
Ashutosh Trivedi – 1 of 24

CS 208: Automata Theory and Logic
DFA Equivalence and Minimization

Ashutosh Trivedi

Astart B

b

∀x(La(x) → ∃y.(x < y) ∧ Lb(y))

a

b

a

Department of Computer Science and Engineering,
Indian Institute of Technology Bombay.

Ashutosh Trivedi DFA Equivalence and Minimization



Ashutosh Trivedi – 2 of 24

DFA Equivalence and Minimization

1. Let A = (Q,Σ, δ, q0,F) be a DFA.

2. Recall the definition of extended transition function δ̂.
3. Let L(A, q) be the languages {w : δ̂(q,w) ∈ F}
4. Recall the language of A is defined as L(A) = L(A, q0).
5. Two states q1, q2 ∈ Q are equivalent if L(A, q1) = L(A, q2).
6. We say that two DFAs A1 and A2 are equivalent iff L(A1) = L(A2).

Theorem (DFA Equivalence)
For every DFA there exists a unique (up to state naming) minimal DFA.

How to minimize DFAs?
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How to minimize a DFA?

Two observations:
– Removing unreachable states: removing states unreachable from the

start state does not change the language accepted by a DFA.

– Merging equivalent states: merging equivalent states does not change
the language accepted by a DFA.

Algorithms:
1. Breadth-first search or depth-first search (to identify reachable states)
2. table-filling algorithm (by E. F. Moore) (other algorithms exist due to

Hopcroft and Brzozowski)
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Table-filling algorithm

– Two states are distinguishable if they are not equivalent.
– Formally, two states q1, q2 are distinguishable, if there exists a string

w ∈ Σ∗ such that exactly one of δ̂(q1,w) and δ(q2,w) is an accepting
state.

– Table-filling algorithm is recursive discovery of distinguishable pairs.

– Basis: Pair (p, q) is distinguishable if p ∈ F and q 6∈ F. why?
– Induction: Pair (p, q) is distinguishable if states δ(p, a) and δ(q, a) are

distinguishable for some a ∈ Σ. why?

TABLE-FILLING ALGORITHM:
1. DISTINGUISHABLE = {(p, q) : p ∈ F and q 6∈ F}.
2. Repeat while no new pair is added

2.1 for every a ∈ Σ

add (p, q) to DISTINGUISHABLE if (δ(p, a), δ(q, a)) ∈ DISTINGUISHABLE.

3. Return DISTINGUISHABLE.
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Correctness of Table-Filling Algorithm

Theorem
If two states are not distinguished by table-filling algorithm, then they are
equivalent.

– The proof is by contradiction.
– Assume that there is a pair (p, q) that is not distinguished by the

algorithm, but they are not equivalent, i.e. they are indeed
distinguishable (it is just that algorithm did not find them).

– Let us call such pair (p, q) a bad pair.
– There must be a string w ∈ Σ∗ that distinguishes a bad pair (p, q). Let

us take shortest such distinguishing string w among any bad pair, and
consider corresponding bad pair (p, q).

– Notice that w can not be ε (Why?)
– Let w be of the form ax. Since p and q are distinguishable, we know that

exactly one of δ̂(p, ax) and δ̂(q, ax) is accepting.
– Then p′ = δ(p, a) and q′ = δ(q, a) are also distinguished by string x.
– if (p′, q′) were discovered by table-filling algorithm and (p, q) must have

been discovered as well.
– If (p′, q′) were not discovered by table-filling algorithm, then (p′, q′) is a

bad pair with a shorter distinguishing string.
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Minimization of DFAs

– Let A be a DFA with no unreachable state.
– Let ≡A⊆ Q×Q be the state equivalence relation (computed by, say

table-filling algorithm).
– Note that ≡A is an equivalence relation.
– Let us write [q] for the equivalence class of the state q.

– Given a DFA A and ≡A we can minimize A to the DFA
A≡ = (Q′,Σ′, δ′, q′0,F

′), called Quotient Automata, where
– Q′ = {[q] : q ∈ Q},
– Σ′ = Σ,
– δ′([q], a) = δ(q, a) for all a ∈ Σ,
– q′0 = [q0], and
– F′ = {[q] : q ∈ F}.

