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ABSTRACT
Motivated by the need for social distancing during a pandemic, we

consider an approach to schedule the visitors of a facility (e.g., a

general store). Our algorithms take input from the citizens and

schedule the store’s discrete time-slots based on their importance

in visiting the facility. We consider indivisible customer job re-

quests that take single or multiple slots to complete. The salient

properties of our approach are: it (a) ensures social distancing by

ensuring a maximum population in a given time-slot at the facil-

ity, (b) prioritizes individuals based on the importance of the jobs,

(c) maintains truthfulness of the reported importance by adding a

cooling-off period after their allocated time-slot, during which the

individual cannot re-access the same facility, (d) guarantees vol-

untary participation of the citizens, and yet (e) is computationally

tractable. The mechanisms we propose are prior-free. The problem

is NP-complete for indivisible multi-slot jobs, and we provide a

polynomial-time mechanism that is truthful, individually rational,

and approximately optimal. Experiments with data collected from a

store show that visitors with more important (single-slot) jobs are

allocated more preferred slots, which comes at the cost of a longer

cooling-off period and significantly reduces social congestion. For

the multi-slot jobs, our mechanism yields reasonable approxima-

tion while reducing the computation time significantly. While our

solutions are primarily motivated by the ongoing raging pandemic,

our formulation naturally applies to a broad range of scheduling

settings.
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1 INTRODUCTION
Pandemics show the limits of pharmaceutical interventions (e.g.,

vaccines). Infectious diseases have appeared multiple times in the

history of the human race (Spanish flu, Ebola, SARS, COVID-19,

etc.), and vaccine development has taken different approaches. How-

ever, the unique first defense had always been a non-pharmaceutical

intervention called social distancing, a term that was added to all

major English dictionaries in 2020. From the times of the Spanish

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
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flu (1918) [21] to the recent COVID-19 [36], it has been proven to

be the most effective early solution.

The method of social distancing, however, has evolved. From the

mass exodus of the population from the afflicted areas or forcing

ships to anchor for months before entering a port in the early 20th

century, we can now leverage communication and AI technologies

to efficiently execute social distancing without disrupting human

habitation or occupation. What we need is to socially schedule
these individuals to visit the public facilities and prevent them from

overcrowding. This is the approach we consider in this paper.

In our setting, each customer has an infinite queue of jobs that

have different importances and lengths (both are privately known

only to the customer). However, the customers are myopic, i.e.,
worry only about the last unprocessed job.

1
They experience a

better value if the job is assigned their preferred slots, but also a

disutility to wait before submitting their next job for allocation. All

jobs are indivisible, i.e., has to be completed once started. In this

paper, we consider two settings: (i) all jobs are of single time-slot

length, (ii) different jobs are of different integral time-slot lengths.

Though cast in the context of social scheduling for pandemics, a

similar problem arises in general scheduling settings, e.g., sched-

uling traffic in freeways or multi-ownership computational jobs

in a single-core processor. Since all such settings have multiple

agents competing for a common resource and the importance of

the jobs is private, the solutions involving truthful revelation in a

computationally tractable manner also apply to those settings.

This paper introduces a novel approach to pandemic containment

using the mechanism design that reduces congestion in facilities,

satisfies various desirable theoretical properties, and exhibits fair

performance in practice. The following section details the contribu-

tions of this paper.

1.1 Brief Problem Description and
Contributions

The opening hours of a facility are divided into periods (e.g., a day),
each of which has multiple slots (e.g., every hour when it is open).

The customers have an unlimited number of outstanding jobs to be

processed in a sequence at the facility, and they report the valuations

of the immediate unprocessed job.
2
A valuation 𝑣𝑖 𝑗 denotes agent

𝑖’s importance for that job if it starts in slot 𝑗 . Since this information

is private to agent 𝑖 , a mechanism needs to elicit this truthfully. In a

setting where the agents’ preferences are private, if the mechanism

has no additional structures (e.g., transfer of individual payoff),

only dictatorial mechanisms (where a pre-selected agent’s favorite

1
A large number of studies in behavioral science point to such myopic behav-

ior [23].

2
A typical shopper knows that she needs to visit a store many times but precisely

knows the importance of the immediate visit.



outcome is always selected) are truthful [29, Thm 7.2]. Therefore,

the use of transfers in some form is inevitable to ensure the truth-

fulness of the agents. However, for pandemic containment, the use

of money for scheduling citizens is unethical and illegal in certain

countries. Hence, we use time-delay as a replacement for money.

Waiting time is often seen as a resource that individuals agree to

trade with [25]. Our scheduling approach will work in all places

where payment can be replaced with a time-delay. Quite naturally,

an agent prefers to have a more valuable slot assigned to her with

less time-delay. We model the agents’ payoffs using the well-known

quasi-linear payoff model [32, Chap 10]. This competitive scenario

induces a game where agents’ actions are to report the valuations.

The agents may overstate (or understate) their actual valuations.
The contributions of this paper can be summarized into the

following four major points:

▷ We show that the problem of maximizing the social welfare
(sum of the agents’ valuations) of the slot allocation is com-

putationally easy to solve for jobs with single-slot length

(Theorems 5.1 and 5.5) despite it being a combinatorial opti-

mization problem.

▷ The single-slot case has the advantage that the delay (cooling-

off time) can be calculated via the Vickrey-Clarke-Groves

(VCG) mechanism [11, 18, 35] that ensures truthfulness and

participation of the agents.

▷ Our main contribution is in the multi-slot jobs. We show that

the welfare-maximizing allocation of multi-slot jobs is com-

putationally hard (Theorem 6.4). We propose a polynomial

time mechanism (Theorem 6.8) which ensures participation

(Theorem 6.6), truthfulness (Theorem 6.7), and is approxi-

mately optimal (Theorem 6.9).

▷ Our real and synthetic data experiments (Section 7) show

that visitors with more important jobs are allocated more

preferred slots, which comes at the cost of a longer delay

to re-access the store. We show that social distancing is

significantly improved using users’ visit data from a store

(Section 7.1). For the multi-slot jobs, our approximately op-

timal mechanism provides a reasonable approximation at a

much reduced computational cost in practice (Section 7.2).

The mechanisms presented in this paper are prior-free, i.e., they do

not depend on the probabilistic information of the valuations.

1.2 Related Work
The literature on pandemic control has widely documented the

quantitative benefits of social distancing [13, 15, 33]. The benefits

of social distancing depend on the extent to which the citizens

follow it. An extensive part of the recent research related to social

distancing during COVID-19 aims to understand the relationship of

social distancing with different public policies and other factors [1,

10, 16, 27, 28].

Studies related to the behavior of individuals during the pan-

demic show that despite the infection probability not decreasing,

during the equilibrium social distancing phase, individuals gradu-

ally reduce their social distancing efforts [8, 34].

In a slightly different strand of literature, the problem of resource

allocation with monetary transfers has been addressed to ensure

truthfulness, e.g., in the context of jobshop scheduling [20], which

is also close to our work. Lavi and Nisan [24] study online supply

curves based auction of identical divisible goods that ensures truth-
fulness. In this paper, we consider an offline allocation problem but

a comparatively more complex one (multiple resources and indi-

visible tasks of different length). Chen et al. [9] propose a truthful

approximate mechanism for online allocation of job to machines

where the job can resume or restart once preempted. We provide a

comparatively better approximation ratio for efficiency, albeit in

an offline setting. The other related line of work involves design-

ing incentives in queueing problems with specific cost structures
that aim to find an efficient allocation truthfully and also ensures

budget balance [4, 14, 26], while our model can admit costs of any
structure.

