∀x(La(x) → ∃y.(x < y) ∧ Lb(y))
Closure Properties of Regular Languages

Operations that preserve regularity of languages:
- union, intersection, complement, difference

\[L^\complement = \{ w : w \in L \} \]

Swap initial and accepting states, and reverse the transitions, i.e.
\[\delta(s, a) = s' \iff \delta(s', a) = s \]

Proof of correctness is via structural induction over regular expressions

- Homomorphism and inverse-homomorphism
- String homomorphism is a function \(h : \Sigma \rightarrow \Gamma \)
- Extended string homomorphism \(\hat{h} : \Sigma^* \rightarrow \Gamma^* \)

- For \(L \in \Sigma^* \) we define \(h(L) = \{ \hat{h}(w) : w \in L \} \)
- For \(L \in \Gamma^* \) we define \(h^{-1}(L) = \{ w : \hat{h}(w) \in L \} \)
Closure Properties of Regular Languages

Operations that preserve regularity of languages:
- union, intersection, complement, difference
- concatenation and Kleene closure (star)

\[\text{Reversal} \]

The reversal \(w \) of a string \(w \) is defined as:
\[
\begin{align*}
\varepsilon & \quad \text{if } w = \varepsilon \\
a x & \quad \text{if } w = xa \\
\end{align*}
\]

where \(x \in \Sigma^* \) and \(a \in \Sigma \).

\[\text{Swap initial and accepting states, and reverse the transitions, i.e.} \]

\[\delta(s, a) = s' \iff \delta(s', a) = s. \]

Proof of correctness is via structural induction over regular expressions.

\[\text{Homomorphism and inverse-homomorphism} \]

- String homomorphism is a function \(h : \Sigma \to \Gamma^* \)
- Extended string homomorphism \(\hat{h} : \Sigma^* \to \Gamma^* \)

For \(L \in \Sigma^* \) we define \(h(L) \subseteq \Gamma^* \) as
\[h(L) = \{ \hat{h}(w) : w \in L \}. \]

For \(L \in \Gamma^* \) we define \(h^{-1}(L) \subseteq \Sigma^* \) as
\[h^{-1}(L) = \{ w : \hat{h}(w) \in L \}. \]
Closure Properties of Regular Languages

Operations that preserve regularity of languages:
- union, intersection, complement, difference
- concatenation and Kleene closure (star)
- Reversal
 - reversal \overline{w} of a string w is defined as:
 $$\overline{w} = \begin{cases}
 \varepsilon & \text{if } w = \varepsilon \\
 a\overline{x} & \text{if } w = xa \text{ where } x \in \Sigma^* \text{ and } a \in \Sigma
 \end{cases}$$
- $\overline{L} = \{ \overline{w} : w \in L \}$.
- Swap initial and accepting states, and reverse the transitions, i.e.
 $\overline{\delta}(s, a) = s'$ iff $\delta(s', a) = s$.
- Proof of correctness is via structural induction over regular expressions
Closure Properties of Regular Languages

Operations that preserve regularity of languages:
- union, intersection, complement, difference
- concatenation and Kleene closure (star)
- Reversal
 - reversal \overline{w} of a string w is defined as:

 $$\overline{w} = \begin{cases}
 \varepsilon & \text{if } w = \varepsilon \\
 a\overline{x} & \text{if } w = xa \text{ where } x \in \Sigma^* \text{ and } a \in \Sigma
 \end{cases}$$

- $\overline{L} = \{\overline{w} : w \in L\}$.
- Swap initial and accepting states, and reverse the transitions, i.e.
 $\overline{\delta}(s, a) = s'$ iff $\delta(s', a) = s$.
- Proof of correctness is via structural induction over regular expressions

- Homomorphism and inverse-homomorphism
 - String homomorphism is a function $h : \Sigma \rightarrow \Gamma^*$
 - Extended string homomorphism $\hat{h} : \Sigma^* \rightarrow \Gamma^*$
 - For $L \in \Sigma^*$ we define $h(L) \subseteq \Gamma^*$ as $h(L) = \{\hat{h}(w) : w \in L\}$.
 - For $L \in \Gamma^*$ we define $h^{-1}(L) \subseteq \Sigma^*$ as $h^{-1}(L) = \{w : \hat{h}(w) \in L\}$.
Closure under Homomorphism

Example: Let $h(0) = ab$ and $h(1) = \varepsilon$ and $L = 10^*1$ then $h(L) = (ab)^*$.

Closure under Homomorphism

Example: Let $h(0) = ab$ and $h(1) = \varepsilon$ and $L = 10^*1$ then $h(L) = (ab)^*$.

