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CS 208: Automata Theory and Logic
Lecture 7: Turing Machines
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Turing Machines
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Turing Machine

1tape 1 1 0 # 1 1 1 0 B . . .

q0start q1 qacc qrej

α 7→ α,R

# 7→ B,R

α 7→ B,R

B 7→ B,L

B 7→ B,L

– David Hilbert in 1928 posed the famous Entschiedungusproblem of
finding an effective computation (Algorithm) to decide using a finite
number of operations whether a given FO-formula is valid.

– Kurt Gödel in 1931, via his famous Incompleteness Theorem
abstractly answered this question by proving that there is no
“effective computation” to solve all mathematical questions.

– Alan Turing formalized the notion of “effective computation” using
Turing machines, formalized the notion of undecidability, and proved
the Entschiedungusproblem to be undecidable.
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Example 1: L = {02n
: n ≥ 0}

0tape 0 0 0 B . . .

q1start q2 q3

qrej qacc q4

q5

B 7→ B,R

x 7→ x,R
B 7→ B,R 0 7→ 0,R0 7→ x,R

x 7→ x,R

0 7→ 0,L andx 7→ x,L

x 7→ x,R

0 7→ B,R 0 7→ x,R

B 7→ B,R B 7→ B,L

x 7→ x,R

B 7→ B,R
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Turing Machines

1tape 1 1 0 # 1 1 1 0 B . . .

q0start q1 qacc qrej

α 7→ α,R

# 7→ B,R

α 7→ B,R

B 7→ B,L

B 7→ B,L

A Turing machine is a tuple (Q,Σ,Γ, δ, q0, qacc, qrej where:
– Q is a finite set called the states;
– Σ is a finite set called the alphabet not containing blank symbol B;
– Γ is a finite set called the tape alphabet, where B ∈ Γ and Σ ⊆ Γ;
– δ : Q× Γ→ Q× Γ× {L,R} is the transition function;
– q0 ∈ Q is the start state;
– qacc ∈ Q is the accept state, and
– qrej ∈ Q is the reject state, where qacc 6= qrej.
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Semantics of Turing Machines

– A configuration is a tuple (q,u, v) ∈ Q× Γ∗ × Γ∗ where
1. q is the current state,
2. u is the string on the tape to the left of the tape head, and
3. v is the string to the right of the tape head, and tape head is pointing to

the first symbol of v.

– We write a configuration as 〈u, q, v〉.

– 〈ε, q0,w〉 is the start configuration
– 〈u, qacc,w〉 is the accepting configuration, and
– 〈u, qrej,w〉 is the rejecting configuration.
– If δ(qi, b) = (qj, c,R) then 〈ua, qi, bv〉 yields 〈uac, qj, v〉, and
– If δ(qi, b) = (qj, c,L) then 〈ua, qi, bv〉 yields 〈u, qj, acv〉.
– A TM accepts an input string w ∈ Σ∗ if there is sequence of

configurations C1,C2, . . . ,Cn where C1 is the initial configuration on
w, Cn is an accepting configuration, and each Ci yields Ci+1.
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Turing-Recognizability and Turing-Decidability

– A language L is called Turing-recognizable, or
recursively-enumerable, if there is some Turing machine that
recognizes it.

– A language L is called co-recursively-enumerable (co-re) if its
complement is Turing-recognizable.

– One every word a Turing machine may either accept, reject, or loop
forever.

– We call a Turing machine that always make a decision to accept or
reject on every input (never loops), is called a decider.

– A language L is called Turing decidable, or recursive, if there is some
Turing machine that decided it.
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Programming with Turing Machines

1. L = {02n
: n ≥ 0}

2. TMs as transformers of tape ww 7→` w#w a
3. L is a given regular language, say L = {(a + b)∗b(a + b)∗}.

Tip 1. Simulate an DFA using a TM?
4. L is a given context-free language, say L = {w : w is a palindrome}

Tip 2. Storage in states
Tip 3. Simulate an PDA using a TM?

