
Bit Vector Data Flow Frameworks

Uday Khedker

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

Jul 2010

Part 1

About These Slides

CS 618 Bit Vector Frameworks: About These Slides 1/93

Copyright

These slides constitute the lecture notes for CS618 Program Analysis
course at IIT Bombay and have been made available as teaching material
accompanying the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow

Analysis: Theory and Practice. CRC Press (Taylor and Francis
Group). 2009.

Apart from the above book, some slides are based on the material from
the following books

• M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland Inc. 1977.

• F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program

Analysis. Springer-Verlag. 1998.

These slides are being made available under GNU FDL v1.2 or later

purely for academic or research use.

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Outline 2/93

Outline

• Live Variables Analysis

• Program Execution Model and Semantics

• Soundness of Data Flow Analysis

• Available Expressions Analysis

• Anticipable Expressions Analysis

• Reaching Definitions Analysis

• Common Features of Bit Vector Frameworks

• Partial Redundancy Elimination

Jul 2010 IIT Bombay

Part 2

Live Variables Analysis

CS 618 Bit Vector Frameworks: Live Variables Analysis 3/93

Defining Live Variables Analysis

A variable v is live at a program point p, if some
path from p to program exit contains an r-value oc-
currence of v which is not preceded by an l-value
occurrence of v .

Path based
specification

v is live at p v is not live at p v is live at p

v =a∗b

a=v +2

End

p

Start

v =a∗b

v =a+2

End

p

Start

v = v + 2v =v +2

End

p

Start

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 4/93

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Basic Blocks ≡
Single statements or Maximal groups
of sequentially executed statements

Control Transfer

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 4/93

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Local Data Flow Properties

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 5/93

Local Data Flow Properties for Live Variables Analysis

Genn = { v | variable v is used in basic block n and

is not preceded by a definition of v }
Killn = { v | basic block n contains a definition of v }

r-value occurrence

Value is only read, e.g. x,y,z in

x.sum = y.data + z.data

l-value occurrence

Value is modified e.g. y in

y = x.lptr

within n

anywhere in n

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 6/93

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Global Data Flow Properties
Edge based

specifications

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 7/93

Data Flow Equations For Live Variables Analysis

Inn = (Outn − Killn) ∪ Genn

Outn =

BI n is End block
⋃

s∈succ(n)

Ins otherwise

Inn and Outn are sets of variables.

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 8/93

Data Flow Equations for Our Example

w = x1

while (x.data < max)2

x = x.rptr 3y = x.lptr4

z = New class of z5

y = y.lptr6

z.sum = x.data + y.data7

In1 = (Out1 − Kill1) ∪ Gen1

Out1 = In2

In2 = (Out2 − Kill2) ∪ Gen2

Out2 = In3 ∪ In4

In3 = (Out3 − Kill3) ∪ Gen3

Out3 = In2

In4 = (Out4 − Kill4) ∪ Gen4

Out4 = In5

In5 = (Out5 − Kill5) ∪ Gen5

Out5 = In6

In6 = (Out6 − Kill6) ∪ Gen6

Out6 = In7

In7 = (Out7 − Kill7) ∪ Gen7

Out7 = In7

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 9/93

Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅
while (x.data < max)

Gen={x}, Kill ={x}

x = x.rptr

Gen={x}, Kill ={y}

y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data

Gen and Kill need not be
mutually exclusive

z is an r-value occurrence and
not an l-value occurrence

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 9/93

Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅
while (x.data < max)

Gen={x}, Kill ={x}

x = x.rptr

Gen={x}, Kill ={y}

y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data

x , y , z are considered to be used
based purely on local use even if
the value of z is not use later. A
different analysis called faint vari-
ables analysis improves on this.

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 9/93

Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅
while (x.data < max)

Gen={x}, Kill ={x}

x = x.rptr

Gen={x}, Kill ={y}

y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data Initialization
∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 9/93

Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅
while (x.data < max)

Gen={x}, Kill ={x}

x = x.rptr

Gen={x}, Kill ={y}

y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data

Traversal

Iteration #1
{x , y , z}

{x , y , z}

{x , y , z}

{x , y , z}

{x , y}

{x , y}

{x}

∅

{x}

{x}

{x}

{x}

{x}
Ignoring max be-
cause we are doing
analysis for pointer
variables w, x, y, z

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 9/93

Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅
while (x.data < max)

Gen={x}, Kill ={x}

x = x.rptr

Gen={x}, Kill ={y}

y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data

Traversal

Iteration #2
∅

{x , y , z}

{x , y , z}

{x , y , z}

{x , y , z}

{x , y}

{x , y}

{x}

{x}

{x}

{x}

{x}

{x}

{x}

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 10/93

Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅
while (x.data < max)

Gen={x}, Kill ={x}

x = x.rptr
Gen={x}, Kill ={y , z}

y = x.lptr
z = New class of z

y = y.lptr
z.sum = x.data + y.data

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 11/93

Local Data Flow Properties for Live Variables Analysis

Inn = (Outn − Killn) ∪ Genn

• Genn : Use not preceded by definition

Upwards exposed use

• Killn : Definition anywhere in a block

Stop the effect from being propagated across a block

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 12/93

Local Data Flow Properties for Live Variables Analysis

Case Local Information Example Explanation

1 v 6∈ Genn v 6∈ Killn
a = b + c
b = c ∗ d

liveness of v is unaffected
by the basic block

2 v ∈ Genn v 6∈ Killn
a = b + c
b = v ∗ d

v becomes live
before the basic block

3 v 6∈ Genn v ∈ Killn
a = b + c
v = c ∗ d

v ceases to be live
before the statement

4 v ∈ Genn v ∈ Killn
a = v + c
v = c ∗ d

liveness of v is killed
but v becomes live
before the statement

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 13/93

Using Data Flow Information of Live Variables Analysis

• Used for register allocation.
If variable x is live in a basic block b, it is a potential candidate for
register allocation.

• Used for dead code elimination.
If variable x is not live after an assignment x = . . ., then the
assginment is redundant and can be deleted as dead code.

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 14/93

Tutorial Problem 1 for Liveness Analysis

a = 4
b = 2
c = 3
n = c*2

n1

if (a>n) n2

a = a+1n3

if (a≥12) n4

t1 = a+b
a = t1+cn5

nop n6

F

F

T

T

Local Data Flow Information
Gen Kill

n1 ∅ {a, b, c , n}
n2 {a, n} ∅
n3 {a} {a}
n4 {a} ∅
n5 {a, b, c} {a, t1}
n6 ∅ ∅

Global Data Flow Information
Iteration #1 Iteration #2

Out In Out In

n6 ∅ ∅ ∅ ∅
n5 ∅ {a, b, c} ∅ {a, b, c}
n4 {a, b, c} {a, b, c} {a, b, c} {a, b, c}
n3 ∅ {a} {a, b, c} {a, b, c}
n2 {a, b, c} {a, b, c , n} {a, b, c , n} {a, b, c , n}
n1 {a, b, c , n} ∅ {a, b, c , n} ∅

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 15/93

Tutorial Problem 2 for Liveness Analysis: C Program

1 int x, y, z;
2 int exmp(void)

3 { int a, b, c, d;
4 b = 4;
5 a = b + c;
6 d = a * b;
7 if (x < y)
8 b = a -c;
9 else

10 { do

11 { c = b + c;
12 if (y > x)

13 { do

14 { d = a + b;
15 f(b + c);

16 } while(y > x);

17 }
18 else

19 { c = a * b;
20 f(a - b);

21 }
22 g (a + b);

23 } while(z > x);

24 }
25 h(a-c);
26 f(b+c);
27 }

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 16/93

Tutorial Problem 2 for Liveness Analysis: Control Flow
Graph

n1

b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a − c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b;
f (a − b); n4

n5 d = a + b; n5

n6 f (b + c); n6

n7 g(a + b); n7

n8
h(a − c);
f (b + c); n8

Var = {a, b, c , d}

n5 and n6 have been
artificially separated.
gcc combines them.