Theorem
A≡ is the minimum and unique (up to state renaming) DFA equivalent to A.
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Proof of Minimality

Theorem
A≡ is the minimum and unique (up to state renaming) DFA equivalent to A.

Proof.
– The proof is by contradiction.
– Assume that there is a DFA B whose size is smaller than A≡ and

accepts that same language.
– Compute equivalent states of A≡ and B using table-filling algorithm.
– The initial states of both DFAs must be equivalent. (Why?)
– After reading any string w from their initial states, both DFAs will go

to states that are equivalent. (Why?)
– For every state of A≡ there is an equivalent state in B.
– Since the number of states of B are less than that of A≡, there must be

at least two states p, q of A≡ that are equivalent to some state of B.
– Hence p and q must be equivalent, a contradiction.
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DFA Equivalence and Minimization

Myhill-Nerode Theorem

Pumping Lemma
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Myhill-Nerode Theorem

– Given a languages L, two strings u, v ∈ L are equivalent if for all
strings w ∈ Σ we have that u.w ∈ L iff v.w ∈ L.

– Let ≡L⊆ Σ∗ × Σ∗ be such string-equivalence relation.
– Note that ≡L is an equivalence relation.
– Consider the equivalence classes of ≡L.
– When there are only finitely mane classes?
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Myhill-Nerode Theorem

John Myhill Anil Nerode

Theorem (Myhill-Nerode Theorem)
A language L is regular if and only if there exists a string-equivalence relation ≡L
with finitely many classes.

Moreover, the number of states in the minimum DFA accepting L is equal to the
number of equivalence classes in ≡L.
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Myhill-Nerode Theorem

Theorem (Myhill-Nerode Theorem)
A language L is regular if and only if there exists a string-equivalence relation ≡L
with finitely many classes.

Proof.
The proof is in two parts.

– If L is regular, then a string-equivalence relation ≡L with finitely
many classes can be given by states of DFA accepting L.

How?
– If there is a string-equivalence relation ≡L with finitely many classes,

one can find a DFA accepting L. How?
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Applying Myhill-Nerode Theorem

Theorem (Myhill-Nerode Theorem)
A language L is regular if and only if there exists a string-equivalence relation ≡L

with finitely many classes.

Equivalently,

A language L is nonregular if and only if there exists an infinite subset M of Σ∗
where any two elements of M are distinguishable with respect to L.
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Applying Myhill-Nerode Theorem

Theorem
The language L = {0n1n : n ≥ 0} is not regular.

Proof.
1. The proof is by contradiction.
2. Assume that L is regular.
3. By Myhill-Nerode theorem, there is a string-equivalence relation ≡L

over L with finitely equivalence classes.
4. Let us consider the set of strings {0, 00, 000, . . . , 0i, . . .}.
5. It must be the case that some two string 0m and 0n, with m 6= n are

mapped to same equivalence class.
6. It implies that for all strings w ∈ Σ∗ we have that 0m.w ∈ L iff 0n.w ∈ L.
7. However, 0m1m ∈ L but 0n1m 6∈ L, a contradiction.
8. Hence L is not regular.
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Applying Myhill-Nerode Theorem

Theorem
The language L = {0n1n : n ≥ 0} is not regular.

Proof.

1. From Myhill-Nerode theorem, a language L is nonregular if and only
if there exists an infinite subset M of Σ∗where any two elements of M
are distinguishable with respect to L.

2. Consider the set M = {0i : i ≥ 0}.
3. Since any two string in M are distinguishable with respect to L (i.e.

0m0n ∈ L but 0n1m 6∈ L for n 6= m), it follows from Myhill-Nerode
theorem that L is a non-regular language.
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Some languages are not regular!

