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Context-Free Grammars

Noam Chomsky
(linguist, philosopher, logician, and activist)

“ A grammar can be regarded as a device that enumerates the sentences of a language. We
study a sequence of restrictions that limit grammars first to Turing machines, then to two
types of systems from which a phrase structure description of a generated language can be
drawn, and finally to finite state Markov sources (finite automata). ”

—On Certain Formal Properties of Grammar, Information and Control, 1959.
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Grammars
A (formal) grammar consists of

1. A finite set of rewriting rules of the form

φ→ ψ

where φ and ψ are strings of symbols.
2. A special “initial” symbol S (S standing for sentence);
3. A finite set of symbols stand for “words” of the language called

terminal vocabulary;
4. Other symbols stand for “phrases” and are called non-terminal

vocabulary.

Given such a grammar, a valid sentence can be generated by
1. starting from the initial symbol S,
2. applying one of the rewriting rules to form a new string φ by

applying a rule S→ φ1,
3. and apply another rule to form a new string φ2 and so on,
4. until we reach a string φn that consists only of terminal symbols.
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Examples

Consider the grammar

S → AB (1)
A → C (2)

CB → Cb (3)
C → a (4)

where {a, b} are terminals, and {S,A,B,C} are non-terminals.

We can derive the phrase “ab” from this grammar in the following way:

S → AB, from (1)
→ CB, from (2)
→ Cb, from (3)
→ ab, from (4)
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Examples

Consider the grammar

S → NounPhrase VerbPhrase (5)
NounPhrase → SingularNoun (6)

SingularNoun VerbPhrase → SingularNoun comes (7)
SingularNoun → John (8)

We can derive the phrase “John comes” from this grammar in the
following way:

S → NounPhrase VerbPhrase, from (1)
→ SingularNoun VerbPhrase, from (2)
→ SingularNoun comes, from (3)
→ John comes, from (4)
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Types of Grammars
Depending on the rewriting rules we can characterize the grammars in the
following four types:

1. type 0 grammars with no restriction on rewriting rules;
2. type 1 grammars have the rules of the form

αAβ → αγβ

where A is a nonterminal, α, β, γ are strings of terminals and
nonterminals, and γ is non empty.

3. type 2 grammars have the rules of the form

A→ γ

where A is a nonterminal, and γ is a string (potentially empty) of
terminals and nonterminals.

4. type 3 grammars have the rules of the form

A→ aB or A→ a

where A,B are nonterminals, and a is a string (potentially empty) of
terminals.
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Do regular grammars capture regular languages?

– Regular grammars to finite automata
– Finite automata to regular grammars
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Context-Free Languages: Syntax

Definition (Context-Free Grammar)
A context-free grammar is a tuple G = (V,T,P,S) where

– V is a finite set of variables (nonterminals, nonterminals vocabulary);
– T is a finite set of terminals (letters);
– P ⊆ V × (V ∪ T)∗ is a finite set of rewriting rules called productions,

– We write A → β if (A, β) ∈ P;

– S ∈ V is a distinguished start or “sentence” symbol.

Example: G0n1n = (V,T,P,S) where
– V = {S};
– T = {0, 1};
– P is defined as

S → ε

S → 0S1

– S = S.
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Context-Free Languages: Semantics

Derivation:
– Let G = (V,T,P,S) be a context-free grammar.
– Let αAβ be a string in (V ∪ T)∗V(V ∪ T)∗

– We say that αAβ yields the string αγβ, and we write αAβ⇒αγβ if

A→ γ is a production rule in G.

– For strings α, β ∈ (V ∪ T)∗, we say that α derives β and we write
α
∗
=⇒ β if there is a sequence α1, α2, . . . , αn ∈ (V ∪ T)∗ s.t.

α→ α1 → α2 · · ·αn → β.

Definition (Context-Free Grammar: Semantics)
The language L(G) accepted by a context-free grammar G = (V,T,P,S) is
the set

L(G) = {w ∈ T∗ : S ∗
=⇒ w}.
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CFG: Example

Recall G0n1n = (V,T,P,S) where
– V = {S};
– T = {0, 1};
– P is defined as

S → ε

S → 0S1

– S = S.
The string 000111 ∈ L(G0n1n), i.e. S ∗

=⇒ 000111 as

S⇒ 0S1⇒ 00S11⇒ 000S111⇒ 000111.
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Prove that 0n1n is accepted by the grammar G0n1n.

