CS 208: Automata Theory and Logic

DFA Equivalence and Minimization

Ashutosh Trivedi

Department of Computer Science and Engineering,
Indian Institute of Technology Bombay.

Ashutosh Trivedi - 1 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

DFA Equivalence and Minimization

Let A = (Q, %, 6,90, F) be a DFA.

Recall the definition of extended transition function 4.

Let L(A, q) be the languages {w : §(q,w) € F}

Recall the language of A is defined as L(A) = L(A, 4o).

Two states 1,4, € Q are equivalent if L(A,g1) = L(A, §2).

We say that two DFAs A; and A; are equivalent iff L(A;) = L(A2).

AL .

Theorem (DFA Equivalence)

For every DFA there exists a unique (up to state naming) minimal DFA.

Ashutosh Trivedi - 2 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

DFA Equivalence and Minimization

Let A = (Q, %, 6,90, F) be a DFA.

Recall the definition of extended transition function 4.

Let L(A, q) be the languages {w : §(q,w) € F}

Recall the language of A is defined as L(A) = L(A, 4o).

Two states 1,4, € Q are equivalent if L(A,g1) = L(A, §2).

We say that two DFAs A; and A; are equivalent iff L(A;) = L(A2).

AL .

Theorem (DFA Equivalence)

For every DFA there exists a unique (up to state naming) minimal DFA.

How to minimize DFAs?

Ashutosh Trivedi - 2 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

How to minimize a DFA?

Two observations:

Removing unreachable states: removing states unreachable from the
start state does not change the language accepted by a DFA.

Ashutosh Trivedi - 3 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

How to minimize a DFA?

Two observations:

Removing unreachable states: removing states unreachable from the
start state does not change the language accepted by a DFA.

Merging equivalent states: merging equivalent states does not change
the language accepted by a DFA.

Ashutosh Trivedi - 3 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

How to minimize a DFA?

Two observations:

Removing unreachable states: removing states unreachable from the
start state does not change the language accepted by a DFA.

Merging equivalent states: merging equivalent states does not change
the language accepted by a DFA.

Algorithms:
1. Breadth-first search or depth-first search (to identify reachable states)

2. table-filling algorithm (by E. F. Moore) (other algorithms exist due to
Hopcroft and Brzozowski)

Ashutosh Trivedi - 3 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Table-filling algorithm

Two states are distinguishable if they are not equivalent.

Formally, two states 41, g, are distinguishable, if there exists a string

w € ¥* such that exactly one of §(q,w) and §(g2, w) is an accepting
state.

Table-filling algorithm is recursive discovery of distinguishable pairs.

Ashutosh Trivedi - 4 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

Table-filling algorithm

Two states are distinguishable if they are not equivalent.

Formally, two states 41, g, are distinguishable, if there exists a string

w € ¥* such that exactly one of §(q,w) and §(g2, w) is an accepting
state.

Table-filling algorithm is recursive discovery of distinguishable pairs.
Basis: Pair (p, q) is distinguishable if p € Fand q ¢ F.

Ashutosh Trivedi - 4 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

Table-filling algorithm

Two states are distinguishable if they are not equivalent.

Formally, two states 41, g, are distinguishable, if there exists a string

w € ¥* such that exactly one of §(q,w) and §(g2, w) is an accepting
state.

Table-filling algorithm is recursive discovery of distinguishable pairs.
Basis: Pair (p, q) is distinguishable if p € F and q ¢ F. why?

Ashutosh Trivedi - 4 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

Table-filling algorithm

Two states are distinguishable if they are not equivalent.

Formally, two states 41, g, are distinguishable, if there exists a string

w € ¥* such that exactly one of §(q,w) and §(g2, w) is an accepting
state.

Table-filling algorithm is recursive discovery of distinguishable pairs.
Basis: Pair (p, q) is distinguishable if p € F and q ¢ F. why?

Induction: Pair (p, q) is distinguishable if states d(p,a) and 6(g, a) are
distinguishable for some a € ¥.

