
Code Generation: Integrated Instruction
Selection and Register Allocation Algorithms

Amitabha Sanyal

(www.cse.iitb.ac.in/̃ as)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

February 2009

TCS, Pune Code Generation: Instruction Selection: 2/98

Place of Code Generator in a Compiler

Text book stuff . . .

Analyser
Lexical Syntax

Analyser
Semantic
Analyser

Intermediate
Code Gen

Mc. Independent
OptimizerOptimizer

Mc. Dependent Code Generator

Front End

Back End

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 4/98

Code Generation - Issues

• Expressions and Assignments:

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 4/98

Code Generation - Issues

• Expressions and Assignments:
I Instruction selection. Selection of the best instruction for the

computation.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 4/98

Code Generation - Issues

• Expressions and Assignments:
I Instruction selection. Selection of the best instruction for the

computation.
I The instruction should be able to perform the computation.
I It should be the fastest of possible choices.
I It should combine well with the instructions of its surrounding

computations?

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 4/98

Code Generation - Issues

• Expressions and Assignments:
I Instruction selection. Selection of the best instruction for the

computation.
I Register allocation. To hold result of computations as long as

possible in registers.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 4/98

Code Generation - Issues

• Expressions and Assignments:
I Instruction selection. Selection of the best instruction for the

computation.
I Register allocation. To hold result of computations as long as

possible in registers.

I What computations will be held in registers?
I In which regions of the program?

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 4/98

Code Generation - Issues

• Expressions and Assignments:
I Instruction selection. Selection of the best instruction for the

computation.
I Register allocation. To hold result of computations as long as

possible in registers.

• Control Constructs:
I Lazy evaluation of boolean expressions.
I Avoiding jump statements to jump statements.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 4/98

Code Generation - Issues

• Expressions and Assignments:
I Instruction selection. Selection of the best instruction for the

computation.
I Register allocation. To hold result of computations as long as

possible in registers.

• Control Constructs:
I Lazy evaluation of boolean expressions.
I Avoiding jump statements to jump statements.

• Procedure Calls:
I Activation record building:

I Division of work between caller and callee
I Using special instruction for creation and destruction of activation

records.
I Saving and restoring of registers across procedure calls.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 6/98

Outline of Lecture

• Unified algorithms for instruction selection and code generation.
I Sethi-Ullman Algorithm

I One of the earliest code generation algorithms.

I Aho-Johnson Algorithm
I Optimal code generation for realistic expression and machine models.

Most code generators are variations of this.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 8/98

Sethi-Ullman Algorithm – Introduction

• Generates code for expression trees (not dags).
• Target machine model is simple. Has

I a load instruction,
I a store instruction, and
I binary operations involving either a register and a memory, or two

registers.
• Does not use algebraic properties of operators.

I If e1 ∗ e2 has to be evaluated using r ← r ∗m, and
I e1 and e2 are in m and r ,

then the code sequence has to be:

m1 ← r
r ← m
r ← r ∗m1

and not simply: r ← r ∗m

• Generates optimal code – i.e. code with an instruction sequence
with least cost.

• Running time of the algorithm is linear in the size of the expression
tree.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 10/98

Expression Trees

• Here is the expression a/(b + c)− c ∗ (d + e) represented as a tree:

/ *

+ +a

b c

c

d e

_

• We have not identified common sub-expressions; else we would have
a directed acyclic graph (DAG):

/ *

+ +a

b c d e

_

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 12/98

Expression Trees

Let Σ be a countable set of variable names, and Θ be a finite set of
binary operators. Then,

1. A single vertex labeled by a name from Σ is an expression tree.

2. If T1 and T2 are expression trees and θ is a operator in Θ, then

T T
1 2

θ

is an expression tree.

In the previous example
Σ = {a, b, c , d , e, . . . }, and Θ = {+, −, ∗, /, . . . }

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 14/98

Target Machine Model

We assume a machine with finite set of registers r0, r1, . . ., rk , countable
set of memory locations, and instructions of the form:

1. m← r (store instruction)

2. r ← m (load instruction)

3. r ← r op m (the result of r op m is stored in r)

4. r2 ← r2 op r1 (the result of r2 op r1 is stored in r2)

Note:

1. In instruction 3, the memory location is the right operand.

2. In instruction 4, the destination register is the same as the left
operand register.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 16/98

Order of Evaluation and Register Requirement

Consider evaluation of a tree without stores. Assume that the left and
right subtrees require upto l1, and l2 (l1 < l2) registers.
In what order should we evaluate the subtrees to minimize register
requirement?

op
l
2l1

Choice 1

1. Left subtree first, leaving result in a register. This requires upto l1
registers.

2. Evaluate the right subtree. During this we require upto l2 for
evaluating the right subtree and one to hold value of the left
subtree.

