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Computation With Finitely Many States
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Machines and their Mathematical Abstractions

Finite instruction machine with finite memory (Finite State Automata)

no._coin nOtJ‘eady

start —>

ready_dispense

coin

Finite instruction machine with unbounded memory (Turing machine)
b/aR a/l,L
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Finite State Automata

no_coin not_ready

coin

start —>

ready_dispense

Introduced first by two neuro-psychologists Warren
S. McCullough and Walter Pitts in 1943 as a model
for human brain!

Finite automata can naturally model
microprocessors and even software programs
working on variables with bounded domain
Capture so-called regular sets of sequences that
occur in many different fields (logic, algebra, regEx)

Nice theoretical properties

Applications in digital circuit/protocol verification,

compilers, pattern recognition, etc.
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Calculemus! — Gottfried Wilhelm von Leibniz
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Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following;:
Recognize a string of an even length.
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Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following;:
Recognize a string of an even length.
Recognize a binary string of an even number of 0’s.
Recognize a binary string of an odd number of 0’s.
Recognize a string that contains your roll number.
Recognize a binary (decimal) string that is a multiple of 2.
Recognize a binary (decimal) string that is a multiple of 3.
Recognize a string with well-matched parenthesis.
Recognize a # separated string of the form w#w.

Recognize a string with a prime number of 1’s
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Finite State Automata

Automaton accepting strings of even length:

0,1
0,1

Automaton accepting strings with an even number of 1’s:

0 0
1
start — @
1

Automaton accepting even strings (multiple of 2):

0 1

1
start — @
0

Ashutosh Trivedi Lecture 2: Finite State Automata

Ashutosh Trivedi - 6 of 20



Finite State Automata

o -@__1®

0,1
0,1
A finite state automaton is a tuple (S, X, §, 5o, F), where:

S is a finite set called the states;

Y is a finite set called the alphabet;

0 : S x X — Sis the transition function;

so € S is the start state; and

F C S is the set of accept states.
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Finite State Automata

o -@__1®

0,1
0,1
A finite state automaton is a tuple (S, X, §, 5o, F), where:

S is a finite set called the states;

Y is a finite set called the alphabet;

0 : S x X — Sis the transition function;

so € S is the start state; and

F C S is the set of accept states.

Example: The automaton in the figure above can be represented as
(S,%,9,s0,F) where S = {E, O}, ¥ = {0,1}, so = E, F = {E}, and transition
function ¢ is such that

0(E,0) =0, d(E,1) =0,and 6(0,0) = E, 6(0,1) = E.
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State Diagram

Let’s draw the state diagram of the following automaton (S, %, 4, s1, F):
S = {s1,52,53}
¥ ={0,1},

¢ is given in a tabular form below:

s1 is the initial state, and
F= {Sz}.
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State Diagram

Let’s draw the state diagram of the following automaton (S, %, 4, s1, F):
S = {s1,52,53}
¥ ={0,1},

¢ is given in a tabular form below:

s1 is the initial state, and
F= {Sz}.

What does it accept?
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Semantics of the finite state automata

A finite state automaton (DFA) is a tuple (S, X, §, so, F), where:
S is a finite set called the states;
Y is a finite set called the alphabet;
0 : S x X — Sis the transition function;
Sp € S is the start state; and
F C S is the set of accept states.

A computation or a run of a DFA on a string w = aga; . . .a,_1 is the
finite sequence

Sp,a151,42,...,y—-1,5
where sy is the starting state, and §(s;_1,4;) = si+1.
A run is accepting if the last state of the unique computation is an
accept state, i.e. s, € F.
Language of a DFA A

L(A) = {w : the unique run of A on w is accepting}.
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Semantics of the finite state automata

A finite state automaton (DFA) is a tuple (S, X, §, so, F), where:
S is a finite set called the states;
Y is a finite set called the alphabet;
0 : S x X — Sis the transition function;
Sp € S is the start state; and
F C S is the set of accept states.

A computation or a run of a DFA on a string w = aga; . . .a,_1 is the
finite sequence

Sp,a151,42,...,y—-1,5
where sy is the starting state, and §(s;_1,4;) = si+1.
A run is accepting if the last state of the unique computation is an
accept state, i.e. s, € F.
Language of a DFA A

L(A) = {w : the unique run of A on w is accepting}.

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.
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Properties of Regular Languages

Let A and B be languages (remember they are sets). We define the
following operations on them:

Union: AUB={w : we Aorw € B}
Concatenation: AB = {wv : w € Aand v € B}

Closure (Kleene Closure, or Star):
A* ={ww, ... wy : k> 0and w; € A}. In other words:

A* = UizoAi

where A" = (), Al = A, A2 = AA, and so on.

Define the notion of a set being closed under an operation (say, N and x).
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Properties of Regular Languages

Let A and B be languages (remember they are sets). We define the
following operations on them:

Union: AUB={w : we Aorw € B}
Concatenation: AB = {wv : w € Aand v € B}

Closure (Kleene Closure, or Star):
A* ={ww, ... wy : k> 0and w; € A}. In other words:

A* = UizoAi

where A" = (), Al = A, A2 = AA, and so on.

