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ABSTRACT
We consider the problem of scheduling resources with monetary

transfers among agents in a setting where multiple outlets can

dispense these resources at different rates within fixed time-slots.

This problem is motivated by applications such as electric vehicle

(EV) charging where energy is the resource and EVs are avail-

able within a convenient time window of its owners. The agents’

valuations depend on the contiguous time slots at a given outlet

that dispense the resource to them. We show that for monotone
and its sub-class of dichotomous valuations, computing the social
welfare-maximizing allocation is NP-hard, even if there is only one

outlet. For monotone and dichotomous valuations, we provide a

randomized 2-approximation mechanism that is truthful in dom-
inant strategies and individually rational for a single outlet and a

randomized𝑂 (
√︁
|𝑆 |)-approximation algorithm with the same prop-

erties for multiple outlets (𝑆 is the set of time-slots). However, for

single-minded valuations, the welfare maximization problem for

multiple outlets is in P. This allows us to use standard mechanisms

like VCG to ensure truthfulness and individual rationality.
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1 INTRODUCTION
Allocating resources efficiently among time-constrained consumers

is a critical challenge across industries. For instance, power grids

distribute electricity to many organizations operating heavy elec-

trical equipments, while food delivery apps allocate incoming food

orders to delivery agents. Similarly, a charging point operator (CPO)
of electric vehicles (EVs) manages multiple charging stations, with

EVs coming as consumers to charge themselves. These diverse sce-

narios share some common features: (a) resources take significant

time to serve each consumer, (b) consumers have specific prefer-

ences over the schedules (e.g., delivery agents preferring certain

geographical areas and times or EVs needing charging at specific
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times and locations), and (c) payments are allowed, with the option

of price discrimination among consumers. This creates a general-

ized framework of mechanism design for resource scheduling with
monetary transfers, where the planner (e.g., a grid manager, delivery

app, or CPO) must adhere to certain key principles. The first goal

is truthfulness, that ensures consumers to reveal true electricity

demand or delivery agents to disclose real preferences. The second

goal is social welfare maximization, that aims to maximize the col-

lective consumer satisfaction. Finally, individual rationality ensures
that the consumers are not penalized for participation.

In this paper, we consider the problem of truthful, individually

rational, and welfare-maximizing resource scheduling problemwith

payments where the allocation and payment decisions are made

at certain given epochs, e.g., at certain hours of the day depending

on the number of consumer requests that arrive at that time epoch.

We keep the electric vehicle allocation as our running example and

develop the theory and notation accordingly. However, we want

to emphasize that the same framework can also be easily adapted

to any resource allocation problem discussed above. The special

structure of this setting allows us to show that maximizing welfare

is computationally hard and therefore needs to be approximated.

However, for such approximated welfare mechanisms, non-trivial

allocation and payment rules need to be designed to ensure truthful-

ness. In this paper, we consider a static setup where the consumers

report their values and the mechanism decides the allocation and

payments in one go. Making the decision epochs sufficiently fine, a

close approximation of the dynamic decision problem can be ob-

tained. Even in this static setup, we find the problem to be quite

challenging and therefore a general analysis of an online resource

scheduling problem is left as a future exercise.

1.1 Related Work
The literature on truthful resource scheduling is diverse primarily

because of the history and application domains of such problems.

The first strand of this literature comes from the classical domain

of machine scheduling. In this domain, the primary objective is to

minimize makespan [2, 10, 11, 15, 17, e.g.]. The question of social

welfare has been addressed sporadically, e.g., Koutsoupias [24]

defined it as the negation of the sum of executing times of all

machines and provided approximation to the optimal.

The second strand comprises of discrete interval scheduling

problems, where a set of weighted jobs can be executed over multi-

ple machines and the the goal is to maximize the weighted sum of

executed jobs [5, 6, 8, 32]. While this literature focuses on provid-

ing approximation schemes, it does not consider the objective of

truthfulness or capture the rich valuation structure of agents.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Table 1: Summary of results.

Valuation # outlets Complexity Mechanism Guarantee DSIC IR

Monotone/dichotomous Multiple NP-Hard RAE (Algorithm 1 + Algorithm 2 in separation oracle) 2

√︁
|𝑆 |-approx

Monotone/dichotomous Single NP-Hard RAE (Algorithm 1 + Algorithm 3 in separation oracle) 2-approx

Single-minded Multiple P DAE (Algorithm 4) Optimal

The third strand of literature addresses the axiomatic questions

of properties such as truthfulness, budget balance, independence of

irrelevant alternatives [20], risk aversion [25], and provide charac-

terization results. These works do not consider the computational

complexity of the mechanisms that yield these properties. Kress

et al. [26] and Kolen et al. [22] provide nice surveys of these three

strands.

The fourth strand is from the algorithmic mechanism design

viewpoint, where the computational questions in welfare maxi-

mization and truthfulness are considered together. If the time is

discrete and each agent desires a set of contiguous time-slots of

a resource, then this problem reduces to a special combinatorial

allocation problem. We consider this setting in our paper and, there-

fore, this literature is the most relevant one. For mechanisms with

payments, VCG [12, 19, 33] is the most widely used one for guaran-

teeing truthfulness and welfare maximization. However, it requires

the optimal social welfare (OSW) allocation to be computed in order

to ensure truthfulness. The OSW problem in combinatorial auctions

is known to be NP-Hard [13, 29], even in the case where agents

are single-minded. In addition, approximating the social welfare to

a factor within 𝑘
1/2−𝜖

(where 𝑘 is the number of objects or goods)

is also NP-Hard [13, 29]. In the case of multi-unit combinatorial

auction under the constraint that no object is allocated more than 𝑦

times (hence considered as the number of units of every object) and

every agent gets at most one bundle, approximating social welfare

within a factor of 𝑂 (𝑘1−𝜖/𝑦+1) is NP-Hard [7]. Thus, the approach

taken in the literature is to approximately maximize social welfare,

while ensuring truthfulness and individual rationality (IR).

There are several algorithms that provide 𝑂 (𝑘1/𝑦+1) approxima-

tion guarantee [9, 23, 30] to the social welfare maximization prob-

lem. However, for general monotone valuations, only [7, 27] are

known to be truthful. Note that the VCG mechanism with approxi-

mate social welfare does not generally guarantee truthfulness [28].

Bartal et al. [7] give a deterministic𝑂 (𝑦𝑘1/𝑦−2) approximation algo-

rithm that ensures truthfulness and IR. However, this approach only

works for 𝑦 ⩾ 3. In contrast, Lavi and Swamy [27] provide a ran-

domized mechanism that uses VCG in a computationally tractable

manner and achieves 𝑂 (𝑘1/𝑦+1) approximation guarantee for the

social welfare ∀𝑦 ⩾ 1, ensuring truthfulness and IR. Several other

works address the single minded buyers [3, 9, 28, e.g.], single-valued

buyers [4], and subadditive valuations [16].

Our resource scheduling problem and the results are distinct

from that in the literature. In our setup, every outlet-timeslot pair

is a good, and exactly one unit of this is available. Hence, this

naturally falls in the setup of [27]. However, applying their method

directly in our setting where the number of goods is |𝑆 | |𝑀 | (𝑆 and

𝑀 are the set of time slots and outlets respectively) achieves an

approximation guarantee of𝑂 (
√︁
|𝑆 | |𝑀 |). Using the structure of the

allocation space of our problem, we provide an improved 𝑂 (
√︁
|𝑆 |)-

approximation for multiple outlets and a 2-factor approximation

for the single outlet (see Section 1.2 and Table 1 for more details).

1.2 Our Contributions
In this paper, we consider the consumers (agents) who are looking

for contiguous time-slots to consume resource from an outlet at a

rate that is fixed for that consumer-outlet pair. They have different

valuations for different such contiguous slots, e.g., infeasible slots

have zero values. The planner wants to allocate the resources to

maximize the sum of the valuations of all the agents (i.e., welfare-

maximizing) while ensuring that agents are truthful. Monetary

transfers can be used to achieve this goal. In this setting, our con-

tributions can be summarized as follows.