Ashutosh Trivedi - 4 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

Table-filling algorithm

Two states are distinguishable if they are not equivalent.

Formally, two states 41, g, are distinguishable, if there exists a string

w € ¥* such that exactly one of §(q,w) and §(g2, w) is an accepting
state.

Table-filling algorithm is recursive discovery of distinguishable pairs.
Basis: Pair (p, q) is distinguishable if p € F and q ¢ F. why?

Induction: Pair (p, q) is distinguishable if states d(p,a) and 6(g, a) are
distinguishable for some a € 3. why?

Ashutosh Trivedi - 4 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

Table-filling algorithm

Two states are distinguishable if they are not equivalent.

Formally, two states 41, g, are distinguishable, if there exists a string

w € ¥* such that exactly one of §(q,w) and §(g2, w) is an accepting
state.

Table-filling algorithm is recursive discovery of distinguishable pairs.
Basis: Pair (p, q) is distinguishable if p € F and q ¢ F. why?

Induction: Pair (p, q) is distinguishable if states d(p,a) and 6(g, a) are
distinguishable for some a € 3. why?

TABLE-FILLING ALGORITHM:
1. DISTINGUISHABLE = {(p,q) : p € Fand q € F}.

2. Repeat while no new pair is added
2.1 foreveryae ¥

add (p, q) to DISTINGUISHABLE if (6(p,a),0(q,a)) € DISTINGUISHABLE.

3. Return DISTINGUISHABLE.

Ashutosh Trivedi - 4 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

Correctness of Table-Filling Algorithm

Theorem

If two states are not distinguished by table-filling algorithm, then they are
equivalent.

Ashutosh Trivedi - 5 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Correctness of Table-Filling Algorithm

Theorem

If two states are not distinguished by table-filling algorithm, then they are
equivalent.

The proof is by contradiction.

Ashutosh Trivedi - 5 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Correctness of Table-Filling Algorithm

Theorem

If two states are not distinguished by table-filling algorithm, then they are
equivalent.

The proof is by contradiction.

Assume that there is a pair (p,) that is not distinguished by the
algorithm, but they are not equivalent, i.e. they are indeed
distinguishable (it is just that algorithm did not find them).

Let us call such pair (p, q) a bad pair.

Ashutosh Trivedi - 5 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Correctness of Table-Filling Algorithm

Theorem

If two states are not distinguished by table-filling algorithm, then they are
equivalent.

The proof is by contradiction.

Assume that there is a pair (p,) that is not distinguished by the
algorithm, but they are not equivalent, i.e. they are indeed
distinguishable (it is just that algorithm did not find them).

Let us call such pair (p, q) a bad pair.

There must be a string w € ¥* that distinguishes a bad pair (p, q). Let
us take shortest such distinguishing string w among any bad pair, and
consider corresponding bad pair (p, q).

Ashutosh Trivedi - 5 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Correctness of Table-Filling Algorithm

Theorem

If two states are not distinguished by table-filling algorithm, then they are
equivalent.

The proof is by contradiction.
Assume that there is a pair (p,) that is not distinguished by the
algorithm, but they are not equivalent, i.e. they are indeed
distinguishable (it is just that algorithm did not find them).
Let us call such pair (p, q) a bad pair.
There must be a string w € ¥* that distinguishes a bad pair (p, q). Let
us take shortest such distinguishing string w among any bad pair, and
consider corresponding bad pair (p, q).

Notice that w can not be € (Why?)

Ashutosh Trivedi - 5 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Correctness of Table-Filling Algorithm

Theorem

If two states are not distinguished by table-filling algorithm, then they are
equivalent.

The proof is by contradiction.
Assume that there is a pair (p,) that is not distinguished by the
algorithm, but they are not equivalent, i.e. they are indeed
distinguishable (it is just that algorithm did not find them).
Let us call such pair (p, q) a bad pair.
There must be a string w € ¥* that distinguishes a bad pair (p, q). Let
us take shortest such distinguishing string w among any bad pair, and
consider corresponding bad pair (p, q).
Notice that w can not be € (Why?)
Let w be of the form ax. Since p and g are distinguishable, we know that
exactly one of §(p, ax) and (g, ax) is accepting.
Then p’ = §(p,a) and q' = (g, a) are also distinguished by string x.