The following languages are regular or non-regular?
– The language {0n1n : n ≥ 0}
– The set of strings having an equal number of 0’s and 1’s
– The set of strings with an equal number of occurrences of 01 and 10.
– The language {ww : w ∈ {0, 1}∗}
– The language {ww : w ∈ {0, 1}∗}
– The language {0i1j : i > j}
– The language {0i1j : i ≤ j}
– The language of palindromes of {0, 1}
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DFA Equivalence and Minimization

Myhill-Nerode Theorem

Pumping Lemma
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Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)
For every regular language L there exists a constant p (that depends on L)

such that
for every string w ∈ L of length greater than p,
there exists an infinite family of strings belonging to L.

Why? Think: Regular expressions, DFAs Formalize our intuition!

If L is a regular language, then
there exists a constant (pumping length) p such that
for every string w ∈ L s.t. |w| ≥ p
there exists a division of w in strings x, y, and z s.t. w = xyz such that

1. |y| > 0,
2. |xy| ≤ p, and
3. for all i ≥ 0 we have that xyiz ∈ L.
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A simple observation about DFA
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A simple observation about DFA

Image source: Wikipedia

– Let A = (S,Σ, δ, s0,F) be a DFA.
– For every string w ∈ Σ∗ of the length greater than or equal to the

number of states of A, i.e. |w| ≥ |S|, we have that
– the unique computation of A on w re-visits at least one state after

reading first |S| letters !
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Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)
If L is a regular language, then there exists a constant (pumping length) p such
that for every string w ∈ L s.t. |w| ≥ p there exists a division of w in strings x, y,
and z s.t. w = xyz such that

1. |y| > 0,
2. |xy| ≤ p, and
3. for all i ≥ 0 we have that xyiz ∈ L.

– Let A be the DFA accepting L and p be the set of states in A.
– Let w = (a1a2 . . . ak) ∈ L be any string of length ≥ p.
– Let s0a1s1a2s2 . . . aksk be the run of w on A.
– Consider first n + 1 states—at least one state must occur twice.
– Let i be the index of first state that the run revisits and let j be the

index of second occurrence of that state, i.e. si = sj,
– Let x = a1a2 . . . ai−1 and y = aiai+1 . . . aj−1, and z = ajaj+1 . . . ak.
– notice that |y| > 0 and |xy| ≤ n
– Also, notice that for all i ≥ 0 the string xyiz is also in L.
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Applying Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)
L ∈ Σ∗ is a regular language
=⇒

there exists p ≥ 1 such that
for all strings w ∈ L with |w| ≥ p we have that
there exists x, y, z ∈ Σ∗ with w = xyz, |y| > 0, |xy| ≤ p such that
for all i ≥ 0 we have that
xyiz ∈ L.

Pumping Lemma (Contrapositive)
For all p ≥ 1 we have that
there exists a string w ∈ L with |w| ≥ p such that
for all x, y, z ∈ Σ∗ with w = xyz, |y| > 0, |xy| ≤ p we have that
there exists i ≥ 0 such that
xyiz 6∈ L
=⇒

L ∈ Σ∗ is not a regular language.
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Applying Pumping Lemma

How to show that a language L is non-regular.
1. Let p be an arbitrary number (pumping length).
2. (Cleverly) Find a representative string w of L of size ≥ p.
3. Try out all ways to break the string into xyz triplet satisfying that
|y| > 0 and |xy| ≤ n. If the step 3 was clever enough, there will be
finitely many cases to consider.

4. For every triplet show that for some i the string xyiz is not in L, and
hence it yields contradiction with pumping lemma.
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Applying Pumping Lemma

Theorem
Prove that the language L = {0n1n} is not regular.

Proof.
1. State the contrapositive of Pumping lemma.
2. Let p be an arbitrary number.
3. Consider the string 0p1p ∈ L. Notice that |0p1p| ≥ p.
4. Only way to break this string in xyz triplets such that |xy| ≤ p and

y 6= ε is to choose y = 0k for some 1 ≤ k ≤ p.
5. For each such triplet, there exists an i (say i = 0) such that xyiz 6∈ L.
6. Hence L is non-regular.
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Proving a language Regular

Proving Regularity
Pumping Lemma is necessary but not sufficient condition for regularity.

Consider the language

L = {#anbn : n ≥ 1} ∪ {#kw : k 6= 1,w ∈ {a, b}∗}.

Verify that this language satisfies the pumping condition, but is not
regular!
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