CS 208: Automata Theory and Logic Lecture 6: Context-Free Grammar

Ashutosh Trivedi

Department of Computer Science and Engineering,
Indian Institute of Technology Bombay.

Context-Free Grammars

Pushdown Automata

Properties of CFLs

Context-Free Grammars

Noam Chomsky
(linguist, philosopher, logician, and activist)
" A grammar can be regarded as a device that enumerates the sentences of a language. We study a sequence of restrictions that limit grammars first to Turing machines, then to two types of systems from which a phrase structure description of a generated language can be drawn, and finally to finite state Markov sources (finite automata). "

Grammars

A (formal) grammar consists of

1. A finite set of rewriting rules of the form

$$
\phi \rightarrow \psi
$$

where ϕ and ψ are strings of symbols.
2. A special "initial" symbol S (S standing for sentence);
3. A finite set of symbols stand for "words" of the language called terminal vocabulary;
4. Other symbols stand for "phrases" and are called non-terminal vocabulary.

Grammars

A (formal) grammar consists of

1. A finite set of rewriting rules of the form

$$
\phi \rightarrow \psi
$$

where ϕ and ψ are strings of symbols.
2. A special "initial" symbol S (S standing for sentence);
3. A finite set of symbols stand for "words" of the language called terminal vocabulary;
4. Other symbols stand for "phrases" and are called non-terminal vocabulary.
Given such a grammar, a valid sentence can be generated by

1. starting from the initial symbol S,
2. applying one of the rewriting rules to form a new string ϕ by applying a rule $S \rightarrow \phi_{1}$,
3. and apply another rule to form a new string ϕ_{2} and so on,
4. until we reach a string ϕ_{n} that consists only of terminal symbols.

Examples

Consider the grammar

$$
\begin{align*}
S & \rightarrow A B \tag{1}\\
A & \rightarrow C \tag{2}\\
C B & \rightarrow C b \tag{3}\\
C & \rightarrow a \tag{4}
\end{align*}
$$

where $\{a, b\}$ are terminals, and $\{S, A, B, C\}$ are non-terminals.

Examples

Consider the grammar

$$
\begin{align*}
S & \rightarrow A B \tag{1}\\
A & \rightarrow C \tag{2}\\
C B & \rightarrow C b \tag{3}\\
C & \rightarrow a \tag{4}
\end{align*}
$$

where $\{a, b\}$ are terminals, and $\{S, A, B, C\}$ are non-terminals.
We can derive the phrase " ab^{\prime} " from this grammar in the following way:

$$
\begin{aligned}
S & \rightarrow A B, \text { from }(1) \\
& \rightarrow C B, \text { from }(2) \\
& \rightarrow C b, \text { from }(3) \\
& \rightarrow a b, \text { from }(4)
\end{aligned}
$$

Examples

Consider the grammar

$$
\begin{align*}
S & \rightarrow \text { NounPhrase VerbPhrase } \tag{5}\\
\text { NounPhrase } & \rightarrow \text { SingularNoun } \tag{6}\\
\text { SingularNoun VerbPhrase } & \rightarrow \text { SingularNoun comes } \tag{7}\\
\text { SingularNoun } & \rightarrow \text { John } \tag{8}
\end{align*}
$$

We can derive the phrase "John comes" from this grammar in the following way:

$$
\begin{aligned}
S & \rightarrow \text { NounPhrase VerbPhrase, from (1) } \\
& \rightarrow \text { SingularNoun VerbPhrase, from (2) } \\
& \rightarrow \text { SingularNoun comes, from }(3) \\
& \rightarrow \text { John comes, from }(4)
\end{aligned}
$$

Types of Grammars

Depending on the rewriting rules we can characterize the grammars in the following four types:

1. type 0 grammars with no restriction on rewriting rules;
2. type 1 grammars have the rules of the form

$$
\alpha A \beta \rightarrow \alpha \gamma \beta
$$

where A is a nonterminal, α, β, γ are strings of terminals and nonterminals, and γ is non empty.
3. type 2 grammars have the rules of the form

$$
A \rightarrow \gamma
$$

where A is a nonterminal, and γ is a string (potentially empty) of terminals and nonterminals.
4. type 3 grammars have the rules of the form

$$
A \rightarrow a B \text { or } A \rightarrow a
$$

where A, B are nonterminals, and a is a string (potentially empty) of terminals.

Types of Grammars

Depending on the rewriting rules we can characterize the grammars in the following four types:

1. Unrestricted grammars with no restriction on rewriting rules;
2. Context-sensitive grammars have the rules of the form

$$
\alpha A \beta \rightarrow \alpha \gamma \beta
$$

where A is a nonterminal, α, β, γ are strings of terminals and nonterminals, and γ is non empty.
3. Context-free grammars have the rules of the form

$$
A \rightarrow \gamma
$$

where A is a nonterminal, and γ is a string (potentially empty) of terminals and nonterminals.
4. Regular grammars have the rules of the form

$$
A \rightarrow a B \text { or } A \rightarrow a
$$

where A, B are nonterminals, and a is a string (potentially empty) of terminals.

Types of Grammars

Depending on the rewriting rules we can characterize the grammars in the following four types:

1. Unrestricted grammars with no restriction on rewriting rules;
2. Context-sensitive grammars have the rules of the form

$$
\alpha A \beta \rightarrow \alpha \gamma \beta
$$

where A is a nonterminal, α, β, γ are strings of terminals and nonterminals, and γ is non empty.
3. Context-free grammars have the rules of the form

$$
A \rightarrow \gamma
$$

where A is a nonterminal, and γ is a string (potentially empty) of terminals and nonterminals.
4. Regular grammars have the rules of the form

$$
A \rightarrow a B \text { or } A \rightarrow a
$$

where A, B are nonterminals, and a is a string (potentially empty) of terminals. (also left-linear grammars)

Do regular grammars capture regular languages?

- Regular grammars to finite automata
- Finite automata to regular grammars

Context-Free Languages: Syntax

Definition (Context-Free Grammar)

A context-free grammar is a tuple $G=(V, T, P, S)$ where
V is a finite set of variables (nonterminals, nonterminals vocabulary);
T is a finite set of terminals (letters);
$P \subseteq V \times(V \cup T)^{*}$ is a finite set of rewriting rules called productions,
We write $A \rightarrow \beta$ if $(A, \beta) \in P$;
$S \in V$ is a distinguished start or "sentence" symbol.