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 17/93

Solution of the Tutorial Problem

Local Global Information
Block Information Iteration # 1 Iteration # 2

Genn Killn Outn Inn Outn Inn

n8 {a, b, c} ∅ ∅ {a, b, c} ∅ {a, b, c}
n7 {a, b} ∅ {a, b, c} {a, b, c} {a, b, c} {a, b, c}
n6 {b, c} ∅ {a, b, c} {a, b, c} {a, b, c} {a, b, c}

n5 {a, b} {d} {a, b, c} {a, b, c} {a, b, c} {a, b, c}
n4 {a, b} {c} {a, b, c} {a, b} {a, b, c} {a, b}
n3 {b, c} {c} {a, b, c} {a, b, c} {a, b, c} {a, b, c}
n2 {a, c} {b} {a, b, c} {a, c} {a, b, c} {a, c}

n1 {c} {a, b, d} {a, b, c} {c} {a, b, c} {c}

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Live Variables Analysis 18/93

Tutorial Problems for Liveness Analysis

• Perform analysis with universal set Var as the initialization at
internal nodes.

• Modify the previous program so that some data flow value
computed in second iteration differs from the corresponding data
flow value computed in the first iteration.
(No structural changes, suggest at least two distinct kinds of
modifications)

• Modify the above program so that some data flow value computed
in third iteration differs from the corresponding data flow value
computed in the second iteration.
Write a C program corresponding to the modified control flow graph

Jul 2010 IIT Bombay

Part 3

Program Execution Model and

Semantics

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 19/93

Our Language

• Variables v ∈ Var, expressions e ∈ Expr and labels l ,m ∈ Label

◮ Expressions compute integer or boolean values
◮ A label is an index that holds the position of a statement in a

program

• Labelled three address code statements

• We assume that the programs are type correct

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 20/93

Statements in Our Language

• Assignment l : v = e where l ∈ Label, v ∈ Var and e ∈ Expr

• Expression computation l : e where l ∈ Label and e ∈ Expr
(This models use of variables in statements other than assignments)

• Unconditional jump l : goto m where l ,m ∈ Label

• Conditional jump l : if e goto m where l ,m ∈ Label, and e ∈ Expr

• No operation l : nop

(Other statements such as function calls, returns, heap accesses etc. will be
added when required)

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 21/93

Context Free Grammar of Our Language

• program (P), statement (S), label (m)

• expression (E), arithmetic expression (aE), boolean expression (bE)

• binary arithmetic operator (bao), unary arithmetic operator (uao),
binary boolean operator (bbo), unary boolean operator (ubo),
relational operator (ro)

• arithmetic value (aV), boolean value (bV). variable (v), number (n)

P → m : S P | m : S
S → v = E | E | goto m | if E goto m | nop
E → aE | bE

aE → aV bao aV | uao aV | aV
bE → bV bbo bV | ubo bV | aV ro aV | bV
aV → v | n
bV → v | T | F

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 22/93

An Example Program

int main()

{ int a, b, c, n;

a = 4;

b = 2;

c = 3;

n = c*2;

while (a <= n)

{

a = a+1;

}

if (a < 12)

a = a+b+c;

}

1: a = 4

2: b = 2

3: c = 3

4: n = c*2

5: if (a > n)

goto 8

6: a = a + 1

7: goto 5

8: if (a ≥ 12)

goto 11

9: t1 = a+b

10: a = t1+c

11: nop

a = 4
b = 2
c = 3
n = c*2

if (a>n)

a = a + 1

if (a≥12)

t1 = a+b
a = t1+c

nop

F

F

T

T

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 23/93

Labels and Program Points

1: a = 4

2: b = 2

3: c = 3

4: n = c*2

5: if (a > n) goto 8

6: a = a + 1

7: goto 5

8: if (a ≥ 12) goto 11

9: t1 = a+b

10: a = t1+c

11: nop

A label of a statement represents

• the program point just before
the execution of the statement

• the program point just after
the execution of the previous
statement

• both the source and the target
of the control transfer edge
reaching the statement

This is fine if there is no other control
transfer to the same program point

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 24/93

Labels and Control Flow

1: a = 4

2: b = 2

3: c = 3

4: n = c*2

5: if (a > n)

goto 8

6: a = a + 1

7: goto 5

8: if (a ≥ 12)

goto 11

9: t1 = a+b

10: a = t1+c

11: nop

a = 4
b = 2
c = 3
n = c*2

if (a>n)

a = a + 1

if (a≥12)

t1 = a+b
a = t1+c

nop

F

F

T

T

• Value of variable a

could be different at
these two points

• Need to distinguish
between them

• Blue edges represent
implicit goto across
block

• We need to explicate
all such implicit gotos

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 24/93

Labels and Control Flow

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 25/93

Updating Control Flow

• We assume that all implicit gotos across basic blocks are explicited
and labels adjusted appropriately
This is required only for the purpose of our reasoning about our
analysis

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 26/93

Entities in Our Example Program

1: a = 4

2: b = 2

3: c = 3

4: n = c*2

5: goto 6

6: if (a > n) goto 9

7: a = a + 1

8: goto 6

9: if (a ≥ 12) goto 13

10: t1 = a+b

11: a = t1+c

12: goto 13

13: nop

Label = {1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13}

Var = {a, b, c , n, t1}

Expr = {c ∗ 2, a > n, a + 1,
a ≥ 12, a + b, t1 + c}

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 27/93

The Semantics of Our Language

• σ ∈ Store : Var 7→ I ∪ B ∪ {⊥}
(σ is Var 7→ I ∪ B ∪ {⊥} and Store is the set of σs)

• (l , σ) ∈ State : Label 7→ Store

Q. Why not Label × Store?
A. Only one store can be associated with a given label

• Execution of program causes state transitions

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 28/93

Execution of Our Example Program

1: a = 4

2: b = 2

3: c = 3

4: n = c*2

5: goto 6

6: if (a > n) goto 9

7: a = a + 1

8: goto 6

9: if (a ≥ 12) goto 13

10: t1 = a+b

11: a = t1+c

12: goto 13

13: nop

State (l , σ) =

14,

Variable Value

a 12

b 2

c 3

n 6

t1 9

Execution terminates
when a label l 6∈ Label
is reached

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 29/93

Defining Small Step Semantics

• Goal: Modelling state transitions caused by various statements

• Notation

◮ JxKσ = σ(x). Value of x in store σ

◮ JeKσ. Value of expression e computed from the values in store σ

◮ σ[y 7→ v].
A new store resulting from replacing the value of y by v . Other
values remain the same.