In the context of job scheduling without money, Koutsoupias [22]

studies the allocation of independent tasks to machines. Every

machine reports the time it takes to execute each task and the

mechanism provides an approximation to the minimum makespan
in a truthful manner without money for one task—which can be

repeated for multiple tasks. In this paper, we maximize the sum
of the visitors’ valuations which are independent of the length of

the job and provide an approximate mechanism for multiple tasks

maintaining the slot-capacity. Braverman et al. [6] study a similar

problem of the allocation of medical treatments at hospitals that

have differential costs to patients and the patients value the hos-

pitals differently. The waiting time before being admitted to the

hospital helps to get a stable matching. However, the value of the

agents do not change over slots and hence is different from our

setting.

2 BASIC SETUP AND SINGLE-SLOT JOBS
Define 𝑁 B {1, . . . , 𝑛} as the set of agents trying to access a facility
F . Time is divided into periods, and each period is further divided

into slots. The set of slots is denoted by𝑀 B {1, . . . ,𝑚}. Every slot

has amaximum capacity of𝑘 , which is decided by the region’s social

distancing norm based on the size of the facility.
3
A central planner

(e.g., an AI app) allocates these slots to the agents, maintaining the

capacity constraint. Every agent 𝑖 has a cardinal preference 𝑣𝑖 𝑗 ∈
R⩾0 (called the agent’s valuation) if her immediate unprocessed job

is allocated slot 𝑗 . The valuation implicitly reflects the importance

of visiting the facility for that agent. The valuation vector of 𝑖 is

represented by 𝑣𝑖 = (𝑣𝑖 𝑗 , 𝑗 ∈ 𝑀) ∈ R𝑚⩾0. In this paper, we consider

different facilities independently. The joint facility-slot allocation

problem can be modeled as a similar problem with the additional

constraint that the same slot cannot be allocated to the same agent

at different facilities. We leave the detailed analysis for it as future

work.

The planner decides the allocation, which can be represented as

a matrix 𝐴 = [𝑎𝑖 𝑗 ], where 𝑎𝑖 𝑗 = 1 if agent 𝑖 is allotted slot 𝑗 , and

zero otherwise. We assume that every agent can be assigned at most

one slot in a period, and the total number of agents assigned to each

slot is at most 𝑘 . We denote the slot assigned to 𝑖 by 𝑎∗
𝑖
. The planner

also decides a delay 𝑑 = (𝑑𝑖 , 𝑖 ∈ 𝑁 ), where 𝑑𝑖 is the time-delay (in

the same unit as the valuation) of agent 𝑖 before which she cannot

make another request to the system. The net payoff of an agent is

3
The analysis and results will follow even if the capacity 𝑘 𝑗 varies with the slots

𝑗 ∈ 𝑀 .



assumed to follow a standard quasi-linear form [32], which implies

that every agent wants a more valued slot to be assigned to her and

also wants to wait less.

𝑢𝑖 ((𝐴,𝑑), 𝑣𝑖 ) = 𝑣𝑖 (𝐴) − 𝑑𝑖 , where 𝑣𝑖 (𝐴) = 𝑣𝑖𝑎∗
𝑖
. (1)

Denote the set of all allocations byA. The delays 𝑑𝑖 ∈ R⩾0,∀𝑖 ∈ 𝑁 .

The planner does not know the valuations of the agents. Therefore

he needs the agents to report their valuations to decide the allo-

cation and the delay. This leaves the opportunity for an agent to

misrepresent her true valuation. To distinguish, we use 𝑣𝑖 𝑗 for the

true valuation and 𝑣𝑖 𝑗 for reported valuations. In the first part of

this paper, we will consider single-slot jobs and use the shorthand

𝑣 = (𝑣𝑖 )𝑖∈𝑁 to denote the true valuation profile represented as an

𝑚 × 𝑛 real matrix, and 𝑣 to denote the reported valuation profile.

The notation 𝑣−𝑖 denotes the valuation profile of the agents except

𝑖 . Therefore, the planner’s decision problem is formally captured

by the following function.

Definition 2.1 (Social Scheduling Function (SSF)). A social sched-
uling function (SSF) is a mapping 𝑓 : R𝑚×𝑛 → A × R𝑛 that maps

the reported valuations to an allocation and delay for every agent.

Hence, 𝑓 (𝑣) = (𝐴(𝑣), 𝑑 (𝑣)), where 𝐴 is the allocation and 𝑑 is the

delay function.
4

3 PRELIMINARY DEFINITIONS
In this section, we formally define a few desirable properties that a

social scheduling function should satisfy. The properties address

the issues of prioritization, truthfulness, voluntary participation,

and computational complexity.

The first property ensures that the allocation is efficient in each

period, i.e., maximizes the sum of the valuations of all the agents.

Definition 3.1 (Efficient Per Period (EPP)). An SSF 𝑓 is efficient
per period (EPP) if, at every period, it chooses an allocation 𝐴∗ that
maximizes the sum of the valuations of all the agents. Formally, if

𝑓 (·) = (𝐴∗ (·), 𝑑 (·)), then

𝐴∗ (𝑣) ∈ argmax

𝐴∈A

∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑀

𝑣𝑖 𝑗𝑎𝑖 𝑗 . (2)

However, since the planner can only access the reported values

𝑣𝑖 ’s, which can be different from the true 𝑣𝑖 ’s, the reported values

must indeed be the true values. The following property ensures that

the agents are incentivized to ‘truthfully’ reveal this information

irrespective of the reports of the other agents.

Definition 3.2 (Per Period Dominant Strategy Truthful). An SSF

𝑓 (·) = (𝐴(·), 𝑑 (·)) is truthful in dominant strategies per period if for
every 𝑣𝑖 , 𝑣𝑖 , 𝑣−𝑖 , and 𝑖 ∈ 𝑁

𝑣𝑖 (𝐴(𝑣𝑖 , 𝑣−𝑖 )) − 𝑑𝑖 (𝑣𝑖 , 𝑣−𝑖 ) ⩾ 𝑣𝑖 (𝐴(𝑣𝑖 , 𝑣−𝑖 )) − 𝑑𝑖 (𝑣𝑖 , 𝑣−𝑖 ) .

The next property ensures that it is always weakly beneficial for

every rational agent to participate in such a mechanism.

Definition 3.3 (Individual Rationality). An SSF 𝑓 (·) = (𝐴(·), 𝑑 (·))
is individually rational if for every 𝑣 , and 𝑖 ∈ 𝑁

𝑣𝑖 (𝐴(𝑣)) − 𝑑𝑖 (𝑣) ⩾ 0.

4
We overload the notation𝐴 and 𝑑 to denote both functions and values of those

functions since their use will be clear from the context.

Large facilities with a large number of high-capacity slots lead to

an exponential increase in the size of the setA. This largeness ofA
makes it challenging to find a solution quickly. In a practical setting,

where the allocations and delays need to be decided before every

period, it is desirable to have an SSF that is computable in a time

polynomial in 𝑛 and𝑚 so that it finishes the computation in a time

negligible to the time duration of the period.We consider algorithms

that are strongly polynomial [17]. An SSF is strongly polynomial-

time computable if there exists an algorithm that computes it in a

time strongly polynomial in 𝑛 and𝑚, irrespective of the size of the

actual data, such as the value of the 𝑣𝑖s or 𝑘 .