5. L = {anbncn : n ≥ 0}.
Tip 5. Concepts of subroutines: CheckRegular(a∗b∗c∗)

6. L = {ap : p is a prime number}
Hint: Sieve of Eratosthenes

Tip 4. Marking the tape/ Multiple Tracks
7. L = {aibjck : i× j = k and i, j, k ≥ 1}

Check(a∗b∗c∗), Delete(c, b)
8. L = {ww : w ∈ {0, 1}∗}.
9. L = {x1#x2# . . .#xn : xi ∈ {0, 1}∗ and xi 6= xj for i 6= j}.
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TM for L = {ap : p is a prime number}

Algorithm 1.
1. If p = 0 or p = 1 reject.
2. Otherwise, Place a left end-marker `, and erase the first a, and scan

right to the end of the input and replace the last a with a $.
3. Repeat:

3.1 From the left endmarker, scan right and find the first non-blank cell, if it
is at m position then m is a prime number. If this position is $ then
accept.

3.2 Otherwise Mark this symbol with a ? and all symbols before it till the
left-endmarker with a prime ′.

3.3 Now we go to an inner loop erasing all a’s that are at positions multiple
of m. Repeat:
3.3.1 Shift all the marks one cell at a time, finally moving the mark ?.
3.3.2 Erase the symbol with the new ? mark.
3.3.3 If the new position with ? mark is a $ reject,
3.3.4 If at anytime we visit a blank cell, exit this loop.
3.3.5 Otherwise, go left to the first cell with prime ′ mark, and repeat from 4.3.1.

3.4 repeat from 4.1.
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TM for L = {ww : w ∈ {a, b}∗}

Algorithm 2.
1. Place the endmarkers both sides of the tape, and reject if the input is

of odd length.
2. Repeat

2.1 Move to the left end-marker, and find the first unmarked symbol to the
right, and replace it with its primed version. Exit the loop if there is no
unmarked symbol to the right.

2.2 Go to the last unmarked symbol in the right and replace it with its ?’d
version.

3. Repeat
3.1 Go to the leftmost primed symbol, erase it, remember it within the state,

and go right to the first star’d symbol and match it with the just erased
symbol stored in the state. If these two symbols are not the same reject,
otherwise erase it, and goto 3.1.

3.2 If there is no primed symbol, accept.
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TM for L = {anbncn : n ≥ 0}

Algorithm 3.
1. Place the left and right endmarkers around the tape.
2. Check if the input is of the form a∗b∗c∗.
3. Repeat

3.1 Go to the leftmost a. If there is no a, scan right for b or c. Accept in case
there are no b’s or c’s. Reject otherwise.

3.2 If there is a leftmost a, erase it, and go right to the leftmost b. If there is
no b Reject, otherwise remove the b and scan right for a c.

3.3 If there is no c Reject, otherwise erase the c, and goto 3.1.
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Turing machines computing a partial function

– So far we have discussed TMs accepting a language.
– We can similarly define TMs to be computing partial functions, such

that when a TM halts, the contents of the tape define the output of the
function.

– w 7→ w
– n 7→ n mod 2
– n 7→ n + 2
– n 7→ n2
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Robustness of Turing Machines

The following extensions do not increase expressiveness of Turing
machines.

1. Multi-tape Turing machines
2. Turing machines with Bi-infinite Tape
3. Nondeterministic Turing machines
4. Post machines or Queue automaton
5. PDAs with two stacks
6. Counter machines
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Solving more challenging problems using TMs

1. Sorting a list L = {1n1 01n2 0 . . . 1nk : n1 ≤ n2 ≤ · · · ≤ nk}

2. Searching a list L = {1n#1n1 01n2 0 . . . 1nk : n ∈ {n1, . . . ,nk}}
3. Substring matching

L = {w#w′ : w ∈ {a, b}∗ and w is a substring of w′}.
4. Subsequence search
5. Graph search
6. Programmable Turing machine aka Universal Turing machine
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Turing Machines

Undecidability

Reductions
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How to encode a TM in binary
Consider a TM T = (Q, {0, 1},Γ, δ, q1,B,F) over the input alphabet {0, 1}.

1. Let Q = {Q1,Q2, . . . ,Qn} and Γ = {X1,X2, . . . ,Xm}.
2. Let’s encode states and tape alphabet is unary as state qi as string 0i,

and similarly tape symbol Xj as string 0j.