Context-Free Languages: Syntax

Definition (Context-Free Grammar)

A context-free grammar is a tuple $G=(V, T, P, S)$ where
V is a finite set of variables (nonterminals, nonterminals vocabulary);
T is a finite set of terminals (letters);
$P \subseteq V \times(V \cup T)^{*}$ is a finite set of rewriting rules called productions,
We write $A \rightarrow \beta$ if $(A, \beta) \in P$;
$S \in V$ is a distinguished start or "sentence" symbol.
Example: $G_{0^{n} 1^{n}}=(V, T, P, S)$ where

$$
\begin{aligned}
& V=\{S\} ; \\
& T=\{0,1\} ;
\end{aligned}
$$

P is defined as
$S \rightarrow \varepsilon$
$S \rightarrow 0 S 1$
$S=S$.

Context-Free Languages: Semantics

Derivation:

- Let $G=(V, T, P, S)$ be a context-free grammar.
- Let $\alpha A \beta$ be a string in $(V \cup T)^{*} V(V \cup T)^{*}$
- We say that $\alpha A \beta$ yields the string $\alpha \gamma \beta$, and we write $\alpha A \beta \Rightarrow \alpha \gamma \beta$ if

$$
A \rightarrow \gamma \text { is a production rule in } G \text {. }
$$

- For strings $\alpha, \beta \in(V \cup T)^{*}$, we say that α derives β and we write $\alpha \stackrel{*}{\Rightarrow} \beta$ if there is a sequence $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in(V \cup T)^{*}$ s.t.

$$
\alpha \rightarrow \alpha_{1} \rightarrow \alpha_{2} \cdots \alpha_{n} \rightarrow \beta
$$

Context-Free Languages: Semantics

Derivation:

- Let $G=(V, T, P, S)$ be a context-free grammar.
- Let $\alpha A \beta$ be a string in $(V \cup T)^{*} V(V \cup T)^{*}$
- We say that $\alpha A \beta$ yields the string $\alpha \gamma \beta$, and we write $\alpha A \beta \Rightarrow \alpha \gamma \beta$ if

$$
A \rightarrow \gamma \text { is a production rule in } G \text {. }
$$

For strings $\alpha, \beta \in(V \cup T)^{*}$, we say that α derives β and we write $\alpha \stackrel{*}{\Rightarrow} \beta$ if there is a sequence $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in(V \cup T)^{*}$ s.t.

$$
\alpha \rightarrow \alpha_{1} \rightarrow \alpha_{2} \cdots \alpha_{n} \rightarrow \beta
$$

Definition (Context-Free Grammar: Semantics)

The language $L(G)$ accepted by a context-free grammar $G=(V, T, P, S)$ is the set

$$
L(G)=\left\{w \in T^{*}: S \stackrel{*}{\Rightarrow} w\right\} .
$$

CFG: Example

Recall $G_{0^{n} 1^{n}}=(V, T, P, S)$ where

$$
-V=\{S\} ;
$$

$$
-T=\{0,1\} ;
$$

- P is defined as

$$
\begin{aligned}
& S \rightarrow \varepsilon \\
& S \rightarrow 0 S 1
\end{aligned}
$$

$$
S=S
$$

The string $000111 \in L\left(G_{0^{n} 1^{n}}\right)$, i.e. $S \xrightarrow{*} 000111$ as

$$
S \Rightarrow 0 S 1 \Rightarrow 00 S 11 \Rightarrow 000 S 111 \Rightarrow 000111
$$

Prove that $0^{n} 1^{n}$ is accepted by the grammar $G_{0^{n} 1^{n}}$.

The proof is in two parts.

- First show that every string w of the form $0^{n} 1^{n}$ can be derived from S using induction over w.
- Then, show that for every string $w \in\{0,1\}^{*}$ derived from S, we have that w is of the form $0^{n} 1^{n}$.

CFG: Example

Consider the following grammar $G=(V, T, P, S)$ where

- $V=\{E, I\} ; T=\{a, b, 0,1\} ; S=E$; and
- P is defined as

$$
\begin{aligned}
E & \rightarrow I|E+E| E * E \mid(E) \\
I & \rightarrow a|I a| I b|I 0| I 1
\end{aligned}
$$

The string $(a 1+b 0 * a 1) \in L(G)$, i.e. $E \stackrel{*}{\Rightarrow}(a 1+b 0 * a 1)$ as
$E \Rightarrow(E) \Rightarrow(E+E) \Rightarrow(I+E) \Rightarrow(I 1+E) \Rightarrow(a 1+E) \stackrel{*}{\Rightarrow}(a 1+b 0 * a 1)$.

CFG: Example

Consider the following grammar $G=(V, T, P, S)$ where

- $V=\{E, I\} ; T=\{a, b, 0,1\} ; S=E$; and
- P is defined as

$$
\begin{align*}
E & \rightarrow I|E+E| E * E \mid(E) \tag{E}\\
I & \rightarrow a|I a| I b|I 0| I 1
\end{align*}
$$

The string $(a 1+b 0 * a 1) \in L(G)$, i.e. $E \stackrel{*}{\Rightarrow}(a 1+b 0 * a 1)$ as
$E \Rightarrow(E) \Rightarrow(E+E) \Rightarrow(I+E) \Rightarrow(I 1+E) \Rightarrow(a 1+E) \stackrel{*}{\Rightarrow}(a 1+b 0 * a 1)$.
$E \Rightarrow(E) \Rightarrow(E+E) \Rightarrow(E+E * E) \Rightarrow(E+E * I) \stackrel{*}{\Rightarrow}(a 1+b 0 * a 1)$.

CFG: Example

Consider the following grammar $G=(V, T, P, S)$ where

$$
V=\{E, I\} ; T=\{a, b, 0,1\} ; S=E ; \text { and }
$$

P is defined as

$$
\begin{align*}
E & \rightarrow I|E+E| E * E \mid(E) \tag{E}\\
I & \rightarrow a|I a| I b|I 0| I 1
\end{align*}
$$

The string $(a 1+b 0 * a 1) \in L(G)$, i.e. $E \stackrel{*}{\Rightarrow}(a 1+b 0 * a 1)$ as

$$
\begin{aligned}
& E \Rightarrow(E) \Rightarrow(E+E) \Rightarrow(I+E) \Rightarrow(I 1+E) \Rightarrow(a 1+E) \stackrel{*}{\Rightarrow}(a 1+b 0 * a 1) . \\
& E \Rightarrow(E) \Rightarrow(E+E) \Rightarrow(E+E * E) \Rightarrow(E+E * I) \stackrel{*}{\Rightarrow}(a 1+b 0 * a 1) .
\end{aligned}
$$

Leftmost and rightmost derivations:

1. Derivations are not unique
2. Leftmost and rightmost derivations
3. Define $\Rightarrow_{l m}$ and $\Rightarrow_{r m}$ in straightforward manner.
4. Find leftmost and rightmost derivations of $(a 1+b 0 * a 1)$.