• For monotone and dichotomous valuations, computing the

welfare-maximizing allocation is NP-Hard even for a single out-

let (Theorems 1 and 4).

• When considering a single outlet for the above valuations, we

provide a 2-approximate welfare-maximizing mechanism that

satisfies truthfulness in dominant strategies and individual ratio-
nality (Theorem 3).

• For the case with multiple outlets, we provide a 𝑂 (
√︁
|𝑆 |)-

approximate welfare-maximizing mechanism (𝑆 is the set of

time-slots) that is also truthful in dominant strategies and indi-
vidually rational (Theorem 2).

• For single minded agents (agents who get a fixed positive valua-

tion only when a specific set of contiguous slots at a particular

outlet is allocated to them) with multiple outlets, we show that

the welfare-maximization problem can be reduced to a linear

program and hence is efficiently solvable (Theorem 5). Therefore,

truthfulness and IR can be ensured via the VCG mechanism.

Our results are summarized in Table 1. The different cases are moti-

vated by the practical limitations of resource scheduling problems.

For instance, if the resource outlets are not interconnected and a

simultaneous decision over all the requests coming at all outlets

cannot be made or if each agent prefers to get resource at any single

outlet but has valuations for several set of contiguous time slots at

that outlet, then the planner can run the algorithm individually at

every outlet and guarantee a constant factor approximation. For

the relatively difficult problem of a single CPO (in the context of EV

charging) jointly allocating the consumers having preference over

multiple outlets, the approximation guarantee becomes worse be-

cause the underlying optimization problem gets harder. For certain

special settings, e.g., every EV has a desired (outlet, interval) and

does not consider any other (outlet, interval), the problem becomes

computationally easy.



2 PRELIMINARIES
In this section, we formally describe the resource scheduling prob-

lem setup and the mechanism design goals using electric vehicle

charging as the motivation.

2.1 Model
Let 𝑁 = {1, 2, 3, . . . , 𝑛} denote the set of electric vehicles (EVs)

requesting to charge themselves (e.g., via a mobile application)

from a single charging point operator (CPO) who owns charging

stations in a region. Each station has several charging outlets and
every outlet has a fixed maximum charging rate at which it can

charge an EV. We collect together all the outlets in the region

(irrespective of whether they are at the same station) and denote

𝑀 = {1, 2, 3, . . . ,𝑚} to be the set of all outlets that the CPO owns

in that region. EVs have preferences over different outlets based

on their location and charging rates. For instance, an EV would

prefer to charge at a charging outlet based on its proximity, the

rate of charging (fast/slow), pricing, and various similar factors.

We consider CPO as the planner whose goal is to allocate EVs

(agents) to outlets and decide an appropriate pricing scheme for

the allocation. Since charging an EV requires time, the planner

also needs to factor in the time allocated while assigning agents to

the outlets. Consider a time horizon (e.g. the working hours of a

day) which is discretized into 𝑠 slots of equal duration denoted by

𝑆 = {1, 2, 3, . . . , 𝑠}. Each slot 𝑗 ∈ 𝑆 is an indivisible unit representing

the minimum amount of time an agent must charge once plugged

in at an outlet 𝑘 ∈ 𝑀 . The planner solves the problem of allocating

agents to slots at the outlets given a set of charging requests by

EVs. Hence, the resource that each EV can be allocated is a pair of

‘time slot and outlet’.

Each EV 𝑖 ∈ 𝑁 is allocated a collection of (slot, outlet) pairs which

we will be calling a bundle. Since no EV can charge at two different

outlets at the same time slot, we denote a bundle by 𝑏 ∈ (𝑀 ∪{0})𝑆 ,
which implies that a bundle is a vector of length |𝑆 | where the

coordinates correspond to the time slots and the value at each

coordinate represents the assigned outlets {1, 2, . . . ,𝑚} ∪ {0} at the
corresponding time-slot. The special outlet 0 denotes ‘unassigned’

at that slot. We use 𝑏 𝑗 to denote the 𝑗 th coordinate of 𝑏, where

𝑏 𝑗 is the charging outlet assigned at time slot 𝑗 ∈ 𝑆 . We assume

that each EV wants to be assigned contiguous time-slots exactly

at one outlet. This assumption captures the practical problem of

repeatedly switching between outlets or stop-start charging, which

are infeasible in practice. This implies that we are only considering

the types of bundles that satisfy the following: (i)∀𝑖, 𝑗 ∈ 𝑆 , if𝑏𝑖 , 𝑏 𝑗 ≠
0, then 𝑏𝑖 = 𝑏 𝑗 and (ii) there exists 𝑖∗, 𝑗∗, s.t. 𝑏𝑖 = 0,∀𝑖 < 𝑖∗, 𝑖 > 𝑗∗

and 𝑏𝑖 ≠ 0,∀𝑖∗ ⩽ 𝑖 ⩽ 𝑗∗. The first condition ensures that the

bundle consists of time slots at exactly one outlet, while the second

condition imposes the contiguity requirement. Denote the set of all

such feasible bundles by 𝐵.
Each agent 𝑖 ∈ 𝑁 comes with a type 𝜃𝑖 : 𝐵 → R, where 𝜃𝑖 (𝑏)

represents the satisfaction of agent 𝑖 for bundle 𝑏 ∈ 𝐵. We assume

that the types satisfy monotonicity unless stated otherwise, i.e., for

all 𝑏, 𝑏′ ∈ 𝐵 where 𝑏′ is a sub-bundle of 𝑏 (𝑏′ is a sub-bundle of 𝑏 if

𝑏 contains all the allocated time-slots of 𝑏′ at the same outlet, and

is represented as 𝑏′ ⊑ 𝑏)

𝜃𝑖 (𝑏′) ⩽ 𝜃𝑖 (𝑏),∀𝑖 ∈ 𝑁, and 𝜃𝑖 ({0} |𝑆 | ) = 0,∀𝑖 ∈ 𝑁 . (1)

Note that, in this definition, 𝜃𝑖s account for the agent 𝑖’s preference

over outlets (fast/slow chargers), time slots (e.g., their preferred

arrival and departure), and their charge demand, in a consolidated

manner. Since 𝜃𝑖 is agent 𝑖’s private information, we need mecha-

nisms to truthfully elicit this information to take an efficient deci-
sion. We use 𝜃−𝑖 to represent the types of agents other than 𝑖 and

𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝑛) to denote the type profile. Set Θ𝑖 denotes the

monotone type set of agent 𝑖 and Θ =
∏

𝑖∈𝑁 Θ𝑖 denotes the set of

type profiles. When requesting for charging services, each agent

reports
ˆ𝜃𝑖 which could be different from their true type 𝜃𝑖 . The

planner needs to design a mechanism (the allocation and payment

schemes) using the reported type vector
ˆ𝜃 . In a real-world setting,

time slots can be categorized into different time-periods of the day,

e.g., morning, afternoon, evening, night, and these mechanisms

can allocate slots to all the EVs that placed a request before the

time-period started.

An allocation is represented as 𝑥 = [𝑥 (𝑖, 𝑏),∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵],
where 𝑥 (𝑖, 𝑏) = 1 when agent 𝑖 is allocated 𝑏 ∈ 𝐵, and 𝑥 (𝑖, 𝑏) = 0

otherwise. We call an allocation feasible if it satisfies the following:
(a) every agent is allocated at most one bundle, i.e.,

∑
𝑏∈𝐵 𝑥 (𝑖, 𝑏) ⩽

1,∀𝑖 ∈ 𝑁 , and, (b) no more than a single unit of any “time slot,

outlet” pair is allocated. Let 𝐵 𝑗𝑘 = {𝑏 ∈ 𝐵 : 𝑏 𝑗 = 𝑘} denote the
set of bundles in which the pair ( 𝑗, 𝑘), 𝑗 ∈ 𝑆, 𝑘 ∈ 𝑀, exists. Then∑
𝑏∈𝐵 𝑗𝑘

∑
𝑖∈𝑁 𝑥 (𝑖, 𝑏) ⩽ 1, ∀𝑗 ∈ 𝑆, 𝑘 ∈ 𝑀 . The set of all such

feasible allocations is denoted by 𝑋 .

