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Abstract

Stable marriage of a two-sided market with unit demand is a classic problem that
arises in many real-world scenarios. In addition, a unique stable marriage in this market
simplifies a host of downstream desiderata. In this paper, we explore a new set of sufficient
conditions for unique stable matching (USM) under this setup. Unlike other approaches that
also address this question using the structure of preference profiles, we use an algorithmic
viewpoint and investigate if this question can be answered using the lens of the deferred
acceptance (DA) algorithm (Gale and Shapley, 1962). Our results yield a set of sufficient
conditions for USM (viz., MaxProp and MaxRou) and show that these are disjoint from
the previously known sufficiency conditions like sequential preference and no crossing. We
also provide a characterization of MaxProp that makes it efficiently verifiable, and shows
the gap between MaxProp and the entire USM class. These results give a more detailed
view of the sub-structures of the USM class.

1 Introduction
The stable marriage problem considers a two-sided market where agents of each side (e.g., men)
is assumed to have a linear preference over the other side (e.g., women) and matches are one-
to-one, i.e., each agent has a single demand. Stability asks for a pairing between these agents
such that there does not exist any pair of a man and a woman who would like to abandon
the current matching and mutually prefer a marriage among themselves. Gale and Shapley
(1962) proved that such a stable matching always exists and is obtained via a computation-
ally simple algorithm called deferred acceptance (DA). However, there could be multiple stable
matchings and it raises questions on which one to pick. The stable matching problem is very
well studied in the literature and several useful results exists related to DA and its variants.
For instance, the questions regarding the maximum (Karlin et al., 2018) or average number of
stable matchings (Pittel, 1989), complexity of counting stable marriages (Irving and Leather,
1986), matching with incomplete lists (Iwama et al., 2002), indifferences (Manlove, 2002), het-
erogeneous jobs and workers (Crawford and Knoer, 1981), and many more, have already
been investigated. See Iwama and Miyazaki (2008) for a comprehensive survey on the stable
matching problem and Roth (2008) for a survey of the DA-type algorithms.

In this context, uniqueness of stable matching (Eeckhout, 2000; Clark, 2006) has a very
important place. First, since the actual pairings of men and women are a stable matching
based on their reported preferences, a normative goal is to ensure that it is indeed their actual
preferences, i.e., the stable matching algorithm is strategyproof. However, it is known that
DA is not strategyproof for a non-proposer (Gale and Sotomayor, 1985a) unless there is a
unique stable matching. Though a unique stable matching is not sufficient for strategyproof-
ness (Roth, 1989) except in the incomplete information setup (Ehlers and Massó, 2007), it is a

1



USM

m-MaxProp

m-MaxRou

SPC

NCC
w-MaxProp

w-MaxRou

(a) n ⩾ 3

USM = SPC = NCC

m-MaxProp =
m-MaxRou

w-MaxProp
= w-MaxRou

(b) n = 2

Figure 1: The above two figures show the sub-structures of the USM class for n ⩾ 3 and n = 2
respectively. The dashed lines and the shaded regions denote the new sub-structures of USM that are
the contributions of this paper. We also characterize the class MaxProp and its gap with USM. In
Figure 1b, the fact USM = SPC was known from Eeckhout (2000). However, we provide a more direct
proof of this fact.

property from which further structures of strategyproofness can be obtained. We define the
class of preference profiles where the set of stable matchings is a singleton as unique stable
matching (USM) in this paper.

The second reason why USM is desirable is the anti-symmetry of the preferences of men
and women over the stable matchings. It is known that between two different stable match-
ings µ1 and µ2, if µ1 is at least as preferred as µ2 by all men, then µ2 must be at least as
preferred as µ1 by all women, i.e., men and women have exactly opposite preferences over
the stable matchings (Gale and Sotomayor, 1985b). Hence, finding a stable matching that is
unbiased to any side of the market is often challenging. A considerable amount of research
effort has been put to find a fair compromise between the two extremes (see, e.g., Klaus and
Klijn (2006); Tziavelis et al. (2020); Brilliantova and Hosseini (2022)). However, the question of
bias also does not appear in the USM class since there is exactly one stable matching.

Finally, unique stable matchings have appeared in many real-world matching markets,
e.g., in the US National Resident Matching Program (Roth and Peranson, 1999), Boston school
choice (Pathak and Sönmez, 2008), online dating (Hitsch et al., 2010), and the Indian marriage
market (Banerjee et al., 2013).

In this paper, we aim to understand the internal structure of the USM using a DA algo-
rithmic lens.

1.1 Our contributions

The main contributions of this paper are as follows (illustrated graphically in Figure 1).

• We view the USM problem using the number of proposals and rounds in the classic
Gale-Shapley DA-algorithm, and introduce two new conditions m-MaxProp and m-
MaxRou (similarly w-MaxProp and w-MaxRou), defined w.r.t. men(women)-proposing
DA. We show the mutual relationship of these two properties in Theorem 2 when the
number of men(or women) |M|(= |W|) = n ⩾ 3. We show that each of these conditions
is sufficient for USM (Theorem 3).

• The most prominent existing sufficient conditions for USM, the sequential preference con-
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dition (SPC (Eeckhout, 2000)) and the no crossing condition (NCC (Clark, 2006)), are dis-
joint from the new sufficient conditions proposed in this paper for n ⩾ 3 (Theorem 4).
Hence, it makes the internal sub-structure of the USM class outside NCC and SPC
clearer. However, under this scenario, the men and women proposing versions of Max-
Prop class turns out to be disjoint as well (Theorem 5).

• When n = 2, we show that the classes m-MaxProp and m-MaxRou (similarly w-
MaxProp and w-MaxRou) coincide (Theorem 6) and so do SPC and NCC (Theorem 7).
Also, m-MaxProp and w-MaxProp are contained within SPC for n = 2 (Theorem 8).
We also provide a direct proof of the fact that for n = 2, USM and SPC are equivalent
(Theorem 9), a result originally proved by Eeckhout (2000). However, we also point out
an inconsistency in the claim of SPC being necessary for USM for n = 3 (Eeckhout,
2000) through Example 4.

• Interestingly, for n = 2, the classes m-MaxProp and w-MaxProp have an overlap and
we characterize it in Theorem 10.

