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Context-Free Grammars

Noam Chomsky
(linguist, philosopher, logician, and activist)

“ A grammar can be regarded as a device that enumerates the sentences of a language. We
study a sequence of restrictions that limit grammars first to Turing machines, then to two
types of systems from which a phrase structure description of a generated language can be

drawn, and finally to finite state Markov sources (finite automata). ”
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Grammars

A (formal) grammar consists of
1. A finite set of rewriting rules of the form

b=

where ¢ and ¢ are strings of symbols.
2. A special “initial” symbol S (S standing for sentence);

3. A finite set of symbols stand for “words” of the language called
terminal vocabulary;

4. Other symbols stand for “phrases” and are called non-terminal
vocabulary.
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Grammars

A (formal) grammar consists of
1. A finite set of rewriting rules of the form

b=

where ¢ and ¢ are strings of symbols.
2. A special “initial” symbol S (S standing for sentence);

3. A finite set of symbols stand for “words” of the language called
terminal vocabulary;

4. Other symbols stand for “phrases” and are called non-terminal
vocabulary.

Given such a grammar, a valid sentence can be generated by
1. starting from the initial symbol S,
2. applying one of the rewriting rules to form a new string ¢ by
applying arule S — ¢1,
3. and apply another rule to form a new string ¢, and so on,
4. until we reach a string ¢, that consists only of terminal symbols.
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Examples

Consider the grammar

S — AB 1)
A - C @)
CB — Cb 3)
C - a (4)

where {a, b} are terminals, and {S, A, B, C} are non-terminals.
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Examples

Consider the grammar

S — AB 1)
A - C @)
CB — Cb 3)
C - a (4)

where {a, b} are terminals, and {S, A, B, C} are non-terminals.
We can derive the phrase “ab” from this grammar in the following way:

S — AB, from (1)
CB, from (2)
Cb, from (3)
ab, from (4)

VRSN
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Examples

Consider the grammar

S — NounPhrase VerbPhrase (5)

NounPhrase —  SingularNoun (6)
SingularNoun VerbPhrase —  SingularNoun comes (7)
SingularNoun —  John (8)

We can derive the phrase “John comes” from this grammar in the
following way:
NounPhrase VerbPhrase, from (1)

SingularNoun VerbPhrase, from (2)
SingularNoun comes, from (3)

L4l

John comes, from (4)
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Types of Grammars

Depending on the rewriting rules we can characterize the grammars in the
following four types:

1. type 0 grammars with no restriction on rewriting rules;
2. type 1 grammars have the rules of the form

aAB — avyp

where A is a nonterminal, «, 3, v are strings of terminals and
nonterminals, and « is non empty.

3. type 2 grammars have the rules of the form
A=y

where A is a nonterminal, and v is a string (potentially empty) of
terminals and nonterminals.

4. type 3 grammars have the rules of the form
A—aBorA —a

where A, B are nonterminals, and 4 is a string (potentially empty) of

terminals. i
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Types of Grammars

Depending on the rewriting rules we can characterize the grammars in the
following four types:

1. Unrestricted grammars with no restriction on rewriting rules;
2. Context-sensitive grammars have the rules of the form

QAp — ayp

where A is a nonterminal, «, 3, are strings of terminals and
nonterminals, and +y is non empty.

3. Context-free grammars have the rules of the form
A=y

where A is a nonterminal, and ~ is a string (potentially empty) of
terminals and nonterminals.

4. Regular grammars have the rules of the form
A —aBorA —a

where A, B are nonterminals, and 4 is a string (potentially empty) of

terminals.
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Types of Grammars

Depending on the rewriting rules we can characterize the grammars in the
following four types:

1. Unrestricted grammars with no restriction on rewriting rules;
2. Context-sensitive grammars have the rules of the form

QAp — ayp

where A is a nonterminal, «, 3, are strings of terminals and
nonterminals, and +y is non empty.

3. Context-free grammars have the rules of the form
A=y

where A is a nonterminal, and ~ is a string (potentially empty) of
terminals and nonterminals.

4. Regular grammars have the rules of the form
A —aBorA —a

where A, B are nonterminals, and 4 is a string (potentially empty) of

terminals. (also left-linear grammars)
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Do regular grammars capture regular languages?

Regular grammars to finite automata
Finite automata to regular grammars
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Context-Free Languages: Syntax

Definition (Context-Free Grammar)
A context-free grammar is a tuple G = (V, T, P, S) where
V is a finite set of variables (nonterminals, nonterminals vocabulary);
T is a finite set of terminals (letters);
P CV x (VUT)* is a finite set of rewriting rules called productions,
We write A — Bif (A, 8) € P;
S € Vis a distinguished start or “sentence” symbol.
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Context-Free Languages: Syntax

Definition (Context-Free Grammar)
A context-free grammar is a tuple G = (V, T, P, S) where
V is a finite set of variables (nonterminals, nonterminals vocabulary);

T is a finite set of terminals (letters);

P CV x (VUT)* is a finite set of rewriting rules called productions,
We write A — Bif (A, 8) € P;

S € Vis a distinguished start or “sentence” symbol.