The proof is in two parts.
– First show that every string w of the form 0n1n can be derived from S

using induction over w.
– Then, show that for every string w ∈ {0, 1}∗ derived from S, we have

that w is of the form 0n1n.
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CFG: Example

Consider the following grammar G = (V,T,P,S) where
– V = {E, I}; T = {a, b, 0, 1}; S = E; and
– P is defined as

E → I | E + E | E ∗ E | (E)

I → a | Ia | Ib | I0 | I1

The string (a1 + b0 ∗ a1) ∈ L(G), i.e. E ∗
=⇒ (a1 + b0 ∗ a1) as

E ⇒ (E)⇒ (E + E)⇒ (I + E)⇒ (I1 + E)⇒ (a1 + E)
∗
=⇒ (a1 + b0 ∗ a1).

E ⇒ (E)⇒ (E + E)⇒ (E + E ∗ E)⇒ (E + E ∗ I) ∗=⇒ (a1 + b0 ∗ a1).

Leftmost and rightmost derivations:
1. Derivations are not unique
2. Leftmost and rightmost derivations
3. Define⇒lm and⇒rm in straightforward manner.
4. Find leftmost and rightmost derivations of (a1 + b0 ∗ a1).
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Exercise

Consider the following grammar:

S → AS | ε.
S → aa | ab | ba | bb

Give leftmost and rightmost derivations of the string aabbba.
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Parse Trees

– A CFG provide a structure to a string
– Such structure assigns meaning to a string, and hence a unique

structure is really important in several applications, e.g. compilers
– Parse trees are a successful data-structures to represent and store such

structures

– Let’s review the Tree terminology:
– A tree is a directed acyclic graph (DAG) where every node has at most

incoming edge.
– Edge relationship as parent-child relationship
– Every node has at most one parent, and zero or more children
– We assume an implicit order on children (“from left-to-right”)
– There is a distinguished root node with no parent, while all other nodes

have a unique parent
– There are some nodes with no children called leaves—other nodes are

called interior nodes
– Ancestor and descendent relationships are closure of parent and child

relationships, resp.
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Parse Tree

Given a grammar G = (V,T,P,S), the parse trees associated with G has
the following properties:

1. Each interior node is labeled by a variable in V.
2. Each leaf is either a variable, terminal, or ε. However, if a leaf is ε it is

the only child of its parent.
3. If an interior node is labeled A and has children labeled X1,X2, . . . ,Xk

from left-to-right, then

A→ X1X2 . . .Xk

is a production is P. Only time Xi can be ε is when it is the only child
of its parent, i.e. corresponding to the production A→ ε.
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Reading exercise

– Give parse tree representation of previous derivation exercises.

– Are leftmost-derivation and rightmost derivation parse-trees always
different?

– Are parse trees unique?
– Answer is no. A grammar is called ambiguous if there is at least one

string with two different leftmost (or rightmost) derivations.
– There are some inherently ambiguous languages.

L = {anbncmdm : n,m ≥ 1} ∪ {anbmcndm : n,m ≥ 1}.

Write a grammar accepting this language. Show that the string
a2b2c2d2 has two leftmost derivations.

– There is no algorithm to decide whether a grammar is ambiguous.
– What does that mean from application side?
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In-class Quiz

Write CFGs for the following languages:
1. Strings ending with a 0
2. Strings containing even number of 1’s
3. palindromes over {0, 1}
4. L = {aibj : i ≤ 2j} or L = {aibj : i < 2j} or L = {aibj : i 6= 2j}
5. L = {aibjck : i = k}
6. L = {aibjck : i = j}
7. L = {aibjck : i = j + k}.
8. L = {w ∈ {0, 1}∗ : |w|a = |w|b}.
9. Closure under union, concatenation, and Kleene star

10. Closure under substitution, homomorphism, and reversal
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Syntactic Ambiguity in English

—Anthony G. Oettinger
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Context-Free Grammars