4 PERIODIC MECHANISMS
We consider mechanisms that run at every period of this social

scheduling problem. The agents report their valuations at the be-

ginning of every period. The planner decides the schedules and

delays.
5
Since the agents have the opportunity to overstate their

importance to get a better slot allotted to them, our approach that

uses the ideas of mechanism design [5] to this social scheduling

problem is useful. We use the delay as a surrogate for transferable

utility among the agents to satisfy several desirable properties.

For the single-slot job setup, the delays of agents are computed

via the standard VCG payment rule, and we call the allocation and

delay together as the mechanism VCG-T (VCG with Time delays).

VCG-T mechanism is as follows.

Description of VCG-T. The SSF needs to decide on the allocation

𝐴 and the delay 𝑑 . VCG-T computes the allocation as follows.

argmax

𝐴

∑︁
𝑗∈𝑀

∑︁
𝑖∈𝑁

𝑣𝑖 𝑗𝑎𝑖 𝑗

s.t.

∑︁
𝑗∈𝑀

𝑎𝑖 𝑗 ⩽ 1, ∀𝑖 ∈ 𝑁 ;

∑︁
𝑖∈𝑁

𝑎𝑖 𝑗 ⩽ 𝑘, ∀𝑗 ∈ 𝑀

𝑎𝑖 𝑗 ⩾ 0, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀.

(3)

This is an LP relaxation of the actual allocation problem, which

allows 𝑎𝑖 𝑗 s to be only in {0, 1}. We will show that this is without

loss of optimality since the solution to LP (3) will always be integral

and coincide with the solution of the corresponding IP.

The delays of agents are computed via the standard VCG pay-

ment rule. Denote the optimal allocation of LP (3) by 𝐴∗ (𝑣). Also,
denote the allocation given by LP (3) when agent 𝑖 is removed from

the system by 𝐴∗−𝑖 (𝑣−𝑖 ). For agent 𝑖 , the delay is given by,

𝑑𝑖 :=
∑︁

ℓ∈𝑁 \{𝑖 }
𝑣ℓ (𝐴∗−𝑖 ) −

∑︁
ℓ∈𝑁 \{𝑖 }

𝑣ℓ (𝐴∗) .
(4)

The mechanism in every period is described in Section 4.

5
For mechanisms that consider the dynamic extension of such allocation problems

with finite or infinite horizon [3, e.g.], (a) the designer needs to know the transition

probabilities, (b) equilibrium guarantees are weaker, and (c) are computationally ex-

pensive. These factors made us restrict our attention to periodic mechanisms.



Algorithm 1 VCG-T in every period

1: Input: for every agent 𝑖 ∈ 𝑁 , the value 𝑣𝑖
2: compute 𝐴∗ (𝑣) (Equation (3)) as the allocation

3: charge a delay 𝑑𝑖 (𝑣) (Equation (4)) to every 𝑖 ∈ 𝑁 for which

they cannot access the scheduling mechanism again

4: Output: 𝐴∗ (𝑣) and 𝑑 (𝑣)

Since VCG-T uses the VCG payment expression to compute the

time delay and because the allocated slots are goods to the agents,

the following two facts follow from the known properties of the

VCG mechanism. For completeness, the proof for these facts is

provided in the Appendix B.

Fact 1. VCG-T is per period dominant strategy truthful.

Fact 2. VCG-T is individually rational for every agent.

In the next section, we show that the VCG-T mechanism for the

single-slot job is per period dominant strategy truthful, individually

rational, and runs in strongly polynomial time.

5 VCG-T FOR SINGLE-SLOT JOBS
We first show that the allocation given by VCG-T indeed maximizes

per-period social welfare.

Theorem 5.1. The allocation of VCG-T given by LP (3) always
gives integral solutions.

Proof. Consider the vector 𝑥⊤ =

(𝑎11, . . . , 𝑎1𝑚, . . . , 𝑎𝑛1, . . . , 𝑎𝑛𝑚), i.e., the rows of 𝐴 linearized

as a vector. We can write the constraints of LP (3) in using a

(𝑛 +𝑚) × 𝑛𝑚 constraint matrix, s.t.,

©«

1 . . . 1 0 . . . 0 0 . . . 0

0 . . . 0 1 . . . 1 0 . . . 0

. . .

1 . . . 0 1 . . . 0 1 . . . 0

0 1 . . . 0 1 . . . 0 1 0

. . .

ª®®®®®®®¬
𝑥 ⩽
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1

.

.

.

𝑘

.

.

.

ª®®®®®®¬
Denote the matrix on the LHS by 𝐶 . The first 𝑛 and the next 𝑚

rows correspond to the first and second set of constraints of LP (3),

respectively. We show that 𝐶 is totally unimodular (TU), which is

sufficient to conclude that LP (3) has integral solutions. We use the

Ghouila-Houri characterization [7] to prove that𝐶 is TU. According

to this characterization, a 𝑝 × 𝑞 matrix 𝐶 is TU if and only if each

set 𝑅 ⊆ {1, 2, · · · , 𝑝} can be partitioned into two sets 𝑅1 and 𝑅2,

such that,

∑
𝑖∈𝑅1

𝑎𝑖 𝑗 −
∑

𝑖∈𝑅2

𝑎𝑖 𝑗 ∈ {1, 0,−1}, for 𝑗 = 1, 2, · · · , 𝑞. Note

that, in𝐶 every column has two 1’s, one in the first 𝑛 rows and one

in the next𝑚 rows. Pick any subset 𝑅 of the rows, construct the

𝑅1 to be the rows that come from the first 𝑛 rows, and 𝑅2 to be the

rows that come from the last𝑚 rows (one of these partitions can

be empty). Clearly, the difference in each column of the rows 𝑅 will

lie in {1, 0,−1}. Hence proved. □

The result above shows that the optimal solution of LP (3) is

an optimal solution of the corresponding integer program that

maximizes the per-period social welfare. Hence, we conclude the

following.

Corollary 5.2. VCG-T is EPP.

Even though the LP formulation of VCG-T is without loss of

optimality, in general, LPs can be weakly polynomial, i.e., the space

used by the algorithm may not be bounded by a polynomial in the

size of the input. However, we show that an even stronger result

holds for VCG-T. The forthcoming results show that the allocation

and delays of VCG-T are strongly polynomial. To show this, we will

first reduce the allocation problem (LP (3)) to a minimum weight

𝑏-matching problem, which is known to be strongly polynomial

[31].

Consider an edge-weighted bipartite graph (𝑁,𝑀, 𝐸), where
𝑁 and𝑀 are the agent set and set of slots, respectively. The set 𝐸

denotes the edges (𝑖, 𝑗) withweights−𝑣𝑖 𝑗 . Thematching constraints

are given by 𝑏𝑖 = 1,∀𝑖 ∈ 𝑁 , and 𝑏 𝑗 = 𝑘,∀𝑗 ∈ 𝑀 .

Lemma 5.3. Let 𝐸∗ ⊆ 𝐸 be a perfect 𝑏-matching in (𝑁,𝑀, 𝐸) and
𝐴∗ = [𝑎∗

𝑖 𝑗
]𝑖∈𝑁,𝑗∈𝑀 be an allocation where 𝑎∗

𝑖 𝑗
= 1 ⇔ (𝑖, 𝑗) ∈ 𝐸∗.

The matching 𝐸∗ is a minimum weight perfect 𝑏-matching iff 𝐴∗ is
an optimal solution to LP (3).

Proof. We prove this via contradiction. Suppose 𝐴∗ is not an
optimal solution to LP (3), i.e., there exists 𝐴′ which satisfies the

constraints and yet gives a larger value to the objective function

than that of 𝐴. Hence,
∑

𝑗∈𝑀
∑
𝑖∈𝑁 𝑣𝑖 𝑗𝑎

′
𝑖 𝑗

>
∑

𝑗∈𝑀
∑
𝑖∈𝑁 𝑣𝑖 𝑗𝑎

∗
𝑖 𝑗
.