3. Assume that 01 is start state, while 02 is the unique accept state.
4. Assume that X1 is 0, X2 is 1, and X3 is B.
5. We encode directions L and R as D1 = 0 and D2 = 00.
6. A transition τ given as δ(qi,Xj) = (qk,X`,Dm) can be encoded as σ(τ)

given as
0i10j10k10`10m

7. We can encode a TM with transitions τ1, τ2, . . . , τn as binary string

σ(τ1)11σ(τ2)11 . . . σ(τn)

8. Every binary string corresponds to at most one Turing machine, and
all TMs corresponds to at least one binary string. garbage strings

9. Hence, the set of possible TMs is countable.
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The Language Ld

1. The set of binary strings is countable. Let’s assign a unique integer to
every binary string. We write wi for the unique binary string
corresponding to integer i.

(How?)
2. We write Mi for the Turing machine corresponding to integer i.
3. Let Ld be the set of all strings wi s.t. TM Mi does not accept wi, i.e.

Ld = {wi : wi 6∈ L(Mi)}.

Theorem
The language Ld is not recursively enumerable.

Proof (via Diagonalization).
Assuming that there is a Turing machine Md accepting Ld, i.e. Ld = L(Md)
yields contradiction.

1. If wd ∈ L(Md) then wd 6∈ Ld. Contradiction with Ld = L(Md).
2. If wd 6∈ L(Md) then wd ∈ Ld. Contradiction with Ld = L(Md).
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An Undecidable language that is R.E.

– Recursive, Recursively Enumerable, and non-recursively-enumerable
– Decidable (recursive) and Undecidable (R.E. and non-R.E.).
– Ld is non-R.E.
– Can we find a language that is R.E. but undecidable (non-recursive)?

Yes we can.
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Halting Problem

Consider the language LU = {0i111w : TM Mi accepts (halts on) input w}

Theorem
The language LU is recursively enumerable (i.e. there is a Turing machine, called
Universal Turing machine, that accepts LU).

Proof.
1. Turing machine uses four tapes—first to remember its input

containing TM Mi and input w, second to simulate the tape of the TM
Mi, the third to remember the current state of Mi, and fourth for
additional work.

2. Such a TM accepts an input 0i111w iff TM Mi halts on the input w.
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Undecidability of the Halting Problem LU

Theorem
LU is recursively enumerable but not recursive.

Proof.
1. We have already shown that LU is recursively enumerable.
2. We will prove by contradiction that LU is not recursive.
3. Assume that LU is recursive, i.e. there exists a TM MU to accept LU

that always halts.
4. We can then use this TM MU to give a TM for Ld (details on the

board), a contradiction.
5. Hence LU is not recursive.
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Turing Machines

Undecidability

Reductions
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Programming Exercise

String Matching Problem MATCH(A,B)
Given two lists A = 〈s1, s2, . . . , sn〉 and B = 〈t1, t2, . . . , tn〉 of strings of equal
length, decide whether there is a sequence of combining elements that
produces same string for both lists. Formally, whether there exists a finite
sequence 1 ≤ i1, i2, . . . , im ≤ n (no limit on length) such that

si1 si2 . . . sin = ti1 ti2 . . . tin .

Example
Consider the lists
A = 〈110, 0011, 0110〉 and B = 〈110110, 00, 110〉.
There is a sequence i = 2, 3, 1 such that s2s3s1 = t2t3t1, since

– s2s3s1 = 00110110110 and t2t3t1 = 00110110110.

Interesting cases
1. Consider A = 〈0011, 11, 1101〉 and B = 〈101, 011, 110〉. (no solution)
2. Consider A = 〈100, 0, 1〉 and B = 〈1, 100, 0〉. (shortest sol. len. 75)!!!
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sequence 1 ≤ i1, i2, . . . , im ≤ n (no limit on length) such that

si1 si2 . . . sin = ti1 ti2 . . . tin .

Example
Consider the lists
A = 〈110, 0011, 0110〉 and B = 〈110110, 00, 110〉.
There is a sequence i = 2, 3, 1 such that s2s3s1 = t2t3t1, since

– s2s3s1 = 00110110110 and t2t3t1 = 00110110110.

Interesting cases
1. Consider A = 〈0011, 11, 1101〉 and B = 〈101, 011, 110〉. (no solution)
2. Consider A = 〈100, 0, 1〉 and B = 〈1, 100, 0〉.

(shortest sol. len. 75)!!!
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Programming Exercise

String-List Matching Problem MATCH(A,B)
Given two lists A = 〈s1, s2, . . . , sn〉 and B = 〈t1, t2, . . . , tn〉 of strings of equal
length, decide whether there is a sequence of combining elements that
produces same string for both lists. Formally, whether there exists a finite
sequence 1 ≤ i1, i2, . . . , im ≤ n (no limit on length) such that

si1 si2 . . . sin = ti1 ti2 . . . tin .