Ashutosh Trivedi - 5 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Correctness of Table-Filling Algorithm

Theorem

If two states are not distinguished by table-filling algorithm, then they are
equivalent.

The proof is by contradiction.
Assume that there is a pair (p,) that is not distinguished by the
algorithm, but they are not equivalent, i.e. they are indeed
distinguishable (it is just that algorithm did not find them).
Let us call such pair (p, q) a bad pair.
There must be a string w € ¥* that distinguishes a bad pair (p, q). Let
us take shortest such distinguishing string w among any bad pair, and
consider corresponding bad pair (p, q).
Notice that w can not be € (Why?)
Let w be of the form ax. Since p and g are distinguishable, we know that
exactly one of §(p, ax) and (g, ax) is accepting.
Then p’ = §(p,a) and q' = (g, a) are also distinguished by string x.
if (p',q') were discovered by table-filling algorithm and (p, q) must have
been discovered as well.

Ashutosh Trivedi - 5 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Correctness of Table-Filling Algorithm

Theorem

If two states are not distinguished by table-filling algorithm, then they are
equivalent.

The proof is by contradiction.
Assume that there is a pair (p,) that is not distinguished by the
algorithm, but they are not equivalent, i.e. they are indeed
distinguishable (it is just that algorithm did not find them).
Let us call such pair (p, q) a bad pair.
There must be a string w € ¥* that distinguishes a bad pair (p, q). Let
us take shortest such distinguishing string w among any bad pair, and
consider corresponding bad pair (p, q).
Notice that w can not be € (Why?)
Let w be of the form ax. Since p and g are distinguishable, we know that
exactly one of §(p, ax) and (g, ax) is accepting.
Then p’ = §(p,a) and q' = (g, a) are also distinguished by string x.
if (p',q') were discovered by table-filling algorithm and (p, q) must have
been discovered as well.
If (¢, q') were not discovered by table-filling algorithm, then (p’,4q") is a
bad pair with a shorter distinguishing string.

Ashutosh Trivedi - 5 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Minimization of DFAs

Let A be a DFA with no unreachable state.

Let =4C Q x Q be the state equivalence relation (computed by, say
table-filling algorithm).

Note that =4 is an equivalence relation.

Let us write [g] for the equivalence class of the state 4.

Ashutosh Trivedi - 6 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

Minimization of DFAs

Let A be a DFA with no unreachable state.

Let =4C Q x Q be the state equivalence relation (computed by, say
table-filling algorithm).

Note that =4 is an equivalence relation.

Let us write [g] for the equivalence class of the state 4.

Given a DFA A and =4 we can minimize A to the DFA
A= = (Q, X, ¥, q(,F), called Quotient Automata, where

Q' ={la : 7€Q},

Y=y,

8 ([q],a) = 6(g,a) foralla € &,
% = [q0), and

F'={[q] : g€ F}.

Ashutosh Trivedi - 6 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Minimization of DFAs

Let A be a DFA with no unreachable state.

Let =4C Q x Q be the state equivalence relation (computed by, say
table-filling algorithm).

Note that =4 is an equivalence relation.

Let us write [g] for the equivalence class of the state 4.

Given a DFA A and =4 we can minimize A to the DFA
A= = (Q, X, ¥, q(,F), called Quotient Automata, where

Q' ={la : 7€Q},

Y=y,

8 ([q],a) = 6(g,a) foralla € &,
% = [q0), and

F'={[q] : g€ F}.

Theorem
Az is the minimum and unique (up to state renaming) DFA equivalent to A.

Ashutosh Trivedi - 6 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Proof of Minimality

Theorem
Az is the minimum and unique (up to state renaming) DFA equivalent to A.

