
Efficiency, Precision, Simplicity, and Generality in
Interprocedural Data Flow Analysis:

Resurrecting the Classical Call Strings Method

Uday P. Khedker and Bageshri Karkare

Indian Institute of Technology, Bombay

Abstract. The full call strings method is the most general, simplest, and most
precise method of performing context sensitive interprocedural data flow analy-
sis. It remembers contexts using call strings. For full precision, all call strings up
to a prescribed length must be constructed. Two limitations of this method are
(a) it cannot be used for frameworks with infinite lattices, and (b) the prescribed
length is quadratic in the size of the lattice resulting in an impractically large
number of call strings. These limitations have resulted in a proliferation of ad hoc
methods which compromise on generality, precision, or simplicity.
We propose a variant of the classical full call strings method which reduces the
number of call strings, and hence the analysis time, by orders of magnitude as
corroborated by our empirical measurements. It reduces the worst case call string
length from quadratic in the size of the lattice to linear. Further, unlike the classi-
cal method, this worst case length need not be reached. Our approach retains the
precision, generality, and simplicity of call strings method without imposing any
additional constraints. It can accommodate demand-driven approximations and
hence can be used for frameworks with infinite lattices.

1 Introduction

Interprocedural data flow analysis extends the scope of analysis across procedure
boundaries. A context insensitive interprocedural analysis does not distinguish between
different calling contexts of a procedure and merges the data flow information across all
contexts. Context sensitive analysis maintains separate data flow information for distinct
contexts for each procedure call and hence typically computes a more precise solution.

The full call strings method [22] is the most general, simplest, and most precise
method of performing context sensitive interprocedural data flow analysis. It represents
context information in the form of a call string. For full precision, all call strings up to a
prescribed length have to be constructed. Two limitations of this method are (a) it cannot
be used for frameworks with infinite lattices, and (b) the prescribed length is quadratic
in the size of the lattice resulting in an impractically large number of call strings. These
limitations have resulted in a proliferation of ad hoc methods which compromise on
generality, precision, or simplicity.

We modify the full call string method by identifying contexts which need not be
explicitly maintained. This reduces the number of contexts dramatically without com-
promising on the precision, generality, and simplicity of the method. The worst case

call string length is reduced from quadratic in the size of the lattice to linear. Further,
unlike the original method, our variant does not need to construct all call strings up to
the worst case length. Since it can accommodate demand-driven approximations, it can
be used for frameworks with infinite lattices also. Our empirical measurements show a
dramatic reduction in the number of call strings and analysis time.

Interestingly, we achieve all of the above by a very simple change in the origi-
nal method without affecting the essential principles of the method: In our variant, the
termination of call string construction is based on the equivalence of data flow val-
ues instead of prescribed lengths. This allows us to discard call strings where they are
redundant, and regenerate them when required. For cyclic call strings, regeneration fa-
cilitates iterative computation of data flow values without explicitly constructing most
of the call strings. This is based on interesting insights which are explained intuitively
and proved formally in this paper.

The rest of the paper is organized as follows: Section 2 provides the background,
Section 3 investigates the reasons of inefficiency in call strings method and sets the
stage for Section 4 which proposes our variant. Section 5 compares our work with
other approaches to interprocedural analysis. Section 6 presents the empirical data and
Section 7 concludes the paper.

2 Background

This section discusses safety, precision, and efficiency in the interprocedural analy-
sis and reviews the original call strings method.

Safety, Precision, and Efficiency in Data Flow Analysis. Data flow analysis examines
static representations of programs. Some paths in these representations may not corre-
spond to valid execution paths. Some path may be valid execution paths but may be
irrelevant because their analysis may not result in new information. Safety of analysis
can be ensured by covering all valid paths; excluding a valid path may result in an un-
safe solution. Precision can be ensured by restricting the analysis only to valid paths;
including invalid paths may result in an imprecise solution. Efficiency can be ensured
by restricting the analysis to relevant paths.

A flow sensitive intraprocedural analysis honours the control flow and computes
possibly different data flow information for each program point. A flow insensitive
analysis does not consider the control flow and hence computes imprecise (but safe)
solution. A flow sensitive method excludes spurious paths and hence computes more
precise solutions. A flow insensitive analysis merely accumulates the information and
hence requires a single pass over a control flow graph.

Interprocedural data flow analysis is usually performed on a supergraph which con-
nects control flow graphs of different procedures with call and return edges. It contains
control flow paths which violate nestings of matching call return pairs. An interproce-
durally valid path is a feasible execution path containing a legal sequence of call and
return edges. A context sensitive interprocedural analysis retains distinct calling con-
texts to ensure propagation of information from the callee to appropriate callers. This
involves restricting the analysis to interprocedurally valid paths. A context insensitive

2

Entry x∗ y Entry

n1 x := &y n1

n2 z := &x n2

n3 z := &z n3

call p call p

Exit x∗ y Exit

SP x∗ y SP

n4 y := &z n4

call q

EP x∗ y EP

Sq x∗ y Sq

call q

n5 x := ∗x n5

Eq x∗ y Eq

Entry x∗ y Entry

n1 x := &y n1

n2 z := &x n2

n3 z := &z n3

C1 call p C1C2 call p C2

R1 call p R1R2 call p R2

Exit x∗ y Exit

SP x∗ y SP

n4 y := &z n4

C3 call q C3

R3 call q R3

EP x∗ y EP

Sq x∗ y Sq

C4 call q C4

R4 call p R4

n5 x := ∗x n5

Eq x∗ y Eq

Fig. 1. Control flow graphs of recursive procedures and the corresponding supergraph.

analysis does not distinguish between valid and invalid paths and computes safe, but
imprecise solution compared to a context sensitive analysis. For maximum statically
achievable precision, context sensitive analysis must also be flow sensitive at the in-
traprocedural level. Efficiency of context sensitive interprocedural analysis requires re-
stricting the number of contexts without merging information across distinct contexts.
Context insensitive analysis effectively restricts the number of contexts to one and thus
is much more efficient than context sensitive analysis.

