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Abstract

In this report, we consider the problem of multiple lightweight devices monitoring un-

structured data on the web. To do this effectively, we propose a 3-tiered architecture

for a consolidated system that monitors changes in unstructured web data to cater to

these clients (lightweight devices). Typically, our clients work under constrained resources

like memory, network bandwidth, processing power, etc. This limits their ability to run

applications that require timely and relevant web-data: applications like news readers,

offline/online search engines, directories, or general web-page monitoring tools. The pro-

posed system can deliver relevant and timely data to its clients by adapting to their

profiles and usage statistics, which it uses to crawl and monitor the web effectively. Our

layered architecture includes modules to manage novelty detection, workload, monitoring

and scheduling, client profiles, client usage statistics, data packaging and delivery, client

connections, etc. In this report, we show how relevant ideas from related literature apply

to the monitoring and crawling side of our system. We develop a new way of deliver-

ing content to lightwieght devices from the middle layer of our system under bandwidth

constraints based on novelty of the content. We investigate various novelty detection

algorithms, and how they are used in strategies to choose the best documents from the

server.
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Chapter 1

Motivation

Lightweight devices like PDAs, as a part of their design, have been synchronizing data

with home computers for some time now. Many such devices are also equipped with

technology that enable them to connect to the Internet and download web data. Desktop

Internet usage has shown that, simple surfing of web pages is not enough for non-trivial

information needs. Tools like search engines, continuous query monitoring tools, etc.

are needed to help a user get timely and relevant information. To tailor these tools to

lightweight devices, we need to consider their intermittent connectivity with limited data

transfer, processing power, memory capacity, and other constraints that are inherent to

these devices. To harness the full power of the Internet even under these constraints,

we provide these clients with an intermediate server to which they can connect using

their on/off Internet connectivity. This server itself, through a “fat” pipe, is connected to

the Internet1 from where it crawls and monitors different sources including news articles,

homepages, responses from search engines to continuous queries, RSS feeds, etc. The

server then uses its internal architecture to serve each client with relevant pages as per

the client’s profile and application requirement.

Consider a few motivating scenarios:

• The client’s application is an offline search engine, and the user is known to search

mostly for cricket statistics in the search engine. In this case, we need to refresh

the cricket part of the search engine’s index more often so that latest statistics are

in the search space.

• Whenever she connects to the Internet, the client’s user wants to track breaking

1In this report, we use Internet to mean the browsable World Wide Web, web-services, search engines,

etc. Other meanings are disambiguated by the context.



4

news stories only, with some specific news topics given higher priority. In this case,

we need to provide novel news pages to the client and filter out other pages that

talk about news items she has already seen, or are irrelevant to her. Topical bias

can be factored in by serving “favorite” news items first, as soon as connection is

established.

• The client specifies a set of pages a priori, and wants to track novel changes in

these pages as and when they happen. Changes that correct typos, grammatical

mistakes, etc. are not considered novel. In this case, we need to monitor the set

of pages effectively, detect changes, identify novelty, and as and when it connects,

update the client with these changes.

For the above and related scenarios, a dedicated intermediate server with client profiles,

usage statistics, processing power to run various IR based algorithms, higher network

bandwidth on the Internet side, etc. will add tremendous overall value to all of its clients.

If such a server’s features are standardized, client applications can be designed with such

servers in mind to harness connectivity and processing powers of both the client and the

server effectively.



Chapter 2

Constraints and Costs

In this section, we informally discuss the main components that go into our architecture,

what constraints they operate under, and what their cost models are likely to be. This

discussion will lead to a more formal architecture that addresses most of these constraints

and cost requirements.

Data sources that represent the Internet to us include plain web pages, search engines,

directories, news sites, RSS feeds, blogs, etc. Most plain web pages are crawled, sometimes

adaptively [1, 2], or with a dedicated theme in mind [3]. Web pages designated a priori

as important are polled efficiently [4, 5]. Search engines provide web services (like Google

API), which can be programmed to. News sites, blogs, and other similar sources provide

RSS feeds which can be read using RSS readers. Our system accesses the Internet through

crawling, polling, programming to web services, or using RSS readers.

We assume that our server is connected to the Internet through broadband access,

and the cost incurred on the Internet end is CI . CI is money units per KB, and can also

include setup and rental charges. The client side cost, which we denote as CCi , of the ith

client, is also in money units per data bits. Let the consolidated client side cost as seen

by the server be CC . CC is more sensitive than CI for the following reasons:

• CC might include charges made to multiple clients that received same data. This

data’s CI component is included only once in the cost analysis, while CC component,

multiple times. Keeping CC low would counter this phenomenon to some extent.

• CC and CIs are being charged for low-bandwidth and high-bandwidth Internet con-

nectivities respectively. With high-bandwidth connectivity, its possible to download

significantly more data than with low-bandwidth connectivity. Some of this mis-

match in data capacity is offset by the capabilities of the intermediate server which

5
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filters out unnecessary data before delivering it to clients. But some of it also has

to be offset by packaging the client side data intelligently and using connection time

effectively, which is CC .

On the client side, we could have devices like Internet enabled smart-phones, PDAs

(Personal Digital Assistant), other desktops which connect to the server, etc. In reality,

each of these types of clients has its own cost, connectivity, processing, and storage models

based on their service provider, technologies used to build them, etc. But, we model them

as abstract clients which follow a single model that includes intermittent connectivity,

cost, storage, and processing. With their resources, these clients are capable of running

applications that need timely and relevant data from the web. With these applications

in mind, clients subscribe to services from the server. These services might involve the

client storing its profile and personalization parameters in the server.