Proof.
The proof is by contradiction.

Assume that there is a DFA B whose size is smaller than A= and
accepts that same language.

Compute equivalent states of A= and B using table-filling algorithm.
The initial states of both DFAs must be equivalent. (Why?)

After reading any string w from their initial states, both DFAs will go
to states that are equivalent. (Why?)

For every state of A— there is an equivalent state in B.

Since the number of states of B are less than that of A—, there must be
at least two states p, g of A= that are equivalent to some state of B.

Hence p and g must be equivalent, a contradiction.

Ashutosh Trivedi - 7 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Myhill-Nerode Theorem

Ashutosh Trivedi - 8 of 24

Myhill-Nerode Theorem

Given a languages L, two strings u, v € L are equivalent if for all
strings w € ¥ we have that u.w € Liffv.w € L.

Let =, C ¥* x X* be such string-equivalence relation.
Note that = is an equivalence relation.
Consider the equivalence classes of =;.

When there are only finitely mane classes?

Ashutosh Trivedi -9 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

Myhill-Nerode Theorem

John Myhill Anil Nerode
Theorem (Myhill-Nerode Theorem)

A language L is regqular if and only if there exists a string-equivalence relation =p
with finitely many classes.

Ashutosh Trivedi - 10 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

Myhill-Nerode Theorem

John Myhill Anil Nerode
Theorem (Myhill-Nerode Theorem)

A language L is regqular if and only if there exists a string-equivalence relation =p
with finitely many classes.

Moreover, the number of states in the minimum DFEA accepting L is equal to the
number of equivalence classes in =r..

Ashutosh Trivedi - 10 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Myhill-Nerode Theorem

Theorem (Myhill-Nerode Theorem)

A language L is regqular if and only if there exists a string-equivalence relation =p
with finitely many classes.

Proof.
The proof is in two parts.

If L is regular, then a string-equivalence relation =; with finitely
many classes can be given by states of DFA accepting L.

Ashutosh Trivedi - 11 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Myhill-Nerode Theorem

Theorem (Myhill-Nerode Theorem)

A language L is regqular if and only if there exists a string-equivalence relation =p
with finitely many classes.

Proof.
The proof is in two parts.

If L is regular, then a string-equivalence relation =; with finitely
many classes can be given by states of DFA accepting L. How?

Ashutosh Trivedi - 11 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Myhill-Nerode Theorem

Theorem (Myhill-Nerode Theorem)

A language L is regqular if and only if there exists a string-equivalence relation =p
with finitely many classes.

Proof.

The proof is in two parts.
If L is regular, then a string-equivalence relation =; with finitely
many classes can be given by states of DFA accepting L. How?

If there is a string-equivalence relation =;, with finitely many classes,
one can find a DFA accepting L.

Ashutosh Trivedi - 11 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Myhill-Nerode Theorem

Theorem (Myhill-Nerode Theorem)

A language L is regqular if and only if there exists a string-equivalence relation =p
with finitely many classes.

Proof.
The proof is in two parts.
If L is regular, then a string-equivalence relation =; with finitely

many classes can be given by states of DFA accepting L. How?

If there is a string-equivalence relation =;, with finitely many classes,

one can find a DFA accepting L. How?
[

Ashutosh Trivedi - 11 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Applying Myhill-Nerode Theorem

Theorem (Myhill-Nerode Theorem)

A language L is reqular if and only if there exists a string-equivalence relation =p
with finitely many classes.

Ashutosh Trivedi - 12 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Applying Myhill-Nerode Theorem

Theorem (Myhill-Nerode Theorem)

A language L is reqular if and only if there exists a string-equivalence relation =p
with finitely many classes.

Equivalently,

A language L is nonregular if and only if there exists an infinite subset M of ¥
where any two elements of M are distinguishable with respect to L.

Ashutosh Trivedi - 12 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Applying Myhill-Nerode Theorem

Theorem
The language L = {0"1" : n > 0} is not reqular.

