Property Specification Language and Mining* Specifications
(CS615 Term Paper)

Tejaswi N (04329016),
KReSIT, IIT Bombay

Instructor: Prof. Supratik Chakraborty
November 28, 2004

Abstract

Formal methods increase a system’s reliability to a very large extent. It has still not found
wide spread acceptance due to its complex and hard-to-implement nature. The necessity of charting
thorough and correct specifications of systems is one major deterrent in adopting formal methods.
In this report we study two ideas that attempt to reduce this complexity involved in coding system
specifications. Property Specification Language (PSL) is a language used in formal methods to specify
logic designs. PSL adds syntactic sugar and regular expressions to logic representation systems to
make them more intuitive and easy to use. The second part of the report covers the novel concept
of “mining” specifications from large software applications. A machine learning based approach to
discover formal specifications in the interaction of software systems with certain APIs is studied.

1 Introduction

Specifications are an integral part of the formal verification of systems. For any verification technique
to proceed, thorough formal specifications need to be laid down. The problem that people mostly face
during this stage of the verifications process is the complexity involved in designing and formalizing
non-trivial specifications. Intuitively we see that there are two aspects to this problem. The first is
the difficulty that is inherent in the representation of specifications. In the first part of the report,
we study techniques that help in formalizing specifications easily. Specifications like temporal logic
statements become very complex for reasonably large systems. These logical specifications are more like
atomic elements which need to be strung together precisely to form non-trivial specifications. High level
languages like PSL/Sugar provide constructs like regular expressions that help write specifications easily.
The second aspect of the specifications complexity problem is its design itself. Semi-automatic ways of
coming up with specifications so that a human expert can later partially correct them or design additional
specifications on top of them will make formal verification more widely accepted. In the second half of this
report we study a machine learning driven approach that attempts to mine specifications from software
systems. A properly tested code base is used to train the system so that similar (extended) code chunks
can be tested for conformance with the learnt specifications.

2 PSL/Sugar

PSL has its roots in Sugar, a simple concise and expressive language developed by IBM. The Sugar
language was submitted to the Accelera EDA standards organization, who selected Sugar as the basis for
an IEEE international standard and renamed it to PSL and is now commonly referred to as PSL/Sugar.
Sugar is a formal specification language for hardware. A hardware specification written in Sugar can be
used by a formal verifications tool, such as a model checker. The Sugar specification can automatically
be compiled into one of the standard standard temporal logics: LTL or CTL. These temporal logics,

*Mining used as verb (not as gerund).

while designed to have efficient model checking algorithms have the disadvantage that many specification
elements are very difficult to code. Sugar was designed to solve this problem without compromising
the integrity or efficiency of the temporal logics. Sugar adds the power of Regular Expressions and an
extensive set of operators that provide syntactic sugar to help construct more intuitive and concise Sugar
formulas instead of long and cumbersome temporal logic formulas. It is to be noted that these extra
features do not give additional expressive power to Sugar.

Sugar specifications are made up of four layers: Boolean, Temporal, Verification and Modeling. The
boolean layer comprises the most basic elements of a hardware design: the boolean values. A high is
treated as boolean true and a low is treated as boolean false. Temporal layer has the temporal properties
which describe the relationship between boolean expressions over time. For example: always((a) —
next(3)) is a temporal property expressing that whenever signal « is asserted, then (—) in the next
cycle signal () is asserted. Verification layer consists of directives which describe how the temporal
properties should be used by verification tools. For example: assert(«) tells a verification tool that
the property («) should always hold. Verification layer allows wverification units, or groups of Sugar
statements to be constructed. Modeling layer provides means to model behavior of design inputs, and to
declare and give behavior to auxiliary signals and variables. It also is used to give names to entities from
the temporal layer. In this report we will study some introductory aspects of the temporal layer. For
a full definition of the language, formal semantics, and more examples, refer to the complete language
definition at [3].

2.1 Temporal Layer

The temporal layer represents relationships between boolean variables over time. Every Sugar property
starts reasoning at the start of a sequence and from there only temporal operators can move it forward.
This is best understood by looking at some of the operators that are provided by Sugar in this layer.