Register requirement — max(l1, l2 + 1) = l2 + 1.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 18/98

Key Idea

Choice 2

1. Evaluate the right subtree first, leaving the result in a register.
During this evaluation we shall require up to l2 registers.

2. Evaluate the left subtree. During this, we might require up to l1 + 1
registers.

Register requirement — max(l1 + 1, l2) = l2

Therefore the subtree requiring more registers should be evaluated first.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 20/98

Labeling the Expression Tree

Label each node by the number of registers required to evaluate it in a
store free manner.

+a +

d e

*

c

cb

−

/ 2

1

2

3

1 1 1

1 001

Left and the right leaves are labeled 1 and 0 respectively, because the
left leaf must necessarily be in a register, whereas the right leaf can
reside in memory.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 22/98

Labeling the Expression Tree

Visit the tree in post-order. For every node visited do:

1. Label each left leaf by 1 and each right leaf by 0.

2. If the labels of the children of a node n are l1 and l2 respectively,
then

label(n) = max(l1 , l2), if l1 6= l2
= l1 + 1 , otherwise

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 24/98

Assumptions and Notational Conventions

1. The code generation algorithm is represented as a function
gencode(n), which produces code to evaluate the node labeled n.

2. Register allocation is done from a stack of register names rstack ,
initially containing r0, r1, . . . , rk (with r0 on top of the stack).

3. gencode(n) evaluates n in the register on the top of the stack.

4. Temporary allocation is done from a stack of temporary names
tstack , initially containing t0, t1, . . . , tk (with t0 on top of the
stack).

5. swap(rstack) swaps the top two registers on the stack.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 26/98

The Algorithm

gencode(n) described by case analysis on the type of the node n.

1. n is a left leaf:

n
name

gen(top(rstack)← name)

Comments: n is named by a variable say name. Code is generated to
load name into a register.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 28/98

The Algorithm

2. n’s right child is a leaf:

name

n

nn
1 2

op

gencode(n1);
gen(top(rstack)← top(rstack) op name)

Comments: n1 is first evaluated in the register on the top of the stack,
followed by the operation op leaving the result in the same register.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 30/98

The Algorithm

3. The left child is the lighter subtree. This requirement is strictly less
than the available number of registers

n

1n
2

n
op

swap(rstack);
gencode(n2); Evaluate right child
R := pop(rstack);
gencode(n1); Evaluate left child
gen(top(rstack)← top(rstack) op R); Issue op
push(rstack,R);
swap(rstack) Restore register stack

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 32/98

The Algorithm

4. The right child of n is lighter or as heavy as the left child. Its
requirement is strictly less than the available number of registers

n

1n
2

n
op

gencode(n1);
R := pop(rstack);
gencode(n2);
gen(top(rstack)← top(rstack) op R);
push(rstack ,R)

Comments: Same as case 3, except that the left sub-tree is evaluated
first.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 34/98

The Algorithm

5. Both the children of n require registers greater or equal to the
available number of registers.

n

1n
2

n
op

gencode(n2);
T := pop(tstack);
gen(T ← top(rstack));
gencode(n1);
push(tstack ,T);
gen(top(rstack)← top(rstack) op T ;

Comments: Evaluate the right sub-tree into a temporary. Then evaluate
the left sub-tree and n into the register on top of stack.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 36/98

Example

For the example:

+a +

d e

*

c

cb

−

/ 2

1

2

3

1 1 1

1 001

assuming two available registers r0 and r1, the calls to gencode and the
generated code are shown below.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 38/98

Example

+a +

d e

*

c

cb

−

/

R1 < R1 + e

R0 <− R0 * R1
T <− R0R0 <− R0 / R1

R0 <− R0 − T
[R0, R1]

[R0, R1]

[R1]

[R0]
R0 <− c

R1 <− d R1 <− b

R1 < R1 + c
[R1]

[R1] [R1]

R0 <− a
[R0]

[R0, R1]

2

1

2

3

1 1 1

1 001

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 40/98

Optimality

The algorithm is optimal because

1. The number of load instructions generated is optimal.

2. Each binary operation specified in the expression tree is performed
only once.

3. The number of stores is optimal.

1 and 2 are obvious. 3 is harder to prove.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 42/98

Optimality

If the label of a node is greater than the number of registers, then the
tree under it cannot be evaluated (by any algorithm) without a store.