Ashutosh Trivedi - 13 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Applying Myhill-Nerode Theorem

Theorem
The language L = {0"1" : n > 0} is not reqular.

Proof.
1. The proof is by contradiction.
2. Assume that L is regular.

Ashutosh Trivedi DFA Equivalence and Minimization

Ashutosh Trivedi - 13 of 24

Applying Myhill-Nerode Theorem

Theorem
The language L = {0"1" : n > 0} is not reqular.

Proof.
1. The proof is by contradiction.
2. Assume that L is regular.

3. By Myhill-Nerode theorem, there is a string-equivalence relation =y,
over L with finitely equivalence classes.

Ashutosh Trivedi - 13 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

Applying Myhill-Nerode Theorem

Theorem
The language L = {0"1" : n > 0} is not reqular.

Proof.
1. The proof is by contradiction.
2. Assume that L is regular.

3. By Myhill-Nerode theorem, there is a string-equivalence relation =y,
over L with finitely equivalence classes.

4. Let us consider the set of strings {0, 00,000, ...,0",...}.

Ashutosh Trivedi - 13 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

Applying Myhill-Nerode Theorem

Theorem
The language L = {0"1" : n > 0} is not reqular.

Proof.
1. The proof is by contradiction.
2. Assume that L is regular.

3. By Myhill-Nerode theorem, there is a string-equivalence relation =y,
over L with finitely equivalence classes.
4. Let us consider the set of strings {0, 00,000, ...,0",...}.

5. It must be the case that some two string 0" and 0", with m # n are
mapped to same equivalence class.

Ashutosh Trivedi - 13 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Applying Myhill-Nerode Theorem

Theorem

The language L = {0"1" : n > 0} is not reqular.

Proof.

1.
2.
3

The proof is by contradiction.
Assume that L is regular.

By Myhill-Nerode theorem, there is a string-equivalence relation =,
over L with finitely equivalence classes.

Let us consider the set of strings {0, 00, 000, ...,0,...}.

It must be the case that some two string 0" and 0", with m # n are
mapped to same equivalence class.

It implies that for all strings w € ¥* we have that 0".w € Liff 0".w € L.

Ashutosh Trivedi - 13 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Applying Myhill-Nerode Theorem

Theorem

The language L = {0"1" : n > 0} is not reqular.

Proof.

1.
2.
3

The proof is by contradiction.
Assume that L is regular.

By Myhill-Nerode theorem, there is a string-equivalence relation =,
over L with finitely equivalence classes.

Let us consider the set of strings {0, 00, 000, ...,0,...}.

It must be the case that some two string 0" and 0", with m # n are
mapped to same equivalence class.

It implies that for all strings w € ¥* we have that 0".w € Liff 0".w € L.
However, 0"1™ € L but 0"1™ ¢ L, a contradiction.
Hence L is not regular.

0l

Ashutosh Trivedi - 13 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

Applying Myhill-Nerode Theorem

Theorem
The language L = {0"1" : n > 0} is not regular.

Proof.

Ashutosh Trivedi - 14 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Applying Myhill-Nerode Theorem

Theorem
The language L = {0"1" : n > 0} is not regular.

Proof.

1. From Myhill-Nerode theorem, a language L is nonregular if and only
if there exists an infinite subset M of ¥x where any two elements of M
are distinguishable with respect to L.

Ashutosh Trivedi - 14 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Applying Myhill-Nerode Theorem

Theorem
The language L = {0"1" : n > 0} is not regular.

Proof.

1. From Myhill-Nerode theorem, a language L is nonregular if and only
if there exists an infinite subset M of ¥x where any two elements of M
are distinguishable with respect to L.

2. Consider the set M = {0 : i > 0}.

Ashutosh Trivedi - 14 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Applying Myhill-Nerode Theorem

Theorem
The language L = {0"1" : n > 0} is not regular.

Proof.

1. From Myhill-Nerode theorem, a language L is nonregular if and only
if there exists an infinite subset M of ¥x where any two elements of M
are distinguishable with respect to L.