• We characterize the class MaxProp in Theorem 11 and these characterizing conditions
are efficiently verifiable. This result also shows the gap between the two classes: USM
and MaxProp (applies to both versions of MaxProp).

1.2 Related works

Several works focus on finding sufficient conditions for USM, e.g., the sequential preference
condition (Eeckhout, 2000), the no crossing condition (Clark, 2006), the co-ranking condi-
tion (Legros and Newman, 2010), the acyclicity condition (Romero-Medina and Triossi, 2013),
the universality condition (Holzman and Samet, 2014), oriented preferences (Reny, 2021), and
aligned preferences (Niederle and Yariv, 2009). These results provide structural views of the
preference profiles that lead to uniqueness in the stable matchings. Finding a necessary con-
dition has also been investigated and there are two prominent approach techniques. The first
one uses an idea of α-reducibility, proposed originally by Alcalde (1994). A marriage problem
satisfies α-reducibility if every sub-population of men and women has a fixed pair (a pair of
man and woman who prefer each other the most). Clark (2006) shows that this condition is
necessary as well for USM.

A different approach to this problem uses the idea of acyclicity, originally proposed by
Chung (2000). Acyclicity implies that if the agents point to their most preferred partners,
then the resulting directed graph should not have any directed cycle. While Romero-Medina
and Triossi (2013) show that it is a sufficient condition for USM, the necessity condition using
this method is explored recently by Gutin et al. (2021). Gutin et al. (2021) use the acyclicity
on a reduced graph that they define as the normal form. The idea of normal form is used for
submatching markets by Irving and Leather (1986), and Balinski and Ratier (1997). Gutin et al.
(2021) claim that the difficulty in finding a necessary condition for USM in these approaches
was that the acyclicity property was being used on the complete preference profile, while
the entire preference profile may not be relevant for a unique stable match. Using the idea
of normal form, they prune the preferences where an agent can never match with certain
partners in any stable matching. This acyclicity on a normal form turns out to be necessary
and sufficient for USM (Gutin et al., 2021).

Our approach differs considerably in the way our conditions are defined. Instead of
looking at the USM class through the preference structures of the players, we view it using
the DA algorithm and its execution over a profile. Our results consider the maximum number
of proposals made by the agents and the number of rounds in DA, and provides the extra
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structures that yields a clearer view of the space between the currently known sufficient
conditions and the USM class (Figure 1). It shows that indeed an algorithm can also help
clarify the structure of USM.

2 Preliminaries
Consider a two-sided unit-demand matching market, where the two sides are represented,
WLOG, by men and women respectively. The agents of each side are expressed as two equi-
cardinal finite sets, denoted by M and W, |M| = |W| = n, respectively. The sets share no
common agents, i.e., M ∩W = ∅. All men have strict preferences over all women and vice
versa. Individual preferences, denoted ≻i for agent i, are assumed to be complete, transitive,
and anti-symmetric. The notation mi ≻wk mj denotes wk ∈ W prefers mi ∈ M over mj ∈ M,
and similarly, wi ≻mk wj denotes mk ∈ M prefers wi ∈W over wj ∈W. The preference profile
is denoted by ≻:= {≻i: i ∈ M ∪W}. The set of all complete, transitive, and anti-symmetric
preference profiles in this setup is denoted by P . A matching and several other definitions in
this setting follow Gale and Shapley (1962).

Definition 1 (Matching). A matching in ≻ is a mapping µ from M ∪W to itself such that
for every man m ∈ M, µ(m) ∈ W, for every woman w ∈ W, µ(w) ∈ M, and for every
m, w ∈ M ∪W, µ(m) = w if and only if µ(w) = m.

The above definition says that each man is matched to exactly one woman and vice-versa.
To define stability of a matching, we need the definition of blocking pair as given below.

Definition 2 (Blocking Pair). A pair (m, w), m ∈ M, w ∈ W is a blocking pair of a matching µ

in ≻ if m ≻w µ(w) and w ≻m µ(m).

Informally, the above definition means that the pair (m, w) prefer each other over each of
their currently matched partners. This leads to the definition of stable matching as follows.

Definition 3 (Stable Matching). A matching µ in ≻ is stable if it does not have any blocking
pair.

Gale and Shapley (1962) showed that for any preference profile ≻, a stable matching al-
ways exists and can be found via the deferred acceptance (DA) algorithm. The working principle
of this algorithm is the following. The algorithm comes in two versions based on whether
the men or the women are the proposers. In every round of the men-proposing DA algo-
rithm, each unmatched man proposes his favorite woman that has not rejected him already.
The women, in that round, receive the proposals and tentatively accepts the most favorite
man that has proposed to her and rejects the rest. The rejected men go to the next round
and repeat this activity. The algorithm stops when no man is rejected in a round. A formal
representation is given in Algorithm 1.

Though the algorithm always converges to a stable matching, it is also known that the
men-proposing DA and the women-proposing DA converges to men and women optimal
stable matchings respectively, which could be quite different. There is a hierarchy among the
stable matchings from the men and women points of view as given by the following result.

Theorem 1 (Gale and Sotomayor (1985b)). If for any two distinct stable matchings µ1 and µ2 in
≻, if each man find µ1 at least as preferred as µ2, then every woman will find µ2 at least as preferred
as µ1.

The subclass of P where the set of stable matchings is a singleton is defined as the unique
stable matching (USM) class. In USM, the men and women proposing DA reaches the same
stable matching. Because of the various satisfactory properties exhibited by this class as
discussed in Section 1, there had been various attempts to characterize the structures of the
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Algorithm 1: (Men-proposing) Deferred Acceptance (DA)

Parameters : M = {m1, . . . , mn}, W = {w1, . . . , wn}, ≻= {≻i : i ∈ M ∪W}
1 for i ∈ M ∪W do
2 µ(i)← ∅

3 while ∃m ∈ M such that µ(m) = ∅ do
4 w← highest woman in ≻m to whom m has not proposed yet
5 if ∃m′ ∈ M such that µ(m′) = w and µ(w) = m′ then
6 if m ≻w m′ then
7 µ(m)← w, µ(w)← m
8 µ(m′)← ∅

9 else
10 µ(m)← w, µ(w)← m

11 return µ

preference profiles in USM. In the following section, we introduce two prominent sufficient
conditions for USM.