The Call Strings Approach. The full call strings method embeds context information in
the data flow information. It treats procedure calls and returns similar to the intraproce-
dural control transfers and ensures the validity of interprocedural paths by maintaining
a history of calls in terms of call strings. A call string at a program point u is a se-
quence c1c2 . . .ck of call sites corresponding to unfinished calls at u and can be viewed
as a snapshot of the call stack at u; λ denotes an empty call string. Figure 1 shows a
program and its supergraph. Sp and Ep denote the start and end of procedure p while
those for the main program are Entry and Exit. A call site ci is split into a call node Ci
and the corresponding return node Ri and appropriate call and return edges are added.
Some call strings for this program are λ, c1, c1c3, c1c3c4, c1c3c4c4 etc.

Call string construction is governed by the interprocedural edges in a supergraph.
Let σ be a call string reaching node m in procedure p. For an intraprocedural edge
m → n, σ reaches n unmodified. For a call edge m → n where m is Ci and n is Sq, call
string σ · ci reaches Sq. For a return edge m → n where m is Ep and n is Ri, if the last
call site in σ is ci then the call string remaining after removing ci from σ reaches Ri.
This ensures that the data flow information is propagated to the correct caller.

The augmented data flow information is a pair 〈σ,d〉 where d is the data flow value
propagated along call string σ. Note that d is modified by an intraprocedural edge only.
A work list based iterative algorithm is used to perform the data flow analysis. The

3

process terminates when no new pair 〈σ,d〉 is computed; merging data flow values
propagated along all call strings reaching u results in a meet-over-all-interprocedurally-
valid-paths solution at u for distributive frameworks.

Since matching of call and return nodes is inherently performed in the call strings
method, it ensures that all interprocedurally valid paths are traversed and invalid paths
are avoided. Thus use of call strings guarantees a safe and precise solution. In non-
recursive programs, since the call strings are acyclic, their number is finite and all of
them are generated during analysis. However, in recursive program, new call strings are
generated with every visit to a call node involved in recursion. In such cases, call strings
must be restricted to a finite number using explicit criteria.

Let K be the maximum number of distinct call sites in any call chain and L be the
lattice of data flow values. The full call strings method [22] requires construction of all
call strings of length up to K × (|L|+ 1)2 for computing a safe and precise solution.
Intuitively, the argument by Sharir can be explained as follows: Let a data flow value at
call node Ci be vi and the corresponding value at Ri be v′i. Since there are |L|+1 values
for vi and v′i (due to presence of a fictitious value Ω), (|L|+ 1)2 distinct combinations
are possible, for which (|L|+1)2 distinct call strings are required. If ci is in recursion,
(|L|+1)2 occurrences of ci guarantee that all these call strings are generated and hence
guarantee all possible computations. Since there can be K distinct call sites, call strings
of length K × (|L|+ 1)2 ensure that all possible data flow values are computed. For
separable frameworks, the prescribed length reduces to K × (|L̂ |+1)2 where L̂ is the
component lattice for an entity. For bit-vector frameworks, this length is 3×K.

3 Efficiency of Call Strings Approach
This section discusses the factors affecting the efficiency of the classical full call

strings method.

Orthogonality of Call Strings and Data Flow Values. Analysis of non-recursive pro-
grams constructs a finite number of call strings and the termination of analysis is gov-
erned solely by the convergence of data flow values. In recursive programs, termination
of call string construction needs to be ensured explicitly. Once the termination of call
strings is ensured, the usual fixed point criterion can be applied to data flow values to
ensure the termination of analysis exactly as in iterative intraprocedural analysis.

In the classical full call strings method, call string construction is terminated by
truncating call strings at a prescribed length. We ask the following question: Is it possi-
ble to use data flow values instead of a prescribed length to bound the cyclic call strings?
Intuitively, a criterion can be devised to stop the construction of new call strings when
the old values repeat along cyclic call strings. But this further raises questions regarding
safety and precision: Do the call strings thus terminated ensure traversing all interpro-
cedurally valid paths and avoiding all invalid paths? We answer these questions by
characterizing the minimal set of call strings required for recursive procedures.

Issues in Terminating Call String Construction for Recursive Programs. The pre-
scribed length defined in the classical method is based on a crude estimate to ensure

4

Let the cyclic call sequence be cx ·cx+1 · · ·cx+y · · · ≡ σc. Let the flow function along the cyclic
call sequence be f , along cyclic return sequence be g, and that along the recursion ending path
be h. The prescribed length is m.