Exercise

Consider the following grammar:

$$
\begin{aligned}
& S \rightarrow A S \mid \varepsilon . \\
& S \rightarrow a a|a b| b a \mid b b
\end{aligned}
$$

Give leftmost and rightmost derivations of the string aabbba.

Parse Trees

A CFG provide a structure to a string

- Such structure assigns meaning to a string, and hence a unique structure is really important in several applications, e.g. compilers
- Parse trees are a successful data-structures to represent and store such structures

Parse Trees

A CFG provide a structure to a string

- Such structure assigns meaning to a string, and hence a unique structure is really important in several applications, e.g. compilers
- Parse trees are a successful data-structures to represent and store such structures
- Let's review the Tree terminology:
- A tree is a directed acyclic graph (DAG) where every node has at most incoming edge.

Parse Trees

A CFG provide a structure to a string
Such structure assigns meaning to a string, and hence a unique structure is really important in several applications, e.g. compilers
Parse trees are a successful data-structures to represent and store such structures

- Let's review the Tree terminology:

A tree is a directed acyclic graph (DAG) where every node has at most incoming edge.

- Edge relationship as parent-child relationship
- Every node has at most one parent, and zero or more children
- We assume an implicit order on children ("from left-to-right")
- There is a distinguished root node with no parent, while all other nodes have a unique parent
- There are some nodes with no children called leaves-other nodes are called interior nodes
Ancestor and descendent relationships are closure of parent and child relationships, resp.

Parse Tree

Given a grammar $G=(V, T, P, S)$, the parse trees associated with G has the following properties:

1. Each interior node is labeled by a variable in V.
2. Each leaf is either a variable, terminal, or ε. However, if a leaf is ε it is the only child of its parent.
3. If an interior node is labeled A and has children labeled $X_{1}, X_{2}, \ldots, X_{k}$ from left-to-right, then

$$
A \rightarrow X_{1} X_{2} \ldots X_{k}
$$

is a production is P. Only time X_{i} can be ε is when it is the only child of its parent, i.e. corresponding to the production $A \rightarrow \varepsilon$.

Reading exercise

Give parse tree representation of previous derivation exercises.

Reading exercise

Give parse tree representation of previous derivation exercises. Are leftmost-derivation and rightmost derivation parse-trees always different?

Reading exercise

Give parse tree representation of previous derivation exercises. Are leftmost-derivation and rightmost derivation parse-trees always different?

- Are parse trees unique?

Reading exercise

Give parse tree representation of previous derivation exercises. Are leftmost-derivation and rightmost derivation parse-trees always different?

- Are parse trees unique?
- Answer is no. A grammar is called ambiguous if there is at least one string with two different leftmost (or rightmost) derivations.

Reading exercise

Give parse tree representation of previous derivation exercises.
Are leftmost-derivation and rightmost derivation parse-trees always different?
Are parse trees unique?

- Answer is no. A grammar is called ambiguous if there is at least one string with two different leftmost (or rightmost) derivations.
There are some inherently ambiguous languages.

$$
L=\left\{a^{n} b^{n} c^{m} d^{m}: n, m \geq 1\right\} \cup\left\{a^{n} b^{m} c^{n} d^{m}: n, m \geq 1\right\} .
$$

Write a grammar accepting this language. Show that the string $a^{2} b^{2} c^{2} d^{2}$ has two leftmost derivations.

Reading exercise

Give parse tree representation of previous derivation exercises.
Are leftmost-derivation and rightmost derivation parse-trees always different?
Are parse trees unique?

- Answer is no. A grammar is called ambiguous if there is at least one string with two different leftmost (or rightmost) derivations.
There are some inherently ambiguous languages.

$$
L=\left\{a^{n} b^{n} c^{m} d^{m}: n, m \geq 1\right\} \cup\left\{a^{n} b^{m} c^{n} d^{m}: n, m \geq 1\right\} .
$$

Write a grammar accepting this language. Show that the string $a^{2} b^{2} c^{2} d^{2}$ has two leftmost derivations.
There is no algorithm to decide whether a grammar is ambiguous.

Reading exercise

Give parse tree representation of previous derivation exercises.
Are leftmost-derivation and rightmost derivation parse-trees always different?
Are parse trees unique?
Answer is no. A grammar is called ambiguous if there is at least one string with two different leftmost (or rightmost) derivations.
There are some inherently ambiguous languages.

$$
L=\left\{a^{n} b^{n} c^{m} d^{m}: n, m \geq 1\right\} \cup\left\{a^{n} b^{m} c^{n} d^{m}: n, m \geq 1\right\} .
$$

Write a grammar accepting this language. Show that the string $a^{2} b^{2} c^{2} d^{2}$ has two leftmost derivations.
There is no algorithm to decide whether a grammar is ambiguous.
What does that mean from application side?

In-class Quiz

Write CFGs for the following languages:

1. Strings ending with a 0
2. Strings containing even number of 1 's
3. palindromes over $\{0,1\}$
4. $L=\left\{a^{i} b^{j}: i \leq 2 j\right\}$ or $L=\left\{a^{i} b^{j}: i<2 j\right\}$ or $L=\left\{a^{i} b^{j}: i \neq 2 j\right\}$
5. $L=\left\{a^{i} b^{j} c^{k}: i=k\right\}$
6. $L=\left\{a^{i} b^{j} c^{k}: i=j\right\}$
7. $L=\left\{a^{i} b^{j} c^{k}: i=j+k\right\}$.
8. $L=\left\{w \in\{0,1\}^{*}:|w|_{a}=|w|_{b}\right\}$.
9. Closure under union, concatenation, and Kleene star
10. Closure under substitution, homomorphism, and reversal