(σ′ = σ[y 7→ v]) ⇒ ∀x ∈ Var : JxKσ′ =

{

JxKσ x is not y

v otherwise

}

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 30/93

Defining Small Step Semantics

• Goal: Modelling state transitions caused by various statements

• Syntax of a semantic rule

Premise

(Oldstate) Statement (NewState)
Rule Namens

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 31/93

Small Step Semantics: Computation

(l , σ) x = e (l + 1, σ[x 7→ JeKσ])
asgnns

(l , σ) e (l + 1, σ)
exprns

(l , σ) nop (l + 1, σ)
nopns

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 31/93

Small Step Semantics: Computation

(l , σ) x = e (l + 1, σ[x 7→ JeKσ])
asgnns

(l , σ) e (l + 1, σ)
exprns

(l , σ) nop (l + 1, σ)
nopns

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 31/93

Small Step Semantics: Computation

/ ∗ unconditionally ∗ /

(l , σ) x = e (l + 1, σ[x 7→ JeKσ])
asgnns

(l , σ) e (l + 1, σ)
exprns

(l , σ) nop (l + 1, σ)
nopns

Control falls
through

The value of x in
the store changes to

the value of e

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 31/93

Small Step Semantics: Computation

(l , σ) x = e (l + 1, σ[x 7→ JeKσ])
asgnns

(l , σ) e (l + 1, σ)
exprns

(l , σ) nop (l + 1, σ)
nopns

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 31/93

Small Step Semantics: Computation

(l , σ) x = e (l + 1, σ[x 7→ JeKσ])
asgnns

/ ∗ unconditionally ∗ /

(l , σ) e (l + 1, σ)
exprns

(l , σ) nop (l + 1, σ)
nopns

Control falls
through

The store
remains same

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 31/93

Small Step Semantics: Computation

(l , σ) x = e (l + 1, σ[x 7→ JeKσ])
asgnns

(l , σ) e (l + 1, σ)
exprns

(l , σ) nop (l + 1, σ)
nopns

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 31/93

Small Step Semantics: Computation

(l , σ) x = e (l + 1, σ[x 7→ JeKσ])
asgnns

(l , σ) e (l + 1, σ)
exprns

/ ∗ unconditionally ∗ /

(l , σ) nop (l + 1, σ)
nopns

Control falls
through

The store
remains same

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 32/93

Small Step Semantics: Control Flow

(l , σ) goto m (m, σ)
gotons

JeKσ = T

(l , σ) if e goto m (m, σ)
ifgotoTns

JeKσ = F

(l , σ) if e goto m (l + 1, σ)
ifgotoFns

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 32/93

Small Step Semantics: Control Flow

(l , σ) goto m (m, σ)
gotons

JeKσ = T

(l , σ) if e goto m (m, σ)
ifgotoTns

JeKσ = F

(l , σ) if e goto m (l + 1, σ)
ifgotoFns

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 32/93

Small Step Semantics: Control Flow

/ ∗ unconditionally ∗ /

(l , σ) goto m (m, σ)
gotons

JeKσ = T

(l , σ) if e goto m (m, σ)
ifgotoTns

JeKσ = F

(l , σ) if e goto m (l + 1, σ)
ifgotoFns

Control is
transferred to the
target statement

The store
remains same

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 32/93

Small Step Semantics: Control Flow

(l , σ) goto m (m, σ)
gotons

JeKσ = T

(l , σ) if e goto m (m, σ)
ifgotoTns

JeKσ = F

(l , σ) if e goto m (l + 1, σ)
ifgotoFns

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 32/93

Small Step Semantics: Control Flow

(l , σ) goto m (m, σ)
gotons

JeKσ = T

(l , σ) if e goto m (m, σ)
ifgotoTns

JeKσ = F

(l , σ) if e goto m (l + 1, σ)
ifgotoFns

Control is
transferred to the
target statement

The store
remains same

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 32/93

Small Step Semantics: Control Flow

(l , σ) goto m (m, σ)
gotons

JeKσ = T

(l , σ) if e goto m (m, σ)
ifgotoTns

JeKσ = F

(l , σ) if e goto m (l + 1, σ)
ifgotoFns

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Program Execution Model and Semantics 32/93

Small Step Semantics: Control Flow

(l , σ) goto m (m, σ)
gotons

JeKσ = T

(l , σ) if e goto m (m, σ)
ifgotoTns

JeKσ = F

(l , σ) if e goto m (l + 1, σ)
ifgotoFns

Control falls
through

The store
remains same

Jul 2010 IIT Bombay

Part 4

Soundness and Precision of

Data Flow Analysis

CS 618 Bit Vector Frameworks: Soundness and Precision of Data Flow Analysis 33/93

Conservative Nature of Analysis (1)

x=abs(x)b1

if (x < 0)b2

x=a+yb3 x=a+z b4

x=a+zb5

T F

• abs(n) returns the absolute value of n

• Is y live on entry to block b2?

• By execution semantics, no
Path b1→b2→b3 is an infeasible
execution path

• A compiler make conservative
assumptions: All branch outcomes are

possible

⇒ Consider every path in CFG as a
potential execution execution path

• Our analysis concludes that y is live on
entry to block b2

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Soundness and Precision of Data Flow Analysis 34/93

Conservative Nature of Analysis (2)

if (x < 0)b1

a=a+yb2 x=a+z b3

if (x < 0)b4

x=c+1b5 x=b+1 b6

if (x < 0)b7

T F

T F

• Is b live on entry to block b2?

• By execution semantics, no

Path b1→b2→b4→b6 is an infeasible
execution path

• Is c live on entry to block b3?

Path b1→b3→b4→b6 is a feasible
execution path

• A compiler make conservative assumptions
⇒ our analysis is path insensitive

Note: It is flow sensitive (i.e. information
is computed for every control flow points)

• Our analysis concludes that b is live at the
entry of b2 and c is live at the entry of b3

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Soundness and Precision of Data Flow Analysis 35/93

Conservative Nature of Analysis

Reasons by analysis results may be imprecise

• At intraprocedural level
◮ We assume that all paths are potentially executable
◮ Our analysis is path insensitive
◮ In some cases, sharing of paths generates spurious information

(Nondistributive flow functions)

• At interprocedural level
◮ Context insensitivity:

Merging of information across all calling contexts
◮ Flow insensitivity: Disregarding the control flow

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Soundness and Precision of Data Flow Analysis 36/93

Showing Soundness of Data Flow Analysis

1. Specify analysis in a notation similar to that of execution semantics

2. Relate analysis rules to rules of execution semantics

3. Syntax of declarative specification of analysis

Premise

(l : Info at l) → l : Statement → (m : Info at m)
Rule Namelv

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Soundness and Precision of Data Flow Analysis 37/93

Declarative Specification of Liveness Analysis

(l : L ∪ Var (e)) → l : e → (l + 1 : L)
exprlv

(l : (L − {x}) ∪ Var(e)) → l : x = e → (l + 1 : L)
asgnlv

(l : L) → l : nop → (l + 1 : L)
noplv

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Soundness and Precision of Data Flow Analysis 37/93

Declarative Specification of Liveness Analysis

(l : L ∪ Var (e)) → l : e → (l + 1 : L)
exprlv

(l : (L − {x}) ∪ Var(e)) → l : x = e → (l + 1 : L)
asgnlv

(l : L) → l : nop → (l + 1 : L)
noplv

Variables
occuring in
expression e

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Soundness and Precision of Data Flow Analysis 38/93