Cx

Sp

u

Cx+1

Cx+y

Rx

Ep

v

Rx+1

Rx+y

〈σ,d〉

g

f

h

Values at Sp〈
σ ·σi

c, f i(d)
〉
, where

f i+1(d) 6= f i(d),0 ≤ i < ω
f i+1(d) = f i(d),ω ≤ i ≤ m

Values along Sp → Ep〈
σ ·σi

c,h(f j(d))
〉
, where

j =

{
i, 0 ≤ i < ω
ω, ω ≤ i ≤ m

Let

Ti =

h(f i(d))u g(Ti+1) 0 ≤ i < ω
h(f ω(d))u g(Ti+1) ω ≤ i < m
h(f ω(d)) i = m

Values along Rx → Ep :
〈
σ ·σi

c,g(Ti+1)
〉

Merged Values at Ep :
〈
σ ·σi

c,Ti+1
〉

Values along Ep → v :
〈
σ ·σi

c,T0)
〉

Fig. 2. Modeling recursion for call strings. σc may have multiple occurrence of a call node and
hence can be any arbitrary recursive call sequence. Though the recursion ending path has been
shown in procedure p it may not exist in p but in some other procedure in recursion.

complete analysis in both call and return sequences as explained below. Hence many
cyclic call strings generated using the prescribed length are redundant in that they carry
the same data flow information as some shorter call strings.

Consider the situation in Figure 2 which models a recursive call. The strongly con-
nected component consisting of call nodes (Cx,Cx+1, . . . ,Cx+y) is a cyclic call sequence
and is denoted by σc. The corresponding cyclic return sequence (Rx+y, . . . ,Rx+1,Rx)
forms another strongly connected component which we denote by σr. The dashed line
from Sp to Ep represents the recursion ending control flow path. In a valid interproce-
dural path involving σc and σr, σc is traversed at least as many times as σr. Observe
that we do not require the call sites along a cyclic call sequence to be distinct. Thus
this figure models a general recursive path. We have shown the recursion ending path
in procedure p but as Corollary 1 shows, it does not matter if this path exists in some
other procedure in recursive call chain.

Each application of g requires traversing the cyclic return sequence once. In the
process, the last occurrence of σc is removed from every call string. Thus, g can be
applied only as many times as the maximum number of σc in any call string reaching
the entry of Ep. Note that the application of f does not have such a requirement because
the call strings are constructed rather than consumed while applying f . Achieving safety
and precision in call strings method requires the following:

Precision. In any path from Sp to Ep, the number of applications of g should not
exceed that of f . This is ensured by the call string construction algorithm implying that
only interprocedurally valid paths are considered.

Safety. In order to guarantee safety, the call strings should be long enough to allow
computation of all possible data flow values in both cyclic call and return sequences. In
a cyclic call sequence this is guaranteed by constructing call strings σ ·σi

c, 0 ≤ i ≤ ω.

5

If we select m that is large enough to allow for computation of all possible values of
the following recurrence then these call strings also guarantee convergence of data flow
values in the corresponding cyclic return sequence.

Ti =

{
h(f ω(d))u g(Ti+1) ω ≤ i < m
h(f ω(d)) i = m (1)

Note that the computation starts from the last call string and is performed in the
order: Tm,Tm−1, . . . ,Tm−ω+1,Tm−ω. The convergence lemma (Lemma 3) shows that this
sequence follows a strictly descending chain. Let the length of this chain be η. Then
m should be at least ω+η. If m < ω+η, then some data flow values corresponding to
unbounded recursion may not be computed. Since the values of ω and η are not known
a priori, the classical prescribed length subsumes the possible worst case scenarios.

4 An Efficient Variant of Call Strings Approach
This section presents the proposed variant of call strings method.

4.1 Concepts and Notations
A program point v is context dependent on program point u if (a) there is a path from
u to v which is a subpath of an interprocedurally valid path from Entry to v, and (b) on
every such path from u to v, every occurrence of an Ep is matched by a corresponding
occurrence of Sp. For a procedure p, all program points within p and all program points
within all callees in every call chain starting in p, are context dependent on Sp.

We view call and return nodes as being significant nodes. When v is context de-
pendent on u, a context defining path from u to v is a sequence of significant nodes
appearing in a path from u to v such that this path is a subpath of a valid interprocedural
path from Entry to v. Observe that each adjacent pair of nodes in a context defining
path may correspond to many intraprocedural paths. Let Cd(u) denote the set of pro-
gram points which are context dependent on program point u. Then, Cdp(u,v) denotes
the set of context defining paths from u to v ∈ Cd(u). Cs(u,v) denotes the set of call
strings corresponding to paths in Cdp(u,v).

The concept of context defining path can be seen as a more general abstraction of
the concept of the same-level-valid-paths [19] which are interprocedural paths which
start and end in the same procedure and have matching call return pairs.

Let V (σ,u) denote the value associated with call string σ at program point u. We
define the equivalence of call strings at a given program point u as follows:

σ1
u
= σ2

def
= {σ1,σ2} ⊆ Cs(Entry,u)∧V (σ1,u) = V (σ2,u) (2)

Equivalence of contexts in terms of data flow values has been observed by [14, 24] and
has been used for non-recursive portions of programs.

We assume that the work list based analysis is intraprocedurally eager i.e. it pro-
cesses intraprocedural paths completely before propagating data flow information from
a significant node to another significant node. This requires two separate work lists:
One for intraprocedural nodes and the other for significant nodes. A significant node is
selected for processing only when the work list of intraprocedural nodes is empty.

6

4.2 Call String Invariants

This section presents the following results: The context invariance lemma (Lemma 1)
guarantees that the same set of call strings reaches all program points in a procedure.
Hence, if a mechanism is devised to ignore some call strings in a procedure, it would be
possible to reconstruct them wherever they are required. The call strings equivalence
lemma (Lemma 2) guarantees that if call strings are partitioned on the basis of data flow
values, the equivalence classes remain unchanged in a procedure although the values
associated with them may change. The convergence lemma (Lemma 3), and the suffi-
ciency theorem (Theorem 1) guarantee that if there is a way of computing the correct
value of σ ·σω

c at Ep, call strings σ ·σi, ω < i ≤ m need not be constructed (Figure 2).