2. Consider the set M = {0 : i > 0}.

3. Since any two string in M are distinguishable with respect to L (i.e.
0™0" € Lbut 0"1™ ¢ L for n # m), it follows from Myhill-Nerode
theorem that L is a non-regular language.

Ashutosh Trivedi - 14 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

Some languages are not regular!

The following languages are regular or non-regular?
The language {0"1" : n > 0}
The set of strings having an equal number of 0’s and 1’s
The set of strings with an equal number of occurrences of 01 and 10.
The language {ww : w € {0,1}*}
The language {ww : w € {0,1}*}
The language {01/ : i > j}
The language {0V : i <j}
The language of palindromes of {0,1}

Ashutosh Trivedi - 15 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Some languages are not regular!

The following languages are regular or non-regular?
The language {0"1" : n > 0}
The set of strings having an equal number of 0’s and 1’s
The set of strings with an equal number of occurrences of 01 and 10.
The language {ww : w € {0,1}*}
The language {ww : w € {0,1}*}
The language {01/ : i > j}
The language {0V : i <j}
The language of palindromes of {0,1}

Ashutosh Trivedi - 15 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Pumping Lemma

Ashutosh Trivedi - 16 of 24

Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

For every reqular language L there exists a constant p (that depends on L)

Ashutosh Trivedi - 17 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

For every reqular language L there exists a constant p (that depends on L)
such that

for every string w € L of length greater than p,

there exists an infinite family of strings belonging to L.

Ashutosh Trivedi - 17 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

For every reqular language L there exists a constant p (that depends on L)
such that

for every string w € L of length greater than p,

there exists an infinite family of strings belonging to L.

Why?

Ashutosh Trivedi - 17 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

For every reqular language L there exists a constant p (that depends on L)
such that

for every string w € L of length greater than p,

there exists an infinite family of strings belonging to L.

Why? Think: Regular expressions, DFAs

Ashutosh Trivedi - 17 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

For every reqular language L there exists a constant p (that depends on L)
such that

for every string w € L of length greater than p,

there exists an infinite family of strings belonging to L.

Why? Think: Regular expressions, DFAs Formalize our intuition!

Ashutosh Trivedi - 17 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

For every reqular language L there exists a constant p (that depends on L)
such that

for every string w € L of length greater than p,

there exists an infinite family of strings belonging to L.

Why? Think: Regular expressions, DFAs Formalize our intuition!

If L is a regular language, then

there exists a constant (pumping length) p such that

for every string w € Ls.t. |w| > p

there exists a division of w in strings x,y, and z s.t. w = xyz such that
1. [yl >0,
2. |xy| < p, and
3. forall i > 0 we have that xy'z € L.

Ashutosh Trivedi - 17 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

A simple observation about DFA

0 1

1
start — @
0

computation string computation string

start —> start —>|

OROROZ0,
OROROR0,

Ashutosh Trivedi - 18 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

A simple observation about DFA

Image source: Wikipedia
Let A = (S,3, 9,50, F) be a DFA.
For every string w € ¥* of the length greater than or equal to the
number of states of A, i.e. |[w| > |S|, we have that
the unique computation of A on w re-visits at least one state after
reading first |S| letters !

Ashutosh Trivedi - 19 of 24
Ashutosh Trivedi DFA Equivalence and Minimization

Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

If L is a reqular language, then there exists a constant (pumping length) p such
that for every string w € L s.t. |[w| > p there exists a division of w in strings x,y,
and z s.t. w = xyz such that

1. [yl >0,
2. |xy| <p,and
3. forall i > 0 we have that xy'z € L.

Ashutosh Trivedi - 20 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

If L is a reqular language, then there exists a constant (pumping length) p such
that for every string w € L s.t. |w| > p there exists a division of w in strings x,y,
and z s.t. w = xyz such that

1. [yl >0,

2. |xy| < p, and

3. forall i > 0 we have that xy'z € L.

