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Peak Demand Reduction in Energy Usage

1. Absence of bulk energy storage technology
. Base-load vs peaking power plants
3. Energy peaks are expensive:

— For environment (peaking power plants are
typically fossil-fueled )

— For energy providers

— For customers (peak power pricing)

. Energy peaks are often avoidable:
— Extreme weather and energy peaks
— Heating, Ventilation, and Air-conditioning
(HVACQ) Units
. Load-balancing methods:
— Load shedding
— Load shifting
— Green scheduling [NBPM11]
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Green Scheduling

Zones \ HVAC Units Modes HIGH | LOW | OFF
X (Temp. Change Rate/ Energy Usage) | -2/3 | -1/2 | 2/0.2
Y (Temp. Change Rate/ Energy Usage) | -2/3 | -1/2 | 3/0.2
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Green Scheduling

Zones \ HVAC Units Modes HIGH | LOW | OFF
X (Temp. Change Rate/ Energy Usage) | -2/3 | -1/2 | 2/0.2
Y (Temp. Change Rate/ Energy Usage) | -2/3 | -1/2 | 3/0.2

— Assume that comfortable temperature range is 65°F to T0°F.

— Energy is extremely expensive if peak demand dips above 4 units in a

billing period

Problem

Find an “implementable” switching schedule that keeps the temperatures
within comfort zone and peak usage within 4 units?
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Green Scheduling: Contd

My 1 (6)
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Green Scheduling: Contd

Safe Schedulability Problem

Does there exist a switching schedule using these modes such that the
temperatures of all zones stays in comfortable region?
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Multi-mode Systems: Safe Schedulability

meo

may ms me

Safe set: x € [65,70],y € [65, 70]

z | 68
y | 68

50
Keywords: State, Schedule, periodic schedule, ultimately periodic schedule,

trajectory, and safe schedule
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Multi-mode Systems: Safe Schedulability

my mg me

Safe set: x € [65,70],y € [65, 70]
z 68 (m2,1) g7
y | 68 " 67
So S1

Keywords: State, Schedule, periodic schedule, ultimately periodic schedule,
trajectory, and safe schedule
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Multi-mode Systems: Safe Schedulability

m3
my ms e

Safe set: x € [65,70],y € [65, 70]

z 68 (m2,1) g7 (m3,1) 66
y |68 " 67 "170

So S1 S92

Keywords: State, Schedule, periodic schedule, ultimately periodic schedule,
trajectory, and safe schedule
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Multi-mode Systems: Safe Schedulability

my ms e

Safe set: x € [65,70],y € [65, 70]

z 68 (m2,1) g7 (ms,1) 66 (m4,1) 68
y |68 " 67 "170 " 68

50 51 52 53

Keywords: State, Schedule, periodic schedule, ultimately periodic schedule,
trajectory, and safe schedule
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Multi-mode Systems: Safe Schedulability
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Multi-mode System: Zeno schedule

my mes me

Safe set: x € [65,70],y € [65, 70]

z 68 (m2,0) 68 (m3,0) 68 (m4,0) 68 (m2,0) 68

y 68 7168 7168 168 7168
So S1 S2 S3 54

Keywords: Zeno Schedule
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Multi-mode Systems: Zeno schedule

ms

my mg me

Safe set: x € [65,70],y € [65, 70]

z[68] (m21) [67](ms:5) 6.5 (ma:3) 67 (20 %) [66.875

y | 68 67 68.5 168 " 67.875

S0 S1 S92 S3 Sa

Keywords: Zeno Schedule
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Another Example: Leaking Tanks Systems
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Another Example: Leaking Tanks Systems

il

mi ma m3

T € [€17u1]7x2 S [627’“2]
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and more

e =

Temperature and humidity control in cloud servers
Robot motion planning
Autonomous vehicles navigation

and more..
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Constant-Rate Multi-Mode Systems
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Definitions: Convex Sets

Convex Sets Non-Convex Set

— A convex combination of a set of points x1, z2,...,2, € R™ is a point of
the form A\jz1 + Xoza + -+ - + Ay, where A; € [0,1] and ), \; = 1.
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Definitions: Convex Sets

Convex Sets Non-Convex Set

— A convex combination of a set of points x1, z2,...,2, € R™ is a point of
the form A\jz1 + Xoza + -+ - + Ay, where A; € [0,1] and ), \; = 1.