Lemma 1. (Context Invariance). The calling contexts of all intraprocedural program
points in a procedure are identical.
INTUITION : Calling contexts of a procedure depend on the callers so they cannot be
different for different program points within the procedure.
PROOF : Omitted.

Lemma 2. (Call String Equivalence). Consider v ∈ Cd(u). Assume that the recursive
paths in Cdp(u,v) are unbounded. When the work list of intraprocedural nodes is empty
in an intraprocedurally eager call strings based method,

σ1
u
= σ2 ⇒∀σ ∈ Cs(u,v), (σ1 ·σ)

v
= (σ2 ·σ)

INTUITION : Since σ1 and σ2 are transformed in the same manner by following the
same set of paths, the values associated with them will also be transformed in the same
manner and will continue to remain equal.
PROOF : Omitted.

This lemma assumes unbounded recursion. However, practical call strings method
uses a prescribed length. Hence as illustrated in Figure 2, last η call strings do not
have the same value at Ep in spite of the fact that they have the same value at Sp. If
the call strings had unbounded occurrences of σc, then this exception would not arise.
However, this exception does not matter because the associated values follow a strictly
descending chain and converge on the least value as shown by the following lemma. It
refers to Section 3 and Figure 2.

Lemma 3. (Convergence). Assume that the call strings method constructs call strings
long enough so that all call strings σ ·σi

c, 0 ≤ i ≤ m are constructed where m ≥ ω+η
for all possible values of ω and η. Then,

∀η, V (σ ·σm−η
c ,Ep) v V (σ ·σi

c,Ep), m−η ≤ i ≤ m

INTUITION : When a data flow value is repeatedly computed using the same function
and is merged with the same value at each step, the resulting values must follow a
strictly descending chain until convergence.

7

PROOF : Since call strings σ ·σi
c,ω ≤ i ≤ m have the same data flow value at Sp, from

Lemma 2, they have the same value, say d ′, just before Ep along the recursion ending
path. Since ω ≤ m−η, the value associated with call strings σ ·σi

c,m−η ≤ i ≤ m at Ep
along the recursion ending path will also be d ′. From Figure 2 and equation (1),

V (σ ·σi
c,Ep) = Ti =

{
d′ug(Ti+1) m−η ≤ i < m
d′ i = m

Then the proof obligation reduces to showing Tm−η v Ti, m−η ≤ i ≤ m. We prove
this by inducting on the distance of i from m by rewriting Ti as Tm− j,0 ≤ j ≤ η and
by showing that Tm−(j+1) v Tm− j, 0 ≤ j < η. The basis of induction is j = 0. Since
Tm = d′ and Tm−1 = d′u (. . .), it follows that Tm−1 v Tm. For the inductive step, assume
that Tm−(j+1) v Tm− j. We need to show that Tm−(j+2) v Tm−(j+1). From (1),

Tm−(j+2) = d′ug(Tm−(j+1)) (3)
Tm−(j+1) = d′ug(Tm− j) (4)

From the inductive hypothesis and monotonicity of functions,

Tm−(j+1) v Tm− j ⇒ g(Tm−(j+1)) v g(Tm− j)

The inductive step follows by substituting this in the right hand sides of (3) and (4) and
comparing them.

If the recursion ending path is not within procedure p but is in some other procedure,
then Ti at Ep will simply be gi−m(d′).

Lemma 4. (Convergence in a Cycle). When the computation of a data flow value con-
verges at a program point in a cycle, it must converge at each program point in the
cycle. Further, due to monotonicity, all values must converge in the same direction.

Corollary 1. Ti of the form gi−m(d′) at Eq must converge.

Theorem 1. (Sufficiency of Cyclic Call Strings).
m

i=0
V (σ ·σi

c,Ep) =

ω

i=0
V (σ ·σi

c,Ep)

INTUITION : When the data flow values along call strings in a cyclic return sequence
follow a descending chain, only the last value matters in the overall merge.

PROOF : Since the data flow value computation converges for the value associated
with σ ·σm−η

c , from Lemma 3, V (σ · σi
c,Ep) = V (σ · σi+1

c ,Ep), ω ≤ i < m− η. As
consequence, V (σ ·σω

c ,Ep) v V (σ ·σi
c,Ep), ω ≤ i < m which proves the theorem.

4.3 Modifying Call Strings Method

The basic principle of our approach is to maintain a single representative call string
for an equivalence class within the scope of a maximal context dependent region. For

8

Traditional prescribed length m = (|L|+1)2 whereas ω ≤ |L|

Sp σ σ ·σc . . . σ ·σω
c σ ·σω+1

c . . . σ ·σm−η
c . . . σ ·σm

c

Same Values

Ep σ σ ·σc . . . σ ·σω
c σ ·σω+1

c . . . σ ·σm−η
c . . . σ ·σm

c

Same Values

Sp σ σ ·σc . . . σ ·σω
c σ ·σω+1

c

Same Values

Ep σ σ ·σc . . . σ ·σω
c σ ·σω+1

c

(a) Classical full call strings method (b) Modified approach

Fig. 3. Modifying the call strings method for representing and regenerating cyclic call strings.

procedure p, the decision of representation is taken at Sp and remains valid at all pro-
gram points which are context dependent on Sp. Ep is the last such point and the call
strings must be regenerated so that appropriate data flow values can be propagated to
different callers of p. Similar to the scope of variables in a program, this representation
may be “shadowed” by other context dependent regions created by procedure calls.