Declarative Specification of Liveness Analysis

(l : L) → l : goto m → (m : L)
gotolv

(l : L ∪ Var(e)) → l : if e goto m → (m : L)
ifgotoTlv

(l : L ∪ Var(e)) → l : if e goto m → (l + 1 : L)
ifgotoFlv

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Soundness and Precision of Data Flow Analysis 39/93

Declarative Specification of Liveness Analysis

L′′ ⊇ L′ (l : L′) → l : S → (m : L)

(l : L′′) → l : S → (m : L)
subsumptionlv

• The need of subsumption: Adjusting the values at fork nodes

l : if e goto m

l + 1 : Sl+1 m : Sm

F T

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Soundness and Precision of Data Flow Analysis 40/93

Soundness Criterion for Liveness Analysis

• Equivalence of stores: σ ∼L σ′

◮ σ and σ′ “agree” on variables in L. ∀v ∈ L, JvKσ = JvKσ′

◮ Values of other variables do not matter

σ′ simulates σ with respect to L

• Soundness criteria

◮ At each program point, restrict the store to the variables that are live
◮ Starting from equivalent states, the execution of each statement

should cause transition to equivalent states

◦ Given that the restricted store is equivalent to the complete store
before a statement S

◦ If S can be executed without any problem (“progress” in program
execution) AND

◦ The resulting restricted store is equivalent to the complete store
(“preservation of semantics”)

◮ By structural induction on the program, the result of liveness analysis
is correct

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Soundness and Precision of Data Flow Analysis 41/93

Proving Soundness by Progress and Preservation

Sl :

σ

σ′

Execution with
complete store

Execution with
restricted store

Sl :

σ∗

σ′

∗

∼L

Premise

Sl :

σ∗

σ′

∗

∼L

Premise

Progress

∼L’

Preservation

• The preservation outcome become premise for the next statement

• It is sufficient to prove the above for each kind of statement

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Soundness and Precision of Data Flow Analysis 42/93

Progress and Preservation for Expression Statement

(l : L′ ∪ Var(e)) → l : e → (l + 1 : L′)
exprlv

e

σ

σ′

e

σ∗

σ′

∗

• Given: σ ∼L σ∗, L = L′ ∪ Var (e)

• Progress:
e can be evaluated because variables in
Var(e) exist in σ∗

• Preservation:
Values of all variables remain unchanged
⇒ σ′ ∼L′ σ′

∗

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Soundness and Precision of Data Flow Analysis 43/93

Progress and Preservation for Assignment Statement

(l : (L′ − {x}) ∪ Var(e)) → l : x = e → (l + 1 : L′)
asgnlv

x = e

σ

σ′

x = e

σ∗

σ′

∗

• Given: σ ∼L σ∗, L = (L′ − {x}) ∪ Var (e)

• Progress:
e can be evaluated because variables in
Var(e) exist in σ∗

• Preservation:

◮ ∀v ∈ (L′ − {x}) ∪ Var(e)
(JvKσ = JvKσ∗) ⇒ (JvKσ′ = JvKσ′

∗
)

◮ (JeKσ = JeKσ∗) ⇒ (JxKσ′ = JxKσ′

∗
)

⇒ σ′ ∼L′ σ′

∗

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Soundness and Precision of Data Flow Analysis 44/93

Progress and Preservation for nop Statement

(l : L) → l : nop → (l + 1 : L)
noplv

nop

σ

σ′

nop

σ∗

σ′

∗

• Progress and Preservation follow trivially

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Soundness and Precision of Data Flow Analysis 45/93

Progress and Preservation for Unconditional Goto Statement

(l : L) → l : goto m → (m : L)
gotolv

goto m

σ

σ′

goto m

σ∗

σ′

∗

• Progress and Preservation follow trivially

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Soundness and Precision of Data Flow Analysis 46/93

Progress and Preservation for Conditional Goto Statement

(l : L′ ∪ Var(e)) → l : if e goto m → (m : L′)
ifgotoTlv

if e goto m

σ

σ′

if e goto m

σ∗

σ′

∗

T F T F

• Given: σ ∼L σ∗, L = L′ ∪ Var(e)

• Progress:

◮ JeKσ = JeKσ∗

◮ Branch outcome is same

• Preservation:
Values of all variables remain
unchanged
⇒ σ′ ∼L′ σ′

∗

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Soundness and Precision of Data Flow Analysis 47/93

Progress and Preservation for Conditional Goto Statement

(l : L′ ∪ Var(e)) → l : if e goto m → (m : L′)
ifgotoFlv

if e goto m

σ

σ′

if e goto m

σ∗

σ′

∗

T F T F

• Given: σ ∼L σ∗, L = L′ ∪ Var(e)

• Progress:

◮ JeKσ = JeKσ∗

◮ Branch outcome is same

• Preservation:
Values of all variables remain
unchanged
⇒ σ′ ∼L′ σ′

∗

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Soundness and Precision of Data Flow Analysis 48/93

Progress and Preservation for Subsumption Rule

L′′ ⊇ L (l : L) → l : S → (m : L′)

(l : L′′) → l : S → (m : L′)
subsumptionlv

S

σ

σ′

S

σ∗

σ′

∗

• Given: σ ∼L σ∗ and σ′ ∼L′ σ′

∗

• Progress: (σ ∼L σ∗) ∧ L′′ ⊇ L)
⇒ Progress follows trivially

• Preservation:
(σ ∼L σ∗ ⇒ σ′ ∼L′ σ′

∗
) ∧ L′′ ⊇ L)

⇒ (σ ∼L′′ σ∗ ⇒ σ′ ∼L′ σ′

∗
)

Jul 2010 IIT Bombay

Part 5

Available Expressions Analysis

CS 618 Bit Vector Frameworks: Available Expressions Analysis 49/93

Defining Available Expressions Analysis

An expression e is available at a program point p, if
every path from program entry to p contains an evaluation of e

which is not followed by a definition of any operand of e.

a ∗ b is
available at p

a ∗ b is not
available at p

a ∗ b is not
available at p

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

a ∗ b

a ∗ b

a ∗ b

a =

Start Start

p

End

a ∗ b

a ∗ b

Start

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Available Expressions Analysis 50/93

Local Data Flow Properties for Available Expressions
Analysis

Genn = { e | expression e is evaluated in basic block n and
this evaluation is not followed by a definition of
any operand of e}

Killn = { e | basic block n contains a definition of an operand of e}

Entity Manipulation Exposition

Genn Expression Use Downwards

Killn Expression Modification Anywhere

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Available Expressions Analysis 51/93

Data Flow Equations For Available Expressions Analysis

Inn =

BI n is Start block
⋂

p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)

Alternatively,
Outn = fn(Inn), where

fn(X) = Genn ∪ (X − Killn)

Inn and Outn are sets of expressions.

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Available Expressions Analysis 52/93

Using Data Flow Information of Available Expressions
Analysis

• Common subsexpression elimination

◮ If an expression is available at the entry of a block b and
◮ a computation of the expression exists in b such that
◮ it is not preceded by a definition of any of its operands

Then the expression is redundant

• Redundant expression must be upwards exposed

• Expressions in Genn are downwards exposed

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Available Expressions Analysis 53/93

An Example of Available Expressions Analysis

1
a ∗ b
b ∗ c 1

2 c ∗ d 2

3 c = 2 3 4 d = 3 4

5
d ∗ e
a ∗ b

5

6 d ∗ e 6

Let e1 ≡ a ∗ b, e2 ≡ b ∗ c , e3 ≡ c ∗ d , e4 ≡ d ∗ e

N
o
d
e

Computed Killed Available Redund.