Example: Goi» = (V, T, P, S) where

V={S}
T={0,1};
P is defined as
S — ¢
S — 081
S=8S.
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Context-Free Languages: Semantics

Derivation:
Let G = (V,T,P,S) be a context-free grammar.
Let aAfB be a string in (VUT)*V(VUT)*
We say that aAf yields the string oy, and we write aAfS=a~f if

A — v is a production rule in G.

For strings «, 8 € (V UT)*, we say that o derives 8 and we write
a = fif thereis a sequence aq,®,...,0, € (VUT)* st

a—a] = ayay — .
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Context-Free Languages: Semantics

Derivation:
Let G = (V,T,P,S) be a context-free grammar.
Let aAfB be a string in (VUT)*V(VUT)*
We say that aAf yields the string oy, and we write aAfS=a~f if

A — v is a production rule in G.

For strings «, 8 € (V UT)*, we say that o derives 8 and we write
a = fif thereis a sequence aq,®,...,0, € (VUT)* st

a—a] = ayay — .

Definition (Context-Free Grammar: Semantics)

The language L(G) accepted by a context-free grammar G = (V, T, P, S) is
the set
LG ={weT :S=uw)
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CFG: Example

Recall Gouin = (V, T, P, S) where

V ={S};

T ={0,1};

P is defined as
S — =«
S — 081

S5=S5.
The string 000111 € L(Ggn1+), i.e. S = 000111 as

S = 051 = 00511 = 0005111 = 000111.
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Prove that 0"1" is accepted by the grammar Gg:1».

The proof is in two parts.

First show that every string w of the form 0"1" can be derived from S
using induction over w.

Then, show that for every string w € {0,1}* derived from S, we have
that w is of the form 0"1".
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CFG: Example

Consider the following grammar G = (V, T, P, S) where
V={EI};T=1{a,b0,1};S=E; and
P is defined as

E — I|E+E|ExE|(E)
I = alla|Ib|I0|11

The string (al + b0 xal) € L(G), i.e. E = (al + b0 xal) as

E = (E)=(E+E)=(+E)= (I1+E)= (al +E)= (al + b0 *al).
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CFG: Example

Consider the following grammar G = (V, T, P, S) where
V={EI};T=1{a,b0,1};S=E; and
P is defined as

E — I|E+E|ExE|(E)
I - alla|Ib|I0]|I1
The string (al + b0 xal) € L(G), i.e. E = (al + b0 xal) as

= (E)= (E4+E)=(I+E)= (I1+E)= (al +E) = (al + b0 xal).
=

E
E (E)= (E4+E)= (E+E+E)= (E+ExI) = (al + b0 xal).
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CFG: Example

Consider the following grammar G = (V, T, P, S) where
V={EI};T=1{a,b0,1};S=E; and
P is defined as

E — I|E+E|ExE|(E)
I = alla|Ib|I0|11

The string (al + b0 xal) € L(G), i.e. E = (al + b0 xal) as

E = (E)=(E+E)=(+E)= (I1+E)= (al +E)= (al + b0 *al).
E = (E)=(E+E)= (E4+E*E)= (E+ExI)= (al +b0xal).

Leftmost and rightmost derivations:
1. Derivations are not unique
2. Leftmost and rightmost derivations
3. Define =, and =, in straightforward manner.
4. Find leftmost and rightmost derivations of (a1 + b0 x al).
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Exercise

Consider the following grammar:

S — AS]|e.
S — aa|ab|ba|bb

Give leftmost and rightmost derivations of the string aabbba.
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Parse Trees

A CFG provide a structure to a string

Such structure assigns meaning to a string, and hence a unique
structure is really important in several applications, e.g. compilers

Parse trees are a successful data-structures to represent and store such
structures
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Parse Trees

A CFG provide a structure to a string
Such structure assigns meaning to a string, and hence a unique
structure is really important in several applications, e.g. compilers

Parse trees are a successful data-structures to represent and store such
structures

Let’s review the Tree terminology:

A tree is a directed acyclic graph (DAG) where every node has at most
incoming edge.
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Parse Trees

A CFG provide a structure to a string

Such structure assigns meaning to a string, and hence a unique
structure is really important in several applications, e.g. compilers

Parse trees are a successful data-structures to represent and store such
structures

Let’s review the Tree terminology:

A tree is a directed acyclic graph (DAG) where every node has at most
incoming edge.