Let shortest(σ,u) denote the shortest call string which has the same value as σ at u.
Then, representation at Sp and regeneration at Ep is performed as follows:

represent(〈σ,d〉,Sp) = 〈shortest(σ,Sp),d〉 (5)
regenerate(〈σ,d〉,Ep) = {〈σ′

,d〉 | V (σ,Sp) = V (σ′
,Sp)} (6)

This change obviates the need to construct all call strings up to a prescribed length.
For finite lattices, the termination of call strings automatically follows. Effectively, this
facilitates fixed point computation of contexts and avoids merging contexts.

Our method constructs call strings σ ·σi
c,0 ≤ i ≤ ω for the recursive contexts. Call

string σ ·σω+1
c is represented by σ ·σω

c at Sp and no subsequent call string is created.
Thus, call strings σ ·σi

c, ω+1 < i ≤ m are not regenerated at Ep as illustrated in Fig-
ure 3. All other call strings are regenerated completely.

Observe that the actual value of ω governs the construction of call strings (without
the need of knowing ω) in our method. However, the value of η does not play any role
in construction of call strings. This is because the computation of f i(d) in a cyclic call
sequence (Figure 2) begins with the first call string whereas the computation of Ti in the
corresponding cyclic return sequence begins with the last call string.

4.4 Safety, Precision, Efficiency, and Complexity

Theorem 2. (Safety and Precision). The final data flow values computed by represent-
ing and regenerating call strings using (5) and (6) are identical to the values computed
by the original call strings method with length bound.
INTUITION : Representation and regeneration discards only those call strings which
contain redundant values and performs the desired computation iteratively.
PROOF : For the non-recursive contexts, the theorem is obvious. For recursive contexts
we show that our method computes the same data flow value for call string σ ·σω

c at Ep
as would be computed by the original method.

9

At Ep, σ ·σω+1
c is regenerated and the data flow value (say d ′) associated with σ ·σω

c
is propagated to it. The analysis propagates the pair 〈σ ·σω+1

c ,d′〉 along the cyclic re-
turn sequence. This traversal removes the last occurrence of σc from σ ·σω+1

c , computes
g(d′), which is merged with the value of σ ·σω

c along the recursion ending path. Thus
V (σ ·σω

c ,Ep) = d′ug(d′) after one traversal. This is same as the value associated with
call string σ ·σm−1

c in the original method. At Ep, this is again copied to the call string
σ ·σω+1

c overwriting the previous value and the pair 〈σ ·σω+1
c ,d′ug(d′)〉 is propagated

along the cyclic return sequence. The process repeats as long as new values are com-
puted for σ ·σω

c ; effectively, traversal i over the cyclic return sequence computes the
value Tm−i for σ ·σω

c . The process terminates after η traversals. This computes the de-
sired value for σ ·σω

c .
Effectively, our method computes the correct value for σ ·σω

c by iterating over the
cyclic return sequence η times, rather than constructing all call strings up to σ ·σm

c .
Traditional prescribed length m is orders of magnitude larger than ω, hence terminating
the call strings construction at σ ·σω

c results in a dramatic reduction in the number of call
strings. Further improvements in efficiency arise because the reduction in the number
of call strings is exponential—at each call site, much fewer call strings are passed on to
callees along a call chain. The iterative computation does not entail any additional cost
because these computations are anyway performed by the original method.

The elegance of our method lies in the fact that not only does it reduce space and
time dramatically in practice, it also brings down the worst case complexity of call
string length from quadratic to linear in the size of the lattice.

Theorem 3. (Complexity). Using the value based termination of call strings, the max-
imum length of a call string is K × (|L|+1).
INTUITION : At the start of each procedure, the call strings are partitioned by the data
flow values associated with them.
PROOF : The lemma trivially holds for call strings in non-recursive contexts. For recur-
sive contexts, we maintain the call strings σ ·σω

c at the exit of Sp. Since all call strings
which have the same value are represented by a single call string, at most |L| distinct
call strings will be maintained at Sp. Thus, ω ≤ |L| and no call site needs to appear more
than |L| times in a call string. We may have an additional call string at the entry of Sp
which gets represented at exit of Sp. Hence the theorem.

Even in the worst case, our method would construct much fewer call strings. Further,
in practice, our method does not construct all call strings up to the worst case length.
This is different from the original method which requires construction of all call strings
of length up to K × (|L|+1)2.

Corollary 2. For separable frameworks, the bound reduces to K × (|L̂ |+1) where L̂
is the component lattice representing the data flow values of one entity. For bit vector
frameworks, it further reduces to K ×3 since |L̂ | = 2.

4.5 An Example of Points-To Analysis

Consider the supergraph in Figure 1 for interprocedural May Points-to analysis [5,
11]. Figure 4 shows some important steps in the analysis using our method; Inn and

10

Outn denote entry and exit points of n. The data flow information is stored as 〈σ,d〉
where d is the May points-to information which is a set of elements x S indicating that
x points to the variables contained in set S.

Observe the computation of representative call strings at node Sp as shown in rows
5 and 6. Since both call strings c1 and c2 reaching the entry of procedure p carry the
same data flow value, they are represented by a single call strings c1. Note that c2 is
also eligible as the representative call string. Further, the represent function is applied
at Sq (see rows 10,11) where two call strings c1c3 and c1c3c4 carry the same data flow
value and hence are represented by the shortest call string c1c3.

