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Computation With Finitely Many States
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Machines and their Mathematical Abstractions

Finite instruction machine with finite memory (Finite State Automata)
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Finite instruction machine with unbounded memory (Turing machine)
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Finite State Automata
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Introduced first by two neuro-psychologists Warren
S. McCullough and Walter Pitts in 1943 as a model
for human brain!

Finite automata can naturally model
microprocessors and even software programs
working on variables with bounded domain

Capture so-called regular sets of sequences that
occur in many different fields (logic, algebra, regEx)

Nice theoretical properties

Applications in digital circuit/protocol verification,

compilers, pattern recognition, etc.
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Calculemus! — Gottfried Wilhelm von Leibniz
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Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following;:
Recognize a string of an even length.
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Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following;:
Recognize a string of an even length.
Recognize a binary string of an even number of 0’s.
Recognize a binary string of an odd number of 0’s.
Recognize a string that contains your roll number.
Recognize a binary (decimal) string that is a multiple of 2.
Recognize a binary (decimal) string that is a multiple of 3.
Recognize a string with well-matched parenthesis.
Recognize a # separated string of the form w#w.

Recognize a string with a prime number of 1’s
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Finite State Automata

Automaton accepting strings of even length:

0,1
0,1

Automaton accepting strings with an even number of 1’s:
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Automaton accepting even strings (multiple of 2):
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1
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Deterministic Finite State Automata (DFA)

0 1

1
0
A finite state automaton is a tuple A = (S, %, 4, so, F), where:
S is a finite set called the states;
Y is a finite set called the alphabet;
0 : S x X — Sis the transition function;

Sg € S is the start state; and
F C S is the set of accept states.
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Deterministic Finite State Automata (DFA)

0 1

1
0
A finite state automaton is a tuple A = (S, %, 4, so, F), where:
S is a finite set called the states;
Y is a finite set called the alphabet;
0 : S x X — Sis the transition function;
Sg € S is the start state; and

F C S is the set of accept states.
For a function 6 : S x ¥ — S we define extended transition function

0 : S x ¥* — S using the following inductive definition:

50, w) = q ifw=e
7%= 6(5(g,x),a) ifw=xast xeX*andae X.
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Deterministic Finite State Automata (DFA)

0 1

1
0
A finite state automaton is a tuple A = (S, X, 4, so, F), where:
S is a finite set called the states;
¥ is a finite set called the alphabet;
0 :S x X — Sis the transition function;
So € S is the start state; and

F C S is the set of accept states.
The language L(.A) accepted by a DFA A = (S, X, 4, 5o, F) is defined as:

L(A) € {w : §(w) € F}.
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Computation or Run of a DFA
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Deterministic Finite State Automata
Semantics using extended transition function:
The language L(.A) accepted by a DFA A = (S, X%, 6, 5o, F) is defined as:
L(A) = {w : §(w) € F}.

Semantics using accepting computation:

A computation or a run of a DFA A = (S, %, 6, s, F) on a string
W = aody - .. a,_1 is the finite sequence

SO,ﬂlSl,ﬂz, e 7a7l—1asn

where sy is the starting state, and §(s;_1,4;) = si+1.

A string w is accepted by a DFA A if the last state of the unique
computation of A on w is an accept state, i.e. s, € F.

Language of a DFA A

L(A) = {w : string w is accepted by DFA A}.
Proposition

Both semantics define the same language. Proof by induction.
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Properties of Regular Languages

Definition (Regular Languages)
A language is called regular if it is accepted by a finite state automaton.
Let A and B be languages (remember they are sets). We define the
following operations on them:

Union: AUB={w : we Aorw € B}

Concatenation: AB = {wv : w € Aand v € B}

Closure (Kleene Closure, or Star):

A* ={ww,...wp : k> 0and w; € A}. In other words:

A* = UizoAi

where A? = (), Al = A, A2 = AA, and so on.
Complementation X* \A={w e X* : w¢ A}
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Properties of Regular Languages

The class of regular languages is closed under
union,
intersection,
complementation
concatenation, and
Kleene closure.

Decidability of language-theoretic problems
Emptiness Problem
Membership Problem
Universality Problem
Equivalence Problem
Language Inclusion Problem
Minimization Problem

Goal: To study these problems for timed automata
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Closure under Union

Lemma

The class of regular languages is closed under union.