Syntactic Ambiguity in English

Pushdown Automata

Properties of CFLs

Pushdown Automata

Anthony G. Oettinger

M. P. Schutzenberger

Introduced independently by Anthony G. Oettinger in 1961 and by Marcel-Paul Schützenberger in 1963 Generalization of ε-NFA with a "stack-like" storage mechanism
Precisely capture context-free languages
Deterministic version is not as expressive as non-deterministic one
Applications in program verification and syntax analysis

Example 1: $L=\left\{w \bar{w}: w \in\{0,1\}^{*}\right\}$

\section*{input tape $\left.\rightarrow$| 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | \right\rvert\, | 1 |
| :--- |}

pushdown stack

Example 1: $L=\left\{w \bar{w}: w \in\{0,1\}^{*}\right\}$

\section*{input tape $\left.\rightarrow$| 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | \right\rvert\, | 1 |
| :--- |}

pushdown stack

Example 1: $L=\left\{w \bar{w}: w \in\{0,1\}^{*}\right\}$

\section*{input tape $\left.\rightarrow$| 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | \right\rvert\, | 1 |
| :--- |}

pushdown stack

Example 1: $L=\left\{w \bar{w}: w \in\{0,1\}^{*}\right\}$

\section*{input tape $\left.\rightarrow$| 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | \right\rvert\, | 1 |
| :--- |}

pushdown stack

Example 1: $L=\left\{w \bar{w}: w \in\{0,1\}^{*}\right\}$

\section*{input tape $\left.\rightarrow$| 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | \right\rvert\, | 1 |
| :--- |}

pushdown stack

Example 1: $L=\left\{w \bar{w}: w \in\{0,1\}^{*}\right\}$

\section*{input tape $\left.\rightarrow$| 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | \right\rvert\, | 1 |
| :--- |}

pushdown stack

Example 1: $L=\left\{w \bar{w}: w \in\{0,1\}^{*}\right\}$

\section*{input tape $\left.\rightarrow$| 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | \right\rvert\, | 1 |
| :--- |}

pushdown stack

Example 1: $L=\left\{w \bar{w}: w \in\{0,1\}^{*}\right\}$

\section*{input tape $\left.\rightarrow$| 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | \right\rvert\, | 1 |
| :--- |}

pushdown stack

Example 1: $L=\left\{w \bar{w}: w \in\{0,1\}^{*}\right\}$

input tape $\left.\rightarrow$| 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | \right\rvert\,

pushdown stack

Example 1: $L=\left\{w \bar{w}: w \in\{0,1\}^{*}\right\}$

\section*{input tape $\left.\rightarrow$| 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | \right\rvert\, | 1 |
| :--- |}

pushdown stack

Example 1: $L=\left\{w \bar{w}: w \in\{0,1\}^{*}\right\}$

\section*{input tape $\left.\rightarrow$| 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | \right\rvert\, | 1 |
| :--- |}

pushdown stack

Example 1: $L=\left\{w \bar{w}: w \in\{0,1\}^{*}\right\}$

\section*{input tape $\left.\rightarrow$| 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | \right\rvert\, | 1 |
| :--- |}

pushdown stack

Pushdown Automata

A pushdown automata is a tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, \perp, F\right)$ where:

- Q is a finite set called the states;
- Σ is a finite set called the alphabet;
$-\Gamma$ is a finite set called the stack alphabet;
$-\delta: Q \times \Sigma \times \Gamma \rightarrow 2^{Q \times \Gamma^{*}}$ is the transition function;
$-q_{0} \in Q$ is the start state;
$-\perp \in \Gamma$ is the start stack symbol;
$-F \subseteq Q$ is the set of accepting states.

Semantics of a PDA

Let $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \perp, F\right)$ be a PDA.
A configuration (or instantaneous description) of a PDA is a triple (q, w, γ) where

- q is the current state,
$-w$ is the remaining input, and
$-\gamma \in \Gamma^{*}$ is the stack contents, where written as concatenation of symbols form top-to-bottom.
We define the operator \vdash (derivation) such that if $(p, \alpha) \in \delta(q, a, X)$ then

$$
(q, a w, X \beta) \vdash(p, w, \alpha \beta),
$$

for all $w \in \Sigma^{*}$ and $\beta \in \Gamma^{*}$. The operator \perp^{*} is defined as transitive closure of \perp in straightforward manner.
A run of a PDA $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \perp, F\right)$ over an input word $w \in \Sigma^{*}$ is a sequence of configurations

$$
\left(q_{0}, w_{0}, \beta_{0}\right),\left(q_{1}, w_{1}, \beta_{1}\right), \ldots,\left(q_{n}, w_{n}, \beta_{n}\right)
$$

such that for every $0 \leq i<n-1$ we have that

$$
\left(q_{i}, w_{i}, \beta_{i}\right) \vdash\left(q_{i+1}, w_{i+1}, \beta_{i+1}\right) \text { and }\left(q_{0}, w_{0}, \beta_{0}\right)=\left(q_{0}, w, \perp\right)
$$

Semantics: acceptance via final states

1. We say that a run

$$
\left(q_{0}, w_{0}, \beta_{0}\right),\left(q_{1}, w_{1}, \beta_{1}\right), \ldots,\left(q_{n}, w_{n}, \beta_{n}\right)
$$

is accepted via final state if $q_{n} \in F$ and $w_{n}=\varepsilon$.
2. We say that a word w is accepted via final states if there exists a run of P over w that is accepted via final state.
3. We write $L(P)$ for the set of words accepted via final states.
4. In other words,

$$
L(P)=\left\{w:\left(q_{0}, w, \perp\right) \vdash^{*}\left(q_{n}, \varepsilon, \beta\right) \text { and } q_{n} \in F\right\} .
$$

Semantics: acceptance via final states

1. We say that a run

$$
\left(q_{0}, w_{0}, \beta_{0}\right),\left(q_{1}, w_{1}, \beta_{1}\right), \ldots,\left(q_{n}, w_{n}, \beta_{n}\right)
$$

is accepted via final state if $q_{n} \in F$ and $w_{n}=\varepsilon$.
2. We say that a word w is accepted via final states if there exists a run of P over w that is accepted via final state.
3. We write $L(P)$ for the set of words accepted via final states.
4. In other words,

$$
L(P)=\left\{w:\left(q_{0}, w, \perp\right) \vdash^{*}\left(q_{n}, \varepsilon, \beta\right) \text { and } q_{n} \in F\right\} .
$$

5. Example $L=\left\{w \bar{w}: w \in\{0,1\}^{*}\right\}$ with the notion of configuration, computation, run, and acceptance.