Define the notion of a set being closed under an operation (say, N and x).

Theorem

The class of regular languages is closed under union, concatenation, and Kleene
closure.

Ashutosh Trivedi - 10 of 20
Ashutosh Trivedi Lecture 2: Finite State Automata



Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.
Let A; and A; be regular languages.
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Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.
Let A; and A; be regular languages.

Let M1 = (Sl, E, 51, Sl,Fl) and M2 = (Sz, E, 52,52,F2) be finite
automata accepting these languages.
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Closure under Union

Lemma

The class of regular languages is closed under union.

Proof.

Let A; and A; be regular languages.

Let M1 = (Sl, E, 51, Sl,Fl) and M2 = (Sz, E, (52,52,1:‘2) be finite
automata accepting these languages.

Simulate both automata together!

The language A U B is accept by the resulting finite state automaton,
and hence is regular.

[
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Closure under Union

Lemma

The class of regular languages is closed under union.

Proof.

Let A; and A; be regular languages.

Let M1 = (Sl, E, 51, Sl,Fl) and M2 = (Sz, E, (52,52,1:‘2) be finite
automata accepting these languages.

Simulate both automata together!

The language A U B is accept by the resulting finite state automaton,
and hence is regular.

[

Class Exercise: Extend this construction for intersection.
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Closure under Concatenation

Lemma

The class of reqular languages is closed under concatenation.

Proof.
(Attempt).
Let A; and A; be regular languages.

Let My = (51,%, 01,51, F1) and M, = (52, >, 00,57, Fz) be finite
automata accepting these languages.

How can we find an automaton that accepts the concatenation?
Does this automaton fit our definition of a finite state automaton?

Determinism vs Non-determinism
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Non-determinism
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Nondeterministic Finite State Automata

Michael O. Rabin Dana Scott
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Non-deterministic Finite State Automata

0,1 0,1

0,
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Non-deterministic Finite State Automata

0,1 0,1

0,

A non-deterministic finite state automaton (NFA) is a tuple (S, %, , s, F),
where:

S is a finite set called the states;

Y is a finite set called the alphabet;

§:5x (XU {e}) — 25 is the transition function;
Sp € S is the start state; and

F C S is the set of accept states.
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Non-deterministic Finite State Automata

0,1 0,1

0,

A non-deterministic finite state automaton (NFA) is a tuple (S, %, , s, F),
where:

S is a finite set called the states;

Y is a finite set called the alphabet;

§:5x (XU {e}) — 25 is the transition function;
Sp € S is the start state; and

F C S is the set of accept states.

Example: Difference between a deterministic vs a non-deterministic
computation (above NFA on a string 010110).
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Non-deterministic Finite Automata: Semantics

A non-deterministic finite state automaton (NFA) is a tuple (S, X, 4, so, F),
where:

S is a finite set called the states;

¥ is a finite set called the alphabet;

§:S x (XU {e}) — 2°is the transition function;
Sp € S is the start state; and

F C S is the set of accept states.

A computation or a run of a NFA on a string w = aoa; .. .a,—1 is a
finite sequence
80,7151, 725+« + » "k—1,Sn
where sy is the starting state, and s;+1 € 6(s;_1, ;) and
rori..."rk—1 =4aopdy ...0,—1.
Unlike DFA, there can be multiple runs of an NFA on a string.

A run is accepting if the last state of some computation is an
accepting state s, € F.

Language of a NFA A L(A) = {w : some run of A on w is accepting}.
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NFA vs DFA

NFA are often more convenient to design than DFA, e.g.:
{w : w contains 1 in the third last position}.
{w :: wisamultiple of 2 or a multiple of 3}.
Union and intersection of two DFAs as an NFA

Some other examples
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Equivalence of NFA and DFA

Theorem

Every non-deterministic finite automaton has an equivalent (accepting the same
language) deterministic finite automaton.

Proof.
For the sake of simplicity assume NFA is e-free.
Design a DFA that simulates a given NFA.
Note that NFA can be in a number of states at any given time
How are the states of the corresponding DFA?
Define initial state and accepting states

Define the transition function
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Equivalence of NFA and DFA

Theorem

Every non-deterministic finite automaton has an equivalent (accepting the same
language) deterministic finite automaton.

Proof.
For the sake of simplicity assume NFA is e-free.
Design a DFA that simulates a given NFA.
Note that NFA can be in a number of states at any given time
How are the states of the corresponding DFA?
Define initial state and accepting states

Define the transition function

Determinize the following automaton:
0.1

0,1 0,1
start Hé ! KSZ\ - 63\ @
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Extension

Exercise: Extend the previous construction in the presence of e-transitions.
Hint: e-closure of a set of states.
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Closure under Regular Operations

Theorem

The class of regular languages is closed under union, concatenation, and Kleene
closure.

Proof.

We have already seen the closure under union as a DFA and as an
NFA.

Concatenation and Kleene closure can easily be defined as an NFA
using e-transitions.

The theorem follows from the equivalence of NFA and DFA.
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