1. True for base case:
2

1 1

2. True for a larger tree, assuming true for subtrees.

l

l − 1

l

l − 1 l − 1

case 1 case 2

l

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 44/98

Optimality

Define a major node as a node, both of whose children have a label
greater than or equal to the number of registers. Then we have:

• Every store decreases the number of major nodes by at most one.

store

4

34

3

2

4

3

23

2

11

2

2

22

0

1

3

4

4

4

3

3

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 46/98

Optimality

If a tree has M major nodes, then any algorithm would need at least M
stores to compute the tree

• Consider a subtree with a single major node at the root. Evaluating
the tree would require at least one store (previous result).

• Replace the subtree by a memory node. The resulting tree has at
least M-1 major nodes

• Repeating the argument, we see that at least M stores would be
required.

• Since Sethi-Ullman issues a store for every major node, it is optimal.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 48/98

Complexity of the Algorithm

Since the algorithm visits every node of the expression tree twice – once
during labeling, and once during code generation, the complexity of the
algorithm is O(n).

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 50/98

Problems

1. Consider the expression ((a ∗ (b ∗ c)) ∗ (d + (e + f))) + ((g + (h + i)) + (j ∗ (k ∗ l))).
Assuming a machine with instructions:
Ri ← Ri op Rj

Ri ← Ri op m

Ri ← m

m← Ri

1.1 Draw the expression as a tree. Calculate the label at each node of
the tree.

1.2 Using algebraic properties of the operators rearrange the tree so that
the label at the root is minimized. Once again label the tree.

1.3 Assuming that the machine has 2 general purpose registers R1 and
R2, generate optimal code for the tree.

2. If the code produced by Sethi-Ullman is storeless, is it necessarily strongly contiguous?
If it contains stores, is it necessarily in strong normal form?

3. Let N be the total number of registers, l be the label of a node n, and r be the
available number of registers while invoking gencode(n). Then complete the following
sentence: l ≥ N ⇒ r = , and l < N ⇒ ≤ r ≤ .

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 52/98

Solutions

+

+

+

*

*

*

*

*

+

+g1 1 1 1

2 2

11

1 0 1 0 1 0 1 0

1

4

3 3

2 2

b e f

+

c h i k l

a d 1 j

1.

2.

*2

+

+

+1

2

+

1

1

d e

f

+

+ 01

0

*

*1 c

b1 a 0

0

1

*

*1 0

1 0

j k

l

g h

i 10 0

1

1

2

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 54/98

Solutions

1. R1 ← a
R1 ← R1 ∗ b
R1 ← R1 ∗ c
R2 ← d
R2 ← R2 + e
R2 ← R2 + f
R1 ← R1 + R2

R2 ← g
R2 ← R2 + h
R2 ← R2 + i
R1 ← R1 + R2

R2 ← j
R2 ← R2 ∗ k
R1 ← R1 ∗ l
R1 ← R1 + R2

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 56/98

Solutions

1. Yes. Yes. In the figure assume that stores are required at the roots
of the subtrees S1 and S2. Also assume that the label of T1 is the
same as label of T2.

1T

S

T

21

2

S

T
op

For this example, the root will be a major node and therefore a
store is needed after evaluation of T2.
T will be evaluated as:
S2; store; T2 − S2; store; S1; store; T1 − S1; op

2. Let N be the total number of registers, l be the label of a node n,
and r be the available number of registers while invoking
gencode(n). Then complete the following sentence:
l ≥ N ⇒ r = N, and l < N ⇒ l ≤ r ≤ N.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 58/98

Aho-Johnson Algorithm – Introduction

• Considers expression trees.
• The target machine model is general enough to generate code for a

large class of machines. Represented as a tree, an instruction
I can have a root of any arity.
I can have as leaves registers or memory locations appearing in any

order.
I can be of of any height

• Does not use algebraic properties of operators.
I If e1 ∗ e2 has to be evaluated using r ← r ∗m, and
I e1 and e2 are in m and r ,

then the code sequence has to be:

m1 ← r
r ← m
r ← r ∗m1

and not simply: r ← r ∗m

• Generates optimal code, where, once again, the cost measure is the
number of instructions in the code. This can be modified.

• Complexity is linear in the size of the expression tree.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 60/98

Aho-Johnson Algorithm

Let Θ be a finite set of operators. Then,

1. A single vertex labeled by a variable name or constant is an
expression tree.

2. If T1, T2, . . . , Tk are expression and θ is a k-ary operator in Θ, then
Θ

T T
1 2 kT

is an expression tree.