Remark. There are necessity results of USM as well, using ideas like α-reducibility (Clark,
2006) and acyclicity using a normal form of the preferences (Gutin et al., 2021). However, in
this paper, our objective is to view the USM class from a DA algorithmic perspective and we
discuss how our results can be applicable even in domains with partial preferences and in
practical scenarios in Section 5.

3 Current State-of-the-art Sufficient Conditions
Though there has been various sufficient conditions proposed for USM, (Romero-Medina
and Triossi, 2013; Gusfield and Irving, 1989; Reny, 2021, e.g.), the sequential preference condi-
tion (SPC, (Eeckhout, 2000)) and no crossing condition (NCC, (Clark, 2006)) provide a deeper
structural view of the preference profiles of the agents that gives rise to USM.

Definition 4 (Sequential Preference Condition). A preference profile ≻ satisfies sequential
preference condition (SPC) if there exists an ordering of men, m1, m2, . . . , mn, and women,
w1, w2, . . . , wn, such that

1. man mi prefers wi over wi+1, wi+2, . . . , wn, and

2. woman wi prefers mi over mi+1, mi+2, . . . , mn.

Eeckhout (2000) showed that SPC is sufficient for uniqueness in the stable matching, how-
ever, not necessary for n ⩾ 3 as we show in the example below.

Example 1 (USM but not SPC). Consider the following preference profile. m1 : w2 ≻ w1 ≻ w3

m2 : w1 ≻ w2 ≻ w3

m3 : w1 ≻ w2 ≻ w3

;
w1 : m1 ≻ m2 ≻ m3

w2 : m2 ≻ m3 ≻ m1

w3 : m3 ≻ m2 ≻ m1


This is not SPC, since SPC needs at least one pair of man and woman that rank each other
at the top. However, the men-proposing DA yields the matching where mi is matched with
wi, i = 1, 2, 3, which is the men-optimal matching. However, in this case, that is the women-
optimal as well since each woman gets her top preference. By Theorem 1, this profile has an
unique stable matching, i.e., it belongs to USM.
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Later, Clark (2006) defined a refinement to this condition that implies SPC.

Definition 5 (No Crossing Condition). A preference profile ≻ satisfies no crossing condition
(NCC) if there exists an ordering (m1, m2, . . . , mn) of M and an ordering (w1, w2, . . . , wn) of
W, such that if i < j and k < l, then

1. wl ≻mi wk ⇒ wl ≻mj wk, and

2. mj ≻wk mi ⇒ mj ≻wl mi.

This condition implies that if the men and women are lined up in that given order and
any pair of men (or women) are asked to point to his (or her) favorite partner among a pair
of potential partners, their pointers cannot cross each other. Though NCC implies SPC, the
converse is not true for n ⩾ 3. The following example by Clark (2006) shows that a profile ≻
can satisfy SPC but not NCC.

Example 2 (SPC but not NCC). Consider the following preference profile. m1 : w1 ≻ w2 ≻ w3

m2 : w2 ≻ w3 ≻ w1

m3 : w1 ≻ w2 ≻ w3

;
w1 : m1 ≻ m2 ≻ m3

w2 : m1 ≻ m2 ≻ m3

w3 : m3 ≻ m2 ≻ m1


In this example, SPC is satisfied in the order (m1, m2, m3), (w1, w2, w3). But it is not possible to
order {m2, m3} and {w1, w3} (and therefore M and W) to satisfy the conditions of Definition 5
(i.e., to avoid a crossing). Thus, this profile does not satisfy NCC.

These current sufficient conditions for n ⩾ 3 are shown on the LHS of Figure 1a. These
sufficient conditions, however, become identical with USM for n = 2 and we discuss this in
Section 4 in detail. Example 1, however, shows that there exists unexplored space outside the
sufficient condition SPC that are USM. We provide additional structure to that space in this
paper.

4 Our Results
This paper considers the USM problem from the DA perspective. We need to use the fol-
lowing result to define two new conditions that we later prove to be sufficient for USM. The
definitions deal with the number of proposals a woman gets in a men-proposing DA and
the number of rounds of proposals in DA. In the rest of the paper, WLOG, we use men-
proposing DA whenever we consider DA. However, the same definitions and results hold for
a symmetrically opposite women-proposing version as well.

Fact 1. In a men-proposing DA algorithm, there exists a woman w ∈ W who receives exactly one
proposal.

Proof. We prove this by contradiction. Suppose, there exists a preference profile ≻ where each
woman gets at least two proposals. According to the DA algorithm, every woman in that case
will accept exactly one of them and reject the rest of the proposals. Consider the last round
of the DA algorithm. In this round, there must exist a woman who has more than one (not
necessarily new) proposals. This holds since every woman is proposed to at least twice by
assumption. But, by the algorithm she must reject at least one proposal, which contradicts
that this is the last round. Hence the lemma is proved.

Fact 2. In the men-proposed DA algorithm

1. the maximum possible number of proposals is n2 − n + 1, and
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2. the maximum possible number of rounds is n2 − 2n + 2.

Both the bounds are achievable, i.e., there exists a preference profile ≻∈ P where the above numbers
are attained.

Proof. By Fact 1, there is a woman who receives exactly one proposal. WLOG, say wn is one
such woman. The other women w1, . . . , wn−1 can receive up to a maximum of n proposals,
one from each man. This suggests an upper bound of n(n − 1) + 1 = n2 − n + 1 on the
number of proposals in men-proposing DA.

Moreover, all men make proposals in the first round, so the first round must consist of
n proposals, whereas all the remaining rounds must have at least one proposal. Together
with the above upper bound on the number of proposals, this implies an upper bound of
(n2 − n + 1)− n + 1 = n2 − 2n + 2 on the number of rounds.

In the following preference profile, these upper bounds are achieved.

• For i ∈ {1, . . . , n− 1}, mi has preference wi ≻ wi+1 ≻ · · · ≻ wn−1 ≻ w1 ≻ w2 ≻ · · · ≻
wi−1 ≻ wn.

• mn has preference w1 ≻ w2 ≻ · · · ≻ wn.

• For j ∈ {1, . . . , n}, wj has preference mj+1 ≻ mj+2 ≻ · · · ≻ mn ≻ m1 ≻ m2 ≻ · · · ≻ mj.