Semantics: acceptance via empty stack

1. We say that a run

$$
\left(q_{0}, w_{0}, \beta_{0}\right),\left(q_{1}, w_{1}, \beta_{1}\right), \ldots,\left(q_{n}, w_{n}, \beta_{n}\right)
$$

is accepted via empty stack if $\beta_{n}=\varepsilon$ and $w_{n}=\varepsilon$.
2. We say that a word w is accepted via empty stack if there exists a run of P over w that is accepted via empty stack.
3. We write $N(P)$ for the set of words accepted via empty stack.
4. In other words

$$
N(P)=\left\{w:\left(q_{0}, w, \perp\right) \vdash^{*}\left(q_{n}, \varepsilon, \varepsilon\right)\right\} .
$$

Semantics: acceptance via empty stack

1. We say that a run

$$
\left(q_{0}, w_{0}, \beta_{0}\right),\left(q_{1}, w_{1}, \beta_{1}\right), \ldots,\left(q_{n}, w_{n}, \beta_{n}\right)
$$

is accepted via empty stack if $\beta_{n}=\varepsilon$ and $w_{n}=\varepsilon$.
2. We say that a word w is accepted via empty stack if there exists a run of P over w that is accepted via empty stack.
3. We write $N(P)$ for the set of words accepted via empty stack.
4. In other words

$$
N(P)=\left\{w:\left(q_{0}, w, \perp\right) \vdash^{*}\left(q_{n}, \varepsilon, \varepsilon\right)\right\} .
$$

Is $L(P)=N(P)$?

Equivalence of both notions

Theorem

For every language defind by a PDA with empty stack semantics, there exists a PDA that accept the same language with final state semantics, and vice-versa.

Proof.

Final state to Empty stack

Add a new stack symbol, say \perp^{\prime}, as the start stack symbol, and in the first transition replace it with $\perp \perp^{\prime}$ before reading any symbol. (How? and Why?)
From every final state make a transition to a sink state that does not read the input but empties the stack including \perp^{\prime}.

Equivalence of both notions

Theorem

For every language defind by a PDA with empty stack semantics, there exists a PDA that accept the same language with final state semantics, and vice-versa.

Proof.

Final state to Empty stack

Add a new stack symbol, say \perp^{\prime}, as the start stack symbol, and in the first transition replace it with $\perp \perp^{\prime}$ before reading any symbol.
(How? and Why?)
From every final state make a transition to a sink state that does not read the input but empties the stack including \perp^{\prime}.
Empty Stack to Final state
Replace the start stack symbol \perp^{\prime} and $\perp \perp^{\prime}$ before reading any symbol. (Why?)
From every state make a transition to a new unique final state that does not read the input but removes the symbol \perp^{\prime}.

Formal Construction: Empty stack to Final State

Let $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \perp\right)$ be a PDA. We claim that the PDA $P^{\prime}=\left(Q^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, \perp^{\prime}, F^{\prime}\right)$ is such that $N(P)=L\left(P^{\prime}\right)$, where

1. $Q^{\prime}=Q \cup\left\{q_{0}^{\prime}\right\} \cup\left\{q_{F}\right\}$
2. $\Gamma^{\prime}=\Gamma \cup\left\{\perp^{\prime}\right\}$
3. $F^{\prime}=\left\{q_{F}\right\}$.
4. δ^{\prime} is such that

- $\delta^{\prime}(q, a, X)=\delta(q, a, X)$ for all $q \in Q$ and $X \in \Gamma$,
$-\delta^{\prime}\left(q_{0}^{\prime}, \varepsilon, \perp^{\prime}\right)=\left\{\left(q_{0}, \perp \perp^{\prime}\right)\right\}$ and
$-\delta^{\prime}\left(q, \varepsilon, \perp^{\prime}\right)=\left\{\left(q_{F}, \perp^{\prime}\right)\right\}$ for all $q \in Q$.

Formal Construction: Final State to Empty Stack

Let $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \perp, F\right)$ be a PDA. We claim that the PDA $P^{\prime}=\left(Q^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, \perp^{\prime}\right)$ is such that $L(P)=N\left(P^{\prime}\right)$, where

1. $Q^{\prime}=Q \cup\left\{q_{0}^{\prime}\right\} \cup\left\{q_{F}\right\}$
2. $\Gamma^{\prime}=\Gamma \cup\left\{\perp^{\prime}\right\}$
3. δ^{\prime} is such that

- $\delta^{\prime}(q, a, X)=\delta(q, a, X)$ for all $q \in Q$ and $X \in \Gamma$,
$-\delta^{\prime}\left(q_{0}^{\prime}, \varepsilon, \perp^{\prime}\right)=\left\{\left(q_{0}, \perp \perp^{\prime}\right)\right\}$ and
$-\delta^{\prime}(q, \varepsilon, X)=\left\{\left(q_{F}, \varepsilon\right)\right\}$ for all $q \in Q$ and $X \in \Gamma$.
- $\delta^{\prime}\left(q_{F}, \varepsilon, X\right)=\left\{\left(q_{F}, \varepsilon\right)\right\}$ for all $X \in \Gamma$.

Expressive power of CFG and PDA

Theorem

A language is context-free if and only if some pushdown automaton accepts it.

Proof.

1. For an arbitrary CFG G give a PDA P_{G} such that $L(G)=L\left(P_{G}\right)$.

Expressive power of CFG and PDA

Theorem

A language is context-free if and only if some pushdown automaton accepts it.

Proof.

1. For an arbitrary CFG G give a PDA P_{G} such that $L(G)=L\left(P_{G}\right)$.

Leftmost derivation of a string using the stack
One state PDA accepting by empty stack
Proof via a simple induction over size of an accepting run of PDA

Expressive power of CFG and PDA

Theorem

A language is context-free if and only if some pushdown automaton accepts it.

Proof.

1. For an arbitrary CFG G give a PDA P_{G} such that $L(G)=L\left(P_{G}\right)$.

Leftmost derivation of a string using the stack
One state PDA accepting by empty stack
Proof via a simple induction over size of an accepting run of PDA
2. For an arbitrary PDA P give a CFG G_{P} such that $L(P)=L\left(G_{P}\right)$.

Expressive power of CFG and PDA

Theorem

A language is context-free if and only if some pushdown automaton accepts it.

Proof.

