CS 208: Automata Theory and Logic

Lecture 2: Finite State Automata

Ashutosh Trivedi

Department of Computer Science and Engineering,
Indian Institute of Technology Bombay.

Ashutosh Trivedi - 1 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Computation With Finitely Many States

Ashutosh Trivedi - 2 of 20

~ AshutoshTrivedi Lecture?2: Finite State Automata

Machines and their Mathematical Abstractions

Finite instruction machine with finite memory (Finite State Automata)

no._coin nOtJ‘eady

start —>

ready_dispense

coin

Finite instruction machine with unbounded memory (Turing machine)
b/aR a/l,L

Ashutosh Trivedi - 3 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Finite State Automata

no_coin not_ready

coin

start —>

ready_dispense

Introduced first by two neuro-psychologists Warren
S. McCullough and Walter Pitts in 1943 as a model
for human brain!

Finite automata can naturally model
microprocessors and even software programs
working on variables with bounded domain
Capture so-called regular sets of sequences that
occur in many different fields (logic, algebra, regEx)

Nice theoretical properties

Applications in digital circuit/protocol verification,

compilers, pattern recognition, etc.
Ashutosh Trivedi - 4 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Calculemus! — Gottfried Wilhelm von Leibniz

Ashutosh Trivedi - 5 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following;:
Recognize a string of an even length.

Ashutosh Trivedi - 5 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following;:
Recognize a string of an even length.
Recognize a binary string of an even number of 0’s.

Ashutosh Trivedi - 5 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following;:
Recognize a string of an even length.
Recognize a binary string of an even number of 0’s.
Recognize a binary string of an odd number of 0’s.

Ashutosh Trivedi - 5 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following;:
Recognize a string of an even length.
Recognize a binary string of an even number of 0’s.
Recognize a binary string of an odd number of 0’s.
Recognize a string that contains your roll number.

Ashutosh Trivedi - 5 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following;:
Recognize a string of an even length.
Recognize a binary string of an even number of 0’s.
Recognize a binary string of an odd number of 0’s.
Recognize a string that contains your roll number.
Recognize a binary (decimal) string that is a multiple of 2.

Ashutosh Trivedi - 5 of 20
Ashutosh Trivedi Lecture 2: Finite State Automata

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following;:
Recognize a string of an even length.
Recognize a binary string of an even number of 0’s.
Recognize a binary string of an odd number of 0’s.
Recognize a string that contains your roll number.
Recognize a binary (decimal) string that is a multiple of 2.
Recognize a binary (decimal) string that is a multiple of 3.

Ashutosh Trivedi - 5 of 20
Ashutosh Trivedi Lecture 2: Finite State Automata

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following;:
Recognize a string of an even length.
Recognize a binary string of an even number of 0’s.
Recognize a binary string of an odd number of 0’s.
Recognize a string that contains your roll number.
Recognize a binary (decimal) string that is a multiple of 2.
Recognize a binary (decimal) string that is a multiple of 3.
Recognize a string with well-matched parenthesis.

Ashutosh Trivedi - 5 of 20
Ashutosh Trivedi Lecture 2: Finite State Automata

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following;:
Recognize a string of an even length.
Recognize a binary string of an even number of 0’s.
Recognize a binary string of an odd number of 0’s.
Recognize a string that contains your roll number.
Recognize a binary (decimal) string that is a multiple of 2.
Recognize a binary (decimal) string that is a multiple of 3.
Recognize a string with well-matched parenthesis.
Recognize a # separated string of the form w#w.

Ashutosh Trivedi - 5 of 20
Ashutosh Trivedi Lecture 2: Finite State Automata

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following;:
Recognize a string of an even length.
Recognize a binary string of an even number of 0’s.
Recognize a binary string of an odd number of 0’s.
Recognize a string that contains your roll number.
Recognize a binary (decimal) string that is a multiple of 2.
Recognize a binary (decimal) string that is a multiple of 3.
Recognize a string with well-matched parenthesis.
Recognize a # separated string of the form w#w.

Recognize a string with a prime number of 1’s
Ashutosh Trivedi - 5 of 20
Ashutosh Trivedi Lecture 2: Finite State Automata

Finite State Automata

Automaton accepting strings of even length:

0,1
0,1

Automaton accepting strings with an even number of 1’s:

0 0
1
start — @
1

Automaton accepting even strings (multiple of 2):

0 1

1
start — @
0

Ashutosh Trivedi Lecture 2: Finite State Automata

Ashutosh Trivedi - 6 of 20

Finite State Automata

o -@__1®

0,1
0,1
A finite state automaton is a tuple (S, X, §, 5o, F), where:

S is a finite set called the states;

Y is a finite set called the alphabet;

0 : S x X — Sis the transition function;

so € S is the start state; and

F C S is the set of accept states.