Pushdown Automata

Properties of CFLs
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Pushdown Automata

Anthony G. Oettinger

M. P. Schutzenberger

q0start q1 q2

0,X 7→ 0X

1,X 7→ 1X

ε,X 7→ X

0, 0 7→ ε

1, 1 7→ ε

ε,⊥ 7→ ⊥

– Introduced independently by Anthony G. Oettinger
in 1961 and by Marcel-Paul Schützenberger in 1963

– Generalization of ε-NFA with a “stack-like” storage
mechanism

– Precisely capture context-free languages
– Deterministic version is not as expressive as

non-deterministic one
– Applications in program verification and syntax

analysis
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Example 1: L = {ww : w ∈ {0, 1}∗}

1input tape 1 1 0 0 1 1 1

q0start q1 q2

0,X 7→ 0X

1,X 7→ 1X

ε,X 7→ X

0, 0 7→ ε

1, 1 7→ ε

ε,⊥ 7→ ⊥

⊥

pushdown stack
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Pushdown Automata

q0start q1 q2

0,X 7→ 0X

1,X 7→ 1X

ε,X 7→ X

0, 0 7→ ε

1, 1 7→ ε

ε,⊥ 7→ ⊥

A pushdown automata is a tuple (Q,Σ,Γ, δ, q0,⊥,F) where:
– Q is a finite set called the states;
– Σ is a finite set called the alphabet;
– Γ is a finite set called the stack alphabet;
– δ : Q× Σ× Γ→ 2Q×Γ∗ is the transition function;
– q0 ∈ Q is the start state;
– ⊥ ∈ Γ is the start stack symbol;
– F ⊆ Q is the set of accepting states.
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Semantics of a PDA
– Let P = (Q,Σ,Γ, δ, q0,⊥,F) be a PDA.
– A configuration (or instantaneous description) of a PDA is a triple

(q,w, γ) where
– q is the current state,
– w is the remaining input, and
– γ ∈ Γ∗ is the stack contents, where written as concatenation of symbols

form top-to-bottom.

– We define the operator ` (derivation) such that if (p, α) ∈ δ(q, a,X)
then

(q, aw,Xβ) ` (p,w, αβ),

for all w ∈ Σ∗ and β ∈ Γ∗. The operator ⊥∗ is defined as transitive
closure of ⊥ in straightforward manner.

– A run of a PDA P = (Q,Σ,Γ, δ, q0,⊥,F) over an input word w ∈ Σ∗ is
a sequence of configurations

(q0,w0, β0), (q1,w1, β1), . . . , (qn,wn, βn)

such that for every 0 ≤ i < n− 1 we have that
(qi,wi, βi) ` (qi+1,wi+1, βi+1) and (q0,w0, β0) = (q0,w,⊥).
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Semantics: acceptance via final states

1. We say that a run

(q0,w0, β0), (q1,w1, β1), . . . , (qn,wn, βn)

is accepted via final state if qn ∈ F and wn = ε.
2. We say that a word w is accepted via final states if there exists a run of

P over w that is accepted via final state.
3. We write L(P) for the set of words accepted via final states.
4. In other words,

L(P) = {w : (q0,w,⊥) `∗ (qn, ε, β) and qn ∈ F}.

5. Example L = {ww : w ∈ {0, 1}∗}with the notion of configuration,
computation, run, and acceptance.
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Semantics: acceptance via empty stack

1. We say that a run

(q0,w0, β0), (q1,w1, β1), . . . , (qn,wn, βn)

is accepted via empty stack if βn = ε and wn = ε.
2. We say that a word w is accepted via empty stack if there exists a run

of P over w that is accepted via empty stack.
3. We write N(P) for the set of words accepted via empty stack.
4. In other words

N(P) = {w : (q0,w,⊥) `∗ (qn, ε, ε)}.

Is L(P) = N(P)?
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Equivalence of both notions

Theorem
For every language defind by a PDA with empty stack semantics, there exists a
PDA that accept the same language with final state semantics, and vice-versa.

Proof.
– Final state to Empty stack

– Add a new stack symbol, say ⊥′, as the start stack symbol, and in the
first transition replace it with ⊥⊥′ before reading any symbol.
(How? and Why?)