1 {e1, e2} 1100 ∅ 0000 ∅ 0000 ∅ 0000

2 {e3} 0010 ∅ 0000 {e1} 1000 ∅ 0000

3 ∅ 0000 {e2, e3} 0110 {e1, e3} 1010 ∅ 0000

4 ∅ 0000 {e3, e4} 0011 {e1, e3} 1010 ∅ 0000

5 {e1, e4} 1001 ∅ 0000 {e1} 1000 {e1} 1000

6 {e4} 0001 ∅ 0000 {e1, e4} 1001 {e4} 0001

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Available Expressions Analysis 53/93

An Example of Available Expressions Analysis

1
a ∗ b
b ∗ c 1

2 c ∗ d 2

3 c = 2 3 4 d = 3 4

5
d ∗ e
a ∗ b

5

6 d ∗ e 6

Initialisation

0000

1111

1111

1111

1111

1111

1111

1111
1111

1111

1111

1111

Let e1 ≡ a ∗ b, e2 ≡ b ∗ c , e3 ≡ c ∗ d , e4 ≡ d ∗ e

N
o
d
e

Computed Killed Available Redund.

1 {e1, e2} 1100 ∅ 0000 ∅ 0000 ∅ 0000

2 {e3} 0010 ∅ 0000 {e1} 1000 ∅ 0000

3 ∅ 0000 {e2, e3} 0110 {e1, e3} 1010 ∅ 0000

4 ∅ 0000 {e3, e4} 0011 {e1, e3} 1010 ∅ 0000

5 {e1, e4} 1001 ∅ 0000 {e1} 1000 {e1} 1000

6 {e4} 0001 ∅ 0000 {e1, e4} 1001 {e4} 0001

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Available Expressions Analysis 53/93

An Example of Available Expressions Analysis

1
a ∗ b
b ∗ c 1

2 c ∗ d 2

3 c = 2 3 4 d = 3 4

5
d ∗ e
a ∗ b

5

6 d ∗ e 6

Iteration #1

0000

1100

1100

1110

1110

1000

1110

1100
1000

1001

1001

1001

Let e1 ≡ a ∗ b, e2 ≡ b ∗ c , e3 ≡ c ∗ d , e4 ≡ d ∗ e

N
o
d
e

Computed Killed Available Redund.

1 {e1, e2} 1100 ∅ 0000 ∅ 0000 ∅ 0000

2 {e3} 0010 ∅ 0000 {e1} 1000 ∅ 0000

3 ∅ 0000 {e2, e3} 0110 {e1, e3} 1010 ∅ 0000

4 ∅ 0000 {e3, e4} 0011 {e1, e3} 1010 ∅ 0000

5 {e1, e4} 1001 ∅ 0000 {e1} 1000 {e1} 1000

6 {e4} 0001 ∅ 0000 {e1, e4} 1001 {e4} 0001

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Available Expressions Analysis 53/93

An Example of Available Expressions Analysis

1
a ∗ b
b ∗ c 1

2 c ∗ d 2

3 c = 2 3 4 d = 3 4

5
d ∗ e
a ∗ b

5

6 d ∗ e 6

Iteration #2

0000

1100

1000

1010

1010

1000

1010

1000
1000

1001

1001

1001

Let e1 ≡ a ∗ b, e2 ≡ b ∗ c , e3 ≡ c ∗ d , e4 ≡ d ∗ e

N
o
d
e

Computed Killed Available Redund.

1 {e1, e2} 1100 ∅ 0000 ∅ 0000 ∅ 0000

2 {e3} 0010 ∅ 0000 {e1} 1000 ∅ 0000

3 ∅ 0000 {e2, e3} 0110 {e1, e3} 1010 ∅ 0000

4 ∅ 0000 {e3, e4} 0011 {e1, e3} 1010 ∅ 0000

5 {e1, e4} 1001 ∅ 0000 {e1} 1000 {e1} 1000

6 {e4} 0001 ∅ 0000 {e1, e4} 1001 {e4} 0001

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Available Expressions Analysis 53/93

An Example of Available Expressions Analysis

1
a ∗ b
b ∗ c 1

2 c ∗ d 2

3 c = 2 3 4 d = 3 4

5
d ∗ e
a ∗ b

5

6 d ∗ e 6

Final Result

0000

1100

1000

1010

1010

1000

1010

1000
1000

1001

1001

1001

Let e1 ≡ a ∗ b, e2 ≡ b ∗ c , e3 ≡ c ∗ d , e4 ≡ d ∗ e

N
o
d
e

Computed Killed Available Redund.

1 {e1, e2} 1100 ∅ 0000 ∅ 0000 ∅ 0000

2 {e3} 0010 ∅ 0000 {e1} 1000 ∅ 0000

3 ∅ 0000 {e2, e3} 0110 {e1, e3} 1010 ∅ 0000

4 ∅ 0000 {e3, e4} 0011 {e1, e3} 1010 ∅ 0000

5 {e1, e4} 1001 ∅ 0000 {e1} 1000 {e1} 1000

6 {e4} 0001 ∅ 0000 {e1, e4} 1001 {e4} 0001

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Available Expressions Analysis 54/93

Tutorial Problem for Available Expressions Analysis

n1

b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a − c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b;
f (a − b); n4

n5 d = a + b; n5

n6 f (b + c); n6

n7 g(a + b); n7

n8
h(a − c);
f (b + c); n8

Expr = { a ∗ b, a + b, a − b,
a − c , b + c }

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Available Expressions Analysis 55/93

Solution of the Tutorial Problem

Bit vector a ∗ b a + b a − b a − c b + c

Local Information
Global Information

N
o
d
e

Iteration # 1 Changes in
iteration # 2 Redundantn

Genn Killn AntGenn Inn Outn Inn Outn

n1 10001 11111 00000 00000 10001 00000

n2 00010 11101 00010 10001 00010 00000

n3 00000 00011 00001 10001 10000 10000 00000

n4 10100 00011 10100 10000 10100 10000

n5 01000 00000 01000 10000 11000 00000

n6 00001 00000 00001 11000 11001 00000

n7 01000 00000 01000 10000 11000 00000

n8 00011 00000 00011 00000 00011 00000

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Available Expressions Analysis 56/93

Further Tutorial Problems

1 a + c 1

2 a ∗ b 2

3 b = 2 3 4 d = 3 4

5 a ∗ c 5

6 a ∗ b 6

Bit Vector

a + c a ∗ b a ∗ c
BI Node

Initialization U Initialization ∅
Inn Outn Inn Outn

∅

1 000 100 000 100
2 100 110 000 010
3 110 100 010 000
4 110 110 010 010
5 100 101 000 001
6 101 111 001 011

U

1 111 111 111 111
2 101 111 001 011
3 111 101 011 001
4 111 111 011 011
5 101 101 001 001
6 101 111 001 011

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Available Expressions Analysis 57/93

More Tutorial Problems

Number of iterations assuming that the order of Ini and Out i

computation is fixed (Ini is computed first and then Out i is computed)

1 b ∗ c 1

2 a ∗ b 2

3 b = 2 3 4 d = 3 4

5 a ∗ c 5

6 a ∗ b 6

Traversal

Initialization
U ∅
BI BI

U ∅ U ∅
Forward 2 1 2 1

Backward 3 4 3 2

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Available Expressions Analysis 58/93

Still More Tutorial Problems

• Partially available expressions at program point p are expressions
that are computed and remain unmodified along some path
reaching p. The data flow equations for partially available
expressions analysis are same as the data flow equations of available
expressions analysis except that the confluence is changed to ∪.