In the main server component, which is the core of our system, we will have modules

that handle client personalization, usage statistics, workload management, monitoring,

adaptive/focused crawling, novelty detection, packaging, connection management, etc.

Some of these tasks require high-bandwidth data connectivity to the Internet, which

we have already discussed. Some of them also require reasonably high-end processing,

memory, and secondary storage. Our server can be hosted on a powerful workstation

which can handle such hardware requirements. To scale up the number of clients, we

could transparently use a cluster of servers to handle the workload. Clustering servers to

handle such load is an area of future work.



Chapter 3

System Architecture

The system has a 3-tier architecture with the Internet, server, and clients making up the

3 tiers, as shown in the following block diagram.

Figure 3.1: System Architecture

For the server architecture, we will consider Tier 1 and Tier 3 as components of the server

that handle the Internet and clients respectively. Tier 2 is also resident in the server, but

does not directly interact with either the Internet or clients.

7
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3.1 Tier 1 - Internet Modules

Tier 1 is responsible for getting all the relevant data from the Internet in a timely fashion.

Data relevancy is as defined by Tier 2. As the server connects to the Internet in multiple

ways, we need many “horizontals” in Tier 1: RSS Readers, search engine web services

consumers, adaptive/focused crawlers, and monitoring tools.

3.1.1 RSS Readers

News sites, blogs, discussion forums, and many other sources publish their content as RSS

feeds over the RSS protocol conforming to the RSS 2.0 specification. The single important

advantage of having RSS feeds from fast changing sites over repeatedly crawling/polling

them lies in parsing. RSS feeds make it trivial to extract updated content, time, etc. The

same extraction task can get non-trivial for crawlers which handle HTML pages. The

meta-data that comes with RSS feeds can be used to identify authors, titles, and other

details which are hard to find in HTML. Crawlers use heuristics to find update times as

they have no way of knowing exact update times. RSS feeds come with explicit update

times, and with stored previous update times, its easy to check for new updates without

comparing contents.

Unless RSS feed publishers use the “ping” mechanism, the RSS reader needs to check

each RSS feed for updates frequently. Though identifying the syntactic update is easy with

all the RSS meta-data, polling the RSS feed to minimize time delay between updates and

reads is not trivial. This time delay optimization problem is also faced by the unstructured

web monitoring tools, and we will discuss it in detail there. Also, though RSS feeds have

meta-data to help readers identify components in the update, the update’s semantics

are hard to identify. A typo correction is a trivial update, whereas an update in the

survivor statistics of a natural disaster is an important update. Tier 2 tries to separate

the important from the trivial updates that are seen at Tier 1.

3.1.2 Search Engine Web Services

Search engines expose APIs which enable any consumer to tap into their features pro-

grammatically. If there are Tier 2 requirements for results to specific static queries, Tier 1

will use these APIs to get the relevant results. Search engines also provide APIs to other
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services which can be accessed by Tier 1, and whose contents can be used by Tier 2. One

important drawback of using these APIs is that search engines have limits on the number

of times an API call can be made, and this contributes to bottleneck 1 (identified as “1”

in the architecture figure).

3.1.3 Monitoring and Crawling

If Tier 2 needs to monitor updates to specific web pages which are identified a priori, we

use techniques from the web crawling, monitoring, and continuous query literature. A

detailed literature survey of these techniques is given in Chapter 4.

Most of the methods in current monitoring literature try to predict page change prob-

abilities, use it in conjunction with some other metric like embarrassment, obsoleteness,

freshness, missed updates, etc. to form an objective function, and then try to optimise it

under some hardware/network resource constraints. We conjecture that these predictions

can be improved by speculating on some page choices during monitoring. The percent-

age of pages to speculate on, the speculation strategy itself, and its effectiveness need to

be studied from both theoretical and experimental settings. Bandit Problems [6] try to

model the speculative exploration theory. The limitation of applying Bandit Problems to

our monitoring context is the sheer number of bandits we have (web pages to monitor),

which overwhelms typical exact Bandit Problem solutions . There is little work done on

approximating solutions to scaled up versions of Bandit Problems. This is also left as

future work.

Most Tier 2 requirements can be met by the above mentioned “horizontals,” and

typically, crawlers are not needed. But under some circumstances they might be needed.

In our motivation scenario 1, our client used an offline search feature which required a

searchable index on the client device. Though refreshing the index can be solved by

a combination of RSS feed reading and monitoring the web, building the initial index

might take a focused crawler [3]. Crawlers are Tier 1’s least used “horizontal.” Also,

most web servers have politeness requirements which crawlers or monitoring tools’ polling

components cannot violate. This makes monitoring and crawling also face bottleneck 1.

We notice that all Tier 1 “horizontals” connect to the Internet using high bandwidth

connections. Their cost is relatively easy to calculate and optimize as they are always

connected through a single connection. Therefore, bottleneck 2, which appears (refer
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architecture diagram) in this connectivity, is not as significant as other bottlenecks. In

case the server decides to “lazily” use Tier 1’s services, the cost model of CI might

become involved. Also, Tier 1 has to handle bottleneck 1. Though bottleneck 1 in itself

is not obtrusive, it plays a role in polling scheduling algorithms. This has to be precisely

formalized and is left as future work.