2.1.1 Some Temporal Operators

always: The basic temporal property of having a boolean expression hold all the time is captured by
the always operator. Example: If a boolean expression a holds on some initial clock cycle, always(«a)
means that a holds at every clock cycle.

never: As per normal intuition, the never operator indicates conditions that never hold. never(«)
means that o never holds.

next: The next operator is used to specify conditions that hold in the immediately following clock
cycle. If next(a) holds in a clock cycle, then a holds in the next clock cycle. Sugar also allows next[n]
operations. This means that if next[5](«) holds in this clock cycle, « holds after 5 clock cycles.

until, until_, until! and until_!: («)until(8) holds on a clock cycle iff « holds until 8 holds. 3
might immediately follow «, or might come after an indefinite number of clock cycles. After § holds,
« need not hold anymore. until_ operator insists that « hold in the state in which £ holds. The plain
until and until_ operators do not mandate that 8 should happen. These are mandated by the until!
and until_! operators which are otherwise similar. The use of exclamation is referred to as strong sense
of an operator.

eventually!: The next(a) operator insisted that a hold in the next cycle. eventually!(«) insists
that « hold after some arbitrary number of cycles. The strong sense here means that « has to hold after
sometime.

before, before_, before! and before_!: (a)before(f) holds in a cycle iff in the future « holds in
some cycle earlier than where 8 holds. In order to specify that o can happen before or in the same cycle
as (3, before_ is used. As expected, both these are used in a weak sense, ie. it is not mandated that « is
not required to occur. The strict sense operators need to be used to enforce the occurrence of o before (3.

next_event and next_event!: If next_event(a)(Condition) holds, then in the future, whenever the
« holds next, Condition should hold. In the weak sense, « is eventually not mandated to hold; but in
the strong sense, o has to hold eventually and whenever that happens, in the same state, Condition is
also supposed to hold. If next_event(«)[n](Condition) holds in this state, then, in the future, the state
in which nth occurrence of oo happens, Condition must hold.

abort: This is not a temporal operator in itself, but helps write better temporal expressions.
(Tabort(«) means that « aborts any check for assertions that the temporal formula 7" might have

enforced. In other words, if T’ contains say a next or an eventually, the verifier looks for their operand
to hold in the future. If « is seen before that operand, the check for that operand is aborted.

2.1.2 Sugar Extended Regular Expressions (SEREs)

Sugar provides a way to extend the conventional notion of regular expressions to what are called Sugar
Extended Regular Expressions (SEREs). SEREs provide an alternate way to reason about sequences of
expressions which are more concise and easy to understand. The basic SEREs are built using a series
of expressions, separated by semicolons. Semicolons are integral to SEREs. For example: the SERE
{a; B;7} describes a sequence in which « is asserted in the first cycle, it is asserted that 3 is not true
in the next cycle, followed by an assertion for . Note that SEREs are enclosed in curly parenthesis as
opposed to normal boolean expressions which are enclosed in regular parenthesis. Formally:

Every boolean expression is a SERE. If « and § are SEREs, then {a}, a; 0, a ~ 3, a||8, a&&S and
af+] are SEREs representing grouping, concatenation, overlapping concatenation (last state of o coincides
with the first state of 3), disjunction, conjunction and indefinite repetition respectively.

Two SERESs can be linked to form Sugar formulas of the linear fragment:

Strong suffix implication {a} — {3}!
Weak suffix implication {a} — {3}

Strong suffix implications are liveliness formulas, stressing on some end condition always holding true.
They indicate the a sequence of states in which « holds must be followed by a sequence of states in which
[holds. Weak suffix implications, on the other hand, are safety formulas indicating that a sequence of
states in which « holds need not be followed by a sequence of states that contradict 5. Weak formulas,
like in temporal formulas do not mandate that § eventually hold.

These implications are used to define other complex operators like within!(a, 5){~} which indicate
that v must occur after « is asserted, and before (is asserted. Using temporal operators and SEREs, it
is defined as:

within!(a, 8){7} == a — {y && {B[*]}; B[], 5}!

2.1.3 Examples

Here we see a few case studies where some temporal operators and SEREs are used to express temporal
logical conditions.

1. {[*]; &; B} — {7[*];}! - This means that every sequence of two states with a holding first followed
by /3, need to be followed by a set of sequences in which ~ holds an arbitrary number of times followed
by D.

2. always (¢ — next 3) - This means that in all if this property holds true in some state, then
from that state, in the future, if « holds in any state, 8 must hold in the next state.

3. always (o — next (3 before)) - If this condition holds true in a state, then from that state,
in the future, if a holds in any state, after that, § must be seen after o before .