1. For an arbitrary CFG G give a PDA P_{G} such that $L(G)=L\left(P_{G}\right)$.

Leftmost derivation of a string using the stack
One state PDA accepting by empty stack
Proof via a simple induction over size of an accepting run of PDA
2. For an arbitrary PDA P give a CFG G_{P} such that $L(P)=L\left(G_{P}\right)$.

Modify the PDA to have the following properties such that each step is either a "push" or "pop", and has a single accepting state and the stack is emptied before accepting.
For every state pair of P define a variable $A_{p q}$ in P_{G} generating strings such that PDA moves from state p to state q starting and ending with empty stack.
Three production rules

$$
A_{p q}=a A_{r s} b \text { and } A_{p q}=A_{p r} A_{r q} \text { and } A_{p p}=\varepsilon
$$

From CFGs to PDAs

Given a CFG $G=(V, T, P, S)$ consider PDA $P_{G}=(\{q\}, T, V \cup T, \delta, q, S)$ s.t.:

- for every $a \in T$ we have

$$
\delta(q, a, a)=(q, \varepsilon), \text { and }
$$

for variable $A \in V$ we have that

$$
\delta(q, \varepsilon, A)=\{(q, \beta): A \rightarrow \beta \text { is a production of } P\} .
$$

Then $L(G)=N\left(P_{G}\right)$.

From CFGs to PDAs

Given a CFG $G=(V, T, P, S)$ consider PDA $P_{G}=(\{q\}, T, V \cup T, \delta, q, S)$ s.t.:

- for every $a \in T$ we have

$$
\delta(q, a, a)=(q, \varepsilon), \text { and }
$$

for variable $A \in V$ we have that

$$
\delta(q, \varepsilon, A)=\{(q, \beta): A \rightarrow \beta \text { is a production of } P\} .
$$

Then $L(G)=N\left(P_{G}\right)$.

Example. Give the PDA equivalent to the following grammar

$$
\begin{aligned}
I & \rightarrow a|b| I a|I b| I 0 \mid I 1 \\
E & \rightarrow I|E * E| E+E \mid(E) .
\end{aligned}
$$

From CFGs to PDAs

Theorem

We have that $w \in N(P)$ if and only if $w \in L(G)$.

Proof.

(If part). Suppose $w \in L(G)$. Then w has a leftmost derivation

$$
S=\gamma_{1} \Rightarrow_{l m} \gamma_{2} \Rightarrow_{l m} \cdots \Rightarrow_{l m} \gamma_{n}=w .
$$

It is straightforward to see that by induction on i that $(q, w, S) \vdash^{*}\left(q, y_{i}, \alpha_{i}\right)$ where $w=x_{i} y_{i}$ and $x_{i} \alpha_{i}=\gamma_{i}$.

From CFGs to PDAs

Theorem

We have that $w \in N(P)$ if and only if $w \in L(G)$.

Proof.

(Only If part). Suppose $w \in N(P)$, i.e. $(q, w, S) \vdash^{*}(q, \varepsilon, \varepsilon)$.
We show that if $(q, x, A) \vdash^{*}(q, \varepsilon, \varepsilon)$ then $A \Rightarrow^{*} x$ by induction over number of moves taken by P.

Base case. $x=\varepsilon$ and $(q, \varepsilon) \in \delta(q, \varepsilon, A)$. It follows that $A \rightarrow \varepsilon$ is a production in P.
inductive step. Let the first step be $A \rightarrow Y_{1} Y_{2} \ldots Y_{k}$. Let $x_{1} x_{2} \ldots x_{k}$ be the part of input to be consumed by the time $Y_{1} \ldots Y_{k}$ is popped out of the stack.
It follows that $\left(q, x_{i}, Y_{i}\right) \vdash^{*}(q, \varepsilon, \varepsilon)$, and from inductive hypothesis we get that $Y_{i} \Rightarrow x_{i}$ if Y_{i} is a variable, and $Y_{i}=x_{i}$ is Y_{i} is a terminal. Hence, we conclude that $A \Rightarrow^{*} x$.

From PDAs to CFGs

Given a PDA $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \perp,\left\{q_{F}\right\}\right)$ with restriction that every transition is either pushes a symbol or pops a symbol form the stack, i.e. $\delta(q, a, X)$ contains either $\left(q^{\prime}, Y X\right)$ or $\left(q^{\prime}, \varepsilon\right)$.
Consider the grammar $G_{p}=(V, T, P, S)$ such that
$-V=\left\{A_{p, q}: p, q \in Q\right\}$

- $T=\Sigma$
$-S=A_{q_{0}, q_{F}}$
- and P has transitions of the following form:
$-A_{q, q} \rightarrow \varepsilon$ for all $q \in Q$;
$-A_{p, q} \rightarrow A_{p, r} A_{r, q}$ for all $p, q, r \in Q$,
- $A_{p, q} \rightarrow a A_{r, s} b$ if $\delta(p, a, \varepsilon)$ contains (r, X) and $\delta(s, b, X)$ contains (q, ε).

From PDAs to CFGs

Given a PDA $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \perp,\left\{q_{F}\right\}\right)$ with restriction that every transition is either pushes a symbol or pops a symbol form the stack, i.e. $\delta(q, a, X)$ contains either $\left(q^{\prime}, Y X\right)$ or $\left(q^{\prime}, \varepsilon\right)$.
Consider the grammar $G_{p}=(V, T, P, S)$ such that

$$
\begin{aligned}
-V & =\left\{A_{p, q}: p, q \in Q\right\} \\
-T & =\Sigma \\
S & =A_{q_{0}, q_{F}}
\end{aligned}
$$

- and P has transitions of the following form:
- $A_{q, q} \rightarrow \varepsilon$ for all $q \in Q$;
- $A_{p, q} \rightarrow A_{p, r} A_{r, q}$ for all $p, q, r \in Q$,
$A_{p, q} \rightarrow a A_{r, s} b$ if $\delta(p, a, \varepsilon)$ contains (r, X) and $\delta(s, b, X)$ contains (q, ε).
We have that $L\left(G_{p}\right)=L(P)$.

From PDAs to CFGs

Theorem

If $A_{p, q} \Rightarrow^{*} x$ then x can bring the PDA P from state p on empty stack to state q on empty stack.

Proof.

We prove this theorem by induction on the number of steps in the derivation of x from $A_{p, q}$.