With the above preferences, wn gets exactly one proposal, and all the men m1, . . . , mn cycle
through women w1, . . . , wn−1 one by one until the final assignment of mi ↔ wi−1, i = 2, . . . , n
and mn ↔ wn. As argued while getting the expressions of the upper bounds on the number
of proposals and rounds, this structure is where the (n − 1) women except wn receive n
proposals each and wn receives only one proposal. Also, this structure has n proposals in
the first round and each subsequent round has exactly one proposal made. This is the recipe
for getting n2 − n + 1 proposals and n2 − 2n + 2 rounds. So, clearly this profile achieves the
upper bound.

These results prompt us to define the following two classes of preferences.

4.1 MaxProposals and MaxRounds

These two classes of preferences are defined as follows.

Definition 6 (MaxProp and MaxRou). In a DA algorithm, a preference profile ≻ satisfies

1. MaxProp, if the proposers make n2 − n + 1 proposals in DA, and

2. MaxRou, if the proposing process in DA happens for n2 − 2n + 2 rounds.

Note that, the above two classes are critically dependent on the proposer. We will denote
the classes where the maximum number of proposals (and rounds) are coming from the men-
proposing DA as m-MaxProp (and m-MaxRou) respectively. The women-proposing versions
of the classes will be denoted as w-MaxProp and w-MaxRou respectively. In the rest of the
paper, WLOG, we will imply the men-proposing versions of MaxProp and MaxRou respec-
tively when we refer to them and prove their properties. The results for the women-proposing
versions are idential and are skipped. However, in Section 4.4, we show that the classes m-
MaxProp and w-MaxProp are disjoint for n ⩾ 3. Interestingly, these two classes partially
overlap for n = 2, and we discuss it in Section 4.5. Our first result shows the relationship
between the classes MaxProp and MaxRou.

Theorem 2. If a preference profile ≻ satisfies MaxRou, then ≻ also satisfies MaxProp.
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Proof. WLOG, assume men-proposing DA in this case. Suppose a preference profile ≻ sat-
isfies MaxRou. This implies that if we run the men-proposing DA algorithm, it would take
n2 − 2n + 2 rounds to terminate. We make the following observations directly from the algo-
rithm.

• The first round involves n proposals as nobody is matched in the first round, i.e., each
man makes a proposal.

• Each round (except the last one) must see at least one man getting rejected, else the
termination criterion of the algorithm is met, and thus, every round (except the first
one) has at least one proposal.

Hence, the total number of proposals in ≻ is ⩾ n + n2 − 2n + 1 = n2 − n + 1. By Fact 2, we
know that the number of proposals is at most n2 − n + 1. Hence, the number of proposals in
≻ must be = n2 − n + 1. Therefore ≻ satisfies MaxProp.

The converse of the above theorem is not true for n ⩾ 3 as the following example shows.

Example 3 (MaxProp but not MaxRou for n ⩾ 3). Consider the following preference profile
involving four men and four women.

m1 : w1 ≻ w2 ≻ w3 ≻ w4

m2 : w3 ≻ w2 ≻ w1 ≻ w4

m3 : w3 ≻ w1 ≻ w2 ≻ w4

m4 : w1 ≻ w2 ≻ w3 ≻ w4

;

w1 : m2 ≻ m3 ≻ m4 ≻ m1

w2 : m3 ≻ m4 ≻ m1 ≻ m2

w3 : m4 ≻ m1 ≻ m2 ≻ m3

w4 : m1 ≻ m2 ≻ m3 ≻ m4


In this example, two men (m1 and m3) get rejected in the first round of DA. Both these men
propose in the next round and it is easy to check that the number of proposals for this profile
is n2− n+ 1 = 13. However, since there are two proposals in round 2, instead of the minimum
of one that we require for MaxRou, this profile does not satisfy MaxRou.

We now state an important lemma which will be used in the following subsections to
prove several properties of MaxProp. The result gives a structure of proposals in MaxProp.

Lemma 1. WLOG, let wn be the woman who receives exactly one proposal in men-proposing DA on
≻. If ≻∈ MaxProp, then all men m ∈ M propose to all women in W \ {wn}.

Proof. Since ≻∈ MaxProp, we have n2 − n + 1 proposals. Since wn receives exactly one pro-
posal, the other n− 1 women receive a total of n2− n proposals. No woman can receive more
than n proposals (since there are n men). Hence, the only way n− 1 women can receive n2− n
proposals is if each woman in W \ {wn} receives n proposals. Thus, all m ∈ M must propose
to all w ∈W \ {wn}.

Notice that, if a woman receives proposals from all men, she is always assigned to her
most preferred man according to the men-proposing DA. Hence, the following corollary is
immediate from the lemma above.

Corollary 1. If ≻∈ MaxProp, all women except the one who gets exactly one proposal, get matched
with their most preferred men. Formally, if wn is the woman who gets exactly one proposal, then for
all i ∈ {1, . . . , n− 1}, µ(wi) ≻wi mj or µ(wi) = mj for all j ∈ [n].
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4.2 MaxProp implies USM

In this section, we prove one of the major results of this paper that provides a new sufficient
condition of USM.

Theorem 3. If a preference profile ≻ satisfies MaxProp, then ≻ is in USM.

Proof. Suppose a preference profile ≻ satisfies MaxProp. We show that, the output of men-
proposed DA algorithm (say µ) is also women-optimal. Then, by Theorem 1, µ would be the
unique stable matching.

Let wn be the woman who receives exactly one proposal. By Corollary 1, all other women
are matched with their first preferences.

Suppose, there is another stable matching µ′ ̸= µ on the same profile ≻, which is more
preferable than µ for women. Then, for all i ∈ [n], either µ′(wi) ≻wi µ(wi) or µ′(wi) = µ(wi),
and for some j ∈ [n], µ′(wj) ≻wj µ(wj).

However, w1, w2, . . . , wn−1 are already matched to their first preferences by µ. So, µ′(wi) =

µ(wi) for i = 1, . . . , n− 1, and µ(wn) has to be the only man remaining who has to be matched
to wn even in µ′. Hence, µ = µ′, which is a contradiction. Thus, µ is women-optimal, and is
the unique stable matching.

However, the converse of the previous theorem is not true. The following example shows
that MaxProp is not necessary for USM. In fact, this example does not satisfy SPC either.

