
Lexical Analysis

Amitabha Sanyal

(www.cse.iitb.ac.in/̃ as)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

September 2007

College of Engineering, Pune Lexical Analysis: 2/86

Recap

The input program – as you see it.

main ()

{

int i,sum;

sum = 0;

for (i=1; i<=10; i++);

sum = sum + i;

printf("%d\n",sum);

}

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 4/86

Recap

The same program – as the compiler sees it (initially).

main [()←↩{←↩ [[[[int [i,sum;←↩ [[[[sum [= [0;←↩ [[[[

for [(i=1; [i<=10; [i++); [[[[sum [= [sum [+ [i;←↩ [[[[

printf("%d\n",sum);←↩}

[– The blank space character
←↩ – The return character

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 4/86

Recap

The same program – as the compiler sees it (initially).

main [()←↩{←↩ [[[[int [i,sum;←↩ [[[[sum [= [0;←↩ [[[[

for [(i=1; [i<=10; [i++); [[[[sum [= [sum [+ [i;←↩ [[[[

printf("%d\n",sum);←↩}

How do you make the compiler see what you see?

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 6/86

Recap - Discovering the structure of the program

Step 1:

a. Break up this string into ‘words’–the smallest logical units.

main [() ←↩ { ←↩ [[[[int [i , sum

; ←↩ [[[[sum [= [0 ; ←↩ [[[[

for [(i = 1 ; [i <= 10 ; [i ++) ; [

[[[sum [= [sum [+ [i; ←↩ [[[

[printf ("%d\n" , sum) ; ←↩ }

We get a sequence of lexemes or tokens.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 8/86

Recap - Discovering the structure of the program

Step 1:

b. Clean up – remove the [and the ←↩ characters.

main () { int i , sum ; sum = 0 ; for (

i = 1 ; i <= 10 ; i ++) ; sum = sum + i

; printf ("%d\n" , sum) ; }

Steps 1a. and 1b. are interleaved.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 8/86

Recap - Discovering the structure of the program

Step 1:

b. Clean up – remove the [and the ←↩ characters.

main () { int i , sum ; sum = 0 ; for (

i = 1 ; i <= 10 ; i ++) ; sum = sum + i

; printf ("%d\n" , sum) ; }

This is lexical analysis or scanning.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 10/86

Recap - Discovering the structure of the program

Step 2:
Now group the lexemes to form larger structures.

main () { int i , sum ; sum = 0 ; for (

i = 1 ; i <= 10 ; i ++) ; sum = sum + i

; printf ("%d\n" , sum) ; }

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 10/86

Recap - Discovering the structure of the program

Step 2:
Now group the lexemes to form larger structures.

main () { int i , sum ; sum = 0 ; for (

i = 1 ; i <= 10 ; i ++) ; sum = sum + i

; printf ("%d\n" , sum) ; }

fundef

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 10/86

Recap - Discovering the structure of the program

Step 2:
Now group the lexemes to form larger structures.

main () { int i , sum ; sum = 0 ; for (

i = 1 ; i <= 10 ; i ++) ; sum = sum + i

; printf ("%d\n" , sum) ; }

fundef

fname params compound-stmt

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 10/86

Recap - Discovering the structure of the program

Step 2:
Now group the lexemes to form larger structures.

main () { int i , sum ; sum = 0 ; for (

i = 1 ; i <= 10 ; i ++) ; sum = sum + i

; printf ("%d\n" , sum) ; }

fundef

fname params compound-stmt

identifier

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 10/86

Recap - Discovering the structure of the program

Step 2:
Now group the lexemes to form larger structures.

main () { int i , sum ; sum = 0 ; for (

i = 1 ; i <= 10 ; i ++) ; sum = sum + i

; printf ("%d\n" , sum) ; }

fundef

fname params compound-stmt

identifier

main

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 10/86

Recap - Discovering the structure of the program

Step 2:
Now group the lexemes to form larger structures.

main () { int i , sum ; sum = 0 ; for (

i = 1 ; i <= 10 ; i ++) ; sum = sum + i

; printf ("%d\n" , sum) ; }

fundef

fname params compound-stmt

identifier

main

()

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 10/86

Recap - Discovering the structure of the program

Step 2:
Now group the lexemes to form larger structures.

main () { int i , sum ; sum = 0 ; for (

i = 1 ; i <= 10 ; i ++) ; sum = sum + i

; printf ("%d\n" , sum) ; }

fundef

fname params compound-stmt

identifier

main

() { vdecl slist }

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 10/86

Recap - Discovering the structure of the program

Step 2:
Now group the lexemes to form larger structures.