– From every final state make a transition to a sink state that does not read
the input but empties the stack including ⊥′.

– Empty Stack to Final state
– Replace the start stack symbol ⊥′ and ⊥⊥′ before reading any symbol.

(Why?)
– From every state make a transition to a new unique final state that does

not read the input but removes the symbol ⊥′.
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Formal Construction: Empty stack to Final State

Let P = (Q,Σ,Γ, δ, q0,⊥) be a PDA. We claim that the PDA
P′ = (Q′,Σ,Γ′, δ′, q′0,⊥′,F′) is such that N(P) = L(P′), where

1. Q′ = Q ∪ {q′0} ∪ {qF}
2. Γ′ = Γ ∪ {⊥′}
3. F′ = {qF}.
4. δ′ is such that

– δ′(q, a,X) = δ(q, a,X) for all q ∈ Q and X ∈ Γ,
– δ′(q′0, ε,⊥′) = {(q0,⊥⊥′)} and
– δ′(q, ε,⊥′) = {(qF,⊥′)} for all q ∈ Q.
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– δ′(qF, ε,X) = {(qF, ε)} for all X ∈ Γ.
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Expressive power of CFG and PDA

Theorem
A language is context-free if and only if some pushdown automaton accepts it.

Proof.
1. For an arbitrary CFG G give a PDA PG such that L(G) = L(PG).

– Leftmost derivation of a string using the stack
– One state PDA accepting by empty stack
– Proof via a simple induction over size of an accepting run of PDA

2. For an arbitrary PDA P give a CFG GP such that L(P) = L(GP).
– Modify the PDA to have the following properties such that each step is

either a “push” or “pop”, and has a single accepting state and the stack
is emptied before accepting.

– For every state pair of P define a variable Apq in PG generating strings
such that PDA moves from state p to state q starting and ending with
empty stack.

– Three production rules

Apq = aArsb and Apq = AprArq and App = ε.
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From CFGs to PDAs

Given a CFG G = (V,T,P,S) consider PDA PG = ({q},T,V ∪ T, δ, q,S) s.t.:
– for every a ∈ T we have

δ(q, a, a) = (q, ε), and

– for variable A ∈ V we have that

δ(q, ε,A) = {(q, β) : A→ β is a production of P}.

Then L(G) = N(PG).

Example. Give the PDA equivalent to the following grammar

I → a | b | Ia | Ib | I0 | I1
E → I | E ∗ E | E + E | (E).
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From CFGs to PDAs

Theorem
We have that w ∈ N(P) if and only if w ∈ L(G).

Proof.
– (If part). Suppose w ∈ L(G). Then w has a leftmost derivation

S = γ1 ⇒lm γ2 ⇒lm · · · ⇒lm γn = w.

It is straightforward to see that by induction on i that
(q,w,S) `∗ (q, yi, αi) where w = xiyi and xiαi = γi.
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From CFGs to PDAs

Theorem
We have that w ∈ N(P) if and only if w ∈ L(G).

Proof.
– (Only If part). Suppose w ∈ N(P), i.e. (q,w,S) `∗ (q, ε, ε).

We show that if (q, x,A) `∗ (q, ε, ε) then A⇒∗ x by induction over
number of moves taken by P.

– Base case. x = ε and (q, ε) ∈ δ(q, ε,A). It follows that A → ε is a
production in P.

– inductive step. Let the first step be A → Y1Y2 . . .Yk. Let x1x2 . . . xk be the
part of input to be consumed by the time Y1 . . .Yk is popped out of the
stack.
It follows that (q, xi,Yi) `∗ (q, ε, ε), and from inductive hypothesis we
get that Yi ⇒ xi if Yi is a variable, and Yi = xi is Yi is a terminal. Hence,
we conclude that A ⇒∗ x.
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From PDAs to CFGs

Given a PDA P = (Q,Σ,Γ, δ, q0,⊥, {qF}) with restriction that every
transition is either pushes a symbol or pops a symbol form the stack, i.e.
δ(q, a,X) contains either (q′,YX) or (q′, ε).
Consider the grammar Gp = (V,T,P,S) such that

– V = {Ap,q : p, q ∈ Q}
– T = Σ

– S = Aq0,qF

– and P has transitions of the following form:
– Aq,q → ε for all q ∈ Q;
– Ap,q → Ap,r Ar,q for all p, q, r ∈ Q,
– Ap,q → a Ar,s b if δ(p, a, ε) contains (r,X) and δ(s, b,X) contains (q, ε).