Base case. If $A_{p, q} \Rightarrow^{*} x$ in one step, then the only rule that can generate a variable free string in one step is $A_{p, p} \rightarrow \varepsilon$.
Inductive step. If $A_{p, q} \Rightarrow^{*} x$ in $n+1$ steps. The first step in the derivation must be $A_{p, q} \rightarrow A_{p, r} A_{r, q}$ or $A_{p, q} \rightarrow a A_{r, s} b$.

If it is $A_{p, q} \rightarrow A_{p, r} A_{r, q}$, then the string x can be broken into two parts $x_{1} x_{2}$ such that $A_{p, r} \Rightarrow^{*} x_{1}$ and $A_{r, q} \Rightarrow^{*} x_{2}$ in at most n steps. The theorem easily follows in this case.
If it is $A_{p, q} \rightarrow a A_{r, s} b$, then the string x can be broken as $a y b$ such that $A_{r, s} \Rightarrow^{*} y$ in n steps. Notice that from p on reading a the PDA pushes a symbol X to stack, while it pops X in state s and goes to q.

From CFGs to PDAs

Theorem

If x can bring the PDA P from state p on empty stack to state q on empty stack then $A_{p, q} \Rightarrow^{*} x$.

Proof.

We prove this theorem by induction on the number of steps the PDA takes on x to go from p on empty stack to q on empty stack.

Base case. If the computation has 0 steps that it begins and ends with the same state and reads ε from the tape. Note that $A_{p, p} \Rightarrow^{*} \varepsilon$ since $A_{p, p} \rightarrow \varepsilon$ is a rule in P.
Inductive step. If the computation takes $n+1$ steps. To keep the stack empty, the first step must be a "push" move, while the last step must be a "pop" move. There are two cases to consider:

The symbol pushed in the first step is the symbol popped in the last step. The symbol pushed if the first step has been popped somewhere in the middle.

Pushdown Automata

Properties of CFLs

Lecture 6: Context-Free Grammar

Deterministic Pushdown Automata

A PDA $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \perp, F\right)$ is deterministic if

- $\delta(q, a, X)$ has at most one member for every $q \in Q, a \in \Sigma$ or $a=\varepsilon$, and $X \in \Gamma$.
- If $\delta(q, a, X)$ is nonempty for some $a \in \Sigma$ then $\delta(q, \varepsilon, X)$ must be empty.

Deterministic Pushdown Automata

A PDA $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \perp, F\right)$ is deterministic if

- $\delta(q, a, X)$ has at most one member for every $q \in Q, a \in \Sigma$ or $a=\varepsilon$, and $X \in \Gamma$.
- If $\delta(q, a, X)$ is nonempty for some $a \in \Sigma$ then $\delta(q, \varepsilon, X)$ must be empty.

Example. $L=\left\{0^{n} 1^{n}: n \geq 1\right\}$.

Deterministic Pushdown Automata

A PDA $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \perp, F\right)$ is deterministic if
$-\delta(q, a, X)$ has at most one member for every $q \in Q, a \in \Sigma$ or $a=\varepsilon$, and $X \in \Gamma$.

- If $\delta(q, a, X)$ is nonempty for some $a \in \Sigma$ then $\delta(q, \varepsilon, X)$ must be empty. Example. $L=\left\{0^{n} 1^{n}: n \geq 1\right\}$.

Theorem

Every regular language can be accepted by a deterministic pushdown automata that accepts by final states.

Deterministic Pushdown Automata

A PDA $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \perp, F\right)$ is deterministic if
$\delta(q, a, X)$ has at most one member for every $q \in Q, a \in \Sigma$ or $a=\varepsilon$, and $X \in \Gamma$.

- If $\delta(q, a, X)$ is nonempty for some $a \in \Sigma$ then $\delta(q, \varepsilon, X)$ must be empty. Example. $L=\left\{0^{n} 1^{n}: n \geq 1\right\}$.

Theorem

Every regular language can be accepted by a deterministic pushdown automata that accepts by final states.

Theorem (DPDA \neq PDA)

There are some CFLs, for instance $\{w \bar{w}\}$ that can not be accepted by a DPDA.

Chomsky Normal Form

A Context-free grammar (V, T, P, S) is in Chomsky Normal Form if every rule is of the form

$$
\begin{aligned}
& A \rightarrow B C \\
& A \rightarrow a .
\end{aligned}
$$

where A, B, C are variables, and a is a nonterminal. Also, the start variable S must not appear on the right-side of any rule, and we also permit the rule $S \rightarrow \varepsilon$.

Theorem

Every context-free language is generated by a CFG in Chomsky normal form.

Chomsky Normal Form

A Context-free grammar (V, T, P, S) is in Chomsky Normal Form if every rule is of the form

$$
\begin{aligned}
& A \rightarrow B C \\
& A \rightarrow a .
\end{aligned}
$$

where A, B, C are variables, and a is a nonterminal. Also, the start variable S must not appear on the right-side of any rule, and we also permit the rule $S \rightarrow \varepsilon$.

Theorem

Every context-free language is generated by a CFG in Chomsky normal form.

Reading Assignment: How to convert an arbitrary CFG to Chomsky Normal Form.

Pumping Lemma for CFLs

Theorem

For every context-free language L there exists a constant p (that depends on L) such that
for every string $z \in L$ of length greater or equal to p, there is an infinite family of strings belonging to L.

Pumping Lemma for CFLs

Theorem

For every context-free language L there exists a constant p (that depends on L) such that
for every string $z \in L$ of length greater or equal to p, there is an infinite family of strings belonging to L.

Why?
Think parse Trees!

Pumping Lemma for CFLs

Theorem

For every context-free language L there exists a constant p (that depends on L) such that for every string $z \in L$ of length greater or equal to p, there is an infinite family of strings belonging to L.

Why?
Think parse Trees!

Let L be a CFL. Then there exists a constant n such that if z is a string in L of length at least n, then we can write $z=$ uvwxy such that

$$
\begin{aligned}
& |v w x| \leq n \\
& v x \neq \varepsilon \\
& \text { For all } i \geq 0 \text { the string } u v^{i} w x^{i} y \in L .
\end{aligned}
$$

Pumping Lemma for CFLs

Theorem

Let L be a CFL. Then there exists a constant n such that if z is a string in L of length at least n, then we can write $z=u v w x y$ such that i) $|v w x| \leq n, i i) v x \neq \varepsilon$, and iii) for all $i \geq 0$ the string $u v^{i} w x^{i} y \in L$.