main () { int i , sum ; sum = 0 ; for (

i = 1 ; i <= 10 ; i ++) ; sum = sum + i

; printf ("%d\n" , sum) ; }

fundef

fname params compound-stmt

identifier

main

() { vdecl slist }

type varlist ;

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 10/86

Recap - Discovering the structure of the program

Step 2:
Now group the lexemes to form larger structures.

main () { int i , sum ; sum = 0 ; for (

i = 1 ; i <= 10 ; i ++) ; sum = sum + i

; printf ("%d\n" , sum) ; }

fundef

fname params compound-stmt

identifier

main

() { vdecl slist }

type varlist ;

int

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 10/86

Recap - Discovering the structure of the program

Step 2:
Now group the lexemes to form larger structures.

main () { int i , sum ; sum = 0 ; for (

i = 1 ; i <= 10 ; i ++) ; sum = sum + i

; printf ("%d\n" , sum) ; }

fundef

fname params compound-stmt

identifier

main

() { vdecl slist }

type varlist ;

int

. . .

. . .

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 12/86

Recap - Discovering the structure of the program

fundef

fname params compound-stmt

identifier

main

() { vdecl slist }

varlist ;type

int varlist , var

var identifier

identifier sum

i

. . .

This is syntax analysis or parsing.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 14/86

Lexemes, Tokens and Patterns

Definition: Lexical analysis is the operation of dividing the input
program into a sequence of lexemes (tokens).

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 14/86

Lexemes, Tokens and Patterns

Definition: Lexical analysis is the operation of dividing the input
program into a sequence of lexemes (tokens).

Distinguish between

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 14/86

Lexemes, Tokens and Patterns

Definition: Lexical analysis is the operation of dividing the input
program into a sequence of lexemes (tokens).

Distinguish between

• lexemes – smallest logical units (words) of a program.
Examples – i, sum, for, 10, ++, "%d\n", <=.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 14/86

Lexemes, Tokens and Patterns

Definition: Lexical analysis is the operation of dividing the input
program into a sequence of lexemes (tokens).

Distinguish between

• lexemes – smallest logical units (words) of a program.
Examples – i, sum, for, 10, ++, "%d\n", <=.

• tokens – sets of similar lexemes.
Examples –
identifier = {i, sum, buffer, . . . }
int constant = {1, 10, . . . }
addop = {+, -}

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 16/86

Lexemes, Tokens and Patterns

Things that are not counted as lexemes –

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 16/86

Lexemes, Tokens and Patterns

Things that are not counted as lexemes –

• white spaces – tab, blanks and newlines

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 16/86

Lexemes, Tokens and Patterns

Things that are not counted as lexemes –

• white spaces – tab, blanks and newlines

• comments

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 16/86

Lexemes, Tokens and Patterns

Things that are not counted as lexemes –

• white spaces – tab, blanks and newlines

• comments

These too have to be detected and ignored.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 18/86

Lexemes, Tokens and Patterns

The lexical analyser:

• detects the next lexeme

• categorises it into the right token

• passes to the syntax analyser
I the token name for further syntax analysis
I the lexeme itself, in some form, for stages beyond syntax analysis

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 20/86

Recap - Lexemes, Tokens and Patterns

How does one describe the lexemes that make up the token identifier.

Variants in different languages.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 20/86

Recap - Lexemes, Tokens and Patterns

How does one describe the lexemes that make up the token identifier.

Variants in different languages.

• String of alphanumeric characters. The first character is an
alphabet.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 20/86

Recap - Lexemes, Tokens and Patterns

How does one describe the lexemes that make up the token identifier.

Variants in different languages.

• String of alphanumeric characters. The first character is an
alphabet.

• a string of alphanumeric characters in which the the first character
is an alphabet. It has a length of at most 31.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 20/86

Recap - Lexemes, Tokens and Patterns

How does one describe the lexemes that make up the token identifier.

Variants in different languages.

• String of alphanumeric characters. The first character is an
alphabet.

• a string of alphanumeric characters in which the the first character
is an alphabet. It has a length of at most 31.

• a string of alphabet or numeric or underline characters in which the
the first character is an alphabet or an underline. It has a length of
at most 31. Any characters after the 31st character are ignored.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 20/86

Recap - Lexemes, Tokens and Patterns

How does one describe the lexemes that make up the token identifier.

Variants in different languages.

• String of alphanumeric characters. The first character is an
alphabet.

• a string of alphanumeric characters in which the the first character
is an alphabet. It has a length of at most 31.

• a string of alphabet or numeric or underline characters in which the
the first character is an alphabet or an underline. It has a length of
at most 31. Any characters after the 31st character are ignored.