Consider the edge set 𝐸′ corresponding to 𝐴′. This is a perfect

𝑏-matching since 𝐴′ satisfies the constraints of LP (3), and 𝐸′ gives
a lower weight than 𝐸∗, which proves that 𝐸∗ is not the minimum

weight perfect 𝑏-matching. The implications can be reversed to

obtain the other direction of the proof. □

Note that the delays are calculated by solving an equivalent

LP like LP (3) with one less agent. Therefore, each of these LPs

is strongly polynomial, and the planner needs to solve 𝑛 of them.

The computation of each delay requires the addition of 2(𝑛 − 1)
terms and one subtraction. Hence, the number of computations is

polynomial in the number of numbers in the input instance, and

the space required is polynomial in the input size. Therefore we

conclude the following.

Corollary 5.4. The computation of the delays in VCG-T is
strongly polynomial.

Combining Theorem 5.1, Lemma 5.3, and Corollary 5.4, we get

the following result.

Theorem 5.5. VCG-T provides a combinatorial, strongly polyno-
mial algorithm for computing a social schedule and delays.

The main contribution of this paper is to schedule the multi-slot

jobs that are relatively difficult to schedule. We present our results

for multi-slot jobs in the next section.

6 MULTI-SLOT JOBS
In this section, we consider jobs with different lengths, i.e., for agent

𝑖 , the job may be of length 𝑙𝑖 ⩾ 1. Since the job is indivisible, the
entire length 𝑙𝑖 of the job requires contiguous slots for execution

within the period. For example, an individual may visit a facility

(e.g., a shopping mall) for quick shopping, which may take a shorter

duration, or for dining, which may take longer. However, all these



jobs are indivisible, and the allocation needs to provide contigu-

ous time-slots to that agent. The agents report the valuations and

lengths of their jobs. We show that the optimal allocation problem

in such a setting can be computationally intractable. The notation

is mildly updated as follows to accommodate the multi-slot jobs.

Each agent 𝑖 gets a valuation 𝑣𝑖 𝑗 for her last unprocessed job if

her job begins at slot 𝑗 and has a length 𝑙𝑖 . The value of the job

is zero if (a) it starts at any of the last (𝑙𝑖 − 1) time-slots of the

period (since it cannot finish within the period), and (b) if the job

is unallocated.

A matrix 𝑉 consists of the agents’ reported valuations, and 𝐿

consists of the lengths of agents’ jobs. Allocation is given by the

matrix A = [𝔞𝑖 𝑗 ], where 𝔞𝑖 𝑗 = 1 if agent 𝑖’s job starts at slot 𝑗 ,

else 𝔞𝑖 𝑗 = 0, and 𝔞𝑖 represents the slot allocation vector for agent 𝑖 .

Keeping all other notations as before, we define the MIA problem
as follows.

Definition 6.1 (Multi-slot Indivisible jobs Allocation problem
(MIA)). : Given (𝑁,𝑀,𝑉 , 𝐿, 𝑘), find an allocation A, such that∑

𝑖∈𝑁
∑

𝑗∈𝑀 𝑣𝑖 𝑗 (𝔞𝑖 𝑗 ) is maximum, subject to the constraints that

the total number of jobs allocated in a slot does not exceed the

capacity of the slot, and each job 𝑖 is assigned to at most 𝑙𝑖 con-

tiguous slots. Mathematically, MIA is given by the following integer

program (IP).

argmax

𝐴

∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑀

𝑣𝑖 𝑗 𝔞𝑖 𝑗

s.t.

∑︁
𝑖∈𝑁

∑︁
𝑝∈𝑀

𝑗∈[𝑝,𝑝+𝑙𝑖−1]

𝔞𝑖𝑝 ⩽ 𝑘,∀𝑗 ∈ 𝑀,

∑︁
𝑗∈𝑀

𝔞𝑖 𝑗 ⩽ 1,∀𝑖 ∈ 𝑁 ; 𝔞𝑖 𝑗 ∈ {0, 1},∀𝑖 ∈ 𝑁,∀𝑗 ∈ 𝑀

(5)

The first set of inequalities ensures that the number of jobs

processed in a slot does not exceed the slot capacity 𝑘 . We sum over

every job 𝑖 ∈ 𝑁 and check if it is under execution at 𝑗 for every

𝑗 ∈ 𝑀 . A job 𝑖 is under execution at slot 𝑗 if allocated at a slot 𝑝 s.t.

𝑗 ⩽ 𝑝 + 𝑙𝑖 − 1. The second set of inequalities ensures that no job is

allocated more than once.

We show that MIA is computationally intractable by performing

a polynomial reduction from the Multi-Unit Combinatorial Auction

(MUCA), which is NP-complete.

Description of MUCA: Consider a multiset M = (G, 𝑦), where
G = {1, 2, 3, . . . , 𝑔} is a set of goods and𝑦 is a function,𝑦 : G → Z⩾0
representing the multiplicity or the number of available units

of the elements of G in M. Each agent 𝑖 ∈ N = {1, 2, . . . , 𝑛}
is a multi-minded bidder, which means 𝑖 has a positive valua-

tion 𝑤𝑖 (·) for multiple bundles of available goods. We call the

set of bundles for which agent 𝑖 has a positive valuation to be

the demand set of 𝑖 , represented by D𝑖 . The valuation function is

such that, 𝑤𝑖 (𝑞) ∈ R⩾0,∀𝑞 ∈ D𝑖 . We use the following notation

D = [D𝑖 ]𝑖∈N and,𝑊𝑖 = (𝑤𝑖 (𝑞))𝑞∈D𝑖
,𝑊 = [𝑊𝑖 ]𝑖∈N . This paper

assumes that every agent demands at most one unit of every good.

With this assumption, an allocation of a bundle of goods to the

agents is represented as a matrix S = [𝔰𝑖𝑞], where 𝔰𝑖𝑞 = 1, if the

bundle 𝑞 ∈ D𝑖 is allocated to 𝑖 , else 𝔰𝑖𝑞 = 0. For an allocation S,
every agent 𝑖 gets a valuation,𝑤𝑖 (S)=

∑
𝑞∈D𝑖

𝑤𝑖 (𝑞) 𝔰𝑖𝑞 , otherwise
𝑤𝑖 (S) = 0. The formal definition is as follows.

Definition 6.2 (Multi-Unit Combinatorial Auction (MUCA)). Given
(N ,M,𝑊 , 𝐷), find an allocation S of goods to the agents such that∑
𝑖∈N

∑
𝑞∈D𝑖

𝑤𝑖 (𝑞) 𝔰𝑖𝑞 is maximum, and the total units of good

𝑗 ∈ G allocated to the agents does not exceed 𝑗 ’s availability 𝑦 ( 𝑗).
Every agent 𝑖 is assigned at most one of the demanded bundles

from D𝑖 . Mathematically, MUCA is given by the following integer

program (IP):

argmax

S

∑︁
𝑖∈N

∑︁
𝑞∈D𝑖

𝑤𝑖 (𝑞) 𝔰𝑖𝑞

s.t.