Perform partially available expressions analysis for the previous
example program.

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Available Expressions Analysis 59/93

Result of Partially Available Expressions Analysis

Bit vector a ∗ b a + b a − b a − c b + c

Local Information
Global Information

N
o
d
e

Iteration # 1 Changes in
iteration # 2 ParRedundn

Genn Killn AntGenn Inn Outn Inn Outn

n1 10001 11111 00000 00000 10001 00000

n2 00010 11101 00010 10001 00010 00000

n3 00000 00011 00001 10001 10000 11101 11100 00001

n4 10100 00011 10100 10000 10100 11100 11100 10100

n5 01000 00000 01000 10000 11000 11101 11101 01000

n6 00001 00000 00001 11000 11001 11101 11101 00001

n7 01000 00000 01000 11101 11101 01000

n8 00011 00000 00011 11111 11111 00011

Jul 2010 IIT Bombay

Part 6

Anticipable Expressions Analysis

CS 618 Bit Vector Frameworks: Anticipable Expressions Analysis 60/93

Defining Anticipable Expressions Analysis

• An expression e is anticipable at a program point p, if every path
from p to the program exit contains an evaluation of e which is not
preceded by a redefinition of any operand of e.

• Application : Safety of Code Hoisting

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Anticipable Expressions Analysis 61/93

Safety of Code Motion

1 if (b == 0) 1

2 c = a/b 2 3 f (a/b) 3

False True

1 if (b == 0) 1

2 c = a/b 2 3 print a/b 3

False True

Hoisting a/b to the exit of 1 is un-
safe (≡ can change the behaviour
of the optimized program)

??

A guarded computation of an expression should not be converted to an
unguarded computation

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Anticipable Expressions Analysis 62/93

Defining Data Flow Analysis for Anticipable Expressions
Analysis

Genn = { e | expression e is evaluated in basic block n and
this evaluation is not preceded (within n) by a
definition of any operand of e}

Killn = { e | basic block n contains a definition of an operand of e}

Entity Manipulation Exposition

Genn Expression Use Upwards

Killn Expression Modification Anywhere

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Anticipable Expressions Analysis 63/93

Data Flow Equations for Anticipable Expressions Analysis

Inn = Genn ∪ (Outn − Killn)

Outn =

BI n is End block
⋂

s∈succ(n)

Ins otherwise

Inn and Outn are sets of expressions

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Anticipable Expressions Analysis 64/93

Tutorial Problem for Anticipable Expressions Analysis

n1

b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a − c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b;
f (a − b); n4

n5 d = a + b; n5

n6 f (b + c); n6

n7 g(a + b); n7

n8
h(a − c);
f (b + c); n8

Expr = { a ∗ b, a + b, a − b,
a − c , b + c }

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Anticipable Expressions Analysis 65/93

Result of Anticipable Expressions Analysis

Bit vector a ∗ b a + b a − b a − c b + c

Local
Information

Global Information

Block Iteration # 1 Changes in
iteration # 2

Genn Killn Outn Inn Outn Inn

n8 00011 00000 00000 00011

n7 01000 00000 00011 01011 00001 01001

n6 00001 00000 01011 01011 01001 01001

n5 01000 00000 01011 01011 01001 01001

n4 10100 00011 01011 11100 01001 11100

n3 00001 00011 01000 01001 01000 01001

n2 00010 11101 00011 00010

n1 00000 11111 00000 00000

Jul 2010 IIT Bombay

Part 7

Reaching Definitions Analysis

CS 618 Bit Vector Frameworks: Reaching Definitions Analysis 66/93

Defining Reaching Definitions Analysis

• A definition dx : x = y reaches a program point u if it appears
(without a refefinition of x) on some path from program entry to u

• Application : Copy Propagation
A use of a variable x at a program point u can be replaced by y if
dx : x = y is the only definition which reaches p and y is not
modified between the point of dx and p.

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Reaching Definitions Analysis 67/93

Defining Data Flow Analysis for Reaching Definitions
Analysis

Let dv be a definition of variable v

Genn = { dv | variable v is defined in basic block n and
this definition is not followed (within n)
by a definition of v}

Killn = { dv | basic block n contains a definition of v}

Entity Manipulation Exposition

Genn Definition Occurence Downwards

Killn Definition Occurence Anywhere

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Reaching Definitions Analysis 68/93

Data Flow Equations for Reaching Definitions Analysis

Inn =

BI n is Start block
⋃

p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)

BI = {dx : x = undef | x ∈ Var}

Inn and Outn are sets of definitions

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Reaching Definitions Analysis 69/93

Tutorial Problem for Reaching Definitions Analysis

n1

b1 : b = 4;
a1 : a = b + c ;
d1 : d = a ∗ b;

n1

n2 b2 : b = a − c ; n2

n3 c1 : c = b + c ; n3

n4
c2 : c = a ∗ b;

f (a − b); n4

n5 d2 : d = a + b; n5

n6 f (b + c); n6

n7 g(a + b); n7

n8
h(a − c);
f (b + c); n8

Defs = { a0, b0, c0, d0, a1, b1,
b2, c1, c2, d1, d2 }

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Reaching Definitions Analysis 70/93

Result of Reaching Definitions Analysis

Local
Information

Global Information

B
lo

ck Iteration # 1 Changes in
iteration # 2

Genn Killn Inn Outn Inn Outn

n1

{a1,
b1,
d1}

{a0, a1,
b0, b1, b2,
d0, d1, d2}

{a0, b0, c0, d0} {a1, b1, c0, d1}

n2 {b2} {b0, b1, b2} {a1, b1, c0, d1} {a1, b2, c0, d1}

n3 {c1} {c0, c1, c2} {a1, b1, c0, d1} {a1, b1, c1, d1}
{a1, b1, c0,
c1, c2, d1, d2}

{a1, b1,
c1, d1, d2}

n4 {c2} {c0, c1, c2} {a1, b1, c1, d1} {a1, b1, c2, d1}
{a1, b1,
c1, d1, d2}

{a1, b1,
c2, d1, d2}

n5 {d2} {d0, d1, d2} {a1, b1, c1, d1} {a1, b1, c1, d2}
{a1, b1,
c1, d1, d2}

n6 ∅ ∅ {a1, b1, c1, d2} {a1, b1, c1, d2}

n7 ∅ ∅ {a1, b1, c1,
c2, d1, d2}

{a1, b1, c1,
c2, d1, d2}

n8 ∅ ∅ {a1, b1, b2, c0,
c1, c2, d1, d2}

{a1, b1, b2, c0,
c1, c2, d1, d2}

Jul 2010 IIT Bombay

Part 8

Common Features of Bit

Vector Data Flow Frameworks

CS 618 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 71/93

Defining Local Data Flow Properties

• Live variables analysis

Entity Manipulation Exposition

Genn Variable Use Upwards

Killn Variable Modification Anywhere

• Analysis of expressions

Entity Manipulation
Exposition

Availability Anticipability

Genn Expression Use Downwards Upwards

Killn Expression Modification Anywhere Anywhere

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 72/93

Common Form of Data Flow Equations

Xi = f (Yi)

Yi = ⊓ Xj

Data Flow Information So far we have seen sets (or bit vectors).
Could be entities other than sets.