Such descriptions are called patterns. The description may be informal or
formal.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 22/86

Recap - Basic concepts and issues

A pattern is used to

• specify tokens precisely

• build a recognizer from such specifications

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 24/86

Example – tokens in Java

1. Identifier: A Javaletter followed by zero or more Javaletterordigits.
A Javaletter includes the characters a-z, A-Z, _ and $.

2. Constants:

2.1 Integer Constants
I Octal, Hex and Decimal
I 4 byte and 8 byte representation

2.2 Floating point constants
I float - ends with f

I double

2.3 Boolean constants – true and false

2.4 Character constants – ’a’, ’\u0034’, ’\t’
2.5 String constants – "", "\"", "A string".
2.6 Null constant – null.

3. Delimiters: (,), {, }, [,] , ;, . and ,

4. Operators: =, >, < . . . >>>=

5. Keywords: abstract, boolean . . . volatile, while.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 26/86

Recap - Basic concepts and issues

Where does a lexical analyser fit into the rest of the compiler?

• The front end of most compilers is parser driven.

• When the parser needs the next token, it invokes the Lexical
Analyser.

• Instead of analysing the entire input string, the lexical analyser sees
enough of the input string to return a single token.

• The actions of the lexical analyser and parser are intertwined.

parser

lexical analyser rest of the
compiler

input
program

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 28/86

Recap - Token Attributes

Apart from the token itself, the lexical analyser also passes other
informations regarding the token. These items of information are called
token attributes

EXAMPLE

lexeme <token, token attribute>
3 < const, 3>
A <identifier, A>
if <if, –>
= <assignop, –>
> <gt, –>
; <semicolon, –>

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 30/86

Creating a Lexical Analyzer

Two approaches:

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 30/86

Creating a Lexical Analyzer

Two approaches:

1. Hand code – This is only of historical interest now.
I Possibly more efficient.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 30/86

Creating a Lexical Analyzer

Two approaches:

1. Hand code – This is only of historical interest now.
I Possibly more efficient.

2. Use a generator – To generate the lexical analyser from a formal
description.

I The generation process is faster.
I Less prone to errors.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 32/86

Automatic Generation of Lexical Analysers

Inputs to the lexical analyser generator:

• A specification of the tokens of the source language, consisting of:
I a regular expression describing each token, and
I a code fragment describing the action to be performed, on identifying

each token.

The generated lexical analyser consists of:

• A deterministic finite automaton (DFA) constructed from the token
specification.

• A code fragment (a driver routine) which can traverse any DFA.

• Code for the action specifications.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 34/86

Automatic Generation of Lexical Analysers

regular
expression

action
routines

DFA action
routines

Driver
routine

processed copied

input

program

tokens

specification

generated lexical analyser

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 36/86

Example of Lexical Analyser Generation

Suppose a language has two tokens

Pattern Action
a*b { printf("Token 1 found");}
c+ { printf("Token 2 found");}

From the description, construct a structure called a deterministic finite
automaton (DFA).

0

1

2

3

a

b

c

b

a

c

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 38/86

Example of Lexical Analyser Generation

Now consider the following together:

The DFA The driver routine

0

1

2

3

a

b

c

b

a

c

void nexttoken ()

{state = 0; c = nextchar();

while (valid(nextstate[state,c]))

{state = nextstate[state,c];

c = nextchar();}

if (!final(state))

{error; return;}

else

{unput(c);action();return;}}

The actions The input and output
void action();

{

switch(state)

2:{printf("Token 1 found");

break;}

3:{printf("Token 2 found");

break;}

}

Input: aabadbcc←↩

Output:

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 38/86

Example of Lexical Analyser Generation

Now consider the following together:

The DFA The driver routine

0

1

2

3

a

b

c

b

a

c

void nexttoken ()

{state = 0; c = nextchar();

while (valid(nextstate[state,c]))

{state = nextstate[state,c];

c = nextchar();}

if (!final(state))

{error; return;}

else

{unput(c);action();return;}}

The actions The input and output
void action();

{

switch(state)

2:{printf("Token 1 found");

break;}

3:{printf("Token 2 found");

break;}

}

Input: aabadbcc←↩

Output:

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 38/86

Example of Lexical Analyser Generation

Now consider the following together:

The DFA The driver routine

0

1

2

3

a

b

c

b

a

c

void nexttoken ()

{state = 0; c = nextchar();

while (valid(nextstate[state,c]))

{state = nextstate[state,c];

c = nextchar();}

if (!final(state))

{error; return;}

else

{unput(c);action();return;}}

The actions The input and output
void action();

{

switch(state)