Let A be the DFA accepting L and p be the set of states in A.
Letw = (@142 .. .ax) € L be any string of length > p.

Let 5041514287 . . . axsi be the run of w on A.

Consider first n + 1 states—at least one state must occur twice.
Let i be the index of first state that the run revisits and let j be the
index of second occurrence of that state, i.e. s; = s,

Letx =aay...a; 1 andy = aia;y1 ...aj-1,and z = a;a;,1 . . . ay.
notice that |y| > 0 and |xy| <n

Also, notice that for all i > 0 the string xyiz isalsoin L.

Ashutosh Trivedi - 20 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Applying Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

L € ¥* is a regular language
—_—
there exists p > 1 such that
for all strings w € L with |w| > p we have that
there exists x,y,z € ¥* with w = xyz, [y| > 0, |xy| < p such that
forall i > 0 we have that
xy'z € L.

Ashutosh Trivedi - 21 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Applying Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

L € ¥* is a regular language
—_—
there exists p > 1 such that
for all strings w € L with |w| > p we have that
there exists x,y,z € ¥* with w = xyz, [y| > 0, |xy| < p such that
forall i > 0 we have that
xy'z € L.

Pumping Lemma (Contrapositive)

Forall p > 1 we have that
there exists a string w € L with |w| > p such that
forall x,y,z € ¥* withw = xyz, |y| > 0, |xy| < p we have that
there exists i > 0 such that
xy'z €L
—
L € ¥* is not a regular language.

Ashutosh Trivedi - 21 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Applying Pumping Lemma

How to show that a language L is non-regular.
1. Let p be an arbitrary number (pumping length).
2. (Cleverly) Find a representative string w of L of size > p.

3. Try out all ways to break the string into xyz triplet satisfying that
ly] > 0 and |xy| < n. If the step 3 was clever enough, there will be
finitely many cases to consider.

4. For every triplet show that for some i the string xy'z is not in L, and
hence it yields contradiction with pumping lemma.

Ashutosh Trivedi - 22 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Applying Pumping Lemma

Theorem
Prove that the language L = {0"1"} is not regular.

Ashutosh Trivedi - 23 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Applying Pumping Lemma

Theorem
Prove that the language L = {0"1"} is not regular.

Proof.
1. State the contrapositive of Pumping lemma.
2. Let p be an arbitrary number.
3. Consider the string 0V1” € L. Notice that |0717| > p.

Ashutosh Trivedi DFA Equivalence and Minimization

Ashutosh Trivedi - 23 of 24

Applying Pumping Lemma

Theorem
Prove that the language L = {0"1"} is not regular.

Proof.
1. State the contrapositive of Pumping lemma.
2. Let p be an arbitrary number.
3. Consider the string 0V1” € L. Notice that |0717| > p.

4. Only way to break this string in xyz triplets such that |xy| < p and
y # € is to choose y = 0 for some 1 < k < p.

Ashutosh Trivedi - 23 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Applying Pumping Lemma

Theorem
Prove that the language L = {0"1"} is not regular.

Proof.
1. State the contrapositive of Pumping lemma.

N

Let p be an arbitrary number.
Consider the string 0V1” € L. Notice that |0717| > p.

Only way to break this string in xyz triplets such that |xy| < p and
y # € is to choose y = 0 for some 1 < k < p.

= W

on

For each such triplet, there exists an i (say i = 0) such that xy'z ¢ L.
6. Hence L is non-regular.

Ashutosh Trivedi - 23 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Proving a language Regular

Proving Regularity

Pumping Lemma is necessary but not sufficient condition for regularity.

Ashutosh Trivedi - 24 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

Proving a language Regular

Proving Regularity

Pumping Lemma is necessary but not sufficient condition for regularity.
Consider the language
L={#a"b" : n>1}U{#w : k#1,we {a,b}*}.

Verify that this language satisfies the pumping condition, but is not
regular!

Ashutosh Trivedi - 24 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

	DFA Equivalence and Minimization
	Myhill-Nerode Theorem
	Pumping Lemma