An allocation function 𝑓 : Θ → 𝑋 is a mapping that yields

a feasible allocation 𝑓 (𝜃 ) ∈ 𝑋 for every type profile 𝜃 ∈ Θ. The
valuation of agent 𝑖 ∈ 𝑁 is described by 𝑣𝑖 : 𝑋 × Θ𝑖 → R, which
for a given 𝜃𝑖 ∈ 𝜃 and a feasible allocation 𝑥 ∈ 𝑋 gives a value

𝑣𝑖 (𝑥, 𝜃𝑖 ) =
∑
𝑏∈𝐵 𝜃𝑖 (𝑏) 𝑥 (𝑖, 𝑏). Note that if 𝜃𝑖 satisfies monotonicity

then so does 𝑣𝑖 . Every EV is also asked a payment for a given

allocation. A payment function for agent 𝑖 is given by 𝜋𝑖 : Θ → R
which maps the reported type profile 𝜃 ∈ Θ to a real number.

Given the above formulation, the utilities of the agents take

a quasi-linear form. Formally, given the reported type profile of

agents
ˆ𝜃 , an allocation function 𝑓 and payment functions 𝜋𝑖 ,∀𝑖 ∈

𝑁 , the utility of agent 𝑖 when its true type is 𝜃𝑖 is given by:

𝑢𝑖 ((𝑓 ( ˆ𝜃 ), 𝜋 ( ˆ𝜃 )), 𝜃𝑖 ) = 𝑣𝑖 (𝑓 ( ˆ𝜃 ), 𝜃𝑖 ) − 𝜋𝑖 ( ˆ𝜃 ).
Note that in the definitions above, we defined the allocation and

the payments to be deterministic. But more generally, the planner

can also output randomized allocation and payments. A randomized

allocation can be seen as a probability distribution over all determin-

istic allocations in 𝑋 . Denote the set of all randomized allocations

by Δ𝑋 = {𝜆 ∈ [0, 1] |𝑋 |
:

∑
𝑥∈𝑋 𝜆𝑥 = 1 and 𝜆𝑥 ⩾ 0,∀𝑥 ∈ 𝑋 }, where

𝜆 represents a randomized allocation and 𝜆𝑥 denotes the proba-

bility of choosing the deterministic allocation 𝑥 ∈ 𝑋 . Note, Δ𝑋 is

the convex hull of the set 𝑋 . Given this, we extend the allocation

function 𝑓 : Θ → Δ𝑋 to be a mapping which yields a randomized

allocation 𝑓 (𝜃 ) ∈ Δ𝑋 for a given type profile 𝜃 ∈ Θ. We also ex-

tend the the valuation function of agent 𝑖 , 𝑣𝑖 : Δ𝑋 × Θ𝑖 → R to

have all randomized allocations Δ𝑥 in the domain. Thus, with a

slight abuse of notation we denote 𝑣𝑖 (𝜆, 𝜃𝑖 ) =
∑
𝑥∈𝑋 𝜆𝑥 𝑣𝑖 (𝑥, 𝜃𝑖 ) =∑

𝑥∈𝑋 𝜆𝑥
∑
𝑏∈𝐵 𝜃𝑖 (𝑏) 𝑥 (𝑖, 𝑏) to be the expected valuation of agent 𝑖

for the randomized allocation 𝜆 ∈ Δ𝑋 when its type is 𝜃𝑖 . Likewise,

the payment 𝜋𝑖 (𝜃 ) denotes the randomized payment to be made

by agent 𝑖 . For a given the reported type profile
ˆ𝜃 , this gives us the



expected utility of an agent 𝑖 when its true type is 𝜃𝑖 as follows:

𝑢𝑖 ((𝑓 ( ˆ𝜃 ), 𝜋 ( ˆ𝜃 )), 𝜃𝑖 ) = 𝑣𝑖 (𝑓 ( ˆ𝜃 ), 𝜃𝑖 ) − E[𝜋𝑖 ( ˆ𝜃 )].
In summary, the planner needs to design a social choice function

or a mechanism (𝑓 , 𝜋) such that several desirable properties are

satisfied. We define the desirable properties in the following section.

2.2 Design Desiderata
In this paper, our objective is to maximize social welfare through

a mechanism that is dominant strategy incentive compatible and

individually rational. These properties are defined as follows.

Definition 1 (Efficiency). A deterministic mechanism (𝑓 , 𝜋) max-

imizes social welfare and therefore is efficient if for every 𝜃 ∈ Θ,
𝑓 (𝜃 ) = argmax𝑥∈𝑋

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝜃𝑖 (𝑏) 𝑥 (𝑖, 𝑏). Correspondingly, a

randomized mechanism (𝑓 , 𝜋) is efficient if for every 𝜃 ∈ Θ,
𝑓 (𝜃 ) = argmax𝜆∈Δ𝑋

∑
𝑥∈𝑋 𝜆𝑥

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝜃𝑖 (𝑏) 𝑥 (𝑖, 𝑏).

The next property incentivizes agents to participate in the game

ensuring that their utility is non-negative for every type profile.

Definition 2 (Individual Rationality (IR)). A deterministic mech-

anism (𝑓 , 𝜋) is individually rational (IR) if for every 𝜃 ∈ Θ and

for every 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝑓 (𝜃 ), 𝜃𝑖 ) − 𝜋𝑖 (𝜃 ) ⩾ 0. Likewise, a randomized

mechanism (𝑓 , 𝜋) is ex-post individually rational if for every 𝜃 ∈ Θ
and for every 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝑥, 𝜃𝑖 ) − 𝑝𝑖 ⩾ 0 for every sample 𝑥 and 𝑝𝑖
drawn from 𝑓 (𝜃 ) and 𝜋𝑖 (𝜃 ) respectively.

Finally, since the planner’s decision is dependent on the agents’

reported types
ˆ𝜃 , we need to incentivize them to report it truthfully.

Definition 3 (Dominant Strategy Incentive Compatible (DSIC)).
A deterministic mechanism (𝑓 , 𝜋) is dominant strategy incentive
compatible (DSIC) if for every agent 𝑖 ∈ 𝑁,∀ 𝜃𝑖 , ˜𝜃𝑖 ∈ Θ𝑖 , and

∀ 𝜃−𝑖 ∈ Θ−𝑖 , 𝑣𝑖 (𝑓 (𝜃𝑖 , 𝜃−𝑖 ), 𝜃𝑖 ) − 𝜋𝑖 (𝜃𝑖 , 𝜃−𝑖 ) ⩾ 𝑣𝑖 (𝑓 ( ˜𝜃𝑖 , 𝜃−𝑖 ), 𝜃𝑖 ) −
𝜋𝑖 ( ˜𝜃𝑖 , 𝜃−𝑖 ) . Correspondingly, a randomized mechanism (𝑓 , 𝜋) is
DSIC if ∀𝑖 ∈ 𝑁,∀𝜃𝑖 , ˜𝜃𝑖 ∈ Θ𝑖 , and ∀𝜃−𝑖 ∈ Θ−𝑖 , 𝑣𝑖 (𝑓 (𝜃𝑖 , 𝜃−𝑖 ), 𝜃𝑖 ) −
E[𝜋𝑖 (𝜃𝑖 , 𝜃−𝑖 )] ⩾ 𝑣𝑖 (𝑓 ( ˜𝜃𝑖 , 𝜃−𝑖 ), 𝜃𝑖 ) − E[𝜋𝑖 ( ˜𝜃𝑖 , 𝜃−𝑖 )] .

In the sections that follow, we focus on mechanisms that achieve

the above set of properties in a computationally efficient manner.