Edge relationship as parent-child relationship

Every node has at most one parent, and zero or more children

We assume an implicit order on children (“from left-to-right”)

There is a distinguished root node with no parent, while all other nodes
have a unique parent

There are some nodes with no children called leaves—other nodes are
called interior nodes

Ancestor and descendent relationships are closure of parent and child
relationships, resp.
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Parse Tree

Given a grammar G = (V, T, P, S), the parse trees associated with G has
the following properties:

1. Each interior node is labeled by a variable in V.

2. Each leaf is either a variable, terminal, or . However, if a leaf is ¢ it is
the only child of its parent.

3. If an interior node is labeled A and has children labeled X7, X5, ..., Xi
from left-to-right, then

A—>X1X2...Xk

is a production is P. Only time X; can be ¢ is when it is the only child
of its parent, i.e. corresponding to the production A — ¢.
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Reading exercise

Give parse tree representation of previous derivation exercises.
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Reading exercise

Give parse tree representation of previous derivation exercises.

Are leftmost-derivation and rightmost derivation parse-trees always
different?
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Reading exercise

Give parse tree representation of previous derivation exercises.

Are leftmost-derivation and rightmost derivation parse-trees always
different?

Are parse trees unique?
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Reading exercise

Give parse tree representation of previous derivation exercises.

Are leftmost-derivation and rightmost derivation parse-trees always
different?

Are parse trees unique?

Answer is no. A grammar is called ambiguous if there is at least one
string with two different leftmost (or rightmost) derivations.
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Reading exercise

Give parse tree representation of previous derivation exercises.

Are leftmost-derivation and rightmost derivation parse-trees always
different?

Are parse trees unique?

Answer is no. A grammar is called ambiguous if there is at least one
string with two different leftmost (or rightmost) derivations.

There are some inherently ambiguous languages.
L={a"p"c"d" : n,m >1} U {a"b"c"d" : n,m > 1}.

Write a grammar accepting this language. Show that the string
a*b*c*d? has two leftmost derivations.
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Reading exercise

Give parse tree representation of previous derivation exercises.

Are leftmost-derivation and rightmost derivation parse-trees always
different?

Are parse trees unique?

Answer is no. A grammar is called ambiguous if there is at least one
string with two different leftmost (or rightmost) derivations.

There are some inherently ambiguous languages.
L={a"p"c"d" : n,m >1} U {a"b"c"d" : n,m > 1}.

Write a grammar accepting this language. Show that the string
a*b*c*d? has two leftmost derivations.

There is no algorithm to decide whether a grammar is ambiguous.
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Reading exercise

Give parse tree representation of previous derivation exercises.

Are leftmost-derivation and rightmost derivation parse-trees always
different?

Are parse trees unique?

Answer is no. A grammar is called ambiguous if there is at least one
string with two different leftmost (or rightmost) derivations.

There are some inherently ambiguous languages.
L={a"p"c"d" : n,m >1} U {a"b"c"d" : n,m > 1}.

Write a grammar accepting this language. Show that the string
a*b*c*d? has two leftmost derivations.

There is no algorithm to decide whether a grammar is ambiguous.
What does that mean from application side?
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In-class Quiz

Write CFGs for the following languages:
1. Strings ending with a 0
Strings containing even number of 1’s
palindromes over {0, 1}
L={ab : i<2j}orL={abl :i<2j}orL={db : i+ ?2j}
L= {abic* : i=k}
L={dbc :i=j}
L={abick :i=j+k}.
L= f{we {01} : [l = [w]}.
Closure under union, concatenation, and Kleene star

D N A A o

—_
=

Closure under substitution, homomorphism, and reversal
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Syntactic Ambiguity in English
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Syntactic Ambiguity in English

‘l'iMe. FLieS

LiKe aN aRRoW

I'_Ruijf FLi?-S

—Anthony G. Oettinger
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Pushdown Automata
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Pushdown Automata

0,X — 0X 0,0 —¢

e, X=X /Q e, L= 1

1,X > 1X 1,1—e

start —( 4o

Introduced independently by Anthony G. Oettinger
in 1961 and by Marcel-Paul Schiitzenberger in 1963

Generalization of e-NFA with a “stack-like” storage
mechanism

Precisely capture context-free languages

Deterministic version is not as expressive as
non-deterministic one

Applications in program verification and syntax
M. P. Schutzenberger analysis
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Example 1: L = {ww : w € {0,1}*}

inputtape—>|1|1|1|0|0|1|1|1|

pushdown stack

0,X s 0X 0,0~ e

e, X—X A e, Lm— 1
start —( 4o 1 @

1,X — 1X Ll e
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Example 1: L = {ww : w € {0,1}*}

inputtape—>|1|1|1|0|0|1|1|1|

pushdown stack

0,X s 0X 0,0 ¢ |

e, X—X A e, Lm— 1
start%@ \% @

1,X — 1X 1,1—e
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Example 1: L = {ww : w € {0,1}*}

inputtape—>|1|1|1|0|0|1|1|1|

pushdown stack

0,X s 0X 0,0 ¢ .