3.2 Tier 2 - Internals

Tier 2 is driven by what clients want. Modules inside Tier 2 are motivated towards

optimizing what is downloaded from the Internet and what is delivered to the client.

Currently, our design contains a profile manager that also handles workloads and person-

alization, textual novelty detection, a data processing module which works on client logs

to generate user statistics, and a packaging module.

Clients initially subscribe to services by registering themselves with the server. Each

client has its own profile which contains identification data like hardware details, owner

details, importance weight of the client, etc. The key detail stored in the profile is the

nature of service the client wants. Services include offline search, news, tracking of specific

pages, etc. Along with the feature, the profile also stores the required data needed to

service the profile. In case of offline search or news pertaining to a specific topic, the topic

keyword/ID needs to be given. In case of monitoring specific web pages, their URLs need

to be stored with the profile. The client might issue just a query, and these pertinent

URLs can be obtained by search results through Tier 1. This profile information is further

augmented by the system with other information as more user statistics is gathered. The

user profile can be abstracted into a simple vector of words that she prefers, and these

can capture keywords, interested sites, search engine results, etc. effectively.

We also believe that a user’s preference changes over the time of a day, and also through

the days of a week. Preference for content will also change during flash events that take

center stage in news coverage. Regularly though, we believe that a user profile is better

modeled by considering the temporal change in preferneces across the day, and across

the week. To verify if this notion is valid, we collected 7.5 million records of user logs

from Rediff (http://www.rediff.com) corresponding to 150,000 different browsers accessing

30,000 unique URLs on the site for a week’s time. We were able to extract the type of
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URL accessed, the time of access, and browser from which the access happened. Figure

3.2 gives an indication of topics and access percentages drifting over different time slots

in a day. Figure 3.3 gives an idea of how the same happens in weekends over weekdays.

Figure 3.2: Access Drift in Single Day

This leads us to believe that a single profile vector is not good enough to capture a

user’s behaviour through the day, or through a week. Having 7X3 profile vectors for each

slot in each day is a simple solution that would be effective.

It is quite likely that multiple clients might express interest in monitoring common

web pages or news topics. A uniform workload of plain web pages to be monitored, news

or other feeds to be tracked, etc. need to be built using client profiles. Say a profile

wants to monitor result pages for a particular continuous query Q, and another profile

wants to get news updates on a related topic R. Q and R are bound to have common

pages/feeds which need to be monitored for both profiles. Consolidation of these to-be-

monitored pages/feeds based on profiles is a complex problem to solve, as these pages keep

changing, user preferences keep evolving, and there is a constant user churn. A quick look

up index is needed to store all the pages/feeds being monitored so that exact duplicates

can be eliminated quickly.

Semantic duplicate elimination is a tougher problem, which needs to be solved using

novelty detection, natural language processing, etc. The page/feed list that needs to

be monitored is stored where Tier 1 can access it for its own polling scheduling. These
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Figure 3.3: Access Drift in Weekends

scheduling algorithms depend on a static list of pages/feeds to monitor. In our case, this

list is evolving dynamically as clients are churned in and out of the system, evolving user

statistics, pertinent new pages being discovered, etc. This evolving list scheduling problem

needs to be theoretically studied further. This is left as future work. For a practical

implementation, we can fix specific time quanta only during which the site/feed list is

updated. The balancing line is between our desire to have the most recently discovered

relevant sites monitored as opposed to efficient monitoring of relevant sites from the past.

Novelty detection is defined as the problem of detecting novel or new content in a time

ordered sequence of information. Eg. In a news article sequence describing intermediate

results of counting during an election, that article that carries the final results is deemed

novel. In the textual domain, James Allan, et al. [7, 8, 9, 10] have contributed a large

body of work in this area. In one of their approaches [8], they compare incoming articles

to all the old articles and find overlap of named entities and topic-terms (non-named

entities), and the maximum overlap values are considered as features. These values are

then given as input to a classifier to decide whether the new article is novel or not. The

idea is to use novelty detection to filter out “redundant” articles from novel ones, and

package and deliver only the novel ones to the client. In case of the offline search index’s

updation, if the novelty detection module identifies some of the “new” updates to the

index’s content as not-novel, they need not be updated. Overall, novelty detection at
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the Tier 2 will ensure that a large amount of unnecessary data is not delivered to the

clients, under all possible application scenarios. For each feature offered by Tier 2 to Tier

3, novelty detection needs to be applied by ensuring that novelty is measured only in the

client’s and the application’s context, so that relevant data is not flagged off as not-novel.

In Chapter 5, we design various algorithms to solve the M : N novelty detection

problem. We assume that Tier 2 has M documents relevant to a client’s profile, and Tier

3 has N documents, and we have to find the best k documents to send over to Tier 3

from Tier 2.

In case the entire client server package suite is being built together, knowing each

other’s requirements, we can have the clients collect usage data (logs) and report it back to

the server whenever it connects. This client to server communication for logs transfer will

have some priority in the overall client server communication hierarchy. Client side logs

are then processed by the server’s user statistics module to find relevant latent information

about the client’s preferences and satisfaction. Statistics to be analyzed are time spent on

each result/article, active feedback, other client activity on results (like forwarding some

result to other users), etc. Result quality feedback can be objectively captured using

partial ordering between presented results, usage logs, absolute scores given by users, etc.

and the overall result generating algorithm can be given some rating based on these user

statistics. Also, latent preferences can be discovered by doing simple association rule

mining on results that satisfied the client. These preferences also go into client profiles.

