paths much more time-efficiently
than both versions of M*.

We compare OMCoRP, M*, inflated M*, and PP for a
100 × 100 workspace and different number of robots up to
500 robots. We have set a timeout of 1200s (20mins). If the
computation does not finish before the timeout, we consider
the timeout duration as the computation time of the algo-
rithms (which is a lower bound). The experimental results
are shown in Fig. 5. The lines connect through the average
values of the computation times, while the actual computa-
tion times for 20 runs for every number of robots are scat-
tered according to their values in the figure. The results show
that OMCoRP outperforms all the other three algorithms in
terms of computation time. M* and inflated M* algorithms
do not scale beyond 75 robots for this timeout.

Fig. 6 compares the makespan (maximum time among all
robots to reach destination) and average path execution time
(the average of the individual path lengths) for the mecha-
nisms for a workspace of size 100× 100. The method of the
plot is identical to Fig. 5. The numbers on top of the bars
show the percentage of successful completion (not hitting
timeout). The results show that there is not much difference
in the two metrics of these mechanisms (except PP, which
is statistically significantly larger in both metrics) and that
OMCoRP provides a path which is very close in length to
that of the optimal path generated by M*.

Delays of different priority classes
We compare the waiting time and average payments of the
robots of different classes (economy, regular, and premium)
under OMCoRP. The first and second subplots of Fig. 7 show
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Figure 5: The y-axis shows the total computation time (in
sec) of the different algorithms and the x-axis shows the
number of robots. Workspace size 100× 100.
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Figure 6: Average path length and makespan for different
mechanisms. The numbers on the bar denote the percentage
of cases where the mechanism could find a path within the
timeout period.

the average payments and waiting times respectively of the
different classes of robots for a workspace size of 100×100.
We see that when the number of robots is large, OMCoRP
prioritizes the higher classes for a greater payment. The dif-
ference in the waiting times in such cases is statistically sig-
nificant.

30 60 90 120 150
Number of Robots

0.00

0.02

0.04

0.06

Av
g.

Pa
ym

en
t

Economy
Regular
Premium

30 60 90 120 150
Number of Robots

0.00

0.25

0.50

0.75

1.00

Av
g.

W
ait

ing

Economy
Regular
Premium

Figure 7: Average waiting time (in sec) and payments under
OMCoRP for different classes of robots.



Capability of handling dynamic robot arrival
In this section, we study the robustness of OMCoRP against
dynamic robot arrivals. The setup remains similar to the pre-
vious subsections with the following differences. We par-
tition the total number of robots into two groups of equal
size for this evaluation. The first group of robots arrive at
the beginning. The rest 50% of the robots arrive indepen-
dently and uniformly at random within the time interval of
zero and the length of the workspace. In OMCoRP, a newly
arrived robot computes its own path by using the A* algo-
rithm (Hart, Nilsson, and Raphael 1968), and starts to fol-
low that path immediately. However, in M*, a newly arrived
robot requests path to the centralized M* path planner. The
M* planner collects such requests and waits for re-planning
until the number of the newly arrived robots exceeds a prede-
fined threshold. In our experiments, this threshold is set to 2.
During the re-planning, the M* planner considers the current
locations of the previously arrived robots as their source lo-
cations and excludes the robots which already have reached
their respective goal locations. For PP, the robots that arrive
later are considered to have a lower priority than the robots
arrived already, and compute their path considering the pre-
vious robots’ positions as dynamic obstacles. Fig. 8 shows
the results of the experiments for two different workspace
sizes: 100× 100 and 198× 198.
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10 20 30 40 50 75 100 250 500
Number of Robots

100

101

102

103

Pl
an

ni
ng

Ti
m

e
(s

ec
)

OMCoRP

M∗
inflated M∗

Priority

(b) Workspace size 198× 198

Figure 8: The y-axis shows the total computation time (in
sec) of the algorithms and the x-axis shows the number of
robots.

Experiments with ROS
We have simulated OMCoRP for up to 10 TurtleBots (Garage
2011) on ROS (Quigley et al. 2009). We have used a
workspace of size 14× 14 (similar to Fig. 3) with each grid
cell of length 1m. The linear and the angular velocity of the
TurtleBots have been chosen in such a way that each motion
primitive takes 6.5s for execution. The maximum time for
the online component of the computation time (decides the
length of the tiny duration) observed in all our experiments
is about 60ms. The video of our experiments is available in
the supplementary material.

Summary and Future Work
We presented a scalable online collision avoidance mech-
anism for a competitive multi-robot system which satisfies
several desirable properties. In future, we would like to ex-
tend the algorithm to more than two dimensions and conduct
experiments on a real multi-robot system.
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