2:{printf("Token 1 found");

break;}

3:{printf("Token 2 found");

break;}

}

Input: aabadbcc←↩

Output:

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 38/86

Example of Lexical Analyser Generation

Now consider the following together:

The DFA The driver routine

0

1

2

3

a

b

c

b

a

c

void nexttoken ()

{state = 0; c = nextchar();

while (valid(nextstate[state,c]))

{state = nextstate[state,c];

c = nextchar();}

if (!final(state))

{error; return;}

else

{unput(c);action();return;}}

The actions The input and output
void action();

{

switch(state)

2:{printf("Token 1 found");

break;}

3:{printf("Token 2 found");

break;}

}

Input: aabadbcc←↩

Output:

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 38/86

Example of Lexical Analyser Generation

Now consider the following together:

The DFA The driver routine

0

1

2

3

a

b

c

b

a

c

void nexttoken ()

{state = 0; c = nextchar();

while (valid(nextstate[state,c]))

{state = nextstate[state,c];

c = nextchar();}

if (!final(state))

{error; return;}

else

{unput(c);action();return;}}

The actions The input and output
void action();

{

switch(state)

2:{printf("Token 1 found");

break;}

3:{printf("Token 2 found");

break;}

}

Input: aabadbcc←↩

Output: Token 1 found

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 38/86

Example of Lexical Analyser Generation

Now consider the following together:

The DFA The driver routine

0

1

2

3

a

b

c

b

a

c

void nexttoken ()

{state = 0; c = nextchar();

while (valid(nextstate[state,c]))

{state = nextstate[state,c];

c = nextchar();}

if (!final(state))

{error; return;}

else

{unput(c);action();return;}}

The actions The input and output
void action();

{

switch(state)

2:{printf("Token 1 found");

break;}

3:{printf("Token 2 found");

break;}

}

Input: aabadbcc←↩

Output: Token 1 found

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 38/86

Example of Lexical Analyser Generation

Now consider the following together:

The DFA The driver routine

0

1

2

3

a

b

c

b

a

c

void nexttoken ()

{state = 0; c = nextchar();

while (valid(nextstate[state,c]))

{state = nextstate[state,c];

c = nextchar();}

if (!final(state))

{error; return;}

else

{unput(c);action();return;}}

The actions The input and output
void action();

{

switch(state)

2:{printf("Token 1 found");

break;}

3:{printf("Token 2 found");

break;}

}

Input: aabadbcc←↩

Output: Token 1 found

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 38/86

Example of Lexical Analyser Generation

Now consider the following together:

The DFA The driver routine

0

1

2

3

a

b

c

b

a

c

void nexttoken ()

{state = 0; c = nextchar();

while (valid(nextstate[state,c]))

{state = nextstate[state,c];

c = nextchar();}

if (!final(state))

{error; return;}

else

{unput(c);action();return;}}

The actions The input and output
void action();

{

switch(state)

2:{printf("Token 1 found");

break;}

3:{printf("Token 2 found");

break;}

}

Input: aabadbcc←↩

Output: Token 1 found

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 38/86

Example of Lexical Analyser Generation

Now consider the following together:

The DFA The driver routine

0

1

2

3

a

b

c

b

a

c

void nexttoken ()

{state = 0; c = nextchar();

while (valid(nextstate[state,c]))

{state = nextstate[state,c];

c = nextchar();}

if (!final(state))

{error; return;}

else

{unput(c);action();return;}}

The actions The input and output
void action();

{

switch(state)

2:{printf("Token 1 found");

break;}

3:{printf("Token 2 found");

break;}

}

Input: aabadbcc←↩

Output: Token 1 found

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 38/86

Example of Lexical Analyser Generation

Now consider the following together:

The DFA The driver routine

0

1

2

3

a

b

c

b

a

c

void nexttoken ()

{state = 0; c = nextchar();

while (valid(nextstate[state,c]))

{state = nextstate[state,c];

c = nextchar();}

if (!final(state))

{error; return;}

else

{unput(c);action();return;}}

The actions The input and output
void action();

{

switch(state)

2:{printf("Token 1 found");

break;}

3:{printf("Token 2 found");

break;}

}

Input: aabadbcc←↩

Output: Token 1 found

Token 1 found

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 38/86

Example of Lexical Analyser Generation

Now consider the following together:

The DFA The driver routine

0

1

2

3

a

b

c

b

a

c

void nexttoken ()

{state = 0; c = nextchar();

while (valid(nextstate[state,c]))

{state = nextstate[state,c];

c = nextchar();}

if (!final(state))

{error; return;}

else

{unput(c);action();return;}}

The actions The input and output
void action();

{

switch(state)