An example of an expression tree is

+
*

+

ind

addr_a

i b

*

4 i

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 62/98

The Machine Model

Considers machines which have

1. n general purpose registers (no special registers).

2. sequence of memory locations,

3. instructions of the form

a. r ← E , r is a register and E is an expression tree whose operators are
from Θ and operands are registers, memory locations or constants.
Further, r should be one the register names occurring (if any) in E .

b. m ← r , a store instruction.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 64/98

The Machine Model

• Here is an example of a machine.

+

{MOV r, m}

{MOV m(r), r}

{op r , r }12

{MOV m, r}
{MOV #c, r}r c

r m

m r

r ind

r m
r op

r r

1

1 2

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 66/98

Machine Program

• A machine program consists of a finite sequence of instructions
P = I1I2 . . . Iq.

• The machine program below evaluates a[i] + i ∗ b

r1 ← 4
r1 ← r1 ∗ i
r2 ← addr a
r2 ← r2 + r1
r2 ← ind(r2)
r3 ← i
r3 ← r3 ∗ b
r2 ← r2 + r3

• A machine program computing an expression tree will have at most
one use for each definition.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 68/98

Rearrangability of Programs

• We shall show that any program can be rearranged to obtain an
equivalent program of the same length in strong normal form.

• Aho-Johnson’s algorithm searches for the optimal only amongst
strong normal form programs.

• The above result assures us that by doing so, we shall not miss out
an optimal solution.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 70/98

Width

• The width of a program is the maximum number of registers live at
any instruction.

• A program of width w (but possibly using more than w registers)
can always be rearranged into an equivalent program using exactly
w registers.

• In the example below, the first program has width 2 but uses 3
registers. By suitable renaming, the number of registers in the
second program has been brought down to 2.

r1 ← a r1 ← a
r2 ← b r2 ← b
r1 ← r1 + r2 r1 ← r1 + r2
r3 ← c r2 ← c
r3 ← r3 + d r2 ← r2 + d
r1 ← r1 ∗ r3 r1 ← r1 ∗ r2

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 72/98

Contiguity and Strong Contiguity

Can one decrease the width of a program?
*

+ /

+ *

a b c d

e f

P1 P2 P3

r1 ← a r1 ← a r1 ← a
r2 ← b r2 ← b r2 ← b
r3 ← c r3 ← c r1 ← r1 + r2
r4 ← d r4 ← d r2 ← c
r5 ← e r1 ← r1 + r2 r3 ← d
r6 ← f r3 ← r3 ∗ r4 r2 ← r2 ∗ r3
r5 ← r5/r6 r1 ← r1 + r3 r1 ← r1 + r2
r3 ← r3 ∗ r4 r2 ← e r2 ← e
r1 ← r1 + r2 r3 ← f r3 ← f
r1 ← r1 + r3 r2 ← r2/r3 r2 ← r2/r3
r1 ← r1 ∗ r5 r1 ← r1 ∗ r2 r1 ← r1 ∗ r2

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 74/98

Contiguity and Strong Contiguity

• Can one decrease the width of a program? For storeless programs,
there is an arrangement which has minimum width.

• All the three programs P1, P2, and P3 compute the expression tree
shown below:

• The program P2 has a width less than P1, whereas P3 has the least
width of all three programs. P2 is a contiguous program whereas P3

is a strongly contiguous (SC) program.

• Every program without stores can be transformed into SC form.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 76/98

Strong Normal Form Programs

• Programs requiring stores can also be cast in a certain form called
strong normal form.

op

T1
T

2

T3 The marked nodes, T1, T2

and T3 require stores.

I Compute T1 using a SC program P1. Store the result in m1.
I Compute T2 using a SC program P2. Store the result in m2.
I Compute T3 using a SC program P3. Store the result in m3.
I Compute the resulting tree using a SC program P4.

The resultant program has the form P1J1P2J2P3J3P4.
The Jis are stores.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 78/98

Strong Normal Form Programs

op

m1
m2

m3

• A program in such a form is called a normal form program. A
normal form program looks like P1J1P2J2 . . . Ps−1Js−1Ps .

• Further, P is in strong normal form, if each Pi is strongly
contiguous.

• THEOREM: Let P be a program of width w . We can transform P
into an equivalent program Q such that:

I P and Q have the same cost.
I Q has width at most w , and
I Q is in strong normal form.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 80/98

The Algorithm

• The algorithm makes three passes over the expression tree.