Example 4 (USM but neither MaxProp nor SPC). Consider the following preference profile. m1 : w1 ≻ w3 ≻ w2

m2 : w2 ≻ w1 ≻ w3

m3 : w1 ≻ w2 ≻ w3

;
w1 : m2 ≻ m1 ≻ m3

w2 : m3 ≻ m1 ≻ m2

w3 : m1 ≻ m2 ≻ m3


Since there is no pair of man and woman (m, w) that prefers each other the highest, it is not
SPC. The men-proposing DA takes 6 proposals, while the maximum number of proposals
is 32 − 3 + 1 = 7. Hence, this profile does not satisfy MaxProp. However, the men-optimal
matching (obtained via men-proposing DA) results in all women receiving their most pre-
ferred men, which is women-optimal as well. Therefore, this profile belongs to USM.

From Theorems 2 and 3, the following corollary is immediate.

Corollary 2. If a preference profile ≻ satisfies MaxRou, then ≻ is in USM.

4.3 MaxProp is disjoint from SPC for n ⩾ 3

In this section, we address the relative positions of the SPC and MaxProp classes within the
space of USM. We show that these two classes are disjoint.

Theorem 4. For n ⩾ 3, there does not exist any preference profile ≻∈ P that satisfies both SPC and
MaxProp.

Proof. Suppose, there exists a preference profile ≻ that satisfies both the SPC and MaxProp.
By definition of SPC, there exists an ordering of men and women such that

1. man mi prefers wi over wi+1, wi+2, . . . , wn, and

2. woman wi prefers mi over mi+1, mi+2, . . . , mn.
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Hence, m1 will be proposing to only w1, who will never reject him, as he is her top preference.
Thus, m1 makes only one proposal. Since MaxProp holds, we know there are a total of
n2 − n + 1 proposals to be made. Hence, the remaining n − 1 men make n2 − n proposals,
which means each man makes (n2 − n)/(n− 1) = n proposals. Since in the men-proposed
deferred acceptance algorithm, no man proposes to the same woman twice, each woman has
to receive a proposal from all (n− 1) men, i.e., each woman receives ⩾ n− 1 proposals. Thus,
there is no woman who receives exactly one proposal, and this contradicts Fact 1. Hence we
have the theorem.

Discussions. This result naturally implies that for n ⩾ 3, the classes SPC and MaxRou,
NCC and MaxProp, as well as NCC and MaxRou are mutually disjoint (see Figure 1 for an
illustration).

4.4 m-MaxProp and w-MaxProp are disjoint for n ⩾ 3

In this section, we show that the MaxProp classes generated by men-proposing and women-
proposing DA are disjoint when there are at least three agents on each side of the market.

Theorem 5. For n ⩾ 3, there does not exist any preference profile ≻∈ P that satisfies both m-
MaxProp and w-MaxProp.

Proof. Suppose there exists a preference profile ≻∈ P satisfying both m-MaxProp and w-
MaxProp. Consider the men-proposing DA algorithm on ≻. Since ≻ satisfies m-MaxProp,
by Corollary 1, each w ∈ W \ {wn} is matched with her most preferred man, where wn is the
woman receiving exactly one proposal.

Using Theorem 3, we also know that≻ satisfies USM, i.e., men-proposing DA and women-
proposing DA arrive at the same matching. Hence, women-proposing DA on ≻ yields a
matching in which each w ∈ W \ {wn} is matched with her most preferred man, by making
only one proposal. The remaining woman wn can make at most n proposals. Thus, women-
proposing DA on ≻ can have at most 1× (n− 1) + n = 2n− 1 proposals.

Further, ≻ satisfies w-MaxProp, which means women-proposing DA on ≻ involves n2 −
n+ 1 proposals (Fact 2). In order for this to happen on≻, it must hold that n2−n+ 1 ⩽ 2n− 1,
or n2 − 3n + 2 ⩽ 0. However, we know that for n ⩾ 3, n2 − 3n + 2 > 0. Hence, we have a
contradiction.

Therefore, for n ⩾ 3, there is no ≻∈ P satisfying both m-MaxProp and w-MaxProp.

The space of these classes is shown graphically in Figure 1a.

4.5 The curious case of n = 2

When the number of agents in each side is two, the structure of these spaces looks a bit
different. The classes MaxProp and MaxRou become identical and so does SPC and NCC.
Quite surprisingly, MaxProp becomes a subset of SPC. These results are formally stated in
the following theorems.

Theorem 6 (MaxProp = MaxRou). For n = 2, every preference profile ≻ satisfying MaxProp also
satisfies MaxRou.

Proof. For n = 2, the maximum number of rounds is n2 − 2n + 2 = 2 and the maximum
number of proposals is n2 − n + 1 = 3. Now, consider a preference profile ≻ satisfying
MaxProp. DA on that profile will need to make 3 proposals. Since round 1 of DA can make
at most 2 proposals (as n = 2), at least 2 rounds are required to make 3 proposals, and thus,
≻ satisfies MaxRou as well.
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Theorem 7 (SPC = NCC). For n = 2, every preference profile ≻ satisfying SPC also satisfies NCC.

Proof. Consider the preference profile ≻ which satisfies SPC. Thus, we have an ordering of
men and women (WLOG, assume (m1, m2), (w1, w2)) in which m1 prefers w1 to w2 and w1

prefers m1 to m2. NCC requires that if wl ≻m1 wk where l > k, then it must imply wl ≻m2 wk.
However, we note that there is no l > k with wl ≻m1 wk, hence condition 1 is vacuously true.
It is easy to see that the same is true even for condition 2. Hence, whatever be the preference
of m2 and w2, the NCC conditions are always satisfied. This completes the proof.

Theorem 8 (MaxProp ⊂ SPC). For n = 2, every preference profile ≻ satisfying MaxProp also
satisfies SPC.

Proof. Note that for n = 2, if both men has the same top women in their preference list, then
it is sufficient to claim that the profile is SPC. This is because, the woman (say w1) who is this
top choice of both the men has exactly one man as her top choice (say m1). Then it is easy to
see that the order (m1, m2), (w1, w2) is the SPC satisfying order.

Now, let a profile ≻ satisfy MaxProp. For n = 2, it implies that the men should make
22 − 2 + 1 = 3 proposals. If their top preferences were different women, then DA would
complete in round 1 with 2 proposals. Hence, it is necessary to have the same woman as
the top preference of both men for ≻ to be in MaxProp. With our previous observation, we
conclude that this implies that ≻ also satisfies SPC.