∑︁
𝑖∈N

∑︁
𝑞∈D𝑖

𝑗∈𝑞

𝔰𝑖𝑞 ⩽ 𝑦 ( 𝑗),∀𝑗 ∈ G

∑︁
𝑞∈D𝑖

𝔰𝑖𝑞 ⩽ 1,∀𝑖 ∈ N ; 𝔰𝑖𝑞 ∈ {0, 1},∀𝑖 ∈ N ,∀𝑞 ∈ D𝑖

(6)

The reduction of MIA to MUCA proceeds as follows. For a

given instance (𝑁,𝑀,𝑉 , 𝐿, 𝑘) of MIA, construct an instance of

MUCA(N ,M,𝑊 ,D) problem such that the set of agents N is 𝑁 ,

the set of goods G is the set of the slots𝑀 within the period, where

𝑦 ( 𝑗) = 𝑘 , ∀𝑗 ∈ 𝑀 . For every 𝑖 ∈ N , the demand set D𝑖 consists of

(𝑚 − 𝑙𝑖 + 1) distinct bundles. Each of the bundles in D𝑖 is of size 𝑙𝑖
and consists of 𝑙𝑖 contiguous slots. We denote a bundle as 𝑞 𝑗 if it

contains 𝑙𝑖 contiguous slots starting from slot 𝑗 , and𝑤𝑖 (𝑞 𝑗 ) is equal
to 𝑣𝑖 𝑗 (the valuation 𝑖 ∈ 𝑁 gets if her job starts at slot 𝑗 ∈ 𝑀). The

above construction is done in polynomial steps of the input size. We

construct a solution of MIA from a solution of MUCA in the following

way: for every 𝑞 𝑗 ∈ D𝑖 and 𝑖 ∈ N , if 𝔰𝑖𝑞 𝑗
= 1 then, 𝔞𝑖 𝑗 = 1 for

every 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 . Similarly, we construct a solution of MUCA
from a solution MIA in the following way: if 𝔞𝑖 𝑗 = 1 for 𝑖 ∈ 𝑁 and

𝑗 ∈ 𝑀 then, 𝔰𝑖𝑞 𝑗
= 1 for every 𝑞 𝑗 ∈ D𝑖 and 𝑖 ∈ N . The following

lemma shows that an optimal solution of MIA is an optimal solution

of MUCA and vice-versa.

Lemma 6.3. Let S∗ is a solution for MUCA for a multiset of goods
M, and A∗ is such that, 𝔞∗

𝑖 𝑗
= 1 for 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 , if and only if

𝔰∗
𝑖𝑞 𝑗

= 1 in S∗ for 𝑖 ∈ N and 𝑞 𝑗 ∈ D𝑖 , then 𝐴∗ is an optimal solution
for MIA if and only if S∗ is an optimal solution for MUCA.

Since MUCA is NP-complete [12, 30], using Lemma 6.3, we get the

following theorem.

Theorem 6.4. MIA is NP-complete.

However, it is possible to find an approximately efficient alloca-

tion in polynomial time that is truthful and individually rational. To

find that, we leverage the approximation algorithm of MUCA due to

Bartal et al. [2, Theorem 3]. Using Lemma 6.3 and the following few

results, we prove that there exists a polynomial time truthful mech-

anism (MIA Approximation Algorithm or MAA) to achieve 𝑂
(
𝑘𝑚

1

𝑘−2
)

approximation to the optimal solution of MIA.
The operational principle of MAA is a sequential dictatorship,

where the sequence is an arbitrary order (WLOG 1, 2, . . . , 𝑛) of the

agents and is independent of the information submitted by them.

The mechanism comes with a price
6
vector, which is updated while

iterating over the agents in the sequence. We use a superscript

𝑖 to denote the price faced by the agent 𝑖 for slot 𝑗 , 𝑃𝑖
𝑗
when 𝑖’s

6
The terms price and delay are equivalent in the rest of the paper.



Algorithm 2 MAA in every period

1: Procedure MAA(𝑁,𝑀,𝑉 , 𝐿, 𝑘)

2: 𝑏 ← arg

𝑖

max

𝑖∈𝑁,𝑗∈𝑀
𝑣𝑖 𝑗 ; 𝑣max ← max

𝑖∈𝑁,𝑗∈𝑀
𝑣𝑖 𝑗 ; // 𝑏 is the agent

with highest valuation (𝑣𝑚𝑎𝑥 ) for any slot.//
𝑟 ← (6𝑚(𝑘 − 1))

1

𝑘−2

3: Q0 ← [0, 0, . . . ,𝑚 times]
4: 𝔞∗

𝑏𝑠′
= 1, where 𝑠′ ← argmax

𝑗∈𝑀
(𝑣𝑏 𝑗 ); // Allocate the highest

valued slot for 𝑏.//
𝔞∗
𝑏 𝑗

= 0, ∀𝑗 ∈ 𝑀 \ {𝑠′}; P𝑏 = 𝑣−𝑏
max

5: for 𝑖 = {1, 2, . . . , 𝑛} and 𝑖 ≠ 𝑏 do
6: for 𝑗 = {1, 2, . . . ,𝑚} do
7: 𝑃𝑖

𝑗
← 𝜋0 · 𝑟𝑄

𝑖−1
𝑗

8: 𝔞∗
𝑖𝑠
= 1, where 𝑠 ← max(𝑃𝑖 , 𝑣𝑖 ) (Equation (7))

9: 𝔞∗
𝑖 𝑗

= 0, ∀𝑗 ∈ 𝑀 \ {𝑠}
10: P𝑖 ←

∑𝑠+𝑙𝑖−1
𝑗=𝑠

𝑃𝑖
𝑗

11: for 𝑗 = {1, 2, . . . ,𝑚} do
12: if 𝑗 ∈ [𝑠, 𝑠 + 𝑙𝑖 − 1] then
13: Q𝑖

𝑗
← Q𝑖−1

𝑗
+ 1

14: else
15: Q𝑖

𝑗
← Q𝑖−1

𝑗

16: return 𝔞∗,P

turn comes. Hence, 𝑃𝑖 = [𝑃𝑖
𝑗
] 𝑗∈𝑀 denotes the price vector seen by

𝑖 . The mechanism also uses a function max that returns the slot 𝑠
that maximizes agent 𝑖’s utility given her valuation vector 𝑣𝑖 and

the price vector 𝑃𝑖 when her job of length 𝑙𝑖 starts from slot 𝑠 .

Mathematically, max is defined as follows:

max(𝑣𝑖 , 𝑃𝑖 ) = argmax

𝑠∈𝑀
(𝑣𝑖𝑠 −

∑︁
𝑗∈[𝑠,𝑠+𝑙𝑖−1]

𝑃𝑖𝑗 ) (7)

MAA maintains a vector Q𝑖 = [Q𝑖
𝑗
] 𝑗∈𝑀 , where Q𝑖

𝑗
denotes the cur-

rent allocated population of the slot 𝑗 after allocating slots to 𝑖 . First,

MAA picks the agent 𝑏 that has the maximum valuation 𝑣max for any

slot, and initializes Q0
𝑗
= 0,∀𝑗 ∈ 𝑀 . The initial price of every slot

is set to 𝜋0 :=
𝑣max

6𝑚 (𝑘−1) and a constant factor 𝑟 = (6𝑚(𝑘 − 1))
1

𝑘−2

is defined. Consider an arbitrary order (WLOG (1, 2, . . . , 𝑛)) of the
agents. For each agent 𝑖 ≠ 𝑏 in sequence, the price 𝑃𝑖

𝑗
is computed

using Q𝑖−1
𝑗

, 𝑟 , and 𝜋0 such that the prices of the slots increase

by a multiplicative factor of a suitable exponent of 𝑟 such that

the prices for more congested slots are higher. Then the highest

utility-deriving slot 𝑠 to start 𝑖’s job is found using max, and the

corresponding allocation vector for 𝑖 is represented as 𝔞∗
𝑖
, where

𝔞∗
𝑖𝑠

= 1, 𝔞∗
𝑖 𝑗

= 0,∀𝑗 ≠ 𝑠 . The total price (or delay) charged to 𝑖 is

denoted by P𝑖 and is equal to

∑
𝑗∈[𝑠,𝑠+𝑙𝑖−1] 𝑃

𝑖
𝑗
. The vector Q𝑖 is

updated after allocating slots to agent 𝑖 . The agent 𝑏 gets her most

valued starting slot and pays the maximum valuation among all

other agents and slots, represented by 𝑣−𝑏
max

.