The regeneration takes place at the exit of procedure q (see rows 12,13). The regen-
erated call string c1c3c4 reaches R4. Effect of statement x = ∗x in node n4 is observed
on the data flow value associated with call string c1c3. At InEq , values associated with
c1c3 are merged (row 16) and function regenerate is applied once again (row 17). In
the subsequent visit to node n4 (not shown in the table), statement x = ∗x modifies the
points-to information of x again and merging of information and regeneration of call
strings is performed once again at Eq.

Eventually, call string c1c3 reaches R3 and is transformed into c1. This call string
reaches Ep and function regenerate is applied to reconstruct call strings c1 and c2 at the
exit of Ep as shown in rows 18,19 of Figure 4. Effectively, we perform safe and precise
May points-to analysis using only acyclic call strings. We construct 5 call strings for
the same. The overall lattice of May points-to framework for this example contains 512
elements. Considering K = 3 (the total number of distinct call sites in a call chain), the
classical method would construct all call strings with lengths up to 7,89,507. Clearly,
it would require millions of call strings.

4.6 An Approximate Version
It is possible to increase the efficiency of the proposed method by using an approx-

imate version which can adjust the approximation on demand. The approximation is
quantified in terms of the number of occurrences of a call site in any call string. Let this
number be δ. When a call string σ containing δ−1 occurrences of call site ci reaches
call node Ci, σ · ci is created. If some other call string σ′ containing δ−1 occurrences of
ci reaches Ci, instead of constructing σ′ · ci the value of σ′ is merged with σ · ci. In other
words, the first call string that grows to contain δ occurrences of ci becomes the repre-
sentative call string for all call strings containing δ or more occurrences of ci. When a
call string with the prefix σ · ci reaches Ci, it is represented by σ · ci (which is the repre-
sentative call string) instead of suffixing another ci to it and its modified value is merged
with the earlier value of σ · ci at Ci. The process is repeated iteratively until the merged
value converges. This converged value is then propagated back to each represented call
string during regeneration at Ri. Since no context is missed out, this is safe but since
values are merged across contexts, this is possibly imprecise. The degree of imprecision
depends on the choice of δ. The existing methods which merge the values in recursive
contexts can be seen as a special case of our approximate method with δ = 1.

Apart from increasing efficiency, demand driven summarization facilitates applica-
tion of call strings method to data flow frameworks with infinite lattices which have
finite heights (eg. constant propagation [1]).

11

Point i New information at i

1 InEntry 〈λ,{x /0,y /0,z /0}〉
. . .

2 Outn2 〈λ,{x {y},y /0,z {x}}〉
. . .

3 OutC1 〈c1,{x {y},y /0,z {x}}〉
4 OutC2 〈c2,{x {y},y /0,z {x}}〉
5 InSp 〈c1,{x {y},y /0,z {x}}〉,

〈c2,{x {y},y /0,z {x}}〉
6 OutSp 〈c1,{x {y},y /0,z {x}}〉
. . .

7 OutC3 〈c1c3,{x {y},y {z},z {x}}〉
. . .

8 InSq 〈c1c3,{x {y},y {z},z {x}}〉
. . .

9 OutC4 〈c1c3c4,{x {y},y {z},z {x}}〉
. . .

10 InSq 〈c1c3,{x {y},y {z},z {x}}〉,
〈c1c3c4,{x {y},y {z},z {x}}〉

Point i New information at i

11 OutSq 〈c1c3,{x {y},y {z},z {x}}〉
. . .

12 InEq 〈c1c3,{x {y},y {z},z {x}}〉
13 OutEq 〈c1c3,{x {y},y {z},z {x}}〉,

〈c1c3c4,{x {y},y {z},z {x}}〉
14 InR4 〈c1c3c4,{x {y},y {z},z {x}}〉
. . .

15 Outn5 〈c1c3,{x {z},y {z},z {x}}〉
16 InEq 〈c1c3,{x {y,z},y {z},z {x}}〉
17 OutEq 〈c1c3,{x {y,z},y {z},z {x}}〉,

〈c1c3c4,{x {y,z},y {z},z {x}}〉
. . .

18 InEp 〈c1,{x {x,y,z},y {z},z {x}}〉
19 OutEp 〈c1,{x {x,y,z},y {z},z {x}}〉,

〈c2,{x {x,y,z},y {z},z {x}}〉
. . .

Fig. 4. Some important steps in intraprocedurally eager work list algorithm for interprocedural
May points-to analysis using value based termination of call strings for supergraph in Figure 1.

5 Related Work

We compare our work with other methods on the basis of precision, efficiency,
generality and simplicity. The approximate call strings method [22] which retains fixed
length suffixes is a popular variant of call strings method. Although it is efficient and
flexible, it compromises on precision in recursive as well as non-recursive programs
and the degree of precision varies with the length of suffixes.

Functional approach [22] involves computing flow functions in a context indepen-
dent manner and applying them in a context sensitive manner. Although this approach
guarantees precision, it is known to be inefficient due to high time and space complexity
resulting from function computations [1]. Tabulation method [22] is an efficient imple-
mentation of functional approach, which uses memoization to store input and output
data flow values at each program point, instead of storing the functions. Similar to our
approach, this approach also uses the basic principle of restricting the reanalysis of pro-
cedures only for distinct inputs. However, unlike our method, tabulation method merges
the newly computed data flow values with the old values at each program point to guar-
antee termination. Further, since contexts are not remembered separately, meaningful
approximation is not possible and hence it cannot be used for frameworks with infi-
nite lattices. The method of computing partial transfer functions (PTF) [24, 18] looks
very similar to tabulation. However, PTFs involve summarization of input in recursive
contexts whereas our method and tabulation do not do so and hence are more precise.
The graph reachability method [19, 21, 10] is a variant of tabulation based functional

12

approach which requires computation of an exploded supergraph. It is applicable only
to finite distributive frameworks.