Ashutosh Trivedi - 7 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Finite State Automata

o -@__1®

0,1
0,1
A finite state automaton is a tuple (S, X, §, 5o, F), where:

S is a finite set called the states;

Y is a finite set called the alphabet;

0 : S x X — Sis the transition function;

so € S is the start state; and

F C S is the set of accept states.

Example: The automaton in the figure above can be represented as
(S,%,9,s0,F) where S = {E, O}, ¥ = {0,1}, so = E, F = {E}, and transition
function ¢ is such that

0(E,0) =0, d(E,1) =0,and 6(0,0) = E, 6(0,1) = E.

Ashutosh Trivedi - 7 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

State Diagram

Let’s draw the state diagram of the following automaton (S, %, 4, s1, F):
S = {s1,52,53}
¥ ={0,1},

¢ is given in a tabular form below:

s1 is the initial state, and
F= {Sz}.

Ashutosh Trivedi - 8 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

State Diagram

Let’s draw the state diagram of the following automaton (S, %, 4, s1, F):
S = {s1,52,53}
¥ ={0,1},

¢ is given in a tabular form below:

s1 is the initial state, and
F= {Sz}.

What does it accept?

Ashutosh Trivedi - 8 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Semantics of the finite state automata

A finite state automaton (DFA) is a tuple (S, X, §, so, F), where:
S is a finite set called the states;
Y is a finite set called the alphabet;
0 : S x X — Sis the transition function;
Sp € S is the start state; and
F C S is the set of accept states.

A computation or a run of a DFA on a string w = aga; . . .a,_1 is the
finite sequence

Sp,a151,42,...,y—-1,5
where sy is the starting state, and §(s;_1,4;) = si+1.
A run is accepting if the last state of the unique computation is an
accept state, i.e. s, € F.
Language of a DFA A

L(A) = {w : the unique run of A on w is accepting}.

Ashutosh Trivedi - 9 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Semantics of the finite state automata

A finite state automaton (DFA) is a tuple (S, X, §, so, F), where:
S is a finite set called the states;
Y is a finite set called the alphabet;
0 : S x X — Sis the transition function;
Sp € S is the start state; and
F C S is the set of accept states.

A computation or a run of a DFA on a string w = aga; . . .a,_1 is the
finite sequence

Sp,a151,42,...,y—-1,5
where sy is the starting state, and §(s;_1,4;) = si+1.
A run is accepting if the last state of the unique computation is an
accept state, i.e. s, € F.
Language of a DFA A

L(A) = {w : the unique run of A on w is accepting}.

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.
Ashutosh Irivedi -9 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Properties of Regular Languages

Let A and B be languages (remember they are sets). We define the
following operations on them:

Union: AUB={w : we Aorw € B}
Concatenation: AB = {wv : w € Aand v € B}

Closure (Kleene Closure, or Star):
A* ={ww, ... wy : k> 0and w; € A}. In other words:

A* = UizoAi

where A" = (), Al = A, A2 = AA, and so on.

Define the notion of a set being closed under an operation (say, N and x).

Ashutosh Trivedi - 10 of 20
Ashutosh Trivedi Lecture 2: Finite State Automata

Properties of Regular Languages

Let A and B be languages (remember they are sets). We define the
following operations on them:

Union: AUB={w : we Aorw € B}
Concatenation: AB = {wv : w € Aand v € B}

Closure (Kleene Closure, or Star):
A* ={ww, ... wy : k> 0and w; € A}. In other words:

A* = UizoAi

where A" = (), Al = A, A2 = AA, and so on.

Define the notion of a set being closed under an operation (say, N and x).

Theorem

The class of regular languages is closed under union, concatenation, and Kleene
closure.

Ashutosh Trivedi - 10 of 20
Ashutosh Trivedi Lecture 2: Finite State Automata

Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.
Let A; and A; be regular languages.

Ashutosh Trivedi Lecture 2: Finite State Automata

Ashutosh Trivedi - 11 of 20

Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.
Let A; and A; be regular languages.

Let M1 = (Sl, E, 51, Sl,Fl) and M2 = (Sz, E, 52,52,F2) be finite
automata accepting these languages.

Ashutosh Trivedi - 11 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Closure under Union

Lemma

The class of regular languages is closed under union.

Proof.

Let A; and A; be regular languages.

Let M1 = (Sl, E, 51, Sl,Fl) and M2 = (Sz, E, (52,52,1:‘2) be finite
automata accepting these languages.

Simulate both automata together!

The language A U B is accept by the resulting finite state automaton,
and hence is regular.

[

Ashutosh Trivedi - 11 of 20
Ashutosh Trivedi Lecture 2: Finite State Automata

Closure under Union

Lemma

The class of regular languages is closed under union.

Proof.

Let A; and A; be regular languages.

Let M1 = (Sl, E, 51, Sl,Fl) and M2 = (Sz, E, (52,52,1:‘2) be finite
automata accepting these languages.