e, X—X A e, Lm— 1
start%@ \% @

1,X — 1X 1,1—e
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Example 1: L = {ww : w € {0,1}*}

inputtape—>|1|1|1|0|0|1|1|1|

pushdown stack

0,X s 0X 0,0~ e

e, X—X A e, Lm— 1
start%@ \% @

1,X — 1X 1,1—e
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Example 1: L = {ww : w € {0,1}*}

inputtape—>|1|1|1|0|0|1|1|1|

pushdown stack

0,X s 0X 0,0 ¢ !

e, X—X A e, Lm— 1
start —( 4o 1 @

1,X — 1X Ll e
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Example 1: L = {ww : w € {0,1}*}

inputtape—>|1|1|1|0|0|1|1|1|

pushdown stack

0,X s 0X 0,0 ¢ |

g, X=X A gL — 1
start —( qo Ul q2

1,X — 1X Ll e
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Example 1: L = {ww : w € {0,1}*}

inputtape—>|1|1|1|0|0|1|1|1|

pushdown stack

0,X — 0X 0,0~ ¢

e, X—X % e, Lm— 1
start —( 4o 1 @

1,X — 1X Ll e
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Example 1: L = {ww : w € {0,1}*}

inputtape—>|1|1|1|0|0|1|1|1|

pushdown stack

0,X s 0X 0,0 ¢ .

- e, X—X qA e, L—1 @
start —( 40 \\1/ 2
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Example 1: L = {ww : w € {0,1}*}

inputtape—>|1|1|1|0|0|1|1|1|

pushdown stack

0,X s 0X 0,0 ¢ |

- e, X—X qA e, L—1 @
start —( 40 \\1/ 2
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Example 1: L = {ww : w € {0,1}*}

inputtape—>|1|1|1|0|0|1|1|1|

pushdown stack

- e, X—X qA e, L—1 @
start —( 40 \\1/ 2
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Example 1: L = {ww : w € {0,1}*}

inputtape—>|1|1|1|0|0|1|1|1|

pushdown stack

g, X— X A g1l =1
start —( 4o 1 @

1,X — 1X Ll e
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Example 1: L = {ww : w € {0,1}*}

inputtape—>|1|1|1|0|0|1|1|1|

pushdown stack

0,X s 0X 0,0~ e

e, X—X A e, Lm— 1
start —( 4o 1 @

1,X — 1X Ll e
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Pushdown Automata

0, X — 0X 0,0 —=¢

e, X— X % e, Ll— 1

1,X > 1X 1L,1e

start —( 4o

A pushdown automata is a tuple (Q, 3, T, 4, qo, L, F) where:
Q is a finite set called the states;
Y is a finite set called the alphabet;
I' is a finite set called the stack alphabet;
§:Qx X xT — 29T js the transition function;
go € Q is the start state;
L € I'is the start stack symbol;
F C Qs the set of accepting states.
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Semantics of a PDA

LetP = (Q,%,T,4,qo,L,F)beaPDA.
A configuration (or instantaneous description) of a PDA is a triple
(., ) where
q is the current state,
w is the remaining input, and
v € I'* is the stack contents, where written as concatenation of symbols
form top-to-bottom.

We define the operator F (derivation) such that if (p, ) € (g,a, X)
then

(g, 0w, XB) & (p, w, a ),
for allw € ¥* and § € I'*. The operator L* is defined as transitive
closure of L in straightforward manner.

ArunofaPDAP = (Q,%,T,0,q0, L, F) over an input word w € ¥* is
a sequence of configurations

(l)](),ZU(), ﬁo)v (111,701, ﬂl)a ey (anwmﬂn)

such that for every 0 < i < n — 1 we have that
(qi,wi, Bi) F (git1, Wi, Big1) and (qo, wo, fo) = (o, w, L).
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Semantics: acceptance via final states

1. We say that a run

(q03w07 ﬂo)v (qlawla ﬂl)a ) (anwmﬁn)

is accepted via final state if g, € F and w, = ¢.

2. We say that a word w is accepted via final states if there exists a run of
P over w that is accepted via final state.

3. We write L(P) for the set of words accepted via final states.
4. In other words,

L(P) = {w : (qoﬂwa L) = (%,&ﬁ) and n € F}-
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Semantics: acceptance via final states

1. We say that a run

(q03w07 ﬂo)v (qlawla ﬂl)a ) (anwmﬁn)

is accepted via final state if g, € F and w, = ¢.