Once relevant pages to be sent to each client are identified, they are packaged into

chunks whose size and importance are based on each client’s connectivity models and

importance. The cost and connectivity models of the clients have a heavy bearing on the

size of these data chunks.

Bottleneck 3 in Tier 2 is due to the heavy processing required there. Novelty detection,

log processing, workload management, etc. are all heavy on storage and processing. Time

lost here also needs to be minimized using better indexing techniques, smarter workload

merging algorithms, quicker data processing/statistics collection algorithms, etc.
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3.3 Tier 3 - Client Modules

As shown in the architecture diagram and alluded to before, Tier 3 is a connection man-

ager. It manages client side connections so that Tier 2 can deliver its content to each

client effectively. The challenges faced by the connection manager are mainly due to the

intermittent connectivity of clients. These include non-trivial session management, fault

tolerance, scheduling of data transfer, etc. Currently, our design does not best handle all

the above mentioned factors. Instead, we will be handling them using simple techniques

so that we have a complete design ready. Client server session management is handled

using traditional session based techniques. Fault tolerance, a major part of the connection

manager, is ignored for now. Scheduling of data transfer is based on importance of clients,

round-robin, or some other simple scheduling strategy.

Bottleneck 4, which seemingly appears in this tier, is actually a part of Tier 2. The

connection manager has to deliver all data that Tier 2 deems client-worthy. Therefore, it

is Tier 2’s responsibility to minimize the amount of delivered data so that client-server

connection cost is minimized. Intermittent connections might cause data to be transfered

multiple times to the clients, and this might increase cost in bottleneck 4 in spite of Tier 2

having nothing to do with it. Fault tolerance mechanisms of this sort (repeated sending),

have a great impact on the overall cost of the system. Unless fault tolerant schemes are

formally specified, we assume that bottleneck 4 is tackled by Tier 2, and not Tier 3. Fault

tolerance at Tier 3 is a major area of future work.

Bottleneck 5, which appears in the client devices, is due to clients’ internal resource

constraints like storage, processing power, etc. These have some bearing on our system.

Eg.: the server might overwhelm its clients with data which clients cannot store, or log

collection at the client end. Bottleneck 5 is application and client dependent, and has to

be handled by both clients and the server. The server sends minimal data to the clients,

and this should handle bottleneck 5 from the server end to some extent.



Chapter 4

Upstream to Server - A Literature

Survey

Continuous Adaptive Monitoring (CAM) [4] was one of the first monitoring strategies

proposed to cater to user specified continuous queries. In this method, a set of pages is

identified as being relevant to a particular query. Limited hardware and network resources

form the constraints that hold back ideal monitoring of these web-pages. Given these

constraints, the problem is to monitor these web-pages so that the least number of their

updates are missed. The cost of each missed update is equal to the query specific relevance

weight of the page.

CAM has a training (tracking) phase, which is used to build a statistical model of

the change dynamics of the pages in question. Training is done in n epochs of length T .

During this stage, pages are downloaded and compared against their previous versions,

and a Markov chain is built to predict change behaviour of pages in future epochs. Given

such behaviour, a monitoring strategy is built for future epochs by solving a discrete,

separable, and convex optimisation problem. The objective function of this optimisation

problem is the total weighted importance of updates that are not reported to the user,

and this has to be minimised. The constraints on the problem are the resources of the

system.

Formally, it is required to minimise:

∑
i∈P

(Wi, Ei)

where Wi and Ei denote the importance and the expected number of lost changes of the

15
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ith page respectively. P is the total number of pages. Ei can be represented as:

Ei =
∑
j∈Ui

ρi,j(1− yi,j)

Here, ρi,j denotes the change probability of the ith page in the jth training epoch. yi,j

is a boolean value that indicates whether to monitor the ith page in the jth monitoring

(testing) epoch or not. Resource constraint is given by:

∑
i∈P

∑
j∈Ui

yi,j = C

where C is the total number of monitoring tasks. The full formulation of the optimisation

problem is given in [4].

CAM’s performance has been measured against the classical Uniform and Proportional

monitoring policies proposed by Cho and Garcia-Molina [2] under varying change proba-

bilities. In each case, CAM is said to perform better. This can mostly be attributed to

the aggressive nature in which CAM allocates monitoring resources. The other difference

between CAM and [2] is in the objective function being optimised. [2] optimises average

freshness of the repository whereas CAM optimises the number of missed updates across

epochs. CAM does better because each missed update is penalised, whereas [2], due to

its objective function being an average value, loses out on the granularity of updates.