Theorem (Closure under Homomorphism)

For a homomorphism $h : \Sigma \rightarrow \Gamma^*$ if $L \subseteq \Sigma^*$ is regular then so is $h(L) \subseteq \Gamma^*$.
Closure under Homomorphism

Example: Let \(h(0) = ab \) and \(h(1) = \varepsilon \) and \(L = 10^*1 \) then \(h(L) = (ab)^* \).

Theorem (Closure under Homomorphism)

For a homomorphism \(h : \Sigma \rightarrow \Gamma^* \) if \(L \subseteq \Sigma^* \) is regular then so is \(h(L) \subseteq \Gamma^* \).

Proof.

- Consider the regular expression \(E(L) \) characterizing \(L \),
- Replace the alphabets \(a \) in \(E(L) \) by string \(h(a) \)
- It is easy to see (by structural induction) that the corresponding expression is also a regular expression.
Closure under Homomorphism

Example: Let $h(0) = ab$ and $h(1) = \varepsilon$ and $L = 10^*1$ then $h(L) = (ab)^*$.

Theorem (Closure under Homomorphism)

For a homomorphism $h : \Sigma \rightarrow \Gamma^*$ if $L \subseteq \Sigma^*$ is regular then so is $h(L) \subseteq \Gamma^*$.

Proof.

- Consider the regular expression $E(L)$ characterizing L,
- Replace the alphabets a in $E(L)$ by string $h(a)$
- It is easy to see (by structural induction) that the corresponding expression is also a regular expression.

Corollary

Regular languages are closed under projections (dropping of certain alphabets).
Closure under Homomorphism

Example: Let \(h(0) = ab \) and \(h(1) = \varepsilon \) and \(L = 10^*1 \) then \(h(L) = (ab)^* \).

Theorem (Closure under Homomorphism)

For a homomorphism \(h : \Sigma \rightarrow \Gamma^* \) if \(L \subseteq \Sigma^* \) is regular then so is \(h(L) \subseteq \Gamma^* \).

Proof.

- Consider the regular expression \(E(L) \) characterizing \(L \),
- Replace the alphabets \(a \) in \(E(L) \) by string \(h(a) \)
- It is easy to see (by structural induction) that the corresponding expression is also a regular expression.

Corollary

Regular languages are closed under projections (dropping of certain alphabets).

Theorem (Closure under Substitution)

For a substitution \(h : \Sigma \rightarrow \text{REGEX}(\Gamma) \) if \(L \subseteq \Sigma^* \) is regular then so is \(h(L) \subseteq \Gamma^* \).
Closure under Inverse-Homomorphism

Example: Let \(h(0) = ab \) and \(h(1) = \varepsilon \) and \(L = (ab)^* \) then \(h^{-1}(L) = (0 + 1)^* \).
Closure under Inverse-Homomorphism

Example: Let $h(0) = ab$ and $h(1) = \varepsilon$ and $L = (ab)^*$ then $h^{-1}(L) = (0 + 1)^*$.

Theorem (Closure under Homomorphism)

For a homomorphism $h : \Sigma \rightarrow \Gamma^*$ if $L \subseteq \Gamma^*$ is regular then so is $h^{-1}(L) \subseteq \Sigma^*$.
Closure under Inverse-Homomorphism

Example: Let \(h(0) = ab \) and \(h(1) = \varepsilon \) and \(L = (ab)^* \) then \(h^{-1}(L) = (0 + 1)^* \).

Theorem (Closure under Homomorphism)

For a homomorphism \(h : \Sigma \to \Gamma^* \) if \(L \subseteq \Gamma^* \) is regular then so is \(h^{-1}(L) \subseteq \Sigma^* \).

Proof.

- Consider the DFA \(A(L) = (S, \Sigma, \delta, s_0, F) \) characterizing \(L \),
- The DFA corresponding to \(h^{-1}(L) \) is \((S, \Gamma, \gamma, s_0, F) \) such that
 \[
 \gamma(s, a) = \hat{\delta}(s, h(a)).
 \]
- Proof via induction on string size that \(\hat{\gamma}(s, w) = \hat{\delta}(s, h(w)) \).
Pumping Lemma

Myhill-Nerode Theorem
Some languages are not regular!

Let’s do mental computations again.

- The language \(\{0^n1^n : n \geq 0\} \)
- The set of strings having an equal number of 0’s and 1’s
- The set of strings with an equal number of occurrences of 01 and 10.
- The language \(\{ww : w \in \{0, 1\}^*\} \)
- The language \(\{w\overline{w} : w \in \{0, 1\}^*\} \)
- The language \(\{0^i1^j : i > j\} \)
- The language \(\{0^i1^j : i \leq j\} \)
- The language of palindromes of \(\{0, 1\} \)
Some languages are not regular!