3 MONOTONE VALUATIONS
The social welfare maximization problem for monotone valuations

can be formulated as the following Integer linear program (ILP).

max

∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

𝜃𝑖 (𝑏) 𝑥 (𝑖, 𝑏)

s.t.

∑︁
𝑏∈𝐵 𝑗𝑘

∑︁
𝑖∈𝑁

𝑥 (𝑖, 𝑏) ⩽ 1,∀𝑗 ∈ 𝑆, 𝑘 ∈ 𝑀,∑︁
𝑏∈𝐵

𝑥 (𝑖, 𝑏) ⩽ 1,∀𝑖 ∈ 𝑁,

𝑥 (𝑖, 𝑏) ∈ {0, 1},∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵.

(2)

We first prove that this problem is NP-Hard even if the true types

of the agents 𝜃 are known via a polynomial reduction from the

Job Interval Selection Problem [13, 32] which is known to be NP-

Complete. Due to paucity of space, we move the proof of this result

and some other proofs to the full version [1].

Theorem 1. For monotone valuations and for a given 𝐾 , the de-
cision problem of whether the optimal allocation to the EV charging
problem has a social welfare of at least 𝐾 is NP-complete even when
the number of outlets |𝑀 | = 1.

Given the above result, the VCG mechanism is intractable for

our setup. Thus, we focus on providing mechanisms that maximize

social welfare approximately. In particular, we provide randomized

mechanisms that ensure DSIC and IR, and approximate the social

welfare to within a factor of 𝑂 (
√︁
|𝑆 |) for multiple outlets and to

within a factor of 2 for the single outlet case.

3.1 Mechanism for multi-outlet scenario
Our construction of the randomizedmechanism proceeds as follows.

We first use the classic VCG mechanism in the fractional space to
obtain an optimal efficient fractional allocation and payments that

ensure DSIC and IR. A randomized mechanism is then constructed

such that the randomized allocation is a convex decomposition of

the fractional allocation scaled by a factor 𝛼 > 1. Also, the random-

ized payment is set such that the expected payment of every agent

is equal to the 𝛼-scaled VCG payment calculated in the fractional

space. To get the desired convex decomposition of the 𝛼-scaled

fractional allocation, we need an 𝛼-approximation algorithm that

gives guarantees w.r.t. the fractional optimal solution for every

monotone valuation. We provide a greedy algorithm with 𝑂 (
√︁
|𝑆 |)-

approximation factor for this purpose. This method approximates

the social welfare to within a factor of 𝑂 (
√︁
|𝑆 |) and retains DSIC

and IR via VCG in the fractional space. We call this method Random-

ized Allocatively Efficient (RAE) mechanism, which is detailed out

in Algorithm 1. Note that Algorithm 1 takes an 𝛼-approximation

algorithm A as input. It internally employs the ellipsoid method

with a separation oracle [34] that uses the approximation algorithm

A. Thus, Algorithm 1 acts as a template, where the variable A can

be set appropriately. We show in the following result how we can

achieve all desirable properties.

Theorem 2. For monotone valuations and multiple outlets, the
RAE mechanism (Algorithm 1) that uses Algorithm 2 as A in the
separation oracle approximates the social welfare within a factor of
𝑂 (

√︁
|𝑆 |) and ensures DSIC and IR.

The general technique of constructing a randomized mechanism

using VCG in a tractable manner was originally proposed by Lavi

and Swamy [27] in the context of combinatorial auctions. We adapt

their technique to ensure DSIC and IR for monotone valuations,

but improve on the approximation guarantees for our setup. In

particular, the approximation algorithm proposed in [27] translates

to a factor of 𝑂 (
√︁
|𝑆 | |𝑀 |) in our setting since every ( 𝑗, 𝑘) pair,

where 𝑗 ∈ 𝑆, 𝑘 ∈ 𝑀 can be seen as a good. However, Theorem 2

provides an improved 𝑂 (
√︁
|𝑆 |)-approximation for the multi-outlet

case. Later, we improve it to a constant factor for a single outlet.

For given reported types
ˆ𝜃 , Algorithm 1 first solves the LP relax-

ation of ILP (2) given by LP (3) to obtain an optimal fractional alloca-

tion. This can be computed in polynomial time since the number of

variables and constraints in LP (3) are polynomial in |𝑁 |, |𝑀 |, and
|𝑆 |. Particularly, note that the number of bundles in 𝐵 = 𝑂 ( |𝑀 | |𝑆 |2)
since EVs are assigned contiguous time slots at any one outlet. De-

note the optimal solution of LP (3) by 𝑥 fr ( ˆ𝜃 ). Wherever clear from



Algorithm 1: RAEMechanism

Input: Agent reports ˆ𝜃 and an 𝛼-approximation algorithm

A (𝛼 > 1) that provides an integer solution with a

value of at least 1/𝛼 times the value of the fractional

optimal of LP (3) for any monotone
ˆ𝜃 .

Output: A randomized allocation 𝑓 ( ˆ𝜃 ) ∈ Δ𝑋 and

randomized payments 𝜋𝑖 ( ˆ𝜃 ),∀𝑖 ∈ 𝑁 .

1 Solve LP (3) to get an optimal fractional allocation 𝑥 fr ( ˆ𝜃 ).
2 Set payments 𝑝fr

𝑖
( ˆ𝜃 ) for every agent 𝑖 using VCG in the

fractional space 𝑋 fr
as given by Equation (4).

3 Scale 𝑥 fr ( ˆ𝜃 ) and 𝑝fr
𝑖
( ˆ𝜃 ),∀𝑖 ∈ 𝑁 by 𝛼 .

4 Using GetConvexDecomposition(𝑥 fr ( ˆ𝜃 ),A), construct a

convex decomposition of 𝑥
fr ( ˆ𝜃 )/𝛼 =

∑
𝑥 𝐼 ∈𝑋 𝜆

∗
𝑥 𝐼 𝑥

𝐼
with

polynomially many 𝜆∗
𝑥 𝐼 > 0.

5 Set the randomized allocation 𝑓 ( ˆ𝜃 ) and payments

𝜋𝑖 ( ˆ𝜃 ),∀𝑖 ∈ 𝑁 according to Equation (8).

6 return 𝑓 ( ˆ𝜃 ), 𝜋 ( ˆ𝜃 )
7 Procedure GetConvexDecomposition(𝑥 fr ( ˆ𝜃 ),A):
8 Solve the dual LP (6) using ellipsoid method with

SeparationOracle() that uses A and 𝑥 fr ( ˆ𝜃 ). This
identifies an LP that is equivalent to LP (6) but with

only polynomial no. of constraints from∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) + 𝑧 ⩽ 1,∀𝑥 𝐼 ∈ 𝑋 .
9 Solve the primal LP (5) by considering polynomially

many variables corresponding to the above identified

constraints to get the optimal solution 𝜆∗.
10 return 𝜆∗

11 Procedure SeparationOracle():
Input: 𝑥 fr ( ˆ𝜃 ), an 𝛼-approximation algorithm A, and

any point (𝑤, 𝑧), where
𝑤 = [𝑤 (𝑖, 𝑏),∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵] is unconstrained.

Output: A separating hyperplane which is used to cut

the ellipsoid in a given iteration.

12 if 𝑧 + 1

𝛼

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

fr (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) > 1 then
13 Using A, get an 𝑥 𝐼 ∈ 𝑋 s.t.∑

𝑖∈𝑁
∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏)𝑤 (𝑖, 𝑏) ⩾
1

𝛼 max

𝑥∈𝑋 fr

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥 (𝑖, 𝑏)𝑤 (𝑖, 𝑏).

14 Using the above inequality and the condition in the

if statement, we get a violated constraint∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) + 𝑧 > 1 of the LP (6) for

the point (𝑤, 𝑧).
15 return

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) + 𝑧 = 1

16 else
17 return 𝑧 + 1

𝛼

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

fr (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) = 1

18 end

context, we will use 𝑥 fr instead of 𝑥 fr ( ˆ𝜃 ) for brevity. Note that, 𝑥 fr
is a fractional allocation, where 𝑥 fr (𝑖, 𝑏) ∈ [0, 1],∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵

denotes the fraction of bundle 𝑏 allocated to agent 𝑖 . Denote 𝑋 fr
to

be the set of all feasible fractional allocations
1
.

max

∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

ˆ𝜃𝑖 (𝑏) 𝑥 (𝑖, 𝑏)

s.t.