- Let G be a CFG accepting L. Let b be an upper bound on the size of the RHS of any production rule of G.

Pumping Lemma for CFLs

Theorem

Let L be a CFL. Then there exists a constant n such that if z is a string in L of length at least n, then we can write $z=u v w x y$ such that i) $|v w x| \leq n, i i) v x \neq \varepsilon$, and iii) for all $i \geq 0$ the string $u v^{i} w x^{i} y \in L$.

Let G be a CFG accepting L. Let b be an upper bound on the size of the RHS of any production rule of G.
What is the upper bound on the length strings in L with parse-tree of height $\ell+1$?

Pumping Lemma for CFLs

Theorem

Let L be a CFL. Then there exists a constant n such that if z is a string in L of length at least n, then we can write $z=$ uvwxy such that i) $|v w x| \leq n, i i) v x \neq \varepsilon$, and iii) for all $i \geq 0$ the string $u v^{i} w x^{i} y \in L$.

Let G be a CFG accepting L. Let b be an upper bound on the size of the RHS of any production rule of G.
What is the upper bound on the length strings in L with parse-tree of height $\ell+1$?

Answer: b^{ℓ}.
Let $N=|V|$ be the number of variables in G.
What can we say about the strings z in L of size greater than b^{N} ?

Pumping Lemma for CFLs

Theorem

Let L be a CFL. Then there exists a constant n such that if z is a string in L of length at least n, then we can write $z=u v w x y$ such that $i)|v w x| \leq n, i i) v x \neq \varepsilon$, and iii) for all $i \geq 0$ the string $u v^{i} w x^{i} y \in L$.

Let G be a CFG accepting L. Let b be an upper bound on the size of the RHS of any production rule of G.
What is the upper bound on the length strings in L with parse-tree of height $\ell+1$?
Let $N=|V|$ be the number of variables in G.
What can we say about the strings z in L of size greater than b^{N} ?
Answer: in every parse tree of z there must be a path where a variable repeats.
Consider a minimum size parse-tree generating z, and consider a path where at least a variable repeats, and consider the last such variable. Justify the conditions of the pumping Lemma.

Applying Pumping Lemma

Theorem (Pumping Lemma for Context-free Languages)

$L \in \Sigma^{*}$ is a context-free language
\Longrightarrow
there exists $p \geq 1$ such that
for all strings $z \in L$ with $|z| \geq p$ we have that
there exists $u, v, w, x, y \in \Sigma^{*}$ with $z=u v w x y,|v x|>0,|v w x| \leq p$ such that
for all $i \geq 0$ we have that
$u v^{i} w x^{i} y \in L$.

Applying Pumping Lemma

Theorem (Pumping Lemma for Context-free Languages)

$L \in \Sigma^{*}$ is a context-free language

\Longrightarrow

there exists $p \geq 1$ such that
for all strings $z \in L$ with $|z| \geq p$ we have that
there exists $u, v, w, x, y \in \Sigma^{*}$ with $z=u v w x y,|v x|>0,|v w x| \leq p$ such that
for all $i \geq 0$ we have that
$u v^{i} w x^{i} y \in L$.

Pumping Lemma (Contrapositive)

For all $p \geq 1$ we have that
there exists strings $z \in L$ with $|z| \geq p$ such that
for all $u, v, w, x, y \in \Sigma^{*}$ with $z=u v w x y,|v x|>0,|v w x| \leq p$ we have that there exists $i \geq 0$ such that $u v^{i} w x^{i} y \notin L$.
$L \in \Sigma^{*}$ is not a context-free language.

Example

Prove that the following languages are not context-free:

1. $L=\left\{0^{n} 1^{n} 2^{n}: n \geq 0\right\}$
2. $L=\left\{0^{i} 1^{j} 2^{k}: 0 \leq i \leq j \leq k\right\}$
3. $L=\left\{w w: w \in\{0,1\}^{*}\right\}$.
4. $L=\left\{0^{n}: n\right.$ is a prime number $\}$.
5. $L=\left\{0^{n}: n\right.$ is a perfect square $\}$.
6. $L=\left\{0^{n}: n\right.$ is a perfect cube $\}$.

Closure Properties

Theorem

Context-free languages are closed under the following operations:

1. Union
2. Concatenation
3. Kleene closure
4. Homomorphism
5. Substitution
6. Inverse-homomorphism
7. Reverse

Closure Properties

Theorem

Context-free languages are closed under the following operations:

1. Union
2. Concatenation
3. Kleene closure
4. Homomorphism
5. Substitution
6. Inverse-homomorphism
7. Reverse

Reading Assignment: Proof of closure under these operations.

Intersection and Complementaion

Theorem

Context-free languages are not closed under intersection and complementation.

Proof.

Consider the languages

$$
\begin{aligned}
& L_{1}=\left\{0^{n} 1^{n} 2^{m}: n, m \geq 0\right\}, \text { and } \\
& L_{2}=\left\{0^{m} 1^{n} 2^{n}: n, m \geq 0\right\} .
\end{aligned}
$$

Both languages are CFLs.
What is $L_{1} \cap L_{2}$?

Intersection and Complementaion

Theorem

Context-free languages are not closed under intersection and complementation.

Proof.

Consider the languages

$$
\begin{aligned}
& L_{1}=\left\{0^{n} 1^{n} 2^{m}: n, m \geq 0\right\}, \text { and } \\
& L_{2}=\left\{0^{m} 1^{n} 2^{n}: n, m \geq 0\right\} .
\end{aligned}
$$

Both languages are CFLs.
What is $L_{1} \cap L_{2}$?
$L=\left\{0^{n} 1^{n} 2^{n}: n \geq 0\right\}$ and it is not a CFL.
Hence CFLs are not closed under intersection.

Intersection and Complementaion

Theorem

Context-free languages are not closed under intersection and complementation.

Proof.

Consider the languages

$$
\begin{aligned}
& L_{1}=\left\{0^{n} 1^{n} 2^{m}: n, m \geq 0\right\}, \text { and } \\
& L_{2}=\left\{0^{m} 1^{n} 2^{n}: n, m \geq 0\right\} .
\end{aligned}
$$

Both languages are CFLs.
What is $L_{1} \cap L_{2}$?
$L=\left\{0^{n} 1^{n} 2^{n}: n \geq 0\right\}$ and it is not a CFL.
Hence CFLs are not closed under intersection.
Use De'morgan's law to prove non-closure under complementation.