Let’s do mental computations again.

- The language $\{0^n1^n : n \geq 0\}$
- The set of strings having an equal number of 0’s and 1’s
- The set of strings with an equal number of occurrences of 01 and 10.
- The language $\{ww : w \in \{0, 1\}^*\}$
- The language $\{w\overline{w} : w \in \{0, 1\}^*\}$
- The language $\{0^i1^j : i > j\}$
- The language $\{0^i1^j : i \leq j\}$
- The language of palindromes of $\{0, 1\}$
A simple observation about DFA

![DFA Diagram]

- **Computation**:
 - Start state: E
 - Transition on 0: E → E
 - Transition on 1: E → O

- **String**:
 - Input: 0100
 - Transition:
 - First 0: E → E
 - Second 0: E → O
 - Third 0: O → O
 - Fourth 0: O → O

- **Computation**:
 - Start state: E
 - Transition on 0: E → E
 - Transition on 1: E → O

- **String**:
 - Input: 0100
 - Transition:
 - First 0: E → E
 - Second 0: E → O
 - Third 0: O → O
 - Fourth 0: O → O
A simple observation about DFA

Let \(A = (S, \Sigma, \delta, s_0, F) \) be a DFA.

For every string \(w \in \Sigma^* \) of the length greater than or equal to the number of states of \(A \), i.e. \(|w| \geq |S| \), we have that

the unique computation of \(A \) on \(w \) re-visits at least one state.
Theorem (Pumping Lemma for Regular Languages)

If \(L \) is a regular language, then there exists a constant (pumping length) \(p \) such that for every string \(w \in L \) s.t. \(|w| \geq p\), there exists a division of \(w \) in strings \(x, y, \) and \(z \) s.t. \(w = xyz \) such that

1. \(|y| > 0\),
2. \(|xy| \leq p\), and
3. for all \(i \geq 0 \) we have that \(xy^iz \in L \).
Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

If L is a regular language, then there exists a constant (pumping length) p such that for every string $w \in L$ s.t. $|w| \geq p$ there exists a division of w in strings $x, y, \text{ and } z$ s.t. $w = xyz$ such that

1. $|y| > 0$,
2. $|xy| \leq p$, and
3. for all $i \geq 0$ we have that $xy^iz \in L$.

Let A be the DFA accepting L and p be the set of states in A.

Let $w = (a_1a_2 \ldots a_k) \in L$ be any string of length $\geq p$.

Let $s_0a_1s_1a_2s_2 \ldots a_ks_k$ be the run of w on A.

Let i be the index of first state that the run revisits and let j be the index of second occurrence of that state, i.e. $s_i = s_j$.

Let $x = a_1a_2 \ldots a_{i-1}$ and $y = a_ia_{i+1} \ldots a_{j-1}$, and $z = a_ja_{j+1} \ldots a_k$.

notice that $|y| > 0$ and $|xy| \leq n$

Also, notice that for all $i \geq 0$ the string xy^iz is also in L.

Applying Pumping Lemma

How to show that a language L is non-regular.

1. Assume that L is regular and get contradiction with pumping lemma.
2. Let n be the pumping length.
3. (Cleverly) find a representative string w of L of size greater or equal to n.
4. Try out all ways to break the string into xyz triplet satisfying that $|y| > 0$ and $|xy| \leq n$. If the step 3 was clever enough, there will be finitely many cases to consider.
5. For every triplet show that for some i the string xy^iz is not in L, and hence it yields contradiction with pumping lemma.

Examples: 1.73, 1.74, 1.75, and 1.77.
Pumping Lemma

Myhill-Nerode Theorem
Minimization of a DFA:

- Two states \(q, q' \) are equivalent, \(q \equiv q' \), if for all strings \(w \) we have that \(\hat{\delta}(q, w) \in F \) if and only if \(\hat{\delta}(q', w) \in F \).
Minimization of a DFA:

- Two states \(q, q' \) are equivalent, \(q \equiv q' \), if for all strings \(w \) we have that \(\hat{\delta}(q, w) \in F \) if and only if \(\hat{\delta}(q', w) \in F \).

- It is easy to see that \(\equiv \) is an equivalence relation and thus it partitions the set of all states into equivalence classes.

- States in the same class can be merged without changing the language of the DFA.

- Quotient Construction: To minimize a DFA find all classes of equivalent states and merge them.