We have that L(Gp) = L(P).
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From PDAs to CFGs

Theorem
If Ap,q ⇒∗ x then x can bring the PDA P from state p on empty stack to state q on
empty stack.

Proof.
We prove this theorem by induction on the number of steps in the
derivation of x from Ap,q.

– Base case. If Ap,q ⇒∗ x in one step, then the only rule that can
generate a variable free string in one step is Ap,p → ε.

– Inductive step. If Ap,q ⇒∗ x in n + 1 steps. The first step in the
derivation must be Ap,q → Ap,rAr,q or Ap,q → a Ar,s b.

– If it is Ap,q → Ap,rAr,q, then the string x can be broken into two parts x1x2

such that Ap,r ⇒∗ x1 and Ar,q ⇒∗ x2 in at most n steps. The theorem
easily follows in this case.

– If it is Ap,q → aAr,sb, then the string x can be broken as ayb such that
Ar,s ⇒∗ y in n steps. Notice that from p on reading a the PDA pushes a
symbol X to stack, while it pops X in state s and goes to q.
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From CFGs to PDAs

Theorem
If x can bring the PDA P from state p on empty stack to state q on empty stack
then Ap,q ⇒∗ x.

Proof.
We prove this theorem by induction on the number of steps the PDA takes
on x to go from p on empty stack to q on empty stack.

– Base case. If the computation has 0 steps that it begins and ends with
the same state and reads ε from the tape. Note that Ap,p ⇒∗ ε since
Ap,p → ε is a rule in P.

– Inductive step. If the computation takes n + 1 steps. To keep the stack
empty, the first step must be a “push” move, while the last step must
be a “pop” move. There are two cases to consider:

– The symbol pushed in the first step is the symbol popped in the last step.
– The symbol pushed if the first step has been popped somewhere in the

middle.
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Context-Free Grammars

Pushdown Automata

Properties of CFLs
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Deterministic Pushdown Automata

A PDA P = (Q,Σ,Γ, δ, q0,⊥,F) is deterministic if
– δ(q, a,X) has at most one member for every q ∈ Q, a ∈ Σ or a = ε, and

X ∈ Γ.
– If δ(q, a,X) is nonempty for some a ∈ Σ then δ(q, ε,X) must be empty.

Example. L = {0n1n : n ≥ 1}.

Theorem
Every regular language can be accepted by a deterministic pushdown automata
that accepts by final states.

Theorem (DPDA 6= PDA)
There are some CFLs, for instance {ww} that can not be accepted by a DPDA.
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Chomsky Normal Form

A Context-free grammar (V,T,P,S) is in Chomsky Normal Form if every
rule is of the form

A → BC
A → a.

where A,B,C are variables, and a is a nonterminal. Also, the start variable
S must not appear on the right-side of any rule, and we also permit the
rule S→ ε.

Theorem
Every context-free language is generated by a CFG in Chomsky normal form.

Reading Assignment: How to convert an arbitrary CFG to Chomsky
Normal Form.
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Pumping Lemma for CFLs

Theorem
For every context-free language L there exists a constant p (that depends on L)
such that
for every string z ∈ L of length greater or equal to p,
there is an infinite family of strings belonging to L.

Why? Think parse Trees!

Let L be a CFL. Then there exists a constant n such that if z is a string in L of
length at least n, then we can write z = uvwxy such that

– |vwx| ≤ n
– vx 6= ε,
– For all i ≥ 0 the string uviwxiy ∈ L.
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such that
for every string z ∈ L of length greater or equal to p,
there is an infinite family of strings belonging to L.

Why? Think parse Trees!