J. L. Wolf et. al. [11] propose a related technique where they minimise the sum

of weighted time-average staleness of pages, across all pages. The constraint is the

total number of monitoring tasks R. Suppose a page i is monitored xi number of

times during an epoch of length T , the time-average staleness of i is represented as:

Ai(xi) = ai(ti,1, . . . , ti,xi) The weight of each page i is obtained based on the embarrass-

ment metric. This metric is very specific to the search engine context. A page’s weight

is proportional to the level of embarrassment a search engine suffers when a user clicks

on the page’s URL returned during a search query and finds the result not relevant to

her query. This has to have happened because the search engine did not have the most

recent copy of the page in its repository. It is given by: wi = di
∑

j

∑
k cj,kbi,j,k where bi,j,k

denotes the probability that the search engine returns page i in position j on result page

number k; cj,k denotes the frequency that a user clicks on a returned page in position j

of query result page k; di denotes the probability that inspection of a stale page yields

an incorrect response w.r.to the query. The overall task now is to minimise the objective
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function:
N∑
i=1

wiAi(xi)

subjected to the constraints:

N∑
i=1

xi = R (4.1)

xi ∈ {0, . . . , R} (4.2)

The time-average staleness of a page is obtained in [11] using an expression involving

the probability distribution governing page updates. They consider exponential, gen-

eral, and quasi-deterministic distributions to come up with three different expressions for

the time-average staleness of pages. In the quasi-deterministic model, the page update

distribution is based on observations of previous crawls. All the three versions of the

optimisation problem can be framed as integer programming problems with exact, but

slow solutions. Instead, the authors of [11] also propose to use a fast greedy heuristic

that solves the problem within a constant bound of the exact solution. For details, refer

to [11]. This method is different from CAM in the weight function used. Also, CAM

minimises the number of missed updates while [11] minimises the time-average staleness

of pages.

Pandey et. al. [5] propose WIC (Web Information Collector), an online algorithm that

decides the monitoring schedule based on change probabilities of web-pages, application

specific urgency functions, and a life() parameter that captures probability of changes

to web-pages staying over time. Unlike CAM, WIC’s uses an urgency parameter in its

objective function that can be made application specific. WIC also uses a lifei(j, k)

parameter which denotes the probability that information made available by a change at

time Tj to page Pi remains available at time Tk.

WIC’s objective function can be formulated as a non-serial constrained optimisation

problem and can be solved using non-serial dynamic programming. In large applications,

this turns out to be expensive. WIC’s authors propose a greedy algorithm that serves as a

2-approximation and runs in time linear in the number of decision variables. Additionally,

the urgency parameter can be used to tune timeliness vs. completeness.

Edwards et. al. [1] propose an Adaptive Crawling Strategy that does not associate

prior probabilities with page updates. Instead, they use existing crawl statistics to come

up with an estimate for the number of obsolete pages in the repository. Initially, all pages
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being crawled are divided into a set of pre-determined buckets. Given a bucket, prior

number of obsolete pages in that bucket, number of pages in that bucket that get crawled

in a particular crawl, and the proportion of pages in that bucket that change during that

crawl, an estimate of the number of obsolete pages per bucket can be done. The objective

function is the number of obsolete pages across all buckets, and the constraints include

the network bandwidth, number of new pages added to the repository, number of pages

per bucket that get updated, and other integrity conditions. See [1] for details. The

optimisation problem ends up being highly nonlinear, and they use large scale nonlinear

programming methods to solve it.

Brewington and Cybenko [12] propose a simple and intuitive approach to estimate the

change probability distribution of a set of pages. They define lifetime of a page to be the

time between successive updates, and age of a page as the time elapsed between the last

update and the next poll/crawl. They assume that the lifetime distribution of a set of

pages to be stationary, and we can intuitively see that the two distributions are closely

related. The act of observing that age is t units is the same as knowing that the lifetime

is no smaller than t units. This indicates that the age PDF g(t) should be proportional

to the probability 1 − F (t) of a given lifetime exceeding t units, where F (t) is the CDF

corresponding to the lifetime PDF: f(t). It can be shown that:

g(t) =
1− F (t)∫∞

0
[1− F (t)]dt

We can now get the change update probabilities by just having the age distribution, which

is easy to get with simple crawl data. Given this expression, and an assumption that page

updates follow a memoryless exponential distribution, only page age observations are

enough to obtain the full change distribution. [12] also gives methods to estimate change

probabilities based on observed lifetimes of pages. They also define and give methods

to evaluate a metric of search engine freshness called (α, β)currency. A repository is set

to be (α, β)current if there is an α probability that a randomly selected page from the

repository is current with a grace period of β days. Details can be found in the paper.

Gupta et. al. [13] propose monitoring techniques to answer Continuous Multi-data

Incoherency bounded Queries (COMIQ). Typically, these queries need to be answered by

reading data from multiple dynamically changing sources. To answer them with certain

incoherency guarantees, these dynamically changing sources need to be monitored for

changes in values that affect the query in question. In [13], the authors create a Discrete
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Time Markov Chain for each of the data items involved in answering a query. Transition

probabilities between various states of the model are determined using past observations of

changes to data values. As these pages are observed more, these transition probabilities are

modified to take into account previous transition probabilities and current observations.

In this way, the change probabilities of the monitored pages is learnt using a DTMC.

An additional component called self correction is applied to the change probabilities

to take external factors into account. Assuming jth pull of the ith data item occurred at

time tk and (j + 1)th pull at tl. Suppose at tl, predicted change was PCi,l, and the actual

change was ACi,l, they calculate the self correction term as:

dXi,j+1 =
L(ACi,l − PCi,l)

tl − tk + (1− L)dXi,j

Here, L is the smoothing constant. dXi,j is added to the predicted change probability of

the ith data item.

The optimisation problem solved in [13] differs slightly from the ones in standard

monitoring problems. It has an objective function that is based on the incoherency

bound and the change probabilities of the data items. Secondly, the data items being

monitored, which contribute to the incoherency, and eventually get polled for again, are

numeric values.