Flow Function
So far we have seen con-
stant Gen and Kill . Could
be dependent Gen and Kill .

Confluence
So far we have seen ∪ and ∩.
Could be other operations.

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 73/93

A Taxonomy of Bit Vector Data Flow Frameworks

Confluence
Union Intersection

Forward Reaching Definitions Available Expressions
Backward Live Variables Anticipable Exressions
Bidirectional Partial Redundancy Elimination
(limited) (Original M-R Formulation)

Any Path

All Paths

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 74/93

Data Flow Paths Discovered by Data Flow Analysis

v

Liveness

a∗b a∗b

a∗b

Anticipability

a∗b

a∗b

a∗b

Availability

a∗b

Partial
Availability

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 74/93

Data Flow Paths Discovered by Data Flow Analysis

v

Liveness

Sequence of blocks (b1, b2, . . . , bk)
which is a prefix of some potential
execution path starting at b1 such that:

• bk contains an upwards exposed
use of v , and

• no other block on the path
contains an assignment to v .

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 74/93

Data Flow Paths Discovered by Data Flow Analysis

a∗b a∗b

a∗b

Anticipability

Sequence of blocks (b1, b2, . . . , bk)
which is a prefix of some potential
execution path starting at b1 such that:

• bk contains an upwards exposed
use of a ∗ b, and

• no other block on the path contains
an assignment to a or b, and

• every path starting at b1 is an
anticipability path of a ∗ b.

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 74/93

Data Flow Paths Discovered by Data Flow Analysis

a∗b

a∗b

a∗b

Availability

Sequence of blocks (b1, b2, . . . , bk)
which is a prefix of some potential
execution path starting at b1 such
that:

• b1 contains a downwards
exposed use of a ∗ b, and

• no other block on the path
contains an assignment to a or
b, and

• every path ending at bk is an
availability path of a ∗ b.

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 74/93

Data Flow Paths Discovered by Data Flow Analysis

a∗b

Partial
Availability

Sequence of blocks (b1, b2, . . . , bk)
which is a prefix of some potential
execution path starting at b1 such that:

• b1 contains a downwards exposed
use of a ∗ b, and

• no other block on the path
contains an assignment to a or b.

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 74/93

Data Flow Paths Discovered by Data Flow Analysis

v

Liveness

a∗b a∗b

a∗b

Anticipability

a∗b

a∗b

a∗b

Availability

a∗b

Partial
Availability

Jul 2010 IIT Bombay

Part 10

Partial Redundancy Elimination

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 75/93

Partial Redundancy Elimination

• Precursor: Common Subexpression Elimination (CSE)

1 a ∗ b 1 2 a ∗ b 2

3 a ∗ b 3

• a and b are not modified along
paths 1 → 3 and 2 → 3

• Computation of a ∗ b in 3 is
redundant

• Previous value can be used

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 76/93

Partial Redundancy Elimination

• Motivation: Overcoming the limitation of Common Subexpression
Elimination (CSE)

1 a ∗ b 1 2 a = 5 2

3 a ∗ b 3

• Computation of a ∗ b in 3 is

◮ redundant along path 1 → 3,
but . . .

◮ not redundant along path 2 → 3

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 77/93

Partial Redundancy Elimination

• The key idea: Code Hoisting

1 a ∗ b 1 2 a = 5 2

3 a ∗ b 3

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 77/93

Partial Redundancy Elimination

• The key idea: Code Hoisting

1 a ∗ b 1 2 a = 5
a ∗ b 2

3 a ∗ b 3

• Computation of a ∗ b in 3
becomes totally redundant

• Can be deleted

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 78/93

PRE Subsumes Loop Invariant Movement

1 a = b ∗ c 1

2 a = b ∗ c 1

3 a = b ∗ c 3

1 a = b ∗ c 1

2 a = b ∗ c 1

2 a = b ∗ c 3

1 t = b ∗ c 1

2 a = t 1

3 a = b ∗ c 3

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 79/93

PRE Can be Used for Strength Reduction

i = 0
t0 = base(A)

t1 = t0 + i ∗ 4
a = A[t1]
i = i + 1

⇒

i = 0
t0 = base(A)
t1 = t0 + i ∗ 4

t1 = t1 + 4
a = A[t1]
i = i + 1

• ∗ and + in the loop have been replaced by +

• i = i + 1 in the loop has been eliminated

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 79/93

PRE Can be Used for Strength Reduction

i = 0
t0 = base(A)

t1 = t0 + i ∗ 4
a = A[t1]
i = i + 1

• Delete i = i + 1

• Expression t0 + i ∗ 4
becomes loop invariant

• Hoist it and increment t1
in the loop

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 79/93

PRE Can be Used for Strength Reduction

i = 0
t0 = base(A)
t1 = t0 + i ∗ 4

t1 = t1 + 4
a = A[t1]
i = i + 1

⇒

i = 0
t0 = base(A)
t1 = t0 + i ∗ 4

t1 = t1 + 4
a = A[t1]
i = i + 1

• ∗ and + in the loop have been replaced by +

• i = i + 1 in the loop has been eliminated

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 80/93

Performing Partial Redundancy Elimination

1. Identify partial redundancies

2. Identify program points where computations can be inserted

3. Insert expressions

4. Partial redundancies become total redundancies
=⇒ Delete them.

Morel-Renvoise Algorithm (CACM, 1979.)

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 81/93

Defining Hoisting Criteria

• An expression can be safely inserted at a program point p if it is

Available at p Anticipable at p

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

Start

a ∗ b

a ∗ b

◮ If it is available at p, then
there is no need to insert
it at p.

◮ If it is anticipable at p

then all such occurrence
should be hoisted to p.

◮ An expression should be

hoisted to p provided it

can be hoisted to p along

all paths from p to exit.

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 82/93

Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

b ∗ c

b ∗ c b ∗ c

a ∗ c a ∗ c
a =

b ∗ c

b ∗ c b ∗ c

b ∗ c b ∗ c

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 83/93

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

What does this slide show?

• Four examples

• For each example
◮ statements in blue

enable hoisting
◮ statements in red

prohibit hoisting

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 83/93

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(Example 1)

1

2

3

4

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 83/93

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(Example 2)

1

2

3

4

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 83/93

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(Example 2)

1

2

3

4

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 83/93

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(Example 2)

1

2

3

4

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 83/93

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

a ∗ b

a = 5

a ∗ b

a ∗ b

(Example 3)

1

2

3

4

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 83/93

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

a ∗ b

a = 5

a ∗ b

a ∗ b

(Example 3)

1

2

3

4

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 83/93

Applying the Hoisting Criteria

• S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

a ∗ b

a = 5

a ∗ b

a ∗ b

(Example 4)

1

2

3

4

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 83/93

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

a ∗ b

a = 5

a ∗ b

a ∗ b

(Example 4)

1

2

3

4

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 83/93

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

a ∗ b

a = 5

a ∗ b

a ∗ b

(Example 4)

1

2

3

4

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 83/93

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

a ∗ b

a = 5

a ∗ b

a ∗ b

(Example 4)

1

2

3

4

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 84/93

First Level Global Data Flow Properties in PRE

• Partial Availability.

PavInn =

BI n is Start block
⋃

p∈pred(n)

PavOutp otherwise

PavOutn = Genn ∪ (PavInn − Killn)

• Total Availability.