2. We say that a word w is accepted via final states if there exists a run of
P over w that is accepted via final state.

3. We write L(P) for the set of words accepted via final states.
4. In other words,

L(P) = {w : (qoﬂwa L) = (%,&ﬁ) and n € F}-

5. Example L = {ww : w € {0,1}*} with the notion of configuration,
computation, run, and acceptance.
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Semantics: acceptance via empty stack

1. We say that a run

(q07w01 50)7 (qlawla 61)7 R (Qnywnaﬁn)

is accepted via empty stack if 5, = e and w, = e.

2. We say that a word w is accepted via empty stack if there exists a run
of P over w that is accepted via empty stack.

3. We write N(P) for the set of words accepted via empty stack.
4. In other words

N(P) ={w : (q0,w, L) F* (Gu,&,€)}.
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Semantics: acceptance via empty stack

1. We say that a run

(q07w01 50)7 (qlawla 61)7 R (Qnywnaﬁn)

is accepted via empty stack if 5, = e and w, = e.

2. We say that a word w is accepted via empty stack if there exists a run
of P over w that is accepted via empty stack.

3. We write N(P) for the set of words accepted via empty stack.
4. In other words

N(P) ={w : (q0,w, L) F* (Gu,&,€)}.

Is L(P) = N(P)?
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Equivalence of both notions

Theorem

For every language defind by a PDA with empty stack semantics, there exists a
PDA that accept the same language with final state semantics, and vice-versa.

Proof.

Final state to Empty stack
Add a new stack symbol, say L', as the start stack symbol, and in the
first transition replace it with L L’ before reading any symbol.
(How? and Why?)
From every final state make a transition to a sink state that does not read
the input but empties the stack including L'.
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Equivalence of both notions

Theorem

For every language defind by a PDA with empty stack semantics, there exists a
PDA that accept the same language with final state semantics, and vice-versa.

Proof.

Final state to Empty stack
Add a new stack symbol, say L', as the start stack symbol, and in the
first transition replace it with L L’ before reading any symbol.
(How? and Why?)
From every final state make a transition to a sink state that does not read
the input but empties the stack including L'.

Empty Stack to Final state
Replace the start stack symbol L" and L L’ before reading any symbol.
(Why?)
From every state make a transition to a new unique final state that does
not read the input but removes the symbol L'.

O
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Formal Construction: Empty stack to Final State

Let P = (Q,3,T, 6,90, L) be a PDA. We claim that the PDA
P =(Q,%,1,¢,qp L', F) is such that N(P) = L(P’"), where
L Q' =QuU{q} U{gr}
2. T'=TU{Ll}
3. F = {qr}.
4. ¢’ is such that
8'(g,a,X) = 6(g,a,X) forallg e Qand X € T,
' (q0,¢, L") = {(go, LL")} and
8 (g,e, L") ={(gr, L")} forallg € Q.
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Formal Construction: Final State to Empty Stack

LetP = (Q,%,T,4,q0,L,F) be a PDA. We claim that the PDA
P =(Q,%,1V,0',q), L") is such that L(P) = N(P’), where
L Q' =Qu{q} U {gr}
2. TV=TuU{Ll'}
3. ¢’ is such that
8 (g,a,X) = 6(g,a,X) forallg € Qand X €T,
5,(4675>J~/) = {(‘107il/)} and
5 (g,e,X) = {(gr,e)} forallg € Qand X € T.
8 (gr,e,X) = {(gr,€)} forall X € T..
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Expressive power of CFG and PDA

Theorem

A language is context-free if and only if some pushdown automaton accepts it.

Proof.
1. For an arbitrary CFG G give a PDA Pg such that L(G) = L(Pg).

f45
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Expressive power of CFG and PDA

Theorem

A language is context-free if and only if some pushdown automaton accepts it.

Proof.

1. For an arbitrary CFG G give a PDA Pg such that L(G) = L(Pg).
Leftmost derivation of a string using the stack
One state PDA accepting by empty stack
Proof via a simple induction over size of an accepting run of PDA
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Expressive power of CFG and PDA

Theorem

A language is context-free if and only if some pushdown automaton accepts it.

Proof.

1. For an arbitrary CFG G give a PDA Pg such that L(G) = L(Pg).

Leftmost derivation of a string using the stack
One state PDA accepting by empty stack
Proof via a simple induction over size of an accepting run of PDA

2. For an arbitrary PDA P give a CFG Gp such that L(P) = L(Gp).

f45
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Expressive power of CFG and PDA

Theorem

A language is context-free if and only if some pushdown automaton accepts it.

Proof.