2.2 Applications and Further Research

Verification of Sugar properties is primarily intended to be by model checking (for infinite paths) and
simulation (for finite paths). Model checkers and Simulators are the primary consumers of Sugar-written
specifications. Sugar specifications are also used in automatic theorem proving.

In spite of all the comfort and ease Sugar provides while charting specifications, design experts who
are novices in formal theory find it considerably hard to translate natural language to Sugar statements.
This area of using techniques from natural language processing and formal methods is a new area of
research which can be explored.

3 Mining Specifications

Formal Verification methods explore all possible paths of execution of a system and check for conformance
to predefined specifications.System designers are reluctant to adopt formal methods mostly due to the
complexity involved in charting formal specifications that verification methods use. This is especially

true in software systems because the penalty for failure, though prohibitive, is not fatal. Semi-automated
methods of designing specifications is an alternative that is promising under such circumstances. In this
report we study a machine learning approach to discover formal specifications of the protocols that code
must obey when interacting with a third party entity like an Application Program Interface (API) or an
Abstract Data Type (ADT). This method is due to [1].

More precisely, this approach attempts to discover some temporal relationships and data dependencies
that a program follows while interacting with such APIs and ADTs. These interactions from a thoroughly
tested code base are observed and recorded; they are later used to infer more general rules about how
these interactions should proceed. The underlying assumption is that the tested code base is correct.
The problem is then reduces to that pf probabilistic learning from execution traces of the tested code.
We further see how the problem of extracting specifications from execution traces reduces to learning
regular languages, for which off-the-shelf learners are available. The learnt rules are summarized as state
machines which can be used by verification tools to identify bugs in future interactions that are coded
into the system.

3.1 Problem Definition

At a very high level, the specifications mining problem is to construct an automaton that extracts the
set C C I, where C' is the correct set of traces from all set of traces I, given a training set of traces T'.
[1] observes that this problem is undecidable as there are no restrictions on C' or T'. For this problem to
be solvable, C' needs to be recursively enumerable. Additionally, as finite state automaton learners are
available, and verifications tools require finite state specifications, C' needs to be a regular language as
well. Having C' regular makes it very strict because most execution traces are not regular. Therefore,
traces need to be converted to regular interaction scenarios. Interaction scenarios are made regular by
allowing them to manipulate no more than k data objects. The second problem is that as there are no
restrictions on the training set 7T'; any correct set of scenarios C needs to be learnt from any training
set of scenarios 7. Under such conditions correct specifications cannot be chosen. [1] remedies this by
restricting 7" to contain only elements from C.

The formal problem definition: Let I be the set of all interaction scenarios with an API that manipulate
no more than & data objects. Let C' C I be the regular set of all such correct scenarios. Let T' = cg, ¢q, . . .
be an infinite sequence of elements from C' in which each element of C occurs at least once. For n > 0
examine the first n elements of T' and produce a finite state automata A,,, such that the sequence of
finite-state automaton Ag, Ay, ... has the following property: for some N > 0, Ay generates exactly the
scenarios in C' and A, = Ay for all n > N. We say that the sequence Ag, Aq,... identifies C in the
limiting sense.

It has been proven that learning regular languages in the limiting sense is undecidable [2]. The
learner’s dilemma is that any finite sequence of examples from the infinite language could also be from
a finite subset of the infinite language. The learner has no way of choosing one over the other. In this
case, C can be an infinite regular language and thus, cannot be learnt. To remedy this, the learner
is provided with a set of examples generated according to a probability distribution. Now, the task of
the learner is to learn a close approximation of this distribution. P is an € — good approximation of
distribution P if D(P, P) < e, for some distance function D. Here, we choose probability distributions
that generated by Probabilistic Finite State Automata (PFSA). A PFSA is similar to an NFA, but has
a probability associated with each transition. It generates a string with some probability that take into
account probabilities associated with all the transitions needed to generate the strings. We now reduce
the specifications mining problem to that of learning probabilistic finite automata.

The final formal problem definition: Let I be the set of all interaction scenarios with an API that
manipulate no more than k data objects. Let M be the correct target PFSA and PM be the distribution
over I that M generates. As M is the correct PFSA, it generates correct traces with high probability and
buggy traces with low probability. Given a confidence parameter 6 > 0 and an approximation parameter
e > 0, find with probability at least 1 — &, a PFSA M such that its distribution PM is an € — good
approximation of PM for some reasonable distance metric D.