The converse of the above result is not true. Indeed, MaxProp is a strict subset of SPC as
the following example shows.

Example 5 (SPC but not MaxProp for n = 2). Consider the following preference profile.(
m1 : w1 ≻ w2

m2 : w2 ≻ w1
;

w1 : m1 ≻ m2

w2 : m2 ≻ m1

)
It is easy to see that SPC is satisfied on this profile with the order being (m1, m2), (w1, w2).
However, the number of proposals in men-proposing DA is 2 while MaxProp requires this to
be 22 − 2 + 1 = 3. Hence, this profile does not satisfy MaxProp.

It is also known that for n = 2, SPC also becomes necessary for USM, which is shown by
Eeckhout (2000). Here we provide a direct proof of this result.

Theorem 9. For n = 2, a preference profile ≻ satisfies SPC if and only if it is in USM.

Proof. Note that the ‘only if’ direction comes directly from Eeckhout (2000), since the proof
holds even for n = 2. Hence, we only show the ‘if’ direction of this result.

We will show that if a profile ≻ does not satisfy SPC then it cannot belong to USM. Note
that, for SPC to be violated, it is necessary that there does not exist a pair of man and woman
who rank each other as their first preference. To make this happen, for n = 2, both men
cannot have the same woman as their first preference, and both women should also have the
man who does not rank her at the top as her first preference. Hence, the only two possible
preference profiles are(

m1 : w1 ≻ w2

m2 : w2 ≻ w1
;

w1 : m2 ≻ m1

w2 : m1 ≻ m2

)
or

(
m1 : w2 ≻ w1

m2 : w1 ≻ w2
;

w1 : m1 ≻ m2

w2 : m2 ≻ m1

)
.

In both the profiles, the men-optimal DA yields a different matching that the women-optimal
DA. Hence, this profile does not belong to USM. This concludes the proof.

Eeckhout (2000) claims that SPC is necessary for USM even for n = 3, which is not true
since we show in Example 4 that there are profiles that are not SPC but admit a unique stable
matching.
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Relative structures of m-MaxProp and w-MaxProp. Unlike the n ⩾ 3 case, here these two
classes overlap partially.

Theorem 10. For n = 2, a preference profile ≻∈ P

1. satisfies m-MaxProp iff both men have the same woman as their top preference, and

2. satisfies both m-MaxProp and w-MaxProp iff in addition to the above condition both women
also have the same man as their top preference.

Proof. Part 1: Consider the ‘if’ direction. If both men have the same woman as the top
preference in ≻, then in first round of men-proposing DA, two proposals will be made and
one of them will be rejected who will propose in the next round. Since the maximum number
of proposals for n = 2 is 22 − 2 + 1 = 3, this will lead to m-MaxProp. For the ‘only if’
direction, suppose the two men do not have the same woman as their top preference. Then
the men-proposing DA will get over in one round with two proposals, and hence will not
belong to m-MaxProp.

Part 2: Now we know that the m-MaxProp class contains only those profiles where the men
have the same woman as their top preference. In addition, if we also need the profile ≻ to be
w-MaxProp, then using the women-equivalent condition of Part 1, we get that it is equivalent
to both women also having the same man as their top preference. Therefore, the necessary
and sufficient condition for a preference profile to be both m-MaxProp and w-MaxProp is
that both men have the same woman as their top preference and both women also have the
same man as their top preference.

Collecting all these results, the space of these conditions is graphically shown in Figure 1b.
In the following section, we investigate the gap between this DA-inspired class MaxProp and
the class of all USMs.

5 A Characterization of MaxProp
The DA-inspired class MaxProp makes the region between SPC and USM clearer for n ⩾ 3.
In this section, we focus on finding the exact additional properties of the preference profiles
in USM that reduces it to MaxProp. But first we show a few structural properties of MaxProp.

Lemma 2. If a preference profile ≻∈ P satisfies MaxProp, then there must be a woman w ∈ W who
is the least preferred woman for each m ∈ M.

Proof. We prove this result via contradiction. WLOG, suppose woman wn is the woman who
receives exactly one proposal (by Fact 1) when men-proposing DA is run on ≻. Suppose there
is a man mi who does not have wn as his last preference. Let mi prefer wn over some woman
wj, j ̸= n. Then by Lemma 1 (as ≻ satisfies MaxProp), mi must propose to wj, and since
he prefers wn over wj, he must propose to wn before wj. But, wn gets exactly one proposal
and never rejects the man that proposes her. So mi cannot propose to wj after proposing
to wn, since it requires wn to reject mi under DA to make that happen. Hence, we reach a
contradiction.

Note that the above lemma claims existence of a woman who is least preferred by every
man if the profile satisfies MaxProp. In the proof, we have identified that woman as the
woman who receives exactly one proposal in DA.

Lemma 3. Suppose, a preference profile ≻ satisfies MaxProp. WLOG, wn be the woman who is
every man’s last preference in ≻, and mn get matched with wn in men-proposing DA. Then for each
i ∈ {1, . . . , n− 1}, wi’s first preference is some mj (j ̸= n), and mj’s penultimate preference is wi.
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Proof. From Lemma 2, we know that the woman wn who is every man’s last preference in ≻
also receives exactly one proposal in men-proposing DA. By Lemma 1 (as ≻ satisfies Max-
Prop), each woman wi ∈ W \ {wn} gets proposed by every man in M. This implies that she
finally gets matched with her most preferred man. Since mn gets matched with wn, wi’s first
preference must be some mj (j ̸= n).

Again using Lemma 1, mj proposes to all (n − 1) women in W \ {wn}, and he makes
his last proposal to the woman who is finally matched with him, i.e., wi. Since, mj’s least
preferred woman is wn, wi must be mj’s penultimate preference in ≻.

Using these results, we will now state a set of conditions that are necessary and sufficient
for MaxProp. These conditions also identify the additional structure needed for a preference
profile in USM to satisfy MaxProp.

Theorem 11. A preference profile ≻ satisfies MaxProp (m-MaxProp, WLOG) if and only if there
exists an ordering m1, . . . , mn of M and an ordering w1, . . . , wn of W satisfying the following three
conditions:

1. wn is the least preferred woman for each mi ∈ M, i = 1, . . . , n.