- Given such an equivalence relation, \(\equiv \), formalize this quotient construction and prove its correctness.
Equivalence and Minimization of DFA

How to find equivalent states:
- Notice that an accepting state q is distinguishable from a non-accepting state q' as $\hat{\delta}(q, \varepsilon) \in F$ while $\hat{\delta}(q', \varepsilon) \notin F$.
Equivalence and Minimization of DFA

How to find equivalent states:

- Notice that an accepting state q is distinguishable from a non-accepting state q' as $\hat{\delta}(q, \varepsilon) \in F$ while $\hat{\delta}(q', \varepsilon) \notin F$.
- We can mark such state pairs distinguishable.
How to find equivalent states:

- Notice that an accepting state q is distinguishable from a non-accepting state q' as $\hat{\delta}(q, \varepsilon) \in F$ while $\hat{\delta}(q', \varepsilon) \notin F$.
- We can mark such state pairs distinguishable.
- Then iteratively keep on marking states distinguishable if in one step after reading a same alphabet they respectively reach to two distinguishable states.
How to find equivalent states:

- Notice that an accepting state q is distinguishable from a non-accepting state q' as $\hat{\delta}(q, \varepsilon) \in F$ while $\hat{\delta}(q', \varepsilon) \notin F$.
- We can mark such state pairs distinguishable.
- Then iteratively keep on marking states distinguishable if in one step after reading a same alphabet they respectively reach to two distinguishable states.
- If in a step no new distinguishable state is marked then the process terminates.
- This process suggests an algorithm that is known as table filling algorithm.
Myhill-Nerode Theorem

- Let L be a language
- Two strings x and y are **distinguishable** in L if there exists z such that exactly one of xz and yz in L.
- We define a relation R_L (**Myhill-Nerode relation**) such that strings x, y we have that $(x, y) \in R_L$ is if x and y are not distinguishable in L.
- It is easy to see that R_A is an **equivalence relation** and thus it partitions the set of all strings into **equivalence classes**.
Myhill-Nerode Theorem

- Let L be a language
- Two strings x and y are distinguishable in L if there exists z such that exactly one of xz and yz in L.
- We define a relation R_L (Myhill-Nerode relation) such that strings x, y we have that $(x, y) \in R_L$ is if x and y are not distinguishable in L.
- It is easy to see that R_A is an equivalence relation and thus it partitions the set of all strings into equivalence classes.

Theorem (Myhill-Nerode Theorem)

A language L is regular if and only if R_L has a finite number of equivalence classes. Moreover, the number of states is the smallest DFA recognizing L is equal to the number of equivalence classes of R_L.
Myhill-Nerode Theorem

- Let L be a language
- Two strings x and y are distinguishable in L if there exists z such that exactly one of xz and yz in L.
- We define a relation R_L (Myhill-Nerode relation) such that strings x, y we have that $(x, y) \in R_L$ is if x and y are not distinguishable in L.
- It is easy to see that R_A is an equivalence relation and thus it partitions the set of all strings into equivalence classes.

Theorem (Myhill-Nerode Theorem)

A language L is regular if and only if R_L has a finite number of equivalence classes. Moreover, the number of states is the smallest DFA recognizing L is equal to the number of equivalence classes of R_L.

Corollary

There exists a unique minimal DFA for every regular language.
Myhill-Nerode Theorem

Theorem (Myhill-Nerode Theorem)

A language L is regular if and only if R_L has a finite number of equivalence classes. Moreover, the number of states is the smallest DFA recognizing L is equal to the number of equivalence classes of R_L.

Proof.

The “Only if” direction:

- Let L be regular and DFA $A = (S, \Sigma, \delta, s_0, F)$ accepts this language.
- The indistinguishability relation R_L is defined using states of $A(L)$: two strings are indistinguishable if $\hat{\delta}(s_0, x) = \hat{\delta}(s_0, y)$.
- Notice that this relation has finitely many partitions (number of states of A and strings in one class are indistinguishable).
Myhill-Nerode Theorem

Theorem (Myhill-Nerode Theorem)

A language L is regular if and only if R_L has **a finite number of equivalence classes**. Moreover, the number of states is the smallest DFA recognizing L is equal to the number of equivalence classes of R_L.

Proof.

The “if” direction:
- Let R_L be the indistinguishability relation with finitely many equivalence classes.
- Let each class represent a state of a DFA, where starting state is the class containing ε, and the set final states is the set of equivalence classes containing strings in L.
- For two equivalence classes c and c' we have that $\delta(c, a) = c'$ if for some arbitrary string w in c we have that $wa \in c'$. By definition of Myhill-Nerode relation transition function is well-defined.