∑︁
𝑏∈𝐵 𝑗𝑘

∑︁
𝑖∈𝑁

𝑥 (𝑖, 𝑏) ⩽ 1,∀𝑗 ∈ 𝑆, 𝑘 ∈ 𝑀∑︁
𝑏∈𝐵

𝑥 (𝑖, 𝑏) ⩽ 1,∀𝑖 ∈ 𝑁 ; 𝑥 (𝑖, 𝑏) ⩾ 0,∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵

(3)

The payment of every agent 𝑖 is then given by the VCG payment in

the fractional space 𝑋 fr
as follows.

𝑝fr𝑖 ( ˆ𝜃 ) = max

𝑥∈𝑋 fr

∑︁
𝑖′∈𝑁 \{𝑖 }

∑︁
𝑏∈𝐵

ˆ𝜃𝑖′ (𝑏)𝑥 (𝑖′, 𝑏) −
∑︁

𝑖′∈𝑁 \{𝑖 }

∑︁
𝑏∈𝐵

ˆ𝜃𝑖′ (𝑏)𝑥 fr (𝑖′, 𝑏)

(4)

The fractional mechanism (𝑥 fr, 𝑝fr) guarantees DSIC and IR since

it is the VCG mechanism in the fractional space 𝑋 fr
. Note that,

even if the allocation and the payments are scaled by some 𝛼 > 1,

i.e., 𝑥
fr (𝑖,𝑏 )/𝛼,∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵 and 𝑝 fr

𝑖 ( ˆ𝜃 )/𝛼,∀𝑖 ∈ 𝑁 , DSIC and IR

still hold. This is due to 𝑣𝑖 ’s linearity in 𝑥 fr i.e., 𝑣𝑖 (𝑥 fr ( ˆ𝜃 ), 𝜃𝑖 ) =∑
𝑏∈𝐵 𝜃𝑖 (𝑏) 𝑥 fr (𝑖, 𝑏),∀𝑥 fr ( ˆ𝜃 ) ∈ 𝑋 fr

. Note that we also overload 𝑣𝑖
for a fractional allocation. From the above discussion, we get the

following lemma.

Lemma 1. For every 𝜃 ∈ Θ, a mechanism that outputs the frac-
tional allocation 𝑥 fr (𝜃 )/𝛼 and the VCG payments 𝑝 fr (𝜃 )/𝛼 , for any
𝛼 > 1 is DSIC and IR in 𝑋 fr.

However, note that the mechanism (𝑥 fr ( ˆ𝜃 )/𝛼, 𝑝 fr ( ˆ𝜃 )/𝛼) cannot be
implemented since it gives a fractional allocation. For this reason,

we construct a convex decomposition of 𝑥
fr ( ˆ𝜃 )/𝛼 =

∑
𝑥 𝐼 ∈𝑋 𝜆𝑥 𝐼 𝑥 𝐼 to

obtain a randomized allocation 𝜆 ∈ Δ𝑋 that has only polynomially

many 𝜆𝑥 𝐼 > 0. Note that 𝑥 𝐼 ∈ 𝑋 denotes a deterministic/integer

allocation. The problem of finding such a decomposition can be

formulated as the following linear program.

min

∑︁
𝑥 𝐼 ∈𝑋

𝜆𝑥 𝐼

s.t.

∑︁
𝑥 𝐼 ∈𝑋

𝜆𝑥 𝐼 𝑥
𝐼 (𝑖, 𝑏) = 𝑥 fr ( ˆ𝜃 ) (𝑖,𝑏 )/𝛼,∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵∑︁

𝑥 𝐼 ∈𝑋
𝜆𝑥 𝐼 ⩾ 1; 𝜆𝑥 𝐼 ⩾ 0,∀𝑥 𝐼 ∈ 𝑋 .

(5)

If we can show that the optimal value of LP (5) is 1 (for some

fixed 𝛼 > 1), then the solution of the LP is a convex decompo-

sition of the fractional allocation. This gives a randomized al-

location that approximates the social welfare to within a fac-

tor of 𝛼 since we have

∑
𝑥 𝐼 ∈𝑋 𝜆𝑥 𝐼

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝜃𝑖 (𝑏) 𝑥 𝐼 (𝑖, 𝑏) =∑

𝑖∈𝑁
∑
𝑏∈𝐵 𝜃𝑖 (𝑏)

∑
𝑥 𝐼 ∈𝑋 𝜆𝑥 𝐼 𝑥 𝐼 (𝑖, 𝑏) =

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝜃𝑖 (𝑏) 𝑥 fr (𝑖,𝑏 )/𝛼 .

In addition, using the properties of fractional mechanism (Lemma 1)

we can also ensure DSIC and IR. We next show that for a particular

choice of 𝛼 we can guarantee an optimal value of 1 for LP (5) for ev-

ery monotone
ˆ𝜃 . Moreover, LP (5) can be solved in polynomial time

to give a 𝜆 ∈ Δ𝑋 having only polynomially many 𝜆𝑥 𝐼 > 0 (𝑥 𝐼 ∈ 𝑋 ).
Observe that LP (5) can have exponentially many variables, since

the number of deterministic allocations for a given instance of our

1
Note that, 𝑋 fr

is the feasible region of LP (3). This may be different from the convex

hull of 𝑋 , since the corner points of the feasible region 𝑋 fr
may not be deterministic

allocations. If that happens to be the case, then ILP (2) is solvable in polynomial time.



EV charging problem can be exponential in the number of agents,

outlets and time slots. For this reason, we consider its dual LP (6).

max 𝑧 + 1

𝛼

∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

𝑥 fr ( ˆ𝜃 ) (𝑖, 𝑏) 𝑤 (𝑖, 𝑏)

s.t. 𝑧 ⩾ 0∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

𝑥 𝐼 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) + 𝑧 ⩽ 1,∀𝑥 𝐼 ∈ 𝑋

(6)

The dual program has a polynomial number of variables and an

exponential number of constraints. But an LP with exponentially

many constraints can be solved in polynomial time using the el-

lipsoid method if one can construct an efficient separation oracle
[18, 34]. This is because the ellipsoid method solves an LP without

the explicit description of the program itself. For our dual LP (6),

an 𝛼-approximation algorithm that provides an integer solution

with a value of at least 1/𝛼 times the value of the optimal fractional

solution of LP (3) for everymonotone 𝜃 ∈ Θ can be used to construct

such an efficient separation oracle (see Algorithm 1). This has two

implications for the choice of 𝛼 : (1) We require 𝛼 to be at least the

integrality gap (IG); (2) To obtain the convex decomposition we need

an accompanying 𝛼-approximation algorithm which provides an

integer solution having guarantees w.r.t. to the fractional optimal

for every monotone 𝜃 ∈ Θ. The integrality gap is the maximal ratio

between the optimal fractional solution and optimal integer solu-

tion of the social welfare maximization problem across allmonotone
valuations as defined below.

IG := sup

𝜃 ∈ΘMONO

max𝑥∈𝑋 fr

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝜃𝑖 (𝑏) 𝑥 (𝑖, 𝑏)

max𝑥 𝐼 ∈𝑋
∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝜃𝑖 (𝑏) 𝑥 𝐼 (𝑖, 𝑏)

(7)

If 𝛼 was less than the integrality gap, then by the above definition

there exists a 𝜃 ∈ Θ for which no integer solution 𝑥 𝐼 ∈ 𝑋 gives∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏) 𝜃𝑖 (𝑏) ⩾ 1

𝛼 max𝑥∈𝑋 fr

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥 (𝑖, 𝑏) 𝜃𝑖 (𝑏).