Can you design an algorithm to solve this problem?

A semi-algorithm?

Theorem
There is no algorithm for the string-list matching problem (also known as Post’s
correspondence problem (PCP)). In other words, this problem is undecidable.

But how do you prove it?

Q: Is PCP recursively-enumerable?
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Reductions

Definition (Problem Reduction)
A reduction from problem P1 to problem P2 is an algorithm to convert
instances of a problem P1 to instances of problem P2 that have same
answers.
In this case we say that P2 is as hard as P1.

Theorem
If there is a reduction from problem P1 to problem P2, then

1. If P1 is undecidable then so is P2.
2. If P1 is non-RE then so is P2.

Proof by contradiction.
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Recap

– Recall the languages (problems) Ld (Diagonal language) and LU
(Universal language).

– Ld is the set of TMs that do not accept (halt on) themselves.
– LU is the set of pairs (M,w) such that TM M halts on w.

– Ld is non-RE and LU is RE but not recursive.
– We can use a reduction from Ld and LU to prove a problem non-RE

and undecidable.
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Some Reduction Based Proofs

Theorem
If L is recursive then so is the complement of L.

Proof.

ML

ML

w
Acc

Rej

Acc

Rej
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Some Reduction Based Proofs

Theorem
If both L and complement of L are RE, then L is recursive.

Proof.

ML

ML

w
Acc

Acc

Acc

Rej
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Undecidable Problems

Decide whether the following problems are recursive, RE, non-RE:
– NETM = {〈Mi〉 : Mi accepts some string, i.e. L(Mi) 6= ∅}.

– NETM is recursively-enumerable. Show a TM!
– NETM is not recursive. Show a reduction from LU.

– ETM, the complement of NETM. not RE!
– ACC01TM = {〈Mi〉 : Mi accepts string 01, i.e. 01 ∈ L(Mi)}.
– REGTM = {〈Mi〉 : Mi accepts a regular language}.
– EQTM = {〈M1,M2〉 : L(M1) = L(M2)}.

Theorem (Rice’s Theorem)
Every nontrivial property of the RE languages in undecidable.

Proof of Theorem 9.11 from HMU.
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Post’s Correspondence Problem

Theorem
Post’s Correspondence Problem is undecidable.

Proof.
1. Reduction from the halting problem LU instances (M,w) to a PCP

instances s, t.
2. We encode a computation #α1#α2# . . .#... where α1 is the initial

configuration of M on w, and each αi and αi+1 is a valid transition of
M, such that

– Partial solutions of PCP problem will consists of prefixes of the unique
computation of M on W

– Solutions form t list will always be one configuration ahead than list s,
unless M enters an accepting state, and then s list will be permitted to
catch up with the t list and eventually produce a solution.

– However, if the computation does not encounter an accepting state, the
two partial solutions will never match, and hence no solution exists.

Ashutosh Trivedi Lecture 7: Turing Machines



Ashutosh Trivedi – 30 of 32

Reduction Sketch
1. Modified Post’s Correspondence Problem
2. The first pair is

List s List t
# #q0w

3. Tape symbols X ∈ Γ and separator # can be appended to both lists:

List s List t
X X for every X ∈ Γ

# #

4. Simulate one move of M, for all non accepting states

List s List t
qX Yp if δ(q,X) = (p,Y,R)

ZqX pZY if δ(q,X) = (p,Y,L)

q# Yp# if δ(q,B) = (p,Y,R)

Zq# pZY# if δ(q,B) = (p,Y,L).
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Reduction Sketch: Contd

5 For the accepting state

List s List t
XqY q

Xq q
qY q.

5 Once all the tape symbols have been consumed, we use the final pair

List s List t
q## #

to complete the solution.
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Applications of PCPs

Theorem
Deciding ambiguity of CFGs is undecidable.

Proof.
Let MATCH(A,B) be a PCP instance where A = 〈s1, s2, . . . , sn〉 and
B = 〈t1, t2, . . . , tn〉. Consider the CFG

S → A | B
A → siAai | siai

B → tiBai | tiai.

It is easy to see that the grammar is ambiguous iff there the corresponding
PCP has a solution.
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