2:{printf("Token 1 found");

break;}

3:{printf("Token 2 found");

break;}

}

Input: aabadbcc←↩

Output: Token 1 found

Token 1 found

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 38/86

Example of Lexical Analyser Generation

Now consider the following together:

The DFA The driver routine

0

1

2

3

a

b

c

b

a

c

void nexttoken ()

{state = 0; c = nextchar();

while (valid(nextstate[state,c]))

{state = nextstate[state,c];

c = nextchar();}

if (!final(state))

{error; return;}

else

{unput(c);action();return;}}

The actions The input and output
void action();

{

switch(state)

2:{printf("Token 1 found");

break;}

3:{printf("Token 2 found");

break;}

}

Input: aabadbcc←↩

Output: Token 1 found

Token 1 found

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 38/86

Example of Lexical Analyser Generation

Now consider the following together:

The DFA The driver routine

0

1

2

3

a

b

c

b

a

c

void nexttoken ()

{state = 0; c = nextchar();

while (valid(nextstate[state,c]))

{state = nextstate[state,c];

c = nextchar();}

if (!final(state))

{error; return;}

else

{unput(c);action();return;}}

The actions The input and output
void action();

{

switch(state)

2:{printf("Token 1 found");

break;}

3:{printf("Token 2 found");

break;}

}

Input: aabadbcc←↩

Output: Token 1 found

Token 1 found

Token 2 found

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 40/86

Example of Lexical Analyser Generation

In summary:

• The DFA, the driver routine and the action routines taken together,
constitute the lexical analyser.

• I actions are supplied as part of specification.
I driver routine is common to all generated lexical analyzers

The only issue – how are the patterns, specified by regular
expressions, converted to a DFA.

In two steps:
I Convert regular expression into NFA.
I Convert NFA to DFA.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 42/86

Example of Lexical Analyser Generation

Consider a language with the following tokens:

• begin – representing the lexeme begin

• integer – Examples: 0, -5, 250

• identifier – Examples: a, A1, max

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 44/86

Converting Regular Expressions to NFA

In two parts;

• First convert the regular expression corresponding to each token
into a NFA.

I Invariant: A single final state corresponding to each token.

• Join the NFAs obtained for all the tokens.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 46/86