3.2 Mechanics

The three stages involved in building the specifications automata are:

1. Tracing and Flow Dependence annotation: Interaction elements are extracted out of the
training traces in this stage. These interactions have a name (say a function name) and a set of
attributes (the function’s parameters). These are then annotated with flow dependency tags to
indicate operational order. To do this, initially, a human expert divides the attributes into those
that define underlying objects, and those that use underlying objects. For example, a socket.bind
operator defines an object and a socket.read operator uses an object. Given such a list of attributes
which define and use objects, deducing the flow dependence between interactions is equivalent
to solving the Reaching Definitions Problem. A dynamic programming algorithm coupled with
Tarjan’s union find algorithm is used to tag each interaction so that flow dependency with respect
to definitions and usage of objects is available later.

2. Scenario Extraction: Scenarios are extracted out of interactions in this stage. Scenarios are flow
dependent interactions. A human expert chooses types of scenarios that are to be extracted. These
types are identified by a seed interaction element on which the scenarios are extracted on. A graph is
constructed out of the flow dependencies of interactions. This graph, coupled with the seed element
is used to construct an entire scenario by traversing the graph starting at the seed. The size of the
scenario (maximum distance between the seed and the farthest node traversed) is restrained by some
external constant. Flow dependent interactions around the seed are scenarios. These interactions
that makeup scenarios are given logical names from some alphabet so that each scenario might be
treated as an ordered string. A minor glitch is that: given a seed, logically similar, but physically
different scenarios might be selected by the graph traversal algorithm. This might happen if the
flow dependency matrix is sparse. To eliminate this logical redundancy, a standardization step
is performed on the extracted scenario strings. In principle, this standardization step compares
dependency — preserving permutations of scenario strings to extract logically equivalent scenarios.
At the end of this stage a set of scenario strings pertaining to the training traces are available for
the next stage.

3. Automaton Learning: The training scenario strings are given to an off-the-shelf PFSA learner [4].
This learner generates a PFSA that accepts a superset of the training strings. Spurious transitions in
the generated PFSA are trimmed by using some cut off on the probability on transitions. Finally, we
have the NFA that models the correct specifications as per the training traces and can be validated
by a human expert, and used later during the verification stage.

3.3 Verification

The NFA generated by the automaton learner is a specification and arbitrary traces are verified for
conformance with this specification. All possible interaction seeds are extracted from a test trace, and
scenarios are constructed out of these seeds. These scenario strings are tested against the generated NFA
to see whether the scenario conforms to the specification. If all the scenarios generated by all the seeds
of the test trace conform to the NFA specification, then the test trace is said to satisfy the specification.
Additionally, the training set of the learner can be expanded by adding validated test strings to it. This
expands the “coverage” of the specification.

3.4 Applications and Further Research

As indicated in section 3.3, the specifications discovered by this learning approach are used primarily
to aid verification tools. Human experts might also gain some valuable insight by these discovered
specifications: this can happen when the system is coded in a way it was not designed for, or in a way
contrary to its original purpose; both of which a human expert can assess by checking the discovered
specifications against requirements and expert intuition. It was seen in section 3.2 that a human expert
needs to intervene a few times to set up a few basic parameters. Further research in this area can
automate this part by exploring generic interactions between objects and ways to deduce relationships
between them. Also, instead of off-the-shelf learners, dedicated learners can be used, and this might help
in bringing some domain knowledge into the learning process.

4 Conclusion

Discovery of specifications and their concise representation (PSL/Sugar) help in wide spread adaptation
of formal verification techniques like model checking. These in turn, increase the reliability of systems to
a significantly higher extent; even making them inevitable in some cases.

References

[1] Glenn Ammons, Rastislav Bodik, and James R. Larus. Mining specifications. In Proceedings of ACM
SIGPLAN-SIGACT Symposium on the Prinicples of Programming Languages (POPL ’02), pages
4-16, 2002.

[2] Mark E. Gold. Language identification to the limit. Information and Control, 1967.
[3] PSL/Sugar. Literature. http://www.haifa.il.ibm.com/projects/verification/sugar/literature.html.

[4] Anand V. Raman and Jon D. Patrick. The sk-strings method for inferring probabilistic finite state
automata. In Proceedings of the workshop on automata induction, grammatical inference and language
acquisition at the 14th international conference on Machine Learning (ICML97), 1997.