— A set S C R™ is convex if for any set of points x1,za,...,x, € S their
convex combinations are also in S.

— The convex hull of points z1,z9,...,z, € R™ is the minimum convex set
that contains these point, and is the set of all convex combinations.

A. Trivedi — 13 of 36



Formal Definitions

Definition (Constant-Rate Multi-Mode Systems: MMS)
A MMS is a tuple H = (M,n, R) where

— M is a finite nonempty set of modes,

— n is the number of continuous variables,

— R : M — R™ gives for each mode the rate vector,

— S C R™ is a bounded convex set of safe states.
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Formal Definitions

Definition (Constant-Rate Multi-Mode Systems: MMS)
A MMS is a tuple H = (M,n, R) where

— M is a finite nonempty set of modes,

— n is the number of continuous variables,

— R : M — R™ gives for each mode the rate vector,

— S C R™ is a bounded convex set of safe states.

The trajectory of a schedule (mq,t1), (ma,t2), ..., (Mg, t;) from sq is
S0, (m13t1)7 S1y.-4, (mkatk)a Sk

such that s; = s;_1 +t; - R(m;) for all forall 1 <i < k.

A schedule is safe at sq if all states of its trajectory from s( are safe.

A mode m is t-safe at a state s € S if the schedule (m, ) is safe.
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Definition

Safe Schedulability Problem

Given an MMS H and a starting state sg decide whether there exists a
non-Zeno safe schedule.
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Definition

Safe Schedulability Problem

Given an MMS H and a starting state sg decide whether there exists a
non-Zeno safe schedule.

Theorem
Safe Schedulability can be solved in polynomial time.

Safe Reachability Problem

Given an MMS #H, a starting state s € S, and a target state s; € S, decide
whether there exists a safe schedule that reaches s; from sg.
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Definition

Safe Schedulability Problem

Given an MMS H and a starting state sg decide whether there exists a
non-Zeno safe schedule.

Theorem
Safe Schedulability can be solved in polynomial time.

Safe Reachability Problem

Given an MMS H, a starting state sg € S, and a target state s; € S, decide
whether there exists a safe schedule that reaches s; from sg.

Theorem

Safe Reachability can be solved in polynomial time if the starting and the
target states lie in the interior of S.
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Safe Schedulability Problem: Geometry

my meo

my ms me

Safe set: z € [65,70],y € [65,70]
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me
™k
my

my, ms

my

A. Trivedi — 17 of 36



Safe Schedulability Problem: Geometry

me
™k
my

my, ms

my

A. Trivedi — 17 of 36



Safe Schedulability Problem: Geometry

mg
m|
my

my, ms

my

A. Trivedi — 17 of 36



Safe Schedulability Problem: Geometry

mg
m|
my

my, ms

my

A. Trivedi — 17 of 36



Safe Schedulability Problem: Geometry
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my
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Safe Schedulability Problem: Interior Case

Lemma

Assume that the starting state lies in the interior of the safety set.
A safe non-Zeno schedule exists if and only if

| M|
ZR(i)'fi = 0

| M|

Z fi = L
i=1

for some f1, fa,. .., fim) = 0.
Moreover, such a schedule is periodic.
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Safe Schedulability Problem: Interior Case

Proof Sketch: (“if" direction):

If for some non-negative f; we have

| M| [ M|

> R(i)-fi=0and Y fi=1
i=1 =1

then there exists a non-Zeno periodic safe schedule.
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Safe Schedulability Problem: Interior Case

Proof Sketch: (“if" direction):

If for some non-negative f; we have

| M| [ M|

D> R(i)-fi=0and Y fi=1
i=1 i=1
then there exists a non-Zeno periodic safe schedule.