Let L be a CFL. Then there exists a constant n such that if z is a string in L of
length at least n, then we can write z = uvwxy such that

– |vwx| ≤ n
– vx 6= ε,
– For all i ≥ 0 the string uviwxiy ∈ L.
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Pumping Lemma for CFLs

Theorem
Let L be a CFL. Then there exists a constant n such that if z is a string in L of
length at least n, then we can write z = uvwxy such that i) |vwx| ≤ n, ii) vx 6= ε,
and iii) for all i ≥ 0 the string uviwxiy ∈ L.

– Let G be a CFG accepting L. Let b be an upper bound on the size of
the RHS of any production rule of G.

– What is the upper bound on the length strings in L with parse-tree of
height `+ 1 ? Answer: b`.

– Let N = |V| be the number of variables in G.
– What can we say about the strings z in L of size greater than bN?
– Answer: in every parse tree of z there must be a path where a variable

repeats.
– Consider a minimum size parse-tree generating z, and consider a path

where at least a variable repeats, and consider the last such variable.
– Justify the conditions of the pumping Lemma.
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Applying Pumping Lemma

Theorem (Pumping Lemma for Context-free Languages)
L ∈ Σ∗ is a context-free language
=⇒

there exists p ≥ 1 such that
for all strings z ∈ L with |z| ≥ p we have that
there exists u, v,w, x, y ∈ Σ∗ with z = uvwxy, |vx| > 0, |vwx| ≤ p such that
for all i ≥ 0 we have that
uviwxiy ∈ L.

Pumping Lemma (Contrapositive)
For all p ≥ 1 we have that

there exists strings z ∈ L with |z| ≥ p such that
for all u, v,w, x, y ∈ Σ∗ with z = uvwxy, |vx| > 0, |vwx| ≤ p we have that
there exists i ≥ 0 such that
uviwxiy 6∈ L.
=⇒

L ∈ Σ∗ is not a context-free language.
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Example

Prove that the following languages are not context-free:
1. L = {0n1n2n : n ≥ 0}
2. L = {0i1j2k : 0 ≤ i ≤ j ≤ k}
3. L = {ww : w ∈ {0, 1}∗}.
4. L = {0n : n is a prime number}.
5. L = {0n : n is a perfect square}.
6. L = {0n : n is a perfect cube}.
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Closure Properties

Theorem
Context-free languages are closed under the following operations:

1. Union
2. Concatenation
3. Kleene closure
4. Homomorphism
5. Substitution
6. Inverse-homomorphism
7. Reverse

Reading Assignment: Proof of closure under these operations.
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Intersection and Complementaion

Theorem
Context-free languages are not closed under intersection and complementation.

Proof.
– Consider the languages

L1 = {0n1n2m : n,m ≥ 0}, and
L2 = {0m1n2n : n,m ≥ 0}.

– Both languages are CFLs.
– What is L1 ∩ L2?

– L = {0n1n2n : n ≥ 0} and it is not a CFL.
– Hence CFLs are not closed under intersection.
– Use De’morgan’s law to prove non-closure under complementation.

Ashutosh Trivedi Lecture 6: Context-Free Grammar



Ashutosh Trivedi – 45 of 45

Intersection and Complementaion

Theorem
Context-free languages are not closed under intersection and complementation.

Proof.
– Consider the languages

L1 = {0n1n2m : n,m ≥ 0}, and
L2 = {0m1n2n : n,m ≥ 0}.

– Both languages are CFLs.
– What is L1 ∩ L2?
– L = {0n1n2n : n ≥ 0} and it is not a CFL.
– Hence CFLs are not closed under intersection.

– Use De’morgan’s law to prove non-closure under complementation.

Ashutosh Trivedi Lecture 6: Context-Free Grammar



Ashutosh Trivedi – 45 of 45

Intersection and Complementaion

Theorem
Context-free languages are not closed under intersection and complementation.

Proof.
– Consider the languages

L1 = {0n1n2m : n,m ≥ 0}, and
L2 = {0m1n2n : n,m ≥ 0}.

– Both languages are CFLs.
– What is L1 ∩ L2?
– L = {0n1n2n : n ≥ 0} and it is not a CFL.
– Hence CFLs are not closed under intersection.
– Use De’morgan’s law to prove non-closure under complementation.

Ashutosh Trivedi Lecture 6: Context-Free Grammar


	Context-Free Grammars
	Pushdown Automata
	Properties of CFLs