Proof.
Let A; and A; be regular languages.

A. Trivedi Hybrid Systems
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Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.
Let A; and A; be regular languages.

Let M1 = (Sl, E, 51, Sl,Fl) and M2 = (Sz, E, 52,52,F2) be finite
automata accepting these languages.
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Closure under Union

Lemma

The class of regular languages is closed under union.

Proof.

Let A; and A; be regular languages.

Let M1 = (Sl, E, 51, Sl,Fl) and M2 = (Sz, E, (52,52,1:‘2) be finite
automata accepting these languages.

Simulate both automata together!

The language A U B is accept by the resulting finite state automaton,
and hence is regular.

[
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Closure under Union

Lemma

The class of regular languages is closed under union.

Proof.

Let A; and A; be regular languages.

Let M1 = (Sl, E, 51, Sl,Fl) and M2 = (Sz, E, (52,52,1:‘2) be finite
automata accepting these languages.

Simulate both automata together!

The language A U B is accept by the resulting finite state automaton,
and hence is regular.

[

Class Exercise: Extend this construction for intersection.
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Closure under Concatenation

Lemma

The class of reqular languages is closed under concatenation.

Proof.
(Attempt).
Let A; and A; be regular languages.

Let My = (51,%, 01,51, F1) and M, = (52, >, 00,57, Fz) be finite
automata accepting these languages.

How can we find an automaton that accepts the concatenation?
Does this automaton fit our definition of a finite state automaton?

Determinism vs Non-determinism
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Nondeterministic Finite State Automata

0,1 0,1

L% 1 Q

start —( S1 S S3 Sy
N N\

Michael O. Rabin Dana Scott
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Non-deterministic Finite State Automata

0,1 0,1

07

A non-deterministic finite state automaton (NFA) is a tuple
A= (5,%,6,5s0,F), where:

S is a finite set called the states;

Y is a finite set called the alphabet;

§:S x (XU {e}) — 2% is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.
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Non-deterministic Finite State Automata

0,1 0,1

07

A non-deterministic finite state automaton (NFA) is a tuple
A= (5,%,6,5s0,F), where:

S is a finite set called the states;

Y is a finite set called the alphabet;

§:S x (XU {e}) — 2% is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.

Fora function § : S x ¥ — 25 we define extended transition function
§: S x ©* — 25 using the following inductive definition:

A {9} ifw=ce
6(q, w) = U d(p,a) ifw=xast xeX*andaeci.
ped(g.x)
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Non-deterministic Finite State Automata

0,1 0,1
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A non-deterministic finite state automaton (NFA) is a tuple
A= (S5,%,6,s0,F), where:

S is a finite set called the states;

¥ is a finite set called the alphabet;

§:S x (XU {e}) — 25 is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.
The language L(.A) accepted by an NFA A = (5,3, 6,50, F) is defined as:
L(A) € {w : §(w)NF +#0}.
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Computation or Run of an NFA

0,1

0,




Non-deterministic Finite State Automata

Semantics using extended transition function:
The language L(.A) accepted by an NFA A = (S, %, 4, 5o, F) is defined:

L(A) € {w : (w)NF#0}.

Semantics using accepting computation:
A computation or a run of a NFA on a string w = aoa; .. .a,_1 is a
finite sequence
50,71,81,72,...,¥k—1,5n
where sy is the starting state, and s;+1 € 6(s;_1, ;) and
rori..."rg—1 =4aopdy ...0,—1.
A string w is accepted by an NFA A if the last state of some
computation of A on w is an accept state s, € F.
Language of an NFA A

L(A) = {w : string w is accepted by NFA A}.
Proposition

Both semantics define the same language. Proof by induction.
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Why study NFA?

NFA are often more convenient to design than DFA, e.g.:
{w : w contains 1 in the third last position}.
{w :: wisamultiple of 2 or a multiple of 3}.
Union and intersection of two DFAs as an NFA

Exponentially succinct than DFA
Consider the language of strings having n-th symbol from the end is 1.
DFA has to remember last n symbols, and
hence any DFA needs at least 2" states to accept this language.
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Why study NFA?