An important point to highlight is that in the separation oracle

the 𝛼-approximation algorithm is used to provide an integer solu-

tion with a value of at least 1/𝛼 times the value of the fractional

optimal for any unconstrained𝑤 (not monotone𝑤 ). However, for

our EV charging problem an 𝛼-approximation algorithm that works

for monotone 𝑤 can also be used to provide the required integer

solution for any unconstrained 𝑤 . This is stated as the following

lemma. We note that an 𝛼-approximation algorithm that provides

an integer solution with a value of at least 1/𝛼 times the value of

the fractional optimal for every positive 𝜃 ∈ Θ can also be used for

the separation oracle
2
. For details, we refer the reader to the proof.

Lemma 2. For any unconstrained 𝑤 = [𝑤 (𝑖, 𝑏),∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵],
an 𝛼-approximation algorithm that provides an integer solution with
a value of at least 1/𝛼 times the value of the fractional optimal of
Equation (3) for every monotone 𝜃 ∈ Θ, can be used to construct an
𝑥 𝐼 ∈ 𝑋 in polynomial time such that

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) ⩾
1/𝛼 ·max𝑥∈𝑋 fr

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏).

The ellipsoid method with this efficient separation oracle identi-

fies an LP that is equivalent
3
to the dual LP (6), but with only poly-

nomially many constraints from

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) + 𝑧 ⩽
2
This follows from the packing property [27] since our EV problem (can be represented

as a combinatorial auction problem) is an instance of the set packing problem [14].

3
It has the same the same optimal value as LP (6), but has only polynomially many

constraints from

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥 𝐼 (𝑖, 𝑏 )𝑤 (𝑖, 𝑏 ) + 𝑧 ⩽ 1, ∀𝑥 𝐼 ∈ 𝑋 .

1,∀𝑥 𝐼 ∈ 𝑋 . These constitute the set of violated constraints returned
by the separation oracle which is used to cut the ellipsoid at some

iteration. The primal LP (5) is then solved by considering only

polynomially many variables corresponding to these violated con-

straints to get the optimal solution 𝜆∗. Since the ellipsoid method

runs in polynomially many iterations, we get the decomposition

in polynomial time. It can also be shown that the optimal value of

the dual, and hence, the primal is 1 which yields the desired convex

combination in polynomial time.

Lemma 3. A decomposition of 𝑥 fr ( ˆ𝜃 )/𝛼 =
∑
𝑥 𝐼 ∈𝑋 𝜆

∗
𝑥 𝐼 𝑥

𝐼 with only
polynomially many 𝜆∗

𝑥 𝐼 > 0 and
∑
𝑥 𝐼 ∈𝑋 𝜆

∗
𝑥 𝐼 = 1 can be obtained in

polynomial time.

Finally, the allocation and payments of the randomized mecha-

nism are given by Equation (8). The randomized allocation 𝑓 ( ˆ𝜃 ) is
set to 𝜆∗ and the randomized payment 𝜋𝑖 ( ˆ𝜃 ) of agent 𝑖 is set such
that the expected payment is 𝑝 fr

𝑖 ( ˆ𝜃 )/𝛼 . This ensures DSIC, IR, and
gives an 𝛼-approximation to the social welfare. In summary, the

above discussion highlights that for our EV charging problem any 𝛼-

approximate algorithm that gives guarantees w.r.t to the fractional

optimal for monotone inputs can be used to give a 𝛼-approximate

mechanism that is DSIC and IR.

𝑓 ( ˆ𝜃 ) = {𝜆∗
𝑥 𝐼 ,∀𝑥 𝐼 ∈ 𝑋 }

𝜋𝑖 ( ˆ𝜃 ) =


𝑝fr
𝑖
( ˆ𝜃 )/𝛼

𝑣𝑖 (𝑓 ( ˆ𝜃 ), ˆ𝜃𝑖 )
𝑣𝑖 (𝑥 𝐼 , ˆ𝜃𝑖 ), if 𝑣𝑖 (𝑓 ( ˆ𝜃 ), ˆ𝜃𝑖 ) > 0 & 𝑥 𝐼 ∈ 𝑋 is sampled.

0, Otherwise.

(8)

Lemma 4. The randomized mechanism (𝑓 , 𝜋) given by Equa-
tion (8) is DSIC, IR, and approximates the social welfare to within a
factor of 𝛼 .

For the 𝛼-approximation algorithm, we leverage the greedy allo-

cation strategy in [28] to provide an 𝑂 (
√︁
|𝑆 |)-approximation guar-

antee. Algorithm 2 describes the procedure. Note that Lehmann et al.

[28] propose a truthful greedy mechanism for the combinatorial

auction problem with single-minded valuations. This approximates

the social welfare within a factor of 𝑂 (
√
𝜅) (𝜅 is the number of

goods). While their results do not extend for monotone valuations,

their greedy allocation scheme can be combined with Algorithm 1

to ensure DSIC and IR since it provides guarantees w.r.t. the opti-

mal fractional solution for every monotone valuation. Moreover,

we demonstrate that by exploiting the structure of the allocation

space of our EV charging model, we can get an improved 𝑂 (
√︁
|𝑆 |)-

approximation factor instead of 𝑂 (
√︁
|𝑆 | |𝑀 |) dependency on the

number of goods. The key idea utilizes the fact that: (1) A bundle

𝑏 ∈ 𝐵 is a collection of contiguous time slots at any single outlet

and (2) For any pair (𝑖, 𝑏) that is removed when 𝑥 𝐼 (𝑖′, 𝑏′) is set
to 1, if the outlets corresponding to the bundles 𝑏 and 𝑏′ are not
the same, then 𝑖 = 𝑖′. For more details, we refer the reader to the

complete proof.

Lemma 5. Formonotone valuations andmultiple outlets, the greedy
Algorithm 2 approximates the social welfare of the EV charging prob-
lem within a factor of 𝑂 (

√︁
|𝑆 |).

From Lemmas 1 to 5, we conclude Theorem 2.



Algorithm 2: Greedy 𝑂 (
√︁
|𝑆 |)-approximation algorithm

Input:Monotone
ˆ𝜃 = [ ˆ𝜃𝑖 (𝑏),∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵].

Output: 𝑥 𝐼 ∈ 𝑋 such that

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏) ˆ𝜃𝑖 (𝑏) ⩾
1

2

√
|𝑆 |

max𝑥∈𝑋 fr

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥 (𝑖, 𝑏) ˆ𝜃𝑖 (𝑏).

1 Initialize allocation 𝑥 𝐼 = [0, ∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵] .
2 Initialize set 𝑌 = {(𝑖, 𝑏),∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵}.
3 while 𝑌 ≠ ∅ do
4 Determine (𝑖′, 𝑏′) = argmax(𝑖,𝑏 ) ∈𝑌

ˆ𝜃𝑖 (𝑏 )/√∑
𝑗 ∈𝑆 I{𝑏 𝑗≠0}

5 Set 𝑥 𝐼 (𝑖′, 𝑏′) = 1.

6 For every (𝑖, 𝑏) such that 𝑖 = 𝑖′ or 𝑏′
𝑗
= 𝑏 𝑗 ≠ 0 (for some

𝑗 ∈ 𝑆), 𝑌 = 𝑌 \ {(𝑖, 𝑏)}.
7 end
8 return 𝑥 𝐼

3.2 Mechanism for single outlet scenario
As shown in Theorem 1, the social welfare maximization problem

under monotone valuations is NP-Hard even for the case of single

outlet. However, we show that we can achieve a constant-factor

approximation for this scenario. We leverage [6] to give an LP

based 2-approximation algorithm that gives guarantees w.r.t. the

optimal fractional solution. In particular, their ideas of rounding

a fractional solution and using graph coloring to get the desired

integer solution can be extended for our single outlet and monotone

valuations setup. Since the algorithmworks for all monotone inputs,

this gives DSIC and IR via the RAE mechanism.