Many approaches have been developed specifically for context-sensitive points-to
analysis. BDD-based approaches [23, 25, 26] construct all acyclic contexts but merge
values along recursive portions resulting in loss of precision. Since BDDs have efficient
implementations and they exploit the commonality across contexts carrying equivalent
values [14], these approaches are scalable. Many approaches [4, 13, 15, 7, 16] achieve
efficiency by using flow-insensitive algorithms for intraprocedural analysis thereby caus-
ing additional imprecision. The context-sensitive points-to analysis using invocation
graph [5] requires construction of separate invocation graph and is reported not to be
scalable [23]. This method computes conservative solution along recursive portions.
Summary-based points-to analysis approaches [24] are reported to be the precise, but
they do not guarantee full precision along recursive portions. As observed in a compar-
ison of context sensitive points-to analyses [14], treating recursive portions in a context
insensitive manner leads to significant imprecision in practical programs.

Some context sensitive methods (eg. automata based methods [6, 20, 3], generic as-
sertion based method [8], linear algebra based method [17]) have approached interpro-
cedural data flow analysis from a view point of building theoretical underpinnings and
their precision-efficiency trade off or generality (eg. applicability to frameworks such
as points-to analysis) is not clear.

We feel that context-insensitivity along recursive paths is being looked upon as an
unavoidable compromise for efficiency and is being accepted as a regular practice [9].
This may be because the orthogonality of bounding contexts and computing data flow
values makes it impossible to identify and eliminate all redundant contexts. To ensure
precision, the only available option is to use functional approaches or to use the worst
case bounds for call strings. Both these approaches are extremely inefficient.

The occurrence based bound for call strings for bit-vector frameworks [12] is an
improvement over the classical length bound [22]. It constructs call strings with any
call site occurring at most 3 times instead of all call strings with lengths up to 3K.
However, it still allows many redundant call strings since the termination of call strings
is orthogonal to the convergence of data flow values.

6 Empirical Measurements

We have implemented interprocedural Reaching Definitions analysis using the pro-
posed algorithm in gcc 4.0 as an additional pass that constructs supergraph and performs
the call strings based analysis on the Gimple IR. We have measured the performance
of the algorithm on the following programs: Hanoi1, sim2, bit gray3, 181.mcf and

256.bzip2 from SPEC-2000, analyzer, distray, mason and fourinarow from
FreeBench v1.03 suite. Among these programs, analyzer, distray and 256.bzip2

are non-recursive whereas all other programs are recursive. These experiments were
carried out on a P4 (3.06 GHz) machine with 1GB RAM running Fedora Core 6.

1 http://www.ece.cmu.edu/~ece548/hw/lab1/hanoi.c
2 http://gd.tuwien.ac.at/perf/benchmark/aburto/sim/sim.c
3 http://paul.rutgers.edu/~rhoads/Code/bit_gray.c

13

Program LoC #F #C 3K length bound Proposed Approach
K #CS MaxL #CSPN Time #CS MaxL #CSPN Time

hanoi 33 2 4 4 100000+ 12 99922 3973 ×103 8 3 7 2.37
bit gray 53 5 11 7 100000+ 21 31374 2705 ×103 17 4 6 3.83
analyzer 288 14 20 2 21 2 4 20.33 21 2 4 1.39
distray 331 9 21 6 96 6 28 322.41 22 3 4 1.11
mason 350 9 13 8 100000+ 11 22143 432 ×103 14 3 4 0.43
fourinarow 676 17 45 5 510 15 158 397.76 46 3 7 1.86
sim 1146 13 45 8 100000+ 14 33546 1427 ×103 211 13 105 234.16
181 mcf 1299 17 24 6 32789 18 32767 484 ×103 41 9 11 5.15
256 bzip2 3320 63 198 7 492 7 63 258.33 406 7 34 200.19

LoC is the number of lines of code, #F is the number of procedures, #C is the number of call sites,
#CS is the number of call strings (100000+ indicates that call strings construction was aborted
after 100000 call strings), #CSPN denotes the maximum number of call strings reaching any node.
MaxL denotes the maximum length of any call strings. The analysis time is in milliseconds.

Fig. 5. Empirical measurements

Figure 5 gives the details of the benchmark programs and the call string related
measurements for the 3×K length [22] and the proposed method. For the purpose of
experimentation we had to restrict the number of call strings to 105 for 3×K bound.
This was done primarily due to the compiler running out of space. The table clearly
shows that our approach of terminating call strings construction using data flow values
reduces the number of call strings and hence the analysis time by orders of magnitude.

7 Conclusions and Future Work

The classical full call strings method is context sensitive and computes as precise
solution as is statically possible. However, it suffers from terrible inefficiency and hence
has been relegated to the set of classical methods which are of academic interest only.
This paper resurrects and rejuvenates the call strings method by observing some subtle
insights and proposing minimal changes to the method. These changes are simple, do
not impose any additional constraints, and faithfully retain the essential principles of
the method and the consequent properties: precision, simplicity, and generality. These
changes discard call strings where they are not required, regenerate them where they
are required and iteratively compute data flow values in cyclic call strings in return se-
quences as summarized in Figure 3. This results in dramatic improvements in efficiency.