Pandey et. al. [14] propose User Centric Web Crawling, a method where crawl strat-

egy is directed towards maximising repository quality. Informally, quality of a repository

is proportional to the expected average usefulness of the search engine. Usefulness of the

search engine is estimated using a query load, individual query frequencies, likelihood

of user clicks on specific links on search result pages, and the result ranking function.

Formal definitions of usefulness and quality can be found in the paper [14]. Intuitively,

downloading the latest copy of a web-page should affect the quality of the repository

w.r.to a consistent query load and user behaviour. Given standard monitoring resource

constraints, the objective is to download/refresh pages in such a way as to maximise

repository quality. Under constraints, a page is downloaded based on priorities which

are assigned proportional to the difference in repository quality that this particular page

causes. Checking for repository quality change per page download/refresh is very expen-

sive as it involves going through the entire query workload and its result set for each

page. Heuristics with good approximation guarantees are provided in [14] to handle this

expensive estimation.
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Chapter 5

Server to Downstream - Novelty

Detection

In this chapter, we study the M : N novelty detection problem. We assume that Tier 2

has M documents relavent to the client, and Tier 3 has N documents already sent over to

the client. Given such a situation, we come up with strategies based on novelty detection

to find the best k documents that can be sent from Tier 2 to Tier 3.

We study the problem in an abstract setting by having a download limit on the number

of documents to account for the connectivity and bandwidth restrictions between Tiers

2 and 3. It is also assumed that at Tier 2, the profile manager would have filtered M

documents relavent to the client. Tier 2 is also expected to the N documents which this

particular client has already seen from the last download iteration.

5.1 Server Document Space Search

Given this setting, ideally, we must be considering all possible subsets of size k generated

from the server side document set S, and compare their novelty based ”goodness” to the

N documents in the client side document set C. Checking such ”goodness” of all subsets

is computationally harder than say, applying a greedy strategy, or searching through the

subset-space using more sophisticated techniques.

5.1.1 Exhaustive Search Strategy

We outline an exhaustive search algorithm that enumerates all possible subsets of the

server document set S of size k, and attempts to find the best subset that can be down-

loaded to the client side. Below, the full algorithm is outlined.
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Input: Server Document Set S, Client Document Set C, and download limit k.

Set of Subsets SET = set of all possible subsets of size k from S

foreach set s in SET do

novelty = 0

foreach document d in s do

novelty += Novelty(d, C )

novelty += Novelty(d, s \ d)

end for

download s with maximum novelty value

end for

Figure 5.1: Exhaustive Search Strategy

This algorithm can be made slightly more efficient by caching some of the novelty

values, and avoiding some computations. We notice that subsets overlap considerably on

the serverside, and novelty values of server documents with respect to client documents

are calculted repeatedly for different server side subsets. This can be avoided by caching

values that are already calculated.

5.1.2 Greedy Search Strategy

Below, we outline a greedy strategy.

Input: Server Document Set S, Client Document Set C, and download limit k.

Repeat k times

foreach document d in S do

novelty = Novelty(d, C )

end for

download d with maximum novelty value (C = C ∪ dmaximum novelty)

end for

Figure 5.2: Greedy Search Strategy

Exhaustively going through all subsets of the server document set is computationally



5.2. TF-IDF Cosine Dissimilarity 23

expensive. To avoid this, we employ a greedy strategy that attempts to find the most

novel document from the server side with respect to the client documents, and downloads

that document into the client document set, thereby increasing its size by one. This

procedure is repeated k times.

Even the greedy strategy can be made slightly more efficient by caching incremental

novelty values of server documents with respect to the current client document set. Af-

ter the client document set gets the greedily chosen server document, during the next

iteration, some computation is avoided due to the earlier caching.

The method Novelty(d, C ) used in both algorithms is from the traditional 1 : N nov-

elty detection problem. In this report, we investigate the TF-IDF Consine Dissimilarity

method and a few language model based methods to find novelty in this 1 : N setting.

5.2 TF-IDF Cosine Dissimilarity

In the vector space model, documents are represented as vectors in a multidimensional

Euclidean speace. Each axis in this space corresponds to a term. The coordinate of

document d in the direction corresponding to term t is determined by two quantities:

Term Frequency TF(d, t): TF of a word is defined as the number of times term t

occurs in document d. TF might be scaled to normalize document length by using sum

of all frequencies or maximum of all frequencies.

Inverse Document Frequency IDF(t): IDF seeks to scale down the coordinates of terms

that occur more freqently across the document set (corpus). In our case, IDF is the log

of the ratio of total number of documents to the number of documents that contrain the

given term.

TF and IDF are used together in the vector space model to give weights to each

coordinate (term) in each vector (document) by using TF ∗ IDF as each term’s weight.

TF-IDF weighted word vectors of the server document d and each of client documents

are generated. Dissimilarity between d and each of C are calculated by taking an inverse

measure of their cosine similarity. We pick the maximum value of dissimilarity between

d and each of C as the novelty of d with respect to C.
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5.3 Language Models

A language model (or more precisely, a statistical language model) is a probabilistic

technique for generating text. In the past several years, there has been significant interst in

the usage of language modeling methods for a variety of information retrieval and natural

language processing tasks. In many cases, like information retrieval, there is often very

little training data (short queries), and many competing hypotheses (documents) which

are to be sifted through to find the most likely hypothesis. To quote from [15], one of the

pioneering papers in language modeling litearture:

When designing a statistical model for language processing tasks, often the

most natural route is to apply a generative model which builds up the output

step-by-step. Yet to be effective, such models need to liberally distribute

probability mass over a huge space of possible outcomes. This probability can

be difficult to control, making an accurate direct model of the distribution

of interest difficult to construct. The source channel perspective suggests a

different approach: turn the search problem around to predict the input. Far

more than a simple application of Bayes’ law, there are compelling reasons

why reformulating the problem in this way should be rewarding. In speech

recognition, natural language processing, and machine translation, researchers

have time and again found that predicting what is already known (i.e., the

query) from competing hypotheses can be easier than directly predicting all

of the hypotheses.