Converting Regular Expressions to DFA

RE for ε

ε

ε

RE for a

a

a

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 48/86

Converting Regular Expressions to NFA

2

r1

r

RE for r1 • r2

1

1 2

2
r r

rr

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 50/86

Converting Regular Expressions to NFA

2

r1

r

RE for r1|r2
r r

r

r

2|1

1

2

ε

ε

ε

ε

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 52/86

Converting Regular Expressions to NFA

r

RE for r

r

r*

ε

ε ε

ε

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 54/86

Converting NFA to DFA

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 54/86

Converting NFA to DFA

1 2 3 4 5 6b e g i n

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 54/86

Converting NFA to DFA

1 2 3 4 5 6b e g i n

7 8 9- digit

digit

digit

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 54/86

Converting NFA to DFA

1 2 3 4 5 6b e g i n

7 8 9- digit

digit

digit

10 11
letter

letter|digit

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 54/86

Converting NFA to DFA

1 2 3 4 5 6b e g i n

7 8 9- digit

digit

digit

10 11
letter

letter|digit

0

ε

ε

ε

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 54/86

Converting NFA to DFA

1 2 3 4 5 6b e g i n

7 8 9- digit

digit

digit

10 11
letter

letter|digit

0

ε

ε

ε

0

0,1,7,10

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 54/86

Converting NFA to DFA

1 2 3 4 5 6b e g i n

7 8 9- digit

digit

digit

10 11
letter

letter|digit

0

ε

ε

ε

0

0,1,7,10

1

2,11

b

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 54/86

Converting NFA to DFA

1 2 3 4 5 6b e g i n

7 8 9- digit

digit

digit

10 11
letter

letter|digit

0

ε

ε

ε

0

0,1,7,10

1

2,11

b

6

8
-

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 54/86

Converting NFA to DFA

1 2 3 4 5 6b e g i n

7 8 9- digit

digit

digit

10 11
letter

letter|digit

0

ε

ε

ε

0

0,1,7,10

1

2,11

b

6

8
- 7

9

digit

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 54/86

Converting NFA to DFA

1 2 3 4 5 6b e g i n

7 8 9- digit

digit

digit

10 11
letter

letter|digit

0

ε

ε

ε

0

0,1,7,10

1

2,11

b

6

8
- 7

9

digit

8

11

-{b}

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 54/86

Converting NFA to DFA

1 2 3 4 5 6b e g i n

7 8 9- digit

digit

digit

10 11
letter

letter|digit

0

ε

ε

ε

0

0,1,7,10

1

2,11

b

6

8
- 7

9

digit

8

11

-{b}

2

3,11

e

-{e}

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 54/86

Converting NFA to DFA

1 2 3 4 5 6b e g i n

7 8 9- digit

digit

digit

10 11
letter

letter|digit

0

ε

ε

ε

0

0,1,7,10

1

2,11

b

6

8
- 7

9

digit

8

11

-{b}

2

3,11

e

-{e}

digit

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 54/86

Converting NFA to DFA

1 2 3 4 5 6b e g i n

7 8 9- digit

digit

digit

10 11
letter

letter|digit

0

ε

ε

ε

0

0,1,7,10

1

2,11

b

6

8
- 7

9

digit

8

11

-{b}

2

3,11

e

-{e}

digit

letter|digit

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 54/86

Converting NFA to DFA

1 2 3 4 5 6b e g i n

7 8 9- digit

digit

digit

10 11
letter

letter|digit

0

ε

ε

ε

0

0,1,7,10

1

2,11

b

6

8
- 7

9

digit

8

11

-{b}

2

3,11

e

-{e}

digit

letter|digit

3

4,11
g

-{g}

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 54/86

Converting NFA to DFA

1 2 3 4 5 6b e g i n

7 8 9- digit

digit

digit

10 11
letter

letter|digit

0

ε

ε

ε

0

0,1,7,10

1

2,11

b

6

8
- 7

9

digit

8

11

-{b}

2

3,11

e

-{e}

digit

letter|digit

3

4,11
g

-{g}

digit

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 54/86

Converting NFA to DFA

1 2 3 4 5 6b e g i n

7 8 9- digit

digit

digit

10 11
letter

letter|digit

0

ε

ε

ε

0

0,1,7,10

1

2,11

b

6

8
- 7

9

digit

8

11

-{b}

2

3,11

e

-{e}

digit

letter|digit

3

4,11
g

-{g}

digit

4

5,11

i

-{i}

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 54/86

Converting NFA to DFA

1 2 3 4 5 6b e g i n

7 8 9- digit

digit

digit

10 11
letter

letter|digit

0

ε

ε

ε

0

0,1,7,10

1

2,11

b

6

8
- 7

9

digit

8

11

-{b}

2

3,11

e

-{e}

digit

letter|digit

3

4,11
g

-{g}

digit

4

5,11

i

-{i}
5

6,11

n

-{n}

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 54/86

Converting NFA to DFA

1 2 3 4 5 6b e g i n

7 8 9- digit

digit

digit

10 11
letter

letter|digit

0

ε

ε

ε

0

0,1,7,10

1

2,11

b

6

8
- 7

9

digit

8

11

-{b}

2

3,11

e

-{e}

digit

letter|digit

3

4,11
g

-{g}

digit

4

5,11

i

-{i}
5

6,11

n

-{n}

letter|digit

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 56/86

LEXICAL ERRORS

Primarily of two kinds:

1. Lexemes whose length exceed the bound specified by the language.
I In Fortran, an identifier more than 7 characters long is a lexical error.
I Most languages have a bound on the precision of numeric constants.

A constant whose length exceeds this bound is a lexical error.

2. Illegal characters in the program.
I The characters ~, & and @ occuring in a Pascal program (but not

within a string or a comment) are lexical errors.

3. Unterminated strings or comments.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 58/86

Handling Lexical Errors

issuing an error message, the action taken on detection of an error are:

1. Issue an appropriate error message.

2. I Error of the first type – the entire lexeme is read and then truncated
to the specified length.

I Error of the second type –
I skip illegal character.
I pass the character to the parser which has better knowledge of the

context in which error has occurred. more possibilities of recovery -
replacement instead of deletion.

I Error of the third type – wait till end of file an issue error message.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 60/86

MINIMIZING THE NUMBER OF STATES

• The DFA constructed for (b|ε)(a|b)∗abb.

3

1 2 4 5
a

b
a

b b

b
a

a
a

b

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 60/86

MINIMIZING THE NUMBER OF STATES

• The DFA constructed for (b|ε)(a|b)∗abb.

• There is another DFA for the same regular expression with lesser
number of states.

3

1 2 4 5
a

b
a

b b

b
a

a
a

b

A B C D
a

b
b b

a

a
a

b

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 60/86

MINIMIZING THE NUMBER OF STATES

• The DFA constructed for (b|ε)(a|b)∗abb.

• There is another DFA for the same regular expression with lesser
number of states.