Our investigations deviate from the current trends along the following two aspects:

– Most contemporary investigations seem to assume that compromising precision (at
least in recursive contexts) is essential for achieving efficiency. We believe that any
trade-off between precision and efficiency without making a clear distinction be-
tween relevant contexts and irrelevant contexts is undesirable. We have shown that
this distinction can be very easily and efficiently made by using the convergence of
data flow values for convergence of contexts without compromising on precision.

14

– A majority of contemporary investigations involve specialized algorithms in order
to achieve efficiency. They may be specialized in terms of a very sophisticated rep-
resentation of the programs or in terms of using insights from the specific analyses
for which they are implemented. We believe that it is important to seek efficiency in
a general method which is applicable to all data flow frameworks (including those
with infinite lattices) and which can be implemented very easily. Simplicity and
generality are essential for exploring the possibility of automatic construction of
interprocedural data flow analyzers. We find this direction to be promising because
the scalability of our method depends on the convergence of data flow values rather
than merely on program structure. When programs are written in modular fashion
with loose coupling between different modules, the convergence of data flow values
does not scale with program size as much as the number of contexts.

We have implemented this method for Reaching Definitions analysis and the results
are very promising. We are in the process of implementing this method for points-
to analysis and would like to test the method on large programs. Note that point-to
analysis is non-distributive and the classical call string method would also suffer from
imprecision. Our variant does not create any additional imprecision because the results
presented in this paper do not assume distributivity property.

Our quick and dirty implementation was aimed at the first level measurements.
We would like to improve the implementation by engineering better data structures and
algorithms and observe their impact on the efficiency. We would also like to measure
the precision vs. efficiency trade-off using the approximate version of our method.

Acknowledgments

Implementation of these analyses was carried out by Seema Ravandale. Divya Kr-
ishan was involved in the implementation of earlier versions of call strings methods.

References
1. A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and

Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., 2006.
2. M. Alt and F. Martin. Generation of efficient interprocedural analyzers with PAG. In Static

Analysis Symposium, pages 33–50, September 1995.
3. P. Amiranoff, A. Cohen, and P. Feautrier. Beyond iteration vectors: Instancewise relational

abstract domains. In Static Analysis Symposium, pages 161–180, 2006.
4. M. Burke, P. Carini, J. Choi, and M. Hind. Flow-insensitive interprocedural alias analysis in

the pressence of pointers. In Lecture Notes in Computer Science, 892. 1995.
5. M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural points-to anal-

ysis in the presence of function pointers. In Proc. of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 242–256, 1994.

6. J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural data-flow anal-
ysis. In Foundations of Software Science and Computation Structure, pages 14–30, 1999.

7. M. Fahndrich, J. Rehof, and M. Das. Scalable context-sensitive flow analysis using instan-
tiation constraints. In Proc. of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 253–263, 2000.

15

8. S. Gulwani and A. Tiwari. Computing procedure summaries for interprocedural analysis. In
The 16th European Symposium on Programming. Springer, March 2007.

9. B. Hardekopf and C. Lin. The ant and the grasshopper: fast and accurate pointer analysis
for millions of lines of code. In Proc. of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 290–299, 2007.

10. S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow analysis. In 3rd ACM
Symposium on Foundations of Software Engineering, pages 104–115, 1995.

11. A. Kanade, U. P. Khedker, and A. Sanyal. Heterogeneous fixed points with application
to points-to analysis. In Proc. of the Asian Symposium on Programming Languages and
Systems, pages 298–314, 2005.

12. B. Karkare and U. P. Khedker. An improved bound for call-strings based interprocedural
analysis of bit vector frameworks. ACM Trans. Program. Lang. Syst., 29(6):38, 2007.

13. C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive points-to analysis with
heap cloning practical for the real world. In Proc. of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, June 2007.

14. O. Lhoták and L. J. Hendren. Context-sensitive points-to analysis: is it worth it? In Proc. of
the International Conference on Compiler Construction, pages 47–64, March 2006.

15. D. Liang and M. J. Harrold. Efficient points-to analysis for whole-program analysis. SIG-
SOFT Software Engineering Notes, 24(6):199–215, 1999.

16. A. Milanova. Light context-sensitive points-to analysis for java. In Proc. of ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, June 2007.

17. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear algebra. In
Proc. of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 330–341, New York, NY, USA, 2004.

18. B. R. Murphy and M. S. Lam. Program analysis with partial transfer functions. In Proc.
of the 2000 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Program
Manipulation, pages 94–103, 2000.

19. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph reach-
ability. In Proc. of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 49–61, 1995.

20. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their applica-
tion to interprocedural dataflow analysis. Science of Computer Programming, 58(1-2):206–
263, 2005.

21. M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with applica-
tions to constant propagation. Theoretical Computer Science, 167(1–2):131–170, 1996.

22. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In S. S.
Muchnick and N. D. Jones, editors, Program Flow Analysis : Theory and Applications.
Prentice-Hall Inc., 1981.

23. J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis using binary
decision diagrams. In Proc. of the ACM SIGPLAN Conference on Programming language
design and implementation, June 2004.

24. R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C programs. In
Proc. of the ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, 1995.

25. J. Zhu. Towards scalable flow and context sensitive pointer analysis. In Proc. of the 42nd
Annual Conference on Design Automation, pages 831–836, 2005.

26. J. Zhu and S. Calman. Symbolic pointer analysis revisited. In Proc. of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 145–157, 2004.

16