Pass 1 Computes an array of costs for each node. This helps to select an
instruction to evaluate the node, and the evaluation order to evaluate
the subtrees of the node.

Pass 2 Identifies the subtrees which must be evaluated in memory locations.
Pass 3 Actually generates code.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 82/98

Cover

• An instruction covers a node in an expression tree, if it can be used
to evaluate the node.

+

a ind

*

4 i

r

r m

+ +

r1 r 2

*

4 i

ind, *

4 i

ind

*

4 i

regset = { a }

r1 r1

ind

+

r1

r 2

memset = { } memset = { }
regset = { a } regset = { ,a }memset = { }

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 84/98

The Algorithm – Pass 1

• Pass 1: Calculates an array of costs Cj (s) for every subtree S of T ,
whose meaning is to be interpreted as follows:

I Cj (S), j 6= 0 : is the minimum cost of evaluating S with a strong
normal form program using j registers.

I C0(S) : cost of evaluating S strong normal form program in a
memory location.

• Consider a machine with the instructions shown below.

+

{MOV r, m}

{MOV m(r), r}

{op r , r }12

{MOV m, r}
{MOV #c, r}r c

r m

m r

r ind

r m
r op

r r

1

1 2

Note that there are no instructions of the form r ← r op m.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 86/98

The Algorithm – Pass 1

• We show an example expression tree, along with the cost array at
each node:

+

*

+

*

ind

addr_a

i b

4 i

11

1111

1

11

1 1 11

2

2

00

0

6

6 7 5

7 6

1 2

4 5 3

4 5 3

2 registers

1 register
0 register

0

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 88/98

The Algorithm – Pass 2

• This pass marks the nodes which have to be evaluated into memory.
It returns a sequence of nodes x1, . . . , xs , where x1, . . . , xs represent
the nodes to be evaluated in memory.

+

*

+

*

ind

addr_a

i b

4 i

11

1111

1

11

1 1 11

2

0

2

00

0

6

6 7 5

7 6

1 2

4 5 3

4 5 3

2

2

2 1

1

1

• The node *2 has to be stored in memory.

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 90/98

The Algorithm – Pass 3

• The algorithm generates code for the subtrees rooted at x1, . . . xs , in
that order.

• After generating code for xi , the algorithm replaces the node with a
distinct memory location mi .

• For the example, the code generated is:
r1 ← #4 (evaluate 4 ∗ i first, since it is to be stored)
r2 ← i
r1 ← r1 ∗ r2
m1 ← r1
r1 ← i (evaluate i ∗ b next, since it requires 2 registers)
r2 ← b
r1 ← r1 ∗ r2
r2 ← #addr a
r2 ← m1(r2) (evaluate the ind node)
r2 ← r2 + r1 (evaluate the root)

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 92/98

Complexity of the Algorithm

1. The time required by Pass 1 is an, where a is a constant depending
I linearly on the size of the instruction set
I exponentially on the arity of the machine, and
I linearly on the number of registers in the machine

and n is the number of nodes in the expression tree.

2. Time required by Passes 2 and 3 is proportional to n

Therefore the complexity of the algorithm is O(n).

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 94/98

Example

• Consider a machine model with 2 general purpose registers and
instructions shown below with their costs.

Ri ← Ri op Rj cost – 2
R ← c cost – 1
R ← m cost – 1
R ← ind(R) cost – 1
R ← ind(R + m) cost – 4
m← R cost – 1

Now consider the expression

((a ∗ b) ∗ (ind(1 + 2))) ∗ (ind(c + d)).

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 96/98

The Cost Array

5 6 4 6 7 5 5 6 4
ind

ind

* +

a b

*

+

*

dc

210 1 0 1 0 1 0 1

2 1 1 2 1 1

1 1 1 1

465

6 6 514 1513

22 2321

store

Amitabha Sanyal IIT Bombay

TCS, Pune Code Generation: Instruction Selection: 98/98

Generated code

The code generated is:

R1 ← a code for the subtree to be stored
R2 ← b
R1 ← R1 ∗ R2

m← R1

R1 ← 1 code for ind(1 + 2)
R2 ← 2
R1 ← R1 + R2

R1 ← ind(R1)
R2 ← m code for (a ∗ b) ∗ ind(1 + 2)
R2 ← R2 ∗ R1

R1 ← c code for ind(c + d)
R1 ← ind(R1 + d)
R2 ← R2 ∗ R1 code for the root

Amitabha Sanyal IIT Bombay