3

1 2 4 5
a

b
a

b b

b
a

a
a

b

A B C D
a

b
b b

a

a
a

b

• For a typical language, the number of states of the DFA is in order
of hundreds.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 60/86

MINIMIZING THE NUMBER OF STATES

• The DFA constructed for (b|ε)(a|b)∗abb.

• There is another DFA for the same regular expression with lesser
number of states.

3

1 2 4 5
a

b
a

b b

b
a

a
a

b

A B C D
a

b
b b

a

a
a

b

• For a typical language, the number of states of the DFA is in order
of hundreds.

• Therefore we should try to minimize the number of states.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 62/86

MINIMIZING THE NUMBER OF STATES

• The second DFA has been obtained by merging states 1 and 3 of
the first DFA.

3

1 2 4 5
a

b
a

b b

b
a

a
a

b

A B C D
a

b
b b

a

a
a

b

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 62/86

MINIMIZING THE NUMBER OF STATES

• The second DFA has been obtained by merging states 1 and 3 of
the first DFA.

• Under what conditions can this merging take place?

3

1 2 4 5
a

b
a

b b

b
a

a
a

b

A B C D
a

b
b b

a

a
a

b

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 64/86

MINIMIZING THE NUMBER OF STATES

3

1 2 4 5
a

b
a

b b

b
a

a
a

b

A B C D
a

b
b b

a

a
a

b

• The string bb takes both states 1 and 3 to a final state.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 64/86

MINIMIZING THE NUMBER OF STATES

3

1 2 4 5
a

b
a

b b

b
a

a
a

b

A B C D
a

b
b b

a

a
a

b

• The string bb takes both states 1 and 3 to a final state.

• The string aba takes both states 1 and 3 to a non-final state.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 64/86

MINIMIZING THE NUMBER OF STATES

3

1 2 4 5
a

b
a

b b

b
a

a
a

b

A B C D
a

b
b b

a

a
a

b

• The string bb takes both states 1 and 3 to a final state.

• The string aba takes both states 1 and 3 to a non-final state.

• The string ε takes both states 1 and 3 to a non-final state.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 64/86

MINIMIZING THE NUMBER OF STATES

3

1 2 4 5
a

b
a

b b

b
a

a
a

b

A B C D
a

b
b b

a

a
a

b

• The string bb takes both states 1 and 3 to a final state.

• The string aba takes both states 1 and 3 to a non-final state.

• The string ε takes both states 1 and 3 to a non-final state.

• The string bbabb takes both states 1 and 3 to a final state.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 64/86

MINIMIZING THE NUMBER OF STATES

3

1 2 4 5
a

b
a

b b

b
a

a
a

b

A B C D
a

b
b b

a

a
a

b

• The string bb takes both states 1 and 3 to a final state.

• The string aba takes both states 1 and 3 to a non-final state.

• The string ε takes both states 1 and 3 to a non-final state.

• The string bbabb takes both states 1 and 3 to a final state.

Conclusion:
Any string that takes state 1 to a final state also takes 3 to a final state.
Conversely, any string that takes state 1 to a non-final state also takes 3
to a non-final state.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 66/86

MINIMIZING THE NUMBER OF STATES

3

1 2 4 5
a

b
a

b b

b
a

a
a

b

A B C D
a

b
b b

a

a
a

b

• States 1 and 3 are said to be indistinguishable.

• Minimimization strategy:
I Find indistinguishable states.
I Merge them.

• Question: How does one find indistingushable states?

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 68/86

MINIMIZING THE NUMBER OF STATES

Key idea:

ab
a
bb
ba
a
ab

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 68/86

MINIMIZING THE NUMBER OF STATES

Key idea:

5

1 3 4 5
a

b
a

b b

b
a

a
a

b

• Initially assume all states to be indistinguishable. Put them in a
single set.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 68/86

MINIMIZING THE NUMBER OF STATES

Key idea:

5

1 3 4 5
a

b
a

b b

b
a

a
a

b

• The string ε distinguishes between final states and non-final states.
Create two partitions.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 68/86

MINIMIZING THE NUMBER OF STATES

Key idea:

5

1 3 4 5
a

b
a

b b

b
a

a
a

b

• b takes 4 to a red partition and retains other blue states in blue
partition. Put 4 in a separate partition.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 68/86

MINIMIZING THE NUMBER OF STATES

Key idea:

5

1 3 4 5
a

b
a

b b

b
a

a
a

b

• The string b distinguishes 3 from other states in the blue partition.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 68/86

MINIMIZING THE NUMBER OF STATES

Key idea:

5

1 3 4 5
a

b
a

b b

b
a

a
a

b

A B C D
a

b
b b

a

a
a

b

• No other partition possible. Merge all states in the same partition.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 70/86

Summary of the Method

1. Construct an initial partition π = {S − F ,F1, . . . ,Fn,}, where
F = F1 ∪ F2 ∪ . . . Fns, and each Fi is the set of final states for some
token i .