An important feature of Algorithm 2 is that it does not explicitly
check the capacity constraint. However, we show that the choices of

𝜋0 and 𝑟 implicitly maintain that in the following result. The units

of slot 𝑗 after Algorithm 2 executes that are occupied by agents

except 𝑏 are Q∗
𝑗
.

Lemma 6.5. Let 𝜋0, 𝑟 , 𝛿 > 0 be such that 𝜋0𝑟𝛿 ⩾ 𝑣max, then Q∗𝑗 ⩽
𝛿 + 1. This implies that MAA maintains the capacity constraints for
each slot for 𝛿 = 𝑘 − 2.

Proof. Assume for contradiction that Q∗
𝑗
> 𝛿 + 1 and let 𝑖 be

the first customer due to which this contradiction takes place for

some slot 𝑗 , i.e., Q𝑖
𝑗
> 𝛿 + 1. Since each customer does not get more

than one unit of any slot, then it must be that Q𝑖−1
𝑗

> 𝛿 . Hence, for

slot 𝑗 , the following holds: 𝑃𝑖
𝑗
> 𝜋0𝑟

𝛿 ⩾ 𝑣max ⩾ max𝑗∈𝑀 𝑣𝑖 𝑗 . This

makes 𝑖’s total price for 𝑙𝑖 contiguous slots, including slot 𝑗 to be

more than her corresponding total valuation for those slots. This

contradicts the definition of max since the utility becomes negative

for agent 𝑖 . □

The allocation to 𝑏 is at most one unit from each slot. With

carefully choosing 𝜋0 and 𝑟 , we bound the units of any slot allocated

to all the other agents, Q∗
𝑗
to (𝑘 − 1), maintaining the possibility of

the maximum use of every slot.

Since max allocates a slot only if that allocation increases the

agent’s utility, the following result holds.

Theorem 6.6. MAA is individually rational.

Next, we show that misreporting the private information (𝑣𝑖 , 𝑙𝑖 )

is never beneficial for any agent 𝑖 .

Theorem 6.7. In MAA, reporting 𝑣𝑖 and 𝑙𝑖 truthfully in every period
is a dominant strategy for all 𝑖 ∈ 𝑁 .

Proof. For the agent 𝑏, we see that the utility is that of a second

price auction and is independent of its length report. Since for the

second price auction revealing valuation truthfully is a dominant

strategy, therefore, truthfully revealing valuation and length is a

dominant strategy for 𝑏.

For the other agents, note that MAA considers the agents sequen-

tially and allocates the utility-maximizing available slots in their

turn. The order of the agents in MAA is independent of the valu-

ations and lengths of the jobs. Consider agent 𝑖 . When her turn

comes, the mechanism picks the slots that give the maximum dif-

ference between the valuation of 𝑖 for those slots and the current

prices of those slots. Note that, the prices of those allocated slots

are not dependent on the valuation or length reported by agent 𝑖

(rather, it is dependent on the reports of the previous agents in the

sequence and 𝑏), and the mechanism allocates her the optimal set

of slots. Hence, by misreporting the valuation 𝑣𝑖 , agent 𝑖 can either

continue to get the same slots or get a worse set of slots w.r.t. her

true valuation. Hence, there is no incentive for 𝑖 to misreport her

valuation.

Misreporting length: If ˆ𝑙𝑖 < 𝑙𝑖 , MAA allocates only
ˆ𝑙𝑖 number of

contiguous slots to 𝑖 (which can have zero value as ˆ𝑙𝑖 is not sufficient

for completion of her job) and 𝑖 can get a negative payoff as she

has to pay P𝑖 (which is non-negative). If
ˆ𝑙𝑖 > 𝑙𝑖 , then MAA allocates

more slots than 𝑖 actually needs. This allocation does not increase

agent 𝑖’s valuation but increases the price since now she will be

charged for
ˆ𝑙𝑖 slots which is larger than the true length.

We get the claim by combining the above two arguments that

hold for all 𝑖 ∈ 𝑁 irrespective of the reports of the other agents. □



To find the best slot for an agent, max checks the feasibility con-

straints and computes the allocation considering the slots’ valuation

and current price. As there are (𝑚 − 𝑙𝑖 + 1) possible allocations,

max requires at most 𝑂 (𝑚) time for every agent 𝑖 . Therefore, the

following result on the complexity of MAA holds.

Theorem 6.8. MAA has time complexity 𝑂 (𝑚𝑛).

We need a few more results to show the approximation factor of

MAA. Due to paucity of space, we present those results (similar to

the ones by Bartal et al. [2], modified according to MIA) in the full

version of the paper.
7
These results help us prove the main theorem

of this section.

Theorem 6.9. There exists a polynomial time (𝑂 (𝑚𝑛)), incen-
tive compatible, and individually rational mechanism to achieve
𝑂 (𝑘𝑚

1

𝑘−2 ) approximation to the optimal solution for MIA.

The result above shows the existence of an approximately effi-

cient mechanism that satisfies the other three desirable properties.

The question of finding a lower bound on the approximation ratio

remains open.

7 EXPERIMENTS
While the mechanisms presented in this paper satisfy several de-

sirable properties of a social scheduling mechanism for indivisible

single and multiple-slot jobs, its prioritizing profile for different

classes of importance, costs of prioritization, and reduction in so-

cial congestion are not theoretically captured. In this section, we

investigate these properties using real and synthetic datasets. The

real dataset we collected from a store gave us only the checkout

times. In the absence of the length information of the visits, we

resorted to the single-slot job model (with hourly slots) and tested

the performance of VCG-T on this data (§7.1). For multi-slot jobs,

we simulated MAA to find the suboptimality and the reduction in

the running time (§7.2). For these experiments, we consider three

discrete levels of valuations of the agents denoted by 3, 2, and 1,

which can be interpreted as high, medium, and low respectively.

The numbers represent the agent’s valuation if they are allocated

their most preferred slot. We used Gurobi [19] under an academic

license for all experiments.
8

7.1 Reduction in the social congestion
We consider real data of customer footfall in a general store that

we have collected from the store (the dataset will be made publicly

available post-publication). The dataset contains the customers’

hourly checkout (billing) time from 7 AM to 9 PM (opening hours

of the store) for the whole month of July 2020. Since the dataset

was anonymized for customer identification, we have assumed that

the billing timestamps are unique users for a day. Given the store

size, around 32 people an hour should be a fair capacity to maintain

social distance. However, the data shows that the monthly average

during the periods 5-6 PM, 6-7 PM, and 7-8 PM were 38.00, 48.63,

and 52.83, respectively. Interestingly, the monthly average of the

population in an hour is 26.5, which is well within the safety limits.

7
https://www.cse.iitb.ac.in/~swaprava/papers/social_distancing_AAMAS23.pdf

8
The codes and collected dataset can be found here: https://www.cse.iitb.ac.in/

~swaprava/papers/codes_and_data.zip.