Simulate both automata together!

The language A U B is accept by the resulting finite state automaton,
and hence is regular.

[

Class Exercise: Extend this construction for intersection.

Ashutosh Trivedi - 11 of 20
Ashutosh Trivedi Lecture 2: Finite State Automata

Closure under Concatenation

Lemma

The class of reqular languages is closed under concatenation.

Proof.
(Attempt).
Let A; and A; be regular languages.

Let My = (51,%, 01,51, F1) and M, = (52, >, 00,57, Fz) be finite
automata accepting these languages.

How can we find an automaton that accepts the concatenation?
Does this automaton fit our definition of a finite state automaton?

Determinism vs Non-determinism

Ashutosh Trivedi - 12 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Non-determinism

Ashutosh Trivedi - 13 of 20

~ AshutoshTrivedi Lecture?2: Finite State Automata

Nondeterministic Finite State Automata

Michael O. Rabin Dana Scott

Ashutosh Trivedi - 14 of 20
Ashutosh Trivedi Lecture 2: Finite State Automata

Non-deterministic Finite State Automata

0,1 0,1

0,

Ashutosh Trivedi - 15 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Non-deterministic Finite State Automata

0,1 0,1

0,

A non-deterministic finite state automaton (NFA) is a tuple (S, %, , s, F),
where:

S is a finite set called the states;

Y is a finite set called the alphabet;

§:5x (XU {e}) — 25 is the transition function;
Sp € S is the start state; and

F C S is the set of accept states.

Ashutosh Trivedi - 15 of 20
Ashutosh Trivedi Lecture 2: Finite State Automata

Non-deterministic Finite State Automata

0,1 0,1

0,

A non-deterministic finite state automaton (NFA) is a tuple (S, %, , s, F),
where:

S is a finite set called the states;

Y is a finite set called the alphabet;

§:5x (XU {e}) — 25 is the transition function;
Sp € S is the start state; and

F C S is the set of accept states.

Example: Difference between a deterministic vs a non-deterministic
computation (above NFA on a string 010110).

Ashutosh Trivedi - 15 of 20
Ashutosh Trivedi Lecture 2: Finite State Automata

Non-deterministic Finite Automata: Semantics

A non-deterministic finite state automaton (NFA) is a tuple (S, X, 4, so, F),
where:

S is a finite set called the states;

¥ is a finite set called the alphabet;

§:S x (XU {e}) — 2°is the transition function;
Sp € S is the start state; and

F C S is the set of accept states.

A computation or a run of a NFA on a string w = aoa; .. .a,—1 is a
finite sequence
80,7151, 725+« + » "k—1,Sn
where sy is the starting state, and s;+1 € 6(s;_1, ;) and
rori..."rk—1 =4aopdy ...0,—1.
Unlike DFA, there can be multiple runs of an NFA on a string.

A run is accepting if the last state of some computation is an
accepting state s, € F.

Language of a NFA A L(A) = {w : some run of A on w is accepting}.
Ashutosh Trivedi - 16 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

NFA vs DFA

NFA are often more convenient to design than DFA, e.g.:
{w : w contains 1 in the third last position}.
{w :: wisamultiple of 2 or a multiple of 3}.
Union and intersection of two DFAs as an NFA

Some other examples

Ashutosh Trivedi - 17 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Equivalence of NFA and DFA

Theorem

Every non-deterministic finite automaton has an equivalent (accepting the same
language) deterministic finite automaton.

Proof.
For the sake of simplicity assume NFA is e-free.
Design a DFA that simulates a given NFA.
Note that NFA can be in a number of states at any given time
How are the states of the corresponding DFA?
Define initial state and accepting states

Define the transition function

Ashutosh Trivedi - 18 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Equivalence of NFA and DFA

Theorem

Every non-deterministic finite automaton has an equivalent (accepting the same
language) deterministic finite automaton.

Proof.
For the sake of simplicity assume NFA is e-free.
Design a DFA that simulates a given NFA.
Note that NFA can be in a number of states at any given time
How are the states of the corresponding DFA?
Define initial state and accepting states

Define the transition function

Determinize the following automaton:
0.1

0,1 0,1
start Hé ! KSZ\ - 63\ @
U U Ashutosh Trivedi - 18 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Extension

Exercise: Extend the previous construction in the presence of e-transitions.
Hint: e-closure of a set of states.

Ashutosh Trivedi - 19 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Closure under Regular Operations

Theorem

The class of regular languages is closed under union, concatenation, and Kleene
closure.

Proof.

We have already seen the closure under union as a DFA and as an
NFA.

Concatenation and Kleene closure can easily be defined as an NFA
using e-transitions.

The theorem follows from the equivalence of NFA and DFA.

Ashutosh Trivedi - 20 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

	Computation With Finitely Many States
	Non-determinism