We tailor the language modeling approach to novelty detection with the following idea:

We know the client side documents C, and can build a language model around these client

side documents. If this model adequately generates a server side document, we deem the

server side document as not-novel. So, our approach would look for that document on the

server side that is least likely to be probabilistically generated from the language model

which is derived from the client side.

All of our language modeling approaches depend on the idea of generating one doc-

ument from another document’s language model. We model the source document using

a unigram multinomial term distribution θd. This multinomial now gives the generative

probability of observing a given vector of term counts, where the probability of generating
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a term t p(t|d) is subject to
∑

t∈d p(t|d) = 1 and ∀t, p(t|d) > 0. This distribution θd can

be found by maximum liklihood estimation to be:

p(t|d) =
TF (ti, d)∑
tj∈d TF (tj, d)

(5.1)

The problem with using this approach is that if a word never occurs in the source

document, but is still there in the corpus, it’s generative probability from that document

will be zero, and this will force the entire product of probabilities to go to zero. We use

Bayesian smoothing using Dirichlet priors to fix these zero probabilities of unseen words.

If the language model being used is multinomial, for which the conjugate prior for Bayesian

analysis is the Dirichlet distribution with parameters (µp(t1|C), µp(t2|C), . . . , µp(tn|C)).

Thus, the model is given by:

p(t|d) =
TF (ti, d) + µp(ti)∑
tj∈d (TF (tj|d) + µ)

(5.2)

In our experiments, we set µ = 0.5. Using this multinomial model with smoothing,

we define the document generation probability p(di|dj), ie. the probability of generating

di given dj:

p(di|dj) =
n!∏

t∈di
TF (t, di)!

∏

t∈di
p(t|dj)TF (t,di) (5.3)

where n =
∑
t

TF (t, d). This represents the core of our language modeling approaches.

5.3.1 Collective Document Generative Model

Novelty of a server document d with respect to all clients documents C is given by how

less likely they are to have generated the server document.

Novelty(d, C) ∝ inverse

(
p(d|C)

p(d)

)
(5.4)

Using simple Bayesian reasoning, we get:

Novelty(d, C) ∝ inverse

(∏
c∈C

p(c|s)
)

(5.5)

where p(c|s) can be calculated using Equation 5.3.
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5.3.2 Individual Maximum Document Generative Model

In the collective model, we observed that all client documents being considered together

in the product. So, if one client document is very similar and not-novel with respect to the

server document as compared to other client documents, this effect will be not discerned

in the product. To work around this, we define novelty as the probability with which the

most novel document on the client side generates the server document. This is calculated

by:

Novlty(d|C) ∝ argmaxc∈C(−p(c|d)) (5.6)

5.3.3 Average Document Generative Model

Assuming that each client document is equaly likely to have generated the server docu-

ment, we find the generational probabilities of the server document from each of the client

documents and take its average as our novelty value.

Novelty(d, C) = − 1

|C|
∑
c∈C

p(d|c) (5.7)

5.3.4 Clustering Client Side Documents

Intuitively, we can see that some documents collectively make other documents redundant,

and thus, novel documents on the server side are novel not just compared to one document

(or all documents) on the client side, but to selected groups of client side documents. We

also conjecture that such groups can be identified by clustering the client side documents

together on terms which are common to them, and clusters formed thus would be better

candidates to check novelty with.

We cluster documents using simple hierarchical clustering using cosine similarity of

TFIDF weighted document vectors in the corpus vocaabulary vector space. After such

clustering is done, we consider each cluster to be one single client document. These

new client documents (formed out of old client document clusters) form our new client

document set. Language modeling techniques mentioned above can now be applied in

this new client document setting.
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5.4 Experimental Results

The two search strategies coupled with various novelty detection approaches were tried

out on two data sets. The first data set is TREC based and was created by the authors of

[16], and the second is Google News based, which we created by crawling Google News’s

website over the first few days of June 2006.

5.4.1 TREC data set

Zhang et. al. [16] had human editors mark 3500 TREC documents from the Wall Street

Journal and Associated Press feeds as redundant: each of them made redundant by one or

more documents from the same data set. Each such redundancy judgement was associated

with a human reviewer. Each of the 3500 redundancy tuples was of the format: Reviewer,

Redundant Document, List of Redundant Maker Documents. Each tuple had exactly one

redundant document, and typically, around one or two redundant maker documents.

To fit this data set for novelty judgements, we assumed that if a document is redundant

with respect to other documents, it’s not novel. Consider one reviewer’s tuples. If there are

n tuples, there are n redundant documents and more than n redundant maker documents.