Firstly, LP (9) is solved to obtain the optimal fractional solution

(𝑥∗, OPT) for any monotone𝑤4
. Since |𝑀 | = 1, a bundle𝑏 ∈ {0, 1} |𝑆 | ,

such that : (i) ∀𝑖, 𝑗 ∈ 𝑆 , if 𝑏𝑖 , 𝑏 𝑗 ≠ 0, then 𝑏𝑖 = 𝑏 𝑗 = 1 and (ii) there

exists 𝑖∗, 𝑗∗, s.t. 𝑏𝑖 = 0,∀𝑖 < 𝑖∗, 𝑖 > 𝑗∗ and 𝑏𝑖 = 1,∀𝑖∗ ⩽ 𝑖 ⩽ 𝑗∗.

max

∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

𝑤 (𝑖, 𝑏)𝑥 (𝑖, 𝑏)

s.t.

∑︁
𝑏∈𝐵

𝑥 (𝑖, 𝑏) ⩽ 1,∀𝑖 ∈ 𝑁 (9)∑︁
𝑏∈𝐵 𝑗

∑︁
𝑖∈𝑁

𝑥 (𝑖, 𝑏) ⩽ 1,∀𝑗 ∈ 𝑆

𝑥 (𝑖, 𝑏) ⩾ 0,∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵

Each 𝑥∗ (𝑖, 𝑏) is then rounded down to the nearest fraction of the

form 𝑝/𝑄 for some 𝑝 ∈ {1, 2, . . . , 𝑄}, where 𝑄 = |𝑁 |2 ( |𝑆 | ( |𝑆 |+1)/2)2.
Denote the rounded solution by 𝑥rou. Observe that every 𝑥rou (𝑖, 𝑏)
is at most 1/𝑄 smaller than 𝑥∗ (𝑖, 𝑏). This implies that the value of the

objective function for 𝑥rou decreases by at most max𝑖,𝑏 𝑤 (𝑖,𝑏 )/√𝑄.
This is because the summation is taken over all agents |𝑁 | and
bundles ( |𝑆 | ( |𝑆 |+1)/2). Moreover, since OPT ⩾ max𝑖,𝑏 𝑤 (𝑖, 𝑏), we get∑︁

𝑖∈𝑁

∑︁
𝑏∈𝐵

𝑤 (𝑖, 𝑏) 𝑥rou (𝑖, 𝑏) ⩾ (1 − 1/√𝑄) OPT. (10)

Denote {𝑥 ℓ ,∀ℓ ∈ 𝐿} to be a set of feasible integral so-

lutions of LP (9), where 𝐿 = {1, 2, . . . , 𝑙}. Let val(𝑥 ℓ ) =∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑤 (𝑖, 𝑏) 𝑥 ℓ (𝑖, 𝑏). It is easy to see that for non-negative

4
We omit the set of outlets𝑀 from the linear program since |𝑀 | = 1.

values of {𝛽ℓ , ℓ ∈ 𝐿}, if ∑ℓ∈𝐿 val(𝑥 ℓ )𝛽ℓ ⩾ (1 − 1/√𝑄) OPT and∑
ℓ∈𝐿 𝛽ℓ ⩽ 2, then by convexity there exists an ℓ′ ∈ 𝐿 such that

val(𝑥 ℓ ′ ) ⩾ (1 − 1/√𝑄)OPT/2. Thus, if one can find such a set of in-

tegral solutions {𝑥 ℓ ,∀ℓ ∈ 𝐿} with polynomial size of L, then we

get a 2-factor approximation (with a negligible rounding loss) for

the single outlet case. Using the rounded solution 𝑥rou, we next

construct a graph and color it appropriately to get the desired set

of integral solutions.

Construct a graph𝐺 with 𝑥rou (𝑖, 𝑏) ·𝑄 vertices corresponding to

each 𝑖 ∈ 𝑁,𝑏 ∈ 𝐵. Any two vertices 𝑦, 𝑧 corresponding to (𝑖𝑦, 𝑏𝑦)
and (𝑖𝑧 , 𝑏𝑧) respectively have an edge between them if 𝑖𝑦 = 𝑖𝑧

or 𝑏
𝑦

𝑗
= 𝑏𝑧

𝑗
= 1 for some 𝑗 ∈ 𝑆 . This implies that two vertices

have an edge if either they correspond to the same agent or if their

corresponding bundles overlap (i.e., have a common slot allotted).

The vertices of 𝐺 are colored such that no two vertices 𝑦, 𝑧 having

an edge between them get the same color. We will call such a

coloring of vertices of 𝐺 as a feasible coloring. Observe that the set
of vertices that get the same color is an independent set in 𝐺 and

form a feasible integral solution for LP (9). It can be shown that a

feasible coloring can be achieved with at most (2𝑄 − 1) colors using
a greedy strategy. For details, we refer the reader to the proof.

Lemma 6. For graph 𝐺 , there exists a feasible coloring for vertices
that requires at most (2𝑄 − 1) colors.

Let 𝐿 be the set of colors and 𝑥 ℓ for ℓ ∈ 𝐿 denote an inte-

gral solution where 𝑥 ℓ (𝑖, 𝑏) = 1 if a vertex corresponding to

(𝑖, 𝑏) has color ℓ , and 𝑥 ℓ (𝑖, 𝑏) = 0 otherwise. As before, denote

val(𝑥 ℓ ) =
∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑤 (𝑖, 𝑏) 𝑥 ℓ (𝑖, 𝑏). Let 𝛽ℓ = 1/𝑄,∀ℓ ∈ 𝐿. This

gives

∑
ℓ∈𝐿 𝛽ℓ ⩽ (2𝑄−1)/𝑄 ⩽ 2, since the size of 𝐿 is at most 2𝑄 − 1.

Moreover, we have∑︁
ℓ∈𝐿

val(𝑥 ℓ ) =
∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

𝑤 (𝑖, 𝑏) (𝑄 𝑥rou (𝑖, 𝑏)) ⩾ 𝑄 ((1 − 1/√𝑄)OPT).

The equality holds because graph 𝐺 contains 𝑥rou (𝑖, 𝑏) ·𝑄 vertices

for each 𝑖 ∈ 𝑁,𝑏 ∈ 𝐵. The inequality holds due to Equation (10).

This implies

∑
ℓ∈𝐿 val(𝑥 ℓ )𝛽ℓ =

∑
ℓ∈𝐿 val(𝑥 ℓ )1/𝑄 ⩾ (1 − 1/√𝑄)OPT.

Since

∑
ℓ∈𝐿 𝛽ℓ ⩽ 2, there exists a color ℓ′ ∈ 𝐿 for which val(𝑥 ℓ ′ ) ⩾

(1 − 1/√𝑄) OPT
2
. We can obtain 𝑥 ℓ

′
by choosing the color having

the maximum value. From the above discussion, we conclude the

following.

Lemma 7. For the monotone valuations and single outlet case,
Algorithm 3 that rounds the optimal fractional solution approximates
the social welfare to within a factor of 2 in polynomial time.

From Lemmas 1 to 4 and 7, we conclude the following result.

Theorem 3. For monotone valuations and a single outlet, the RAE
mechanism (Algorithm 1) that uses approximation Algorithm 3 as
A in the separation oracle, approximates the social welfare within a
factor of 2 and ensures DSIC and IR.

4 DICHOTOMOUS VALUATIONS
Although our assumption that agents have monotone valuations

is fairly general, it becomes quite demanding in the EV charging

setup. A more restricted, yet practical scenario arises when agents

have dichotomous valuations. Consider a setting where each agent

𝑖 requires 𝑐𝑖 units of charge and derives a value of 𝑞∗
𝑖
∈ R+ if it



Algorithm 3: 2-approximation algorithm

Input:Montone𝑤 = [𝑤 (𝑖, 𝑏),∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵].
Output: An 𝑥 𝐼 ∈ 𝑋 s.t.

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) ⩾
1

2
max𝑥∈𝑋 fr

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏).