1. For an arbitrary CFG G give a PDA Pg such that L(G) = L(Pg).

Leftmost derivation of a string using the stack
One state PDA accepting by empty stack
Proof via a simple induction over size of an accepting run of PDA

2. For an arbitrary PDA P give a CFG Gp such that L(P) = L(Gp).

Modify the PDA to have the following properties such that each step is
either a “push” or “pop”, and has a single accepting state and the stack
is emptied before accepting.

For every state pair of P define a variable A,; in P; generating strings
such that PDA moves from state p to state g starting and ending with
empty stack.

Three production rules

Apg = aAiband Ay = AprAyyand Ay = €.

[] ta5
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From CFGs to PDAs

Givena CFG G = (V, T, P, S) consider PDA Pg = ({q},T,VUT,4,q,S) s.t.:
for every a € T we have

0(q,a,a) = (g,¢), and
for variable A € V we have that
0(q,e,A) ={(q,8) : A— Bisaproduction of P}.

Then L(G) = N(Pg).
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From CFGs to PDAs

Givena CFG G = (V, T, P, S) consider PDA Pg = ({q},T,VUT,4,q,S) s.t.:
for every a € T we have

0(q,a,a) = (g,¢), and
for variable A € V we have that
0(q,e,A) ={(q,8) : A— Bisaproduction of P}.

Then L(G) = N(Pg).

Example. Give the PDA equivalent to the following grammar

I = alblla|Ib|I0|11
E — I|ExE|E+E]|(E).

Ashutosh Trivedi - 32 of 45

Ashutosh Trivedi Lecture 6: Context-Free Grammar



From CFGs to PDAs

Theorem
We have that w € N(P) if and only if w € L(G).

Proof.
(If part). Suppose w € L(G). Then w has a leftmost derivation
S=M=m V2 =m - =m Y =W

It is straightforward to see that by induction on 7 that
(g,w,S) F* (9,yi, oy) where w = x;y; and x;o; = ;.
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From CFGs to PDAs

Theorem
We have that w € N(P) if and only if w € L(G).

Proof.

(Only If part). Suppose w € N(P), i.e. (g,w,S) F* (g,¢,¢).
We show thatif (g,x,A) F* (9,¢,¢) then A =* x by induction over
number of moves taken by P.
Base case. x = € and (g, ) € d(g,¢,A). It follows that A — eis a
production in P.
inductive step. Let the first step be A — Y1Y5... Y. Let x1x2 ... x be the
part of input to be consumed by the time Y7 ... Y} is popped out of the
stack.
It follows that (g, x;, Y;i) F* (9, ¢, €), and from inductive hypothesis we
get that Y; = x; if Y; is a variable, and Y; = x; is Y; is a terminal. Hence,
we conclude that A =" x.

O
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From PDAs to CFGs

GivenaPDA P = (Q,%,T, 4,40, L, {qr}) with restriction that every
transition is either pushes a symbol or pops a symbol form the stack, i.e.
4(g,a, X) contains either (', YX) or (¢, ¢).
Consider the grammar G, = (V, T, P, S) such that

V={A : pq€Q}

T=%

5= A%ﬂF

and P has transitions of the following form:

Agqg —eforallge Q;
Apg — Apr Argforallp,g,r € Q,
Apg = aArs bif §(p,a,e) contains (r, X) and d(s, b, X) contains (g, €).
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From PDAs to CFGs

GivenaPDA P = (Q,%,T, 4,40, L, {qr}) with restriction that every
transition is either pushes a symbol or pops a symbol form the stack, i.e.
4(g,a, X) contains either (', YX) or (¢, ¢).
Consider the grammar G, = (V, T, P, S) such that

V={A : pq€Q}

T=%

5= A%ﬂF

and P has transitions of the following form:

Agqg —eforallge Q;
Apg — Apr Argforallp,g,r € Q,
Apg = aArs bif §(p,a,e) contains (r, X) and d(s, b, X) contains (g, €).

We have that L(G,) = L(P).
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From PDAs to CFGs

Theorem

If Ap g =" x then x can bring the PDA P from state p on empty stack to state q on
empty stack.

Proof.

We prove this theorem by induction on the number of steps in the
derivation of x from A, ;.

Base case. If A, ; =* x in one step, then the only rule that can
generate a variable free string in one step is A, , — €.

Inductive step. If A, ; =* x in n + 1 steps. The first step in the
derivation mustbe A, ; — A, A, or A,y — a Ay b.
Ifitis Ay g — AprAr g, then the string x can be broken into two parts x1x>
such that A, =" x; and A, ; =" x2 in at most n steps. The theorem
easily follows in this case.
Ifitis Ay ; — aA; b, then the string x can be broken as ayb such that
Ars =" yin n steps. Notice that from p on reading a the PDA pushes a
symbol X to stack, while it pops X in state s and goes to g.
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From CFGs to PDAs

Theorem

If x can bring the PDA P from state p on empty stack to state q on empty stack
then A, 4 =~ x.