Therefore, this dataset works as a perfect example of where users

can benefit significantly from social scheduling.
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Figure 1: Social congestion reduction, slot capacities 28 (top)
and 32 (bottom).

We divide the store opening hours into 14 hourly slots between

7 AM to 9 PM. For each day, the slots are sorted in decreasing

order of footfall. We fix this order of the slots as the preference

order of each agent for that day. The valuations of every customer

for her most preferred slot is drawn from a distribution {high:0.1,
medium:0.3, low:0.6}. The valuations for the other slots are assumed

to decrease with a multiplicative factor 𝛿 = 0.8 in the order of

the slot preference, i.e., the valuation for the 𝑡-th most preferred

slot of a medium agent will be 2𝛿𝑡−1. In this experiment, if a user

is not allocated a slot on a certain day, she is given the option to

update her importance and preferences for the next day. For the

experiments, we assume that the user increases the importance by

one level, e.g., low becomes medium, and keeps the slot preferences

the same. After three consecutive days, if an agent is not allocated,

she is considered ‘non-allocated,’ and alternative arrangements

(e.g., home delivery) are made. Figure 1 shows the comparison

of the average current population with that allocated by VCG-T
for slot capacities of 28 (above) and 32 (below). The figures also

show the daily non-allocated population in red. Each plot in this

section shows the average values with a 95% confidence interval.

The plots show the trade-off between better social distancing (lower

slot capacity) and its cost (non-allocation). However, in both these

cases, social congestion is reduced by approximately 50% during

rush hours.

VCG-T also prioritizes the jobs at a cost. Figure 2 shows the allo-

cated slot preference and the delays for the three different classes

of valuations for slot capacity 30. It shows that a higher valuation

comes with a higher delay.

7.2 Suboptimality vs Complexity Reduction
(MAA)

The sub-optimality of MAA (Algorithm 2) was obtained for a worst-

case scenario in §6. Here we investigate the sub-optimality of MAA
and the amount of time it reduces w.r.t. a brute-force algorithm that

finds the optimal allocation of the slots. The top plot of Figure 3

shows the percentage reduction ((𝑡OPT − 𝑡MAA)/𝑡OPT) in the running

https://www.cse.iitb.ac.in/~swaprava/papers/social_distancing_AAMAS23.pdf
https://www.cse.iitb.ac.in/~swaprava/papers/codes_and_data.zip
https://www.cse.iitb.ac.in/~swaprava/papers/codes_and_data.zip
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Figure 2: Priority and delay trade-off of VCG-T.

time of MAA compared to the optimal mechanism, where 𝑡OPT and

𝑡MAA are the running times of the optimal and MAA mechanisms,

respectively. The bottom plot shows the ratio of the optimal so-

cial welfare to the welfare yielded by MAA. For each agent, a slot

preference order is generated uniformly at random from the set

of all feasible preference orders over the slots. Valuations for the

most preferred slot are generated from a uniform distribution over

{high, medium, low} and for other slots is assumed to decrease with

a multiplicative factor 𝛿 = 0.5, same as that in §7.1. The length of

jobs is generated randomly with uniform distribution in the range

1 to 𝑚. The experiment is run with 𝑛 = 6, 𝑘 = 5, and 𝑚 varying

from 3 to 8. For each value of𝑚, the experiment is repeated for 100

valuation matrix and length vector pairs. The parameters𝑚,𝑛, 𝑘

are chosen such that the optimal mechanism is computable in a

reasonable time, yet the experiment yields an insightful result. We

see that MAA reduces the running time by more than 99.5% and

yields an approximation of roughly 1.75 on average.
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Figure 3: Running time and approximation factor trade-off
for MAA.

7.3 Prioritizing profile and its cost
In this section, we investigate what the typical priority slots allotted

to an agent of a specific class in VCG-T are. The top plot of Figure 4

shows the agents’ allocated slot preferences (mean with one stan-

dard deviation) versus the population (𝑛) plot where𝑚 = 5, 𝑘 = 4,

and 𝛿 = 0.65. The importance of an agent is picked uniformly at

random. Values of 𝑛 vary between 2 to 1.1𝑚𝑘 in steps of 1 (for

a population beyond 𝑚𝑘 , some agents have to be dropped). The

experiment is repeated 100 times for every 𝑛. The plot shows that

the higher the importance, the lower the allocated slot preference

for the agents, which is desirable.
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Figure 4: Priority-delay trade-off for VCG-T.

However, VCG-T does the prioritized allocations of the agents

at the cost of their delays. The bottom plot of Figure 4 shows the

corresponding delays decided by VCG-T for each of these three

classes. The plot shows that an early slot allocation of an agent

because of her importance also comes with a longer delay and

shows the trade-off between these two decisions.

8 CONCLUSION
This paper presents results addressing some unique approaches

toward social distancing that distinguish them from the extant

literature. We use time delay as a method to incentivize individu-

als to report their true importance of a store visit. To the best of

our knowledge, there is no work on the social distancing problem

through scheduling the visitors efficiently and maintaining eco-

nomic properties. Most works (and apps) monitor and enforce or

roster individuals to maintain social distancing. The first-come-first-

served type apps do not consider the importance of a visit. Hence,

our work fills this critical gap in the social distancing literature by

providing computationally efficient scheduling schemes, truthfully

eliciting information on the importance of a visit, and prioritiz-

ing more important jobs. In other words, this approach solves the

problem at the source, even before people leave for the store. Our

algorithm shows how such approaches can efficiently reduce the

stress on the stores by scheduling individuals on real-world data.

There are some natural extensions possible for this work that do

not immediately follow from the results and warrant a separate in-

vestigation. In the future, we like to extend this for dynamic arrivals

and departures and multiple stores simultaneously.
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APPENDIX
A SCALABILITY
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Figure 5: Computation times of VCG-T.

This section examines VCG-T’s computation time for finding the

allocation and delays for a realistic population. We run VCG-T in

Python for a different number of slots (𝑚) with slot capacity (𝑘)

being 12. For every𝑚, we fixed𝑛 =𝑚𝑘 and repeated the experiment

10𝑛 times. Figure 5 shows the growth of the computation time of

the mechanism. As a reference, to solve the allocation and delays

for the store of Section 7.1, it takes about 100 secs. The simulations

have been performed in a 64-bit Ubuntu 18.04 LTS machine with

Intel(R) Core(TM) i7-7700HQ CPU@2.80GHz quad-core processors

and 16 GB RAM.

B PROOFS FOR Facts 1 and 2
Since VCG-T uses the VCG payment expression to compute the time

delay and because the allocated slots are goods to the agents, the

following two facts follow from the known properties of the VCG

mechanism.

Fact. VCG-T is per period dominant strategy truthful.

Proof. This proof is a standard exercise in the line of the proof

for Vickery-Clarke-Groves (VCG) mechanism [11, 18, 35].

Let us assume for the contradiction that, there exist an agent 𝑖

for having true valuations for the slots as, 𝑣𝑖 , but misreports it as

𝑣 ′𝑖 (the corresponding value function is 𝑣 ′𝑖 ), and gets better utility.