1 Solve LP (9) to get the optimal fractional solution 𝑥∗.
2 Set 𝑄 = |𝑁 |2 ( |𝑆 | ( |𝑆 |+1)/2)2.
3 Round down every 𝑥∗ (𝑖, 𝑏) to the nearest fraction of the

form 𝑝/𝑄 for some 𝑝 ∈ {1, 2, . . . , 𝑄} to get 𝑥rou.

4 Construct a graph 𝐺 with 𝑥rou (𝑖, 𝑏) ·𝑄 vertices

corresponding to the each 𝑖 ∈ 𝑁,𝑏 ∈ 𝐵. Add an edge

between any two vertices 𝑦, 𝑧 if either 𝑖𝑦 = 𝑖𝑧 or

𝑏
𝑦

𝑗
= 𝑏𝑧

𝑗
= 1 for some 𝑗 ∈ 𝑆 .

5 For every vertex 𝑦 denote 𝑏
𝑦

min
= min𝑗∈𝑆 :𝑏𝑦

𝑗
=1 𝑗 .

6 Sort the vertices in ascending order of 𝑏min and color them

using at most 2𝑄 − 1 colors (Lemma 6) from left to right

such that we get a feasible coloring of vertices.

7 Let 𝐿 be the set of colors and let 𝑥 ℓ ,∀ℓ ∈ 𝐿 be an integer

solution where 𝑥 ℓ (𝑖, 𝑏) = 1 if a vertex corresponding to

(𝑖, 𝑏) has color ℓ , and 𝑥 ℓ (𝑖, 𝑏) = 0 otherwise.

8 𝑥 𝐼 = argmax𝑥 ℓ
:ℓ∈𝐿

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑤 (𝑖, 𝑏) 𝑥 ℓ (𝑖, 𝑏).

9 return 𝑥 𝐼

receives 𝑐𝑖 units, and 0 if it receives less than 𝑐𝑖 . To receive 𝑐𝑖 units

of charge, agent 𝑖 must be allocated some ℓ𝑖𝑘 contiguous time slots

at outlet 𝑘 ∈ 𝑀 . Define the set of all bundles that provide 𝑐𝑖 units

to agent 𝑖 by 𝐵𝑖 = {𝑏 ∈ 𝐵 :

∑
𝑗∈𝑆 I{𝑏 𝑗 ≠ 0} = ℓ𝑖𝑘𝑏 }, where 𝑘𝑏 ∈ 𝑀

denotes the outlet corresponding to bundle 𝑏 i.e., 𝑏 𝑗 = 𝑘𝑏 ,∀𝑗 ∈ 𝑆
with 𝑏 𝑗 ≠ 0. Let 𝐵∗

𝑖
⊆ 𝐵𝑖 denote the set of acceptable bundles for

agent 𝑖 . Type 𝜃𝑖 is said to be dichotomous if 𝜃𝑖 (𝑏) = 𝑞∗𝑖 ,∀𝑏 ∈ 𝐵∗
𝑖
, else

𝜃𝑖 (𝑏) = 0. It can be shown that the welfare maximization problem

for dichotomous valuations is also NP-Hard via a reduction from

the Job Interval Selection Problem (JISPk) [32] where all intervals
have equal length, which is known to be NP-Complete.

Theorem 4. For dichotomous valuations, the social welfare maxi-
mization problem is NP-Hard even if the number of outlets |𝑀 | = 1.

Since dichotomous valuations are a subset of monotone valu-

ations and our approximation guarantees give a lower bound on

𝐴𝐿𝐺 (𝜃 )/𝑂𝑃𝑇 (𝜃 ) for all monotone 𝜃 , our results for monotone valua-

tions naturally extend to dichotomous valuations.

5 SINGLE-MINDED VALUATIONS
The type 𝜃𝑖 for every agent 𝑖 ∈ 𝑁 is said to be single-minded if there

exists a bundle 𝑏𝑖 ∈ 𝐵 and 𝑞𝑖 ∈ R+ such that 𝜃𝑖 (𝑏) = 𝑞𝑖 ,∀𝑏 ⊇ 𝑏𝑖

and 𝜃𝑖 (𝑏) = 0 otherwise. In other words, each agent prefers to

charge at a single outlet for a specific set of contiguous time slots

or not charge at all. For single-minded reports
ˆ𝜃 , we can drop the

constraint

∑
𝑏∈𝐵 𝑥 (𝑖, 𝑏) ⩽ 1,∀𝑖 ∈ 𝑁 from ILP (2) since each agent

is interested in exactly one bundle (or any super-set of that bundle).

Hence, the LP-relaxation reduces to LP (11). It can be shown that

this LP always has an optimal integer solution (since the constraint

Algorithm 4: DAE mechanism

Input: Agents report type profile ˆ𝜃 .

Output: 𝑓 ( ˆ𝜃 ) ∈ 𝑋 and 𝜋𝑖 ( ˆ𝜃 ) ∈ R,∀𝑖 ∈ 𝑁 .

1 Solve LP (11) with parameters given by
ˆ𝜃 to get an optimal

deterministic allocation 𝑓 ( ˆ𝜃 ) = 𝑥∗.
2 For every agent 𝑖 , set payment using VCG

𝜋𝑖 ( ˆ𝜃 ) = max𝑥∈𝑋
∑
𝑖′∈𝑁 \{𝑖 }

∑
𝑏∈𝐵 ˆ𝜃𝑖′ (𝑏)𝑥 (𝑖′, 𝑏) −∑

𝑖′∈𝑁 \{𝑖 }
∑
𝑏∈𝐵 ˆ𝜃𝑖′ (𝑏)𝑥∗ (𝑖′, 𝑏).

3 return 𝑓 ( ˆ𝜃 ), 𝜋 ( ˆ𝜃 )

matrix is totally unimodular [21]).

max

∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

ˆ𝜃𝑖 (𝑏) 𝑥 (𝑖, 𝑏)

s.t.

∑︁
𝑏∈𝐵 𝑗𝑘

∑︁
𝑖∈𝑁

𝑥 (𝑖, 𝑏) ⩽ 1,∀𝑗 ∈ 𝑆, 𝑘 ∈ 𝑀,

𝑥 (𝑖, 𝑏) ⩾ 0,∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵.

(11)

A polytope (𝐴𝑥 ⩽ 𝑏, 𝑥 ⩾ 0) is said to be integral if and only if all

its corners have integer coordinates. It is well known that a linear

program with an integral polytope always has an optimal integer

solution [31]. A sufficient condition to identify integral polytopes

is by total unimodularity. A polytope 𝐴𝑥 ⩽ 𝑏, 𝑥 ⩾ 0 is integral

if 𝐴 is totally unimodular (TU)
5
and 𝑏 is integral [31]. Observe

from the constraints (𝐴𝑥 ⩽ 𝑏, 𝑥 ⩾ 0) of LP (11) that 𝑏 is integral.

Additionally, the constraint matrix 𝐴 is totally unimodular because

it is a 0-1 matrix with consecutive ones in each column. This implies

that the LP (11) is integral and can be solved to obtain an optimal

deterministic allocation in polynomial time. Since computing the

efficient allocation is tractable, the VCG mechanism can be used to

ensure DSIC and IR which concludes the following result.

Theorem 5. For single-minded valuations, the Deterministic Al-

locatively Efficient (DAE) mechanism (Algorithm 4) ensures DSIC and
IR, and gives an efficient allocation in polynomial time.

6 CONCLUSION
We studied resource scheduling with monetary transfers across

multiple outlets with varying dispensing rates. We proved NP-

hardness of social welfare maximization for monotone and dichoto-

mous valuations in a single outlet. We proposed a randomized

2-approximation mechanism for a single outlet and an 𝑂 (
√︁
|𝑆 |)-

approximation mechanism for multiple outlets, ensuring DSIC and

IR. For single-minded agents, the problem is in P, allowing VCG

to be used. Future work includes improving approximation ratios,

establishing matching lower bounds, and extending the model to

dynamic agent arrivals and departures.
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A matrix𝐴 is TU if every square sub-matrix of𝐴 has a determinant of 0, 1, or −1.
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