2. For each i ∈ {1, . . . , n− 1}, wi’s first preference is mi, and mi’s penultimate preference is wi.

3. For each k ∈ {1, . . . , n− 1}, the second preference of wk is from {mk+1, mk+2, . . . , mn}.

Before proving the theorem, we make the following observation. We denote the second
preference of woman wℓ with s(wℓ). Let G be the digraph with vertices {1, 2, . . . , n− 1} where
i is joined to j if and only if s(wi) = mj. Observe that condition 3 says that the given ordering
is a topological ordering of G. We know that a directed graph has a topological ordering if
and only if it is acyclic. So, an equivalent interpretation of condition 3 is that G is acyclic.

Proof. (⇒): Consider a preference profile ≻ that satisfies MaxProp. Since ≻ satisfies Max-
Prop, conditions 1 and 2 of this theorem follow from Lemmas 2 and 3 respectively. We will
prove condition 3 by showing that the digraph G is acyclic. Suppose not. Then, G must have
at least one directed cycle C involving at least two vertices. Denote the set of vertices in this
cycle as V(C). We will show that there exist two different stable matchings, which contradicts
that ≻ satisfies MaxProp (since MaxProp implies USM by Theorem 3). Construct a matching
µ′ as follows. For each edge i, j ∈ V(C) such that a directed edge exists from i to j in G,
µ′(wi) = mj. For all the remaining women wi, where i ∈ N \V(C), µ′(wi) = mi. Note that µ′

is a stable matching, because of the following reasons.

• None of women wi, where i ∈ C can form a blocking pair. The only better match the
woman wi can get is to be matched with her first preference mi (since she is currently
matched to her second preference and condition 2 says that her top preference is mi).
But that man mi has wi as the penultimate preference (condition 2) and wn as the last
preference (condition 1), and is currently matched with none of them under µ′. So, mi

does not find this a profitable deviation.

• The remaining women wi, i ∈ N \V(C) cannot form blocking pairs either, since µ′(wi) =

mi, i.e., they have been matched with their most preferred men (condition 2), with the
exception of wn, who cannot form a blocking pair as she is every man’s last preference
(condition 1).
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However, µ(wi) = mi is also a stable matching, as each wi gets matched with her most
preferred man mi (except wn who cannot form a blocking pair due to condition 1). Clearly,
µ ̸= µ′, since in µ′, at least two women between 1, . . . , (n− 1) are matched with their second
most preferred men. Thus, we have found two distinct stable matchings for ≻ and we have a
contradiction to USM (and therefore MaxProp).

(⇐): Consider a preference profile ≻ satisfying the three conditions of this theorem. Pick
any stable matching µ on ≻.

First, note that µ(wn) = mn, i.e., wn has to be matched with mn in every stable matching on
≻. This is because if wn is matched with mi ∈ M \ {mn} then (mi, wi) forms a blocking pair:
mi’s least preferred woman is wn (condition 1) and wi’s most preferred man is mi (condition 2).

We will prove that it must be µ(wi) = mi. Suppose not. Let k be largest such that
µ(wk) ̸= mk. This implies that for all i ∈ {k + 1, k + 2, . . . , n}, we have µ(wi) = mi. Therefore,
wk is matched with neither (a) her first nor (b) her second preference. This is because, (a) con-
dition 2 says that mk is wk’s most preferred man, and (b) the second preference of wk i.e. s(wk)

is from {mk+1, mk+2, . . . , mn} (by condition 3) but they are matched with {wk+1, wk+2, . . . , wn}
respectively (by assumption that k is the largest). But then, wk can form a blocking pair
with m′ := s(wk) that is her second preference, as m′ has been matched with his least or
penultimate preferences, and would prefer wk over µ(m′), and we reach a contradiction.

Thus µ(mi) = wi, ∀i ∈ M, is the unique stable matching for ≻, and hence the men-
proposed DA algorithm must arrive at this matching. According to this algorithm, each man
mi starts with proposing to his most preferred woman and proposes to the next woman in
his preference profile every time he gets rejected, until he reaches his penultimate woman
wi (except for mn, who proposes until he reaches his last preference wn). Each mi for i ∈
{1, . . . , n − 1} proposes (n − 1) times, and mn proposes n times, adding up to a total of
(n− 1)(n− 1) + n = n2 − n + 1 proposals. Thus, the preference profile ≻ satisfies MaxProp.

This concludes both directions of the proof.

Discussion. Theorem 11 gives the necessary and sufficient conditions of MaxProp in the
form of three conditions. It is worth asking how critical each of the conditions is. The
following set of examples shows that each of the conditions is tight.

Example 6 (Profile ≻ violates condition 1 but satisfies conditions 2 and 3). Consider the
following preference profile ≻ for n = 3. m1 : w3 ≻ w1 ≻ w2

m2 : w1 ≻ w2 ≻ w3

m3 : w1 ≻ w2 ≻ w3

;
w1 : m1 ≻ m2 ≻ m3

w2 : m2 ≻ m3 ≻ m1

w3 : m1 ≻ m2 ≻ m3


Observe that ≻ satisfies conditions 2 and 3 with σ = (2, 1), but it violates condition 1, as
m1’s least preferred woman is not w3. Men-proposed DA on ≻ yields the matching µ =

{(m1, w3), (m2, w1), (m3, w2)}, which requires only 4 proposals. If ≻ satisfied m-MaxProp, it
would require 32 − 3 + 1 = 7 proposals. Thus, ≻ violates m-MaxProp.

Example 7 (Profile ≻ violates condition 2 but satisfies conditions 1 and 3). Consider the
following preference profile ≻ for n = 3. m1 : w1 ≻ w2 ≻ w3

m2 : w2 ≻ w1 ≻ w3

m3 : w1 ≻ w2 ≻ w3

;
w1 : m1 ≻ m2 ≻ m3

w2 : m2 ≻ m3 ≻ m1

w3 : m1 ≻ m2 ≻ m3


Observe that ≻ satisfies conditions 1 and 3 with σ = (2, 1), but it violates condition 2, as m1

and m2 do not have w1 and w2 respectively as their penultimate preferences. Men-proposed
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DA on ≻ yields the matching µ = {(m1, w1), (m2, w2), (m3, w3)}, which requires only 5 pro-
posals. If ≻ satisfied m-MaxProp, it would require 32− 3 + 1 = 7 proposals. Thus, ≻ violates
m-MaxProp.