Suppose 𝐴(𝑣 ′𝑖 , 𝑣−𝑖 ) = 𝐴′ and 𝐴(𝑣𝑖 , 𝑣−𝑖 ) = 𝐴∗. The utility of 𝑖 for

𝐴′ is:

𝑣𝑖 (𝐴′) − 𝑑𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 )

= 𝑣𝑖 (𝐴′) −
∑︁

ℓ∈𝑁 \{𝑖 }
𝑣ℓ (𝐴(𝑣−𝑖 )) +

∑︁
ℓ∈𝑁 \{𝑖 }

𝑣ℓ (𝐴
′
)

=
∑︁
ℓ∈𝑁

𝑣ℓ (𝐴
′
) −

∑︁
ℓ∈𝑁 \{𝑖 }

𝑣ℓ (𝐴(𝑣−𝑖 ))

Similarly, the utility of 𝑖 for 𝐴∗ is:

=
∑︁
ℓ∈𝑁

𝑣ℓ (𝐴∗) −
∑︁

ℓ∈𝑁 \{𝑖 }
𝑣ℓ (𝐴(𝑣−𝑖 ))

If 𝑖 gets better utility by misreporting her valuation as 𝑣 ′ (.), then∑︁
ℓ∈𝑁

𝑣ℓ (𝐴
′
) >

∑︁
ℓ∈𝑁

𝑣ℓ (𝐴∗)

The above inequality leads to the contradiction that 𝐴∗ is optimal

for the reported valuation (𝑣𝑖 , 𝑣−𝑖 ). Therefore, VCG-T is dominant

strategy truthful in every period. □

Fact. VCG-T is individually rational for every agent.

Proof. This proof is a standard exercise in the line of the proof

for Vickery-Clarke-Groves (VCG) mechanism [11, 18, 35].

Let us assume for the contradiction that, there exist an agent 𝑖

for having true valuations for the slots as, 𝑣𝑖 , but misreports it as

𝑣 ′𝑖 (the corresponding value function is 𝑣 ′𝑖 ), and gets better utility.

Suppose 𝐴(𝑣 ′𝑖 , 𝑣−𝑖 ) = 𝐴′ and 𝐴(𝑣𝑖 , 𝑣−𝑖 ) = 𝐴∗. The utility of 𝑖 for

𝐴′ is:

𝑣𝑖 (𝐴′) − 𝑑𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 )

= 𝑣𝑖 (𝐴′) −
∑︁

ℓ∈𝑁 \{𝑖 }
𝑣ℓ (𝐴(𝑣−𝑖 )) +

∑︁
ℓ∈𝑁 \{𝑖 }

𝑣ℓ (𝐴
′
)

=
∑︁
ℓ∈𝑁

𝑣ℓ (𝐴
′
) −

∑︁
ℓ∈𝑁 \{𝑖 }

𝑣ℓ (𝐴(𝑣−𝑖 ))

Similarly, the utility of 𝑖 for 𝐴∗ is:

=
∑︁
ℓ∈𝑁

𝑣ℓ (𝐴∗) −
∑︁

ℓ∈𝑁 \{𝑖 }
𝑣ℓ (𝐴(𝑣−𝑖 ))

If 𝑖 gets better utility by misreporting her valuation as 𝑣 ′ (.), then∑︁
ℓ∈𝑁

𝑣ℓ (𝐴
′
) >

∑︁
ℓ∈𝑁

𝑣ℓ (𝐴∗)

The above inequality leads to the contradiction that 𝐴∗ is optimal

for the reported valuation (𝑣𝑖 , 𝑣−𝑖 ). Therefore, VCG-T is dominant

strategy truthful in every period. □

C PROOF OF Lemma 6.3
Proof. Suppose the above statement is not true; hence, A

′
but

not A∗ is an optimal solution for MIA.∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑀

𝑣𝑖 𝑗 𝔞
′
𝑖 𝑗 ⩾

∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑀

𝑣𝑖 𝑗 𝔞
∗
𝑖 𝑗

As𝑤𝑖 (𝑞 𝑗 ) = 𝑣𝑖 𝑗 , and 𝔞
∗
𝑖 𝑗

= 1 only if 𝔰∗
𝑖𝑞 𝑗

= 1, with the constructed

S′ corresponding to A
′
the following inequality holds,∑︁

𝑖∈N

∑︁
𝑞 𝑗 ∈D𝑖

𝑤𝑖 (𝑞 𝑗 ) 𝔰
′
𝑖𝑞 𝑗
⩾

∑︁
𝑖∈N

∑︁
𝑞 𝑗 ∈D𝑖

𝑤𝑖 (𝑞 𝑗 ) 𝔰∗𝑖𝑞 𝑗

The above equation results in a contradiction that S∗ is an optimal

solution for MUCA.
Since each step of the above proof has implications in both

directions, the other direction of the proof is implied. □



D RESTATED RESULTS FROM THE
LITERATURE

In this section, we will restate a few results from [2], which will

help us prove the approximation factor in the main theorem of

Section 6. The lemma and section numbers of these results in the

original paper are mentioned within parentheses in the restated

lemmata.

Lemma D.1 ( [2, Section 4.2, Lemma 4]). For every agent 𝑖 ,
𝑣𝑖 (𝔞∗𝑖 ) ⩾ 𝑣𝑖 (𝔞

′
𝑖
) − ∑

𝑗∈[𝑠,𝑠+𝑙𝑖−1] 𝑠.𝑡 . 𝔞′𝑖𝑠=1 𝑃
∗
𝑗
for every allocation 𝔞

′
𝑖
,

where, 𝑃∗ is the vector of prices of slots at the end of Algorithm 2.9

Let 𝑉 (𝐴𝐿𝐺) and 𝑉 (𝑂𝑃𝑇 ) denotes the sum of valuations of cus-

tomers for the allocationA∗ given by MAA, and that for the optimal al-

location (say Â) respectively. Similarly, 𝑉 (𝐴𝐿𝐺−𝑏 ) and 𝑉 (𝑂𝑃𝑇 −𝑏 )
represents the sum of valuations of every agent except 𝑏 according

to A∗ and Â respectively. Summing it for all the agent 𝑖 ∈ 𝑁 , we

get the following corollary.

Corollary D.2. 𝑉 (𝐴𝐿𝐺−𝑏 ) ⩾ 𝑉 (𝑂𝑃𝑇 −𝑏 ) − (𝑘 − 1) ∑
𝑗∈𝑀

𝑃∗
𝑗

The following result provides a lower bound on 𝑉 (𝐴𝐿𝐺−𝑏 ).

Lemma D.3 ([2, Section 4.2, Lemma 5]). 𝑉 (𝐴𝐿𝐺−𝑏 ) ⩾∑
𝑗 ∈𝑀 𝑃∗𝑗 −𝑚𝜋0

𝑟−1

Combining Lemma D.3 and Corollary D.2, we state the following

result.

LemmaD.4. If𝑚(𝑘−1)𝜋0 ⩾ 𝑉 (𝑂𝑃𝑇 −𝑏 )
2

, then 2((𝑘−1) (𝑟−1)+1) ⩾
𝑉 (𝑂𝑃𝑇 −𝑏 )/𝑉 (𝐴𝐿𝐺−𝑏 ).

Following the conditions in Lemma 6.5 and Lemma D.4, we fix

𝜋0 =
𝑣max

6𝑚 (𝑘−1) , 𝑟 = (6𝑚(𝑘 − 1))
1

𝑘−2 . We restate the following result

about the approximation ratio from [2].

Lemma D.5 ([2, Section 5, Lemma 8]). The approximation ratio
of Algorithm 2 is 3((𝑘 − 1) (𝑟 − 1) + 1).

Finally, combining Lemmas D.4 and D.5, we get Theorem 6.9.

9
With a slight abuse of notation, we denote [𝑎,𝑏 ] to be the integers between 𝑎

and 𝑏, where 𝑎 < 𝑏.
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