AvInn =

BI n is Start block
⋂

p∈pred(n)

AvOutp otherwise

AvOutn = Genn ∪ (AvInn − Killn)

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 85/93

PRE Data Flow Equations

Inn = PavInn ∩
(

AntGenn ∪ (Outn − Killn)
)

⋂

p∈pred(n)

(

Outp ∪ AvOutp

)

Outn =

BI n is End block
⋂

s∈succ(n)

Ins otherwise

Desirability: D.1

Expressions should be partially available, and

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 85/93

PRE Data Flow Equations

Inn = PavInn ∩
(

AntGenn ∪ (Outn − Killn)
)

⋂

p∈pred(n)

(

Outp ∪ AvOutp

)

Outn =

BI n is End block
⋂

s∈succ(n)

Ins otherwise

Safety: S.2

Expressions should be upwards exposed, or

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 85/93

PRE Data Flow Equations

Inn = PavInn ∩
(

AntGenn ∪ (Outn − Killn)
)

⋂

p∈pred(n)

(

Outp ∪ AvOutp

)

Outn =

BI n is End block
⋂

s∈succ(n)

Ins otherwise

Safety: S.3

Expressions can be hoisted to the exit and are transparent in the block

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 85/93

PRE Data Flow Equations

Inn = PavInn ∩
(

AntGenn ∪ (Outn − Killn)
)

⋂

p∈pred(n)

(

Outp ∪ AvOutp

)

Outn =

BI n is End block
⋂

s∈succ(n)

Ins otherwise

Desirability: D.2.a

For every predecessor, expressions can be hoisted to its exit, or

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 85/93

PRE Data Flow Equations

Inn = PavInn ∩
(

AntGenn ∪ (Outn − Killn)
)

⋂

p∈pred(n)

(

Outp ∪ AvOutp

)

Outn =

BI n is End block
⋂

s∈succ(n)

Ins otherwise

Desirability: D.2.b

. . . expressions are available at the exit of the same predecessor

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 85/93

PRE Data Flow Equations

Inn = PavInn ∩
(

AntGenn ∪ (Outn − Killn)
)

⋂

p∈pred(n)

(

Outp ∪ AvOutp

)

Outn =

BI n is End block
⋂

s∈succ(n)

Ins otherwise

Safety: S.1

Expressions should be hoisted to the exit of a block
if they can be hoisted to the entry of all succesors

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 86/93

Deletion Criteria in PRE

• An expression is redundant in node n if

◮ it can be placed at the entry (i.e. can be “hoisted” out) of n, AND
◮ it is upwards exposed in node n.

Redundantn = Inn ∩ AntGenn

• A hoisting path for an expression e begins at n if e ∈ Redundantn

• This hoisting path extends against the control flow.

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 87/93

Insertion Criteria in PRE

• An expression is inserted at the exit of node n is

◮ it can be placed at the exit of n, AND
◮ it is not available at the exit of n, AND
◮ it cannot be hoisted out of n, OR it is modified in n.

Insertn = Outn ∩ (¬AvOutn) ∩ (¬Inn ∪ Killn)

• A hoisting path for an expression e ends at n if e ∈ Insertn

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 88/93

Performing PRE by Computing In/Out : Simple Cases

2 c = a ∗ b 2 3 a = 5 3

4 d = a ∗ b 3

1 c = a ∗ b 1

0

0
0

1

0

1
1

0

⇒ 2 t = a ∗ b
c = t 2 3 a = 5

t = a ∗ b 3

4 d = t 4

1 c = a ∗ b 1

1 a = b ∗ c 1

2 a = b ∗ c 2

3 a = b ∗ c 3

⇒

1 t = b ∗ c 1

2 a = t 1

3 a = b ∗ c 3

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 88/93

Performing PRE by Computing In/Out : Simple Cases

2 c = a ∗ b 2 3 a = 5 3

4 d = a ∗ b 3

1 c = a ∗ b 1

0

0
0

1

0

1
1

0

⇒ 2 t = a ∗ b
c = t 2 3 a = 5

t = a ∗ b 3

4 d = t 4

1 c = a ∗ b 1

1 a = b ∗ c 1

2 a = b ∗ c 2

3 a = b ∗ c 3

0

1
1

0
0

0

⇒

1 t = b ∗ c 1

2 a = t 1

3 a = b ∗ c 3

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 88/93

Performing PRE by Computing In/Out : Simple Cases

2 c = a ∗ b 2 3 a = 5 3

4 d = a ∗ b 3

1 c = a ∗ b 1

0

0
0

1

0

1
1

0

⇒ 2 t = a ∗ b
c = t 2 3 a = 5

t = a ∗ b 3

4 d = t 4

1 c = a ∗ b 1

1 a = b ∗ c 1

2 a = b ∗ c 2

3 a = b ∗ c 3

0

1
1

0
0

0

RedundancyInsertion

⇒

1 t = b ∗ c 1

2 a = t 1

3 a = b ∗ c 3

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 89/93

Tutorial Problems for PRE

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(a)

1

2

3

4

a ∗ b

a = 5

a ∗ b

a ∗ b

(b)

1

2

3

4

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(c)

1

2

3

4

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(d)

1

2

3

4

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(e)

1

2

3

4

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 89/93

Tutorial Problems for PRE

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(a)

1

2

3

4

0

0

0

0

0

0

0

0

a ∗ b

a = 5

a ∗ b

a ∗ b

(b)

1

2

3

4

0

0

0

1

1

0

0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(c)

1

2

3

4

0

0

0

1
1

0
0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(d)

1

2

3

4

0

0

0

1
1

0
0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(e)

1

2

3

4

0

1

1

1
1

1
1

0

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 89/93

Tutorial Problems for PRE

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(a)

1

2

3

4

0

0

0

0

0

0

0

0

a ∗ b

a = 5

a ∗ b

a ∗ b

(b)

1

2

3

4

0

0

0

1

1

0

0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(c)

1

2

3

4

0

0

0

1
1

0
0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(d)

1

2

3

4

0

0

0

1
1

0
0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(e)

1

2

3

4

0

1

1

1
1

1
1

0

Redundancy Insertion

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 90/93

Further Tutorial Problem for PRE

1 b ∗ c 1

2 a ∗ b 2

3 a = . . . 34 d = . . . 4

5 b ∗ c 5

6 b ∗ c 6

Let {a ∗ b, b ∗ c} ≡ bit string 11

Node n Killn AntGenn PavInn AvOutn

1 00 00 00 00

2 00 10 11 10

3 10 00 11 00

4 00 00 11 10

5 00 01 11 01

6 00 00 11 01

• Compute Inn/Outn/Redundantn/Insertn

• Identify hoisting paths

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 91/93

Result of PRE Data Flow Analysis of the Running Example

Bit vector a ∗ b a + b a − b a − c b + c

B
lo

ck

Global Information

Constant
information

Iteration # 1 Changes in
iteration # 2

Changes in
iteration # 3

PavInn AvOutn Outn Inn Outn Inn Outn Inn

n8 11111 00011 00000 00011 00001

n7 11101 11000 00011 01001 00001

n6 11101 11001 01001 01001 01000

n5 11101 11000 01001 01001 01000

n4 11100 10100 01001 11100 11000

n3 11101 10000 01000 01001 00001

n2 10001 00010 00011 00000 00001

n1 00000 10001 00000 00000

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 92/93

Hoisting Paths for Some Expressions in the Running Example

n1

b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a − c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b