1. There exists a t > 0 such that all modes are safe at sg for t-time
2. Consider the periodic schedule

(mlvt'fl)a(m%t'f2),"'a(m|M\7t'f|M|)

3. Notice that the schedule is non-Zeno.
4. Consider the trajectory of the schedule

S0, (m17t1)781(m27t2)7 .. ‘7S|M\7 (mhtl) oo

5. Notice that s;p74; = s; for all i > 0.
6. We show that sg, s1,..., s -1 are safe.
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Safe Schedulability Problem: “If” Direction

Lemma: All convex combinations of finite safe schedules are safe.

26
23 6
T
0, Yo, 20

Y Y2

26 = Az + (1 — N)ys
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Safe Schedulability Problem: “If” Direction

Lemma: All convex combinations of finite safe schedules are safe.

— —» I3

/ 2 26 = 3+ (1—Nys
23
x1

0, Yo, 20

Y Y2

Corollary: All intermediate states visited in the following periodic schedule are
safe if each mode is safe for time ¢t > 0.

(ma,t- f1), (ma,t- fa), ..., (mar)s - flan)
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Safe Schedulability Problem: Interior Case

Proof Sketch: (“only if" direction):

There exists a non-Zeno periodic safe schedule only if for some non-negative

fi we have
|M| | M|

D R(i)-fi=0and Y fi=1
=1 =1
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Safe Schedulability Problem: Interior Case

Proof Sketch: (“only if" direction):

There exists a non-Zeno periodic safe schedule only if for some non-negative

fi we have
|M| | M|

D R(i)-fi=0and Y fi=1
=1 =1

1. Assume that it is not feasible.
2. Then by Farkas's lemma there is (v1,va,...,v,) € R" such that

(v1,v2,...,v5) - R(%) > 0 for all modes 1.

3. Taking any mode contributes to some progress in the direction
(’Ul,’UQ, ‘e ,’U,,L)
4. Any non-Zeno schedule will eventually leave the safety set.
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Reachability Problem: Geometry
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Reachability Problem: Geometry
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Safe Reachability Problem

Lemma

Assume that the starting state sg and the target state s; lie in the interior of
the safety set.
A safe schedule exists from sq to s; exists if and only if

| M|
S0 —‘rZR(’L) -ty = s¢
i=1
for some t1,ta,. .., tjpr > 0.
Proof Sketch:

“Only if” direction is trivial.
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Safe Reachability Problem

Proof Sketch: (“if" direction):
If for some t1,%2,...,ta7 > 0 we have that

|M]|

So —‘rZR(Z) -t = st
=1

then a safe schedule exists from sg to s;.

1. There exists a t > 0 such that all modes are safe at sy and s; for t-time.

>IMIe,
2. Let £ be a natural number greater than ==1—.

3. The periodic schedule (my,t1/£), (ma,ta/t),. .., (mar,tjar/F) reaches
the target in ¢ - | M| steps.
4. Each intermediate state is in the safety set.
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Thumb Rules: Schedulability

The following is feasible:

| M| | M|

D> R(i)-fi=0and Y fi=1
=1 =1

Or, the following in infeasible:

(v1,v2,...,v,)-R(7) > 0 for all modes i.

A. Trivedi — 25 of 36



Thumb Rules: Schedulability

-1,3
(727 3) ( ) (27 3)
The following is feasible:
m3

M| M| m o

ZR(i)-fi:Oand Zfizl

i=1 i=1

ms

Or, the following in infeasible: ma (2,-1)
(v1,v2,...,0,)-R(i) > 0 for all modes i. (2,-2)
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Thumb Rules: Reachability

The following is feasible:

[ M|

so+ Y R(i)-ti = s,
=1

So
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Reachability: Boundary Case

S1 82...
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Reachability: Boundary Case

S1 82...

1. Rate vectors are (1,1) and (1,—1)
2. Angle at s is 30°.

3. [lskr sl = 15, s/l - (21~
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Schedulability: Boundary Case

S0 /
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Schedulability: Boundary Case

S0
— X
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Schedulability: Boundary Case

Lemma
For any finite safe schedule o there exists a finite safe schedule o' s.t.:

1. All modes that were ever safe during the trajectory with o will be safe in
the final state of o’, and

2. The set of safe modes in every state of o’ will always be increasing.
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Schedulability: Boundary Case

Lemma
For any finite safe schedule o there exists a finite safe schedule o' s.t.:

1. All modes that were ever safe during the trajectory with o will be safe in
the final state of o’, and

2. The set of safe modes in every state of o’ will always be increasing.

o /'y N b t3

o / t1/2
/ t1/4 \t2/2

Sonf8 N\ /4 ta/2
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Algorithm: Interior Case

1. Compute the sequence of set of modes My, Ms, ..., M} such that

— M, is the set of safe modes at ¢, and
— M, is the set of safe modes at states reachable from zo using only modes
from M;_1.

My C My C--- C M.
Modes outside M), are never reachable from x.

The set M}, can be computed in polynomial time.

AR

MMS is schedulable from xg if and only if:

Z R(m) - fm =0 and Z fm =1

meMy me M,

6. That can, again, be checked in polynomial time.
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Optimization, Discretization, and Undecidability
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Optimization Schedulability and Reachability

MMS H = (M,n, R) and price function 7 : M — R
— Price of a finite schedule (mq,t1), (ma,t2), ..., (Mg, tx) is
k

=1

Average price of an infinite schedule (mq,t1), (ma,t2),... is

k
Zi:1 m(m;)t;
By m—
j=1ti

Optimal reachability-price and average-price problems
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Optimization Schedulability and Reachability

MMS H = (M,n, R) and price function 7 : M — R
— Price of a finite schedule (mq,t1), (ma,t2), ..., (Mg, tx) is
k

=1

Average price of an infinite schedule (mq,t1), (ma,t2),... is

k
Zi:1 m(m;)t;
By m—
j=1ti

Optimal reachability-price and average-price problems
Minimize lefll t; - w(m;) subject to:
|M]
so + ZR(Z) ~t; = 8, and t; > 0.
i=1

— Minimize Ellfll fi - m(m;) subject to:
|M]| |M]|

d_RG)-fi=0and Y fi=1f;>0.
i=1 i=1

A. Trivedi — 32 of 36



Discrete Schedulability and Undecidability

Discrete Schedulability:
— Requiring schedules with delays that are multiples of a given sampling rate

— For a bounded safety set only a finite number of states reachable using
such discrete schedulers.

— Such reachable state-transition graph is of exponential size.

schedulability /optimization problems can be solved in PSPACE.

We show PSPACE-hardness by a reduction from acceptance problem for
linear-bounded automata.
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Discrete Schedulability and Undecidability

Discrete Schedulability:
— Requiring schedules with delays that are multiples of a given sampling rate

— For a bounded safety set only a finite number of states reachable using
such discrete schedulers.

— Such reachable state-transition graph is of exponential size.

schedulability /optimization problems can be solved in PSPACE.

We show PSPACE-hardness by a reduction from acceptance problem for
linear-bounded automata.

Generalizations:
— One can add some structure to the system by adding

— guards on mode-switches
— mode-dependent invariants

— Corresponds to singular hybrid automata of Henzinger et al. [HKPV98]

— We show that both generalizations lead to undecidability of the
reachability problem.
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Conclusion
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Summary and Future Work

Summary:

1.

Proposed a model for constant-rate multi-mode systems

2. Polynomial-time algorithms for safe schedulability and safe reachability
3. Energy peak demand reduction problem

4.
5

. Adding either local invariants or guards lead to undecidability

Discrete schedulers lead to PSPACE-hardness

Future work:

1.
2.
3.

Bounded-rate multi-mode systems
Optimization problems with cost of mode-switches

Extension with clock variables with guards and local-invariants
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