Example 8 (Profile ≻ violates condition 3 but satisfies conditions 1 and 2). Consider the
following preference profile ≻ for n = 3. m1 : w2 ≻ w1 ≻ w3

m2 : w1 ≻ w2 ≻ w3

m3 : w1 ≻ w2 ≻ w3

;
w1 : m1 ≻ m2 ≻ m3

w2 : m2 ≻ m1 ≻ m3

w3 : m1 ≻ m2 ≻ m3


Observe that ≻ satisfies conditions 1 and 2, but it violates condition 3, as there is no woman
wσ(1) with m3 as her second most preferred man. Men-proposed DA on ≻ yields the matching
µ = {(m1, w2), (m2, w1), (m3, w3)}, which requires only 5 proposals. If≻ satisfied m-MaxProp,
it would require 32 − 3 + 1 = 7 proposals. Thus, ≻ violates m-MaxProp.

To characterize the distinction between the preference profiles that are MaxProp and
MaxRou, we provide the following result that characterizes MaxRou using one additional
structural property. Note that if at any intermediate stage of the men-proposing Gale-Shapley
algorithm, k men propose, it can lead to at most k rejections. Hence, the following observation
is immediate.

Observation 1. If there are k men who propose in a particular round, then at most k men (not
necessarily the same men) can propose in all subsequent rounds.

Theorem 12. A preference profile≻ satisfies MaxRou if and only if it satisfies the following conditions

1. ≻ satisfies MaxProp, and there exists a woman wn who is the least preferred woman of each
man, and

2. each woman in W \ {wn} is a top preference of some man.

Proof. (⇒) : Since ≻ satisfies MaxRou, it is MaxProp (Theorem 2) as well, and from Theo-
rem 11, we know that there exists a woman wn who is the least preferred woman of each
man. Hence condition 1 is necessary.

Also, since ≻ satisfies MaxRou, by definition, the number of rounds is n2 − 2n + 2. The
first round always have n proposals and since MaxRou ⇒ MaxProp, (Theorem 2), the re-
maining n2 − n + 1− n = n2 − 2n + 1 number of proposals has to come in the remaining
n2− 2n + 1 rounds. This implies that each subsequent round must have exactly one proposal.
Now, the number of proposals in the second round is equal to the number of men rejected in
the first round, which must be 1. Since all the men propose to some woman amongst the first
(n− 1) women (Theorem 11), we must have that all (n− 1) women in W \ {wn} must receive
at least one proposal (else, more than one man will be rejected in the first round of the DA
algorithm). This implies that each of the women in W \ {wn} must be a top preference of at
least one man, which is precisely condition 2.

(⇐) : Since ≻ satisfies MaxProp and every woman in W \ {wn} gets a proposal in the first
round of the DA algorithm, at most one man can be rejected in that round since exactly one
woman gets two proposals. In the second and each subsequent rounds, we can have at most
one proposal. This is because, from Observation 1 we know that if we have k proposals in
some round, then we can have at most k proposals in all subsequent rounds. Since ≻ satisfies
MaxProp, to get n2 − n + 1 proposals where the first round makes n proposals and every
subsequent round makes at most one proposal, we must have n2 − 2n + 2 rounds (1 round
×n proposals + remaining n2 − 2n + 1 rounds ×1 proposal). Hence ≻ satisfies MaxRou.
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Now, a naive way to check if a preference profile ≻ satisfies MaxProp (MaxRou) is to
run the DA algorithm and check if it achieves the maximum number of proposals (rounds).
This would take O(n2) time. But, using the characterization of MaxProp (MaxRou), i.e.,
Theorem 11 (Theorem 12), we can do much better. Define the following decision problems
isMaxProp(≻) and isMaxRou(≻) as the problem to determine if ≻ satisfies MaxProp and
MaxRou respectively.

Corollary 3. For any preference profile ≻

1. isMaxProp(≻) can be checked in O(n).

2. isMaxRou(≻) can be checked in O(n).

Proof. Clearly, condition 1 and 2 of Theorem 11 can be checked in O(n). Now, we know that
whether a directed graph G(V, E) is acyclic can be checked in O(|V|+ |E|). But, the graph G
as in Theorem 11 has n− 1 vertices and at most n− 2 edges. Thus, condition 3 can also be
checked in O(n). Hence, whether ≻ satisfies MaxProp can be checked in O(n).

Further, condition 2 of Theorem 12 can also be checked in O(n). Hence, whether ≻
satisfies MaxRou can be checked in O(n).

Discussion. Note that these results also help us in the understanding MaxProp and MaxRou
conditions (and thereby USM) in a better way. (i) From the structure given by Theorem 11 (or
Theorem 12), it is possible to count what fraction of preference profiles satisfy MaxProp (or
MaxRou). (ii) The structures look only at partial preferences. The result says we need to know
only the top two preferred alternatives of one side (say women), the bottom two (top one and
bottom two, for MaxRou) preferred alternatives of the other side (say men), and does not care
about the preferences at the other positions. Therefore, we can apply this result on domains
with partial preferences as long as the preferences at these positions are known. (ii) From a
practical viewpoint, depending on the applications, such profiles may show up in practice.

6 Conclusions and Future Work
In this paper, we have considered the USM problem from a Gale and Shapley (1962) deferred
acceptance algorithmic perspective. The properties like MaxProp and MaxRou that counts the
number of proposals and rounds respectively in this algorithm yields novel insights into the
structure of USM. The takeaway point from this kind of sufficiency condition is its simplicity.
Both the MaxProp and MaxRou properties are extremely easy to verify on a given profile
(given the characterization result of Theorem 11), and also the existence of USM is easy
to check since men and women proposing DA arrives at the same stable matching iff it is
USM. In addition to the computational simplicity to sufficiency, these conditions carve out a
different and unexplored sub-space of USM (see Figure 1). The variation of these spaces for
n = 2 and n ⩾ 3 is interesting. We also provide the structure of the preference profile that
differentiates MaxProp class with USM.

As a future plan, we would like to see if any algorithmic property (of not necessarily
DA) can explain the whole of the USM class and if there exists an efficient (better than DA)
algorithm that can identify USM.
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