Proof.

We prove this theorem by induction on the number of steps the PDA takes
on x to go from p on empty stack to g on empty stack.

Base case. If the computation has 0 steps that it begins and ends with
the same state and reads ¢ from the tape. Note that A, , =* ¢ since
App — cisarulein P.
Inductive step. If the computation takes n + 1 steps. To keep the stack
empty, the first step must be a “push” move, while the last step must
be a “pop” move. There are two cases to consider:

The symbol pushed in the first step is the symbol popped in the last step.

The symbol pushed if the first step has been popped somewhere in the

middle.

[
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Properties of CFLs
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Deterministic Pushdown Automata

APDAP=(Q,%,T,0,90, L, F) is deterministic if

d(q,a, X) has at most one member for every g € Q,a € Y ora = ¢, and
Xel.

If 6(g,a, X) is nonempty for some a € X then 6(g, ¢, X) must be empty.
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Deterministic Pushdown Automata

APDAP=(Q,%,T,0,90, L, F) is deterministic if

d(q,a, X) has at most one member for every g € Q,a € Y ora = ¢, and
Xel.

If 6(g,a, X) is nonempty for some a € X then 6(g, ¢, X) must be empty.
Example. L = {0"1" : n > 1}.

Ashutosh Trivedi - 38 of 45

Ashutosh Trivedi Lecture 6: Context-Free Grammar



Deterministic Pushdown Automata

APDAP=(Q,%,T,0,90, L, F) is deterministic if

d(q,a, X) has at most one member for every g € Q,a € Y ora = ¢, and
Xel.

If 6(q,a, X) is nonempty for some a € ¥ then (g, ¢, X) must be empty.
Example. L = {0"1" : n > 1}.

Theorem

Every reqular language can be accepted by a deterministic pushdown automata
that accepts by final states.

Ashutosh Trivedi - 38 of 45

Ashutosh Trivedi Lecture 6: Context-Free Grammar



Deterministic Pushdown Automata

APDAP=(Q,%,T,0,90, L, F) is deterministic if

d(q,a, X) has at most one member for every g € Q,a € Y ora = ¢, and
Xel.

If 6(q,a, X) is nonempty for some a € ¥ then (g, ¢, X) must be empty.
Example. L = {0"1" : n > 1}.

Theorem

Every reqular language can be accepted by a deterministic pushdown automata
that accepts by final states.

Theorem (DPDA # PDA)
There are some CFLs, for instance {ww} that can not be accepted by a DPDA.
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Chomsky Normal Form

A Context-free grammar (V, T, P, S) is in Chomsky Normal Form if every
rule is of the form

A — BC
A — a.

where A, B, C are variables, and a is a nonterminal. Also, the start variable
S must not appear on the right-side of any rule, and we also permit the
rule S — e.

Theorem

Every context-free language is generated by a CFG in Chomsky normal form.
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Chomsky Normal Form

A Context-free grammar (V, T, P, S) is in Chomsky Normal Form if every
rule is of the form

A — BC
A — a.

where A, B, C are variables, and a is a nonterminal. Also, the start variable
S must not appear on the right-side of any rule, and we also permit the
rule S — e.

Theorem

Every context-free language is generated by a CFG in Chomsky normal form.

Reading Assignment: How to convert an arbitrary CFG to Chomsky
Normal Form.
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Pumping Lemma for CFLs

Theorem

For every context-free language L there exists a constant p (that depends on L)
such that

for every string z € L of length greater or equal to p,

there is an infinite family of strings belonging to L.
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Pumping Lemma for CFLs

Theorem

For every context-free language L there exists a constant p (that depends on L)
such that

for every string z € L of length greater or equal to p,

there is an infinite family of strings belonging to L.

Why? Think parse Trees!
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Pumping Lemma for CFLs

Theorem

For every context-free language L there exists a constant p (that depends on L)
such that

for every string z € L of length greater or equal to p,

there is an infinite family of strings belonging to L.

Why? Think parse Trees!

Let L be a CFL. Then there exists a constant n such that if z is a string in L of
length at least n, then we can write z = wvwxy such that

lowx| < n
vx # g,
For all i > 0 the string uo'wx'y € L.
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Pumping Lemma for CFLs

Theorem

Let L be a CFL. Then there exists a constant n such that if z is a string in L of
length at least n, then we can write Z = Uvwxy such that i) lvwx| < n, i) vx # ¢,
and iii) for all i > O the string uv'wx'y € L.

Let G be a CFG accepting L. Let b be an upper bound on the size of
the RHS of any production rule of G.
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Pumping Lemma for CFLs

Theorem

Let L be a CFL. Then there exists a constant n such that if z is a string in L of
length at least n, then we can write Z = Uvwxy such that i) lvwx| < n, i) vx # ¢,
and iii) for all i > O the string uv'wx'y € L.