We randomly split all these documents into two parts: server and client document sets. We

ensure that all the redundant documents are a part of the server document set. Redundant

maker documents could be in both client and server part. The rationale behind such a

split is that when we run our novelty detection algorithms on the client server split, we

want none of the redundant documents from the server side to slip through in case that

redundant document’s redundant maker documents are already on the client side. If such

a document slips through, we penalize it, and lower the accuracy of the download strategy.

In this data set, we cannot estimate recall values because we are penalizing redundant

documents sent, and not novel documents held back. Instead, we calculate precision at

differnet download limits. Like recall, with increasing values of download limit, precision

drops.

5.4.2 Google News data set

Google News (http : //news.google.co.in) collects news articles from more than 4,500

news sources and presents them in easy to download RSS feed format. Every instance of
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the main Google News page has around 20 to 40 news stories, and each story has around

200-400 clustered news articles under it, collected from various sources. 20 such instances

of the Google News page was crawled and all stories at the cluster level were downloaded

and stripped of stop words. Around 29,000 documents were downloaded for this data set.

To fit this data set for novelty judgments, we assume that every news story’s cluster

has just one original story, and the rest of the cluster documents are redundant. This gives

us around 1,000 novel documents and their corresponding 28,000 redundant documents.

We start off with a mixture of novel documents and redundant documents from multiple

clusters on the server side, and run our algorithms on such a client server configuration.

5.4.3 Evaluation

To evaluate our algorithms on the above data sets, we adapt traditional measures of

precision and recall to our setting. Precision is defined as the ratio between the number

of novel documents sent to the overall number of documents sent (which include novel and

redundant documents). Recall is defined as the ratio of the number of novel documents

sent to the number of novel documents present on the server side to begin with.

5.4.4 Results

In figures 5.3 and 5.4, we show experimental results of running greedy strategy with

TFIDF weighted vector space cosine difference, cluster, and non-cluster based language

model based novelty detection methods. We can clearly observe that the cosine dissim-

ilarity method outperforms the language model based methods in both data sets. This

prompted us to run the computationally expensive exhaustive search approach only on

the cosine dissimilarity model. In figure 5.5, we show the result of running exhaustive

search on the TREC data set, averaged over multiple topics (reviewers).

These results are unexpected and disappointing. We had expected the assymetric,

more sophisticated language model based methods to perform better than the symmetric

naive cosine dissimiarity method. This result concurs with both [16] and [17]. We believe

that this is due to the way novelty is defined in our data sets. In the TREC data set,

we used human judged redundancy as the opposite of novelty, and in the Google data

set, two or more elements from the same cluster as being redundant with respect to each
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other as the opposite of novelty. These assumptions, though intuitively appealing, might

not be correct. We leave further microscopic investigation into this as future work.

Also, we notice considerable difference between the performances of the various lan-

guage model based methods themselves. This is mostly due to the way documents get

combined on the client side in each of the methods. Novelty in the TREC data set, for

example, as judged by humans, is based on multiple documents rendering one document

redundant. These multiple documents need not contribute in their entirety to the novelty

judgement. Our language modeling methods, though, consider all these documents to

be atomic units (made up of terms). A more detailed investigation into the language

modeling approaches is warranted.

In fig 5.5, we notice that, under the vector dissimilarity method, the greedy search

and exhaustive search methods have very similar performances. Based on these initial

results, given that exhaustive search is not doing considerably better than greedy search,

we shelved our efforts to find a more sophisticated search strategy (A-star, branch and

bound) in the server set space.



Chapter 6

Future Work and Conclusion

Future work on this project can be split into two parts: Short and long term goals.

6.1 Short Term Goals

In novelty detection, we did not go beyond looking at documents as atomic units of

information. Segmentation of documents into chunks of coherent information and merging

of documents based on more sophisticated techniques are both areas of future work that

might result in better performance.

Also, in our language model approaches to novelty detection, we have just used

Bayesian smoothing with Dirichlet priors. In their study of various smoothing approaches,

Zhai and Lafferty [18] elaborate on various other techniques that are unexplored under

our problem setting and data sets. Trying out various other smoothing techniques is left

as an area of future work that might result in better performance.

Other than greedy and exhaustive search strategies, there are other sophisticated

search techniques like A-Star, and other Branch and Bound based algorithms that might

give us the accuracy and computational performance comparable to exhaustive and greedy

search strategies respectively. This is also left as an area of future work.

6.2 Long Term Goals

We want to get a sound theoretical understanding of the following concepts, implement

them, and test them on real life data sets.

• In the Novelty Detection scenario, using overlaps in repositories and incoming online

pages to build efficient ND models.
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• In the Bandit Problem scenario, getting approximate solutions with large number

of bandits as opposed to exact solutions with a small number of bandits.

• With evolving preference/article/webpage/feed lists, designing optimal/approximate

scheduling and monitoring algorithms.

• Factoring in web-server and search engine politeness requirements into scheduling

and monitoring algorithms.

• Fault tolerance models in an intermittent client-server connection scenario.

• Formalizing user satisfaction fully in our problem/system context.

• Clustering of servers in case the number of clients and workload scales up.

6.3 Conclusion

In this report, we have elaborated on the design of a system that allows lightweight devices

to subscribe to it and harness the information content of the Internet effectively. We have

given a detailed literature survey on existing techniques that can be employed in Tiers 1-2

transition of our architecture. We have also conceptualized and implemented techniques

to handle Tiers 2-3 transition. If such a system is implemented fully, lightweight devices,

even under their resource constraints, can provide their users a large window into the

Internet.
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