NFA are often more convenient to design than DFA, e.g.:
{w : w contains 1 in the third last position}.
{w :: wisamultiple of 2 or a multiple of 3}.
Union and intersection of two DFAs as an NFA

Exponentially succinct than DFA

Consider the language of strings having n-th symbol from the end is 1.
DFA has to remember last n symbols, and
hence any DFA needs at least 2" states to accept this language.

And, surprisingly perhaps:
Theorem (DFA=NFA)

Every non-deterministic finite automaton has an equivalent (accepting the same
language) deterministic finite automaton. Subset construction.
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Computation of an NFA: An observation

0,1 0,1

0,




c-free NFA = DFA

Let A = (S,3,9,s0, F) be an e-free NFA. Consider the DFA
Det(A) = (S',%',0,s(, F') where

S = 25’

=1,

§": 2% x ¥ — 2% such that §'(P,a) = ,p 6(s,a),

sy = {so}, and

F' C S issuchthat FF = {P : PNF # (}.

Theorem (e-free NFA = DFA)

L(A) = L(Det(A)). By induction, hint §(sg, w) = 8'({so}, w).

Exercise (3.1)
Extend the proof for NFA with e transitions. hint: e-closure
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Proof of correctness: L(A) = L(Det(A)).

The proof follows from the observation that §(sy, w) = & ({so},w). We
prove it by induction on the length of w.
Base case: Let the size of wbe 0, i.e. w = . The base case follows
immediately from the definition of extended transition functions:

5(s0,€) = e and &' ({so}, w) = e.

Induction Hypothesis: Assume that for all strings w € X* of size n we
have that 6(sp, w) = &' ({so}, w).

Induction Step: Let w = xa where x € ¥* and a € ¥ be a string of size
n + 1, and hence x is of size n. Now observe,

(s, xa) = §(s,a), by definition of 4.
y

5€5(s0,x)

= U (s, a), from inductive hypothesis.
s€d’({so},x)
= & (8'({so},x),a), from definition &' (P, a) U 5(s,a)
seP
= &'({s0}, xa), by definition of &".
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Equivalence of NFA and DFA

Exercise (In class)

Determinize the following automaton:

0,1
0,1 0,1
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Complementation of the Language of a DFA

0 1
1
start *»
0
computation string computation string
start — start —

ORORORO,
OROROR0,

Hint: Simply swap the accepting and non-accepting states!
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Complementation of a DFA

Theorem

Complementation of the language of a DFA A = (S, X, 9, so, F) is the language
accepted by the DFA A’ = (S, %, d,s0, S \ F).

Proof.
L(A) = {w e ©* : §(sp,w) € F},
S*\ L(A) = {w € ©* : §(so,w) & F},
L(A) ={w e X* : (sp,w) € S\ F}, and

transition function is total.

A. Trivedi - 26 of 39
A. Trivedi Hybrid Systems



Complementation of the language of an NFA

0,1 0,1
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Question: Can we simply swap the accepting and non-accepting states?
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Complementation of the language of a NFA

Question: Can we simply swap the accepting and non-accepting states?

Let the NFA A be (5,3, 0, s0, F) and let the NFA A’ be (S, %, 0,50, S \ F) the
NFA after swapping the accepting states.

L(A) = {w e ©* : §(so,w) NE # 0},

L(A) = {w e £* : §(so,w) N (S\ F) # 0}.

Consider, the complement language of A

S \L(A) = {we* : §(so,w)NF=0}
= {we¥* : §(so,w) CS\F}

Hence L(A") does not quite capture the complement. Moreover, the
condition for ¥* \ L(.A) is not quite captured by either DFA or NFA.

N
<
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Computation With Finitely Many States

Nondeterministic Finite State Automata

Alternation
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Universal Non-deterministic Finite Automata

0,1 0,1
1 0,e 1
start —| S1 S2 S3 Sy

A universal non-deterministic finite state automaton (UNFA) is a tuple
A= (S5,%,6,s0,F), where:

S is a finite set called the states;

¥ is a finite set called the alphabet;

§:S x (XU {e}) — 25 is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.