Let G be a CFG accepting L. Let b be an upper bound on the size of
the RHS of any production rule of G.

What is the upper bound on the length strings in L with parse-tree of
height ¢ +17?
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Pumping Lemma for CFLs

Theorem

Let L be a CFL. Then there exists a constant n such that if z is a string in L of
length at least n, then we can write Z = Uvwxy such that i) lvwx| < n, i) vx # ¢,
and iii) for all i > O the string uv'wx'y € L.

Let G be a CFG accepting L. Let b be an upper bound on the size of
the RHS of any production rule of G.

What is the upper bound on the length strings in L with parse-tree of
height £ +17? Answer: bt

Let N = |V| be the number of variables in G.
What can we say about the strings z in L of size greater than bN?
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Pumping Lemma for CFLs

Theorem

Let L be a CFL. Then there exists a constant n such that if z is a string in L of
length at least n, then we can write Z = Uvwxy such that i) lvwx| < n, i) vx # ¢,
and iii) for all i > O the string uv'wx'y € L.

Let G be a CFG accepting L. Let b be an upper bound on the size of
the RHS of any production rule of G.

What is the upper bound on the length strings in L with parse-tree of
height £ +17? Answer: bt
Let N = |V| be the number of variables in G.

What can we say about the strings z in L of size greater than bN?

Answer: in every parse tree of z there must be a path where a variable
repeats.

Consider a minimum size parse-tree generating z, and consider a path
where at least a variable repeats, and consider the last such variable.
Justify the conditions of the pumping Lemma.
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Applying Pumping Lemma

Theorem (Pumping Lemma for Context-free Languages)

L € ¥* is a context-free language
_—
there exists p > 1 such that
for all strings z € L with |z| > p we have that
there exists u,v,w, x,y € ¥* with z = uvwxy, |vx| > 0, |[vwx| < p such that
forall i > 0 we have that
uv'wx'y € L.
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Applying Pumping Lemma

Theorem (Pumping Lemma for Context-free Languages)

L € ¥* is a context-free language
_—
there exists p > 1 such that
for all strings z € L with |z| > p we have that
there exists u,v,w, x,y € ¥* with z = uvwxy, |vx| > 0, |[vwx| < p such that
forall i > 0 we have that
uv'wx'y € L.

Pumping Lemma (Contrapositive)

For all p > 1 we have that
there exists strings z € L with |z| > p such that
forall u,v,w,x,y € X* with z = uvwxy, |vx| > 0, |[vwx| < p we have that
there exists i > 0 such that
uo'wx'y ¢ L.
—_—
L € X* is not a context-free language.
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Example

Prove that the following languages are not context-free:
1. L={0"1"2" : n >0}

L={01V2": 0<i<j<k}

L={ww : we{0,1}*}.

L ={0" : nisa prime number}.

L ={0" : nisa perfect square}.

AL T

L ={0" : nisa perfect cube}.
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Closure Properties

Theorem

Context-free languages are closed under the following operations:
1.

. Concatenation

N O O = WO DN

Union

. Kleene closure

. Homomorphism

. Substitution

. Inverse-homomorphism
. Reverse
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Closure Properties

Theorem

Context-free languages are closed under the following operations:
1. Union

. Concatenation

. Kleene closure

. Homomorphism

. Substitution

SN U1 = W DN

. Inverse-homomorphism
7. Reverse

Reading Assignment: Proof of closure under these operations.

Ashutosh Trivedi - 44 of 45

Ashutosh Trivedi Lecture 6: Context-Free Grammar



Intersection and Complementaion

Theorem
Context-free languages are not closed under intersection and complementation.

Proof.
Consider the languages

Ly = {0"1"2" : n,m >0}, and
L, = {0"1"2" : n,m > 0}.
Both languages are CFLs.

Whatis L1 N Ly?
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Intersection and Complementaion

Theorem
Context-free languages are not closed under intersection and complementation.

Proof.

Consider the languages

Ly = {0"1"2" : n,m >0}, and
L, = {0"1"2" : n,m > 0}.
Both languages are CFLs.

Whatis L1 N Ly?
L ={0"1"2" : n > 0} and it is not a CFL.
Hence CFLs are not closed under intersection.
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Intersection and Complementaion

Theorem
Context-free languages are not closed under intersection and complementation.

Proof.

Consider the languages

Ly = {0"1"2" : n,m >0}, and
L, = {0"1"2" : n,m > 0}.
Both languages are CFLs.

Whatis L1 N Ly?

L ={0"1"2" : n > 0} and it is not a CFL.

Hence CFLs are not closed under intersection.

Use De'morgan’s law to prove non-closure under complementation.
0l
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