2. for each set G in π do
partition G into subsets such that two states
s and t of G are in the same subset if and only if
for all input symbols a, states s and t have transitions
onto states in the same set of π;
replace G in πnew by the set of all subsets formed

3. If πnew = π, let πfinal := π and continue with step 4. Otherwise
repeat step 2 with π := πnew .

4. Merge states in the same set of the partition.

5. Remove any dead states.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 72/86

EFFICIENT REPRESENTATION OF DFA

A naive method to represent a DFA uses a two dimensional array.

0

1

2

3

a

b

c

b

a

c x

a b c

0 1 2 3

2 1 2

2

3 3

• For a typical language:
I the number of DFA states is in the order of hundreds (sometimes

1000),
I the number of input symbols is greater than 100.

• It is desirable to find a space-efficient representation of the DFA.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 74/86

The Four Arrays Scheme

Key Observation For a DFA that we have seen earlier, the states marked
with # behave like state 8 on all symbols except for one symbol.

0

#

1b

#

6

-

- 7

digit

digit

8-{b}

2e

-{e}

digit

letter|digit

3
g

-{g}

digit

4i

-{i}
5n

-{n}

letter|digit

#

Therefore information about state 8 can also be used for these states.

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 76/86

Four Arrays Representation of DFA

Symbols and their
numbering

a–z 0–25
0–9 26–35
- 36

0
1

4

2
3

5
6

8
7

...
...

...
...

DEFAULT BASE NEXT CHECK

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 78/86

Four Arrays Representation of DFA

Symbols and their
numbering

a–z 0–25
0–9 26–35
- 36

0
1

4

2
3

5
6

8
7

...
...

...
...

0
1

4

2
3

5
6

8
7

8
8
8
8
8
8
8
8
8

8
8

8
8
8
8
8
8
8
8
8

8
8
88

8

33

35
34

32

8

DEFAULT BASE NEXT CHECK

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 80/86

Four Arrays Representation of DFA

Symbols and their
numbering

a–z 0–25
0–9 26–35
- 36

0
1

4

2
3

5
6

8
7

...
...

...
...

0
1

4

2
3

5
6

8
7

8
8
8
8
8
8
8
8
8

8
8
8
8
8
8
8
8
8

8
8
88

8

33

37
36
35
34

32

8

8

71

DEFAULT BASE NEXT CHECK

1

7
7
7
6

0
0
0
0

0

8
8

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 82/86

Four Arrays Representation of DFA

Symbols and their
numbering

a–z 0–25
0–9 26–35
- 36

0
1

4

2
3

5
6

8
7

...
...

...
...

0
1

4

2
3

5
6

8
7

8
8
8
8
8
8
8
8
8

8
8

8
8
8
8
8
8
8
8
8

8
8
88

8

33

37
36
35
34

32

8

8

71

8

DEFAULT BASE NEXT CHECK

12
1 0

0
0
0
06

7
7
7

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 84/86

Four Arrays Representation of DFA

If s is a state and a is the numeric representation of a symbol, then

1. BASE [s] gives the base location for the information stored about
state s.

2. NEXT [BASE [s]+a] gives the next state for s and symbol a, only if
CHECK [BASE [s]+a] = s.

3. If CHECK [BASE [s]+a] 6= s, then the next state information is
associated with DEFAULT [s].

function nextstate(s,a);
begin

if CHECK [BASE [s] + a] = s then NEXT [BASE [s]+a]
else return(nextstate(DEFAULT [s],a))

end

Amitabha Sanyal IIT Bombay

College of Engineering, Pune Lexical Analysis: 86/86

Four Arrays Representation of DFA

• All the entries for state 8 have been stored in the array NEXT . The
CHECK array shows that the entries are valid for state 8.

• State 1 has a transition on e(4), which is different from the
corresponding transition on state 8. This differing entry is stored in
NEXT [37]. Therefore BASE [1] is set to 37− 4 = 33.

• By a similar reasoning BASE [0] is set to 36.

• To find nextstate[1, 0], we first refer to NEXT [33 + 0], But since
CHECK [33 + 0] is not 1 we have to refer to DEFAULT [1] which is
8. So the correct next state is found from NEXT [BASE [8] + 0] = 8.

• To fill up the four arrays, we have to use a heuristic method. One
possibility, which works well in practice, is to find for a given state,
the lowest BASE , so that the special entries can be filled without
conflicting with existing entries.

Amitabha Sanyal IIT Bombay

