
Krishna A. and A. Trivedi – 1 of 12

CS620: New Trends in Information Technology
Formal Modeling and Verification of Cyber-Physical Systems

Krishna S. and Ashutosh Trivedi

Department of Computer Science and Engineering, IIT Bombay

24 July 2013



Krishna A. and A. Trivedi – 2 of 12

Cyber-Physical Systems (CPS)
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Cyber-Physical Systems: Medical Devices

1. Over half a million new implants every year

2. Failed implantable devices responsible for
at least 212 deaths in US alone during
1997–2003

3. Percentage of software-related causes in
medical device recalls grew from 10% to
21% from 1996 to 2006

4. In the first half of 2010 FDA issued 23
device recalls of defective devices, 6 out of
which were software related defects

– Similar examples can be cited for CPS from other domains

– CPS are increasingly playing safety-critical role

Challenge

How to guarantee the correctness/performance of Cyber-Physical Systems?
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Model Based Design of Cyber-Physical Systems

Benefits:

– reduces time, risk, and costs

– permits evaluations of various design decision trade-offs

– enables design verification, validation, simulation, and testing

– allows automatic code-generation

Current industrial practices:

– Norm in automotive and avionics industries

– Stateflow/Simulink is the most preferred tool (code-generation
mechanism is highly trusted among control system designers)

– Rich functionality via interactive graphical environment

– Limited analysis (simulation)
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Testing/Simulation Vs Formal Verification

Testing/Simulation

– traditional design verification techniques

– when to stop testing/simulation? (coverage criteria vs 70% of design
time)

– detect presence of bugs but not absence

– inadequate for safety-critical systems

Formal Methods for Verification and Synthesis

– employ rigorous mathematical reasoning to prove correctness of the
systems or design provably correct systems

– based on exhaustive exploration of the state space

– formal verification/synthesis are computationally hard problem

– hence, scalability is one of the key challenges
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Formal Methods: Verification and Synthesis

Yes

No

Counterexample

System Verified

Modeling Engine

Controller Implementation

Controller Specification

Model Checker Spurious?

No

Bug Found

Yes

Refine Model

1

2

3 4

manual/automatic

Model

AG req→ AF grant

Discounted Reward ≤ D

Average Reward ≥ 5

Formal Verification (Model Checking/ Performance Evaluation)
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Formal Methods: Verification and Synthesis

AG req→ AF grant

Discounted Reward ≤ D

Average Reward ≥ 5

Yes

No

Winning Strategy = Correct Implementation

Modeling Engine

Partial Implementation (Optional)

Controller Specification

Game Solver
Refine Model

1

2

3

manual/automatic

Game Arena

or Modify Specifications

Controller Synthesis (Algorithmic Game Theory)
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Verification/Synthesis with Finite State Machines
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Finite Automata Finite Game Arena

– Backbone of both hardware and software verification (via abstraction)

– Quite influential both academically (two ACM Turing awards) and
practically (two ACM Kanellakis awards)

– 30+ years of research efforts transformed design practices in both
Hardware (Intel, Cadence) and Software (Microsoft, IBM) industries

– Extensive tool support:
– Verification: NuSMV, SPIN, IFV (Cadence), SLAM (Microsoft)
– Synthesis: Acacia, Lily, UnBeast, and Sketching.

– Current research focuses on improving scalability

– Inadequate for CPS Modeling:
– stochastic modeling: faulty sensors/actuators, uncertainty in timing delays,

random coin-flips, performance characteristics for third-party components
– physical variables modeling
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Verification/Synthesis with Stochastic Models
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– Applied in diverse fields such as Economics,control theory, OR, and AI

– A mature research field with wealth of results available (see excellent text

from Puterman [Put94] and Filar & Vrieze and [FV97] )

– Recent surge in research due to interest from verification community to
model stochastic behavior

– Efficient tool support:

– Verification: PRISM probabilistic model checker
– Synthesis: GIST probabilistic game solver
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Verification/Synthesis with Real-Time Models
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Timed Automata Timed Game Arena
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x > 2, b y <= 3, a

– Introduced by Alur and Dill [AD94] to model real-time systems

– Verification

– Reachability is decidable (in fact PSPACE-complete).
– Language inclusion is undecidable.

– Synthesis

– Reachability games are decidable (EXPTIME-complete)
– A number of interesting open problems regarding games on weighted

extensions of timed automata!

– Tool Support:

– Verification : UPPAAL and Kronos
– Sythesis: UPPAAL-Tiga
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Models with Stochastic and Real-Time Behaviors
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– Introduced by [KNSS02] to model real-time and probabilistic systems

– Verification

– Decidability of Qualitative model checking [KNSS02]

– Synthesis

– Decidability of reachability-game [KNT10]

– Number of open problems!

– Tool support: real-time extension of PRISM
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Verification/Synthesis with Hybrid Automata
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– Introduced by Alur et al. [ACHH93] to model hybrid systems

– Dynamics of physical variables are gives as ordinary differential equations

– Quite expressive, but undecidable verification (reachability) problems
– Decidable subclasses exists, e.g.

– Initialized Rectangular Hybrid automata [HKPV98] ,

– Hybrid Automata with Strong Resets [BBJ+08] ,

– Piecewise constant derivative systems [AMP95] ,

– Multi-Mode Systems [ATW12]

– Tool support: HyTECH, PHAVer

– A number of interesting open problems.
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What we will study in this course?

– Language-theoretic properties of automata capable of modeling
cyber-physical systems, e.g. timed and hybrid automata

– Modeling practical CPS using timed and hybrid automata via hands-on
experience with hybrid system verification tools like UPPAAL and HyTech

– Expressiveness and decidability issues for various subclasses of hybrid
automata

– Quantitative design (optimal controller-synthesis) and analysis
(optimization) of CPSs using timed and hybrid automata

– Real-time extensions of temporal logics capable of specifying properties of
CPS, e.g. beautiful theory of Metric temporal logic (LTL + timing
constraints on operators)

– The quest for the automata-logic connection in the world of timed/hybrid
automata
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