The language L(A) accepted by a UNFA A = (S, 3, 4,50, F) is defined as:
L(A) = {w : §(w) C F}.
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Computation or Run of an UNFA

0,1 0,1
1 0, 1
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Universal Non-deterministic Finite Automata

Semantics using extended transition function:
The language L(A) accepted by an NFA A = (S, %, §, 5o, F) is defined
as:
L(A) < {w : d(w) C F}.
Semantics using accepting computation:
A computation or a run of a NFA on a string w = apa; .. .a,_1 is a
finite sequence
50,71,581,12y -+ 7k—1,5n
where sy is the starting state, and s; ;1 € d(si_1, ;) and
Yory...7k—1 =4aopdy ...0,—1.
A string w is accepted by an NFA A if the last state of all
computations of A on w is an accept state s, € F.
Language of an NFA A

L(A) = {w : string w is accepted by NFA A}.
Proposition

Both semantics define the same language. Proof by induction.
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e-free UNFA = DFA

Let A = (S,%, 9,50, F) be an e-free UNFA. Consider the DFA
Det(A) = (S',%',0,s(, F') where

S = 25’

=1,

§": 2% x ¥ — 2% such that §'(P,a) = ,p 6(s,a),

sy = {so}, and

F' C S issuchthatFF ={P : P C F}.

Theorem (e-free UNFA = DFA)
L(A) = L(Det(A)). By induction, hint &(so, w) = &' (so, w).
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e-free UNFA = DFA

Let A = (S,%, 9,50, F) be an e-free UNFA. Consider the DFA
Det(A) = (S',%',0,s(, F') where

S = 25’

=1,

§": 2% x ¥ — 2% such that §'(P,a) = ,p 6(s,a),

sy = {so}, and

F' C S issuchthatFF ={P : P C F}.

Theorem (e-free UNFA = DFA)

L(A) = L(Det(A)). By induction, hint &(so, w) = &' (so, w).

Exercise (3.2)
Extend the proof for UNFA with ¢ transitions.
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Complementation of an NFA

Theorem

Complementation of the language of an NFA A = (S, %, 6, s, F) is the language
accepted by the UNFA A’ = (S,%, 6,50, 5 \ F).

Exercise (3.3)
Write a formal proof for this theorem.
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Alternating Finite State Automata

1

0
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Ashok K. Chandra Larry J. Stockmeyer
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Alternating Finite State Automata

0 1
L0
start — @ (0]
~
0

An alternating finite state automaton (AFA) is a tuple
A =(S,53,5v,%, 6,50, F), where:

S is a finite set called the states with a partition S5 and Sy;
¥ is a finite set called the alphabet;
§:S x (XU {e}) — 2% is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.
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Computation or Run of an AFA

0,1

1 0, 1
start —{ S1 S S3 Sy

start %@

52 53
52 S3 S4
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Universal Non-deterministic Finite Automata

A computation or a run of a AFA on a string w = aga; ...a,—_1 is a
game graph G(A,w) = (S x {0,1,2,...,n — 1}, E) where:
Nodes in S5 x {0,1,2,...,n — 1} are controlled by Eva and nodes in
Sv x {0,1,2,...,n} are controlled by Adam; and
((s,4),(s',i+ 1)) € Eifs’ € §(s,a;).

Initially a token is in (s, 0) node, and at every step the controller of
the current node chooses the successor node.

Eva wins if the node reached at level i is an accepting state node,
otherwise Adam wins.

We say that Eva has a winning strategy if she can make her decisions
no matter how Adam plays.

A string w is accepted by an AFA A if Eva has a winning strategy in
the graph G(A, w).

Language of an AFA AL(A) = {w : string w is accepted by AFA A}.
Example.
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e-free AFA = NFA

Let A = (S, 53, 5v, %, §,s0, F) be an e-free AFA. Consider the NFA
NDet(A) = (§',%',4', sy, F') where
g/ =92S
¥ =3,
§':25 x ¥ — 2% such that Q € §(P,a) if
for all universal states p € P N Sy we have that 6(p,a) C Q and
for all existential states p € P N S5 we have that 6(p,a) N Q # 0,

so = {so}, and
F' C S is such that F' = 2F \ ().

Theorem (e-free AFA = NFA)
L(A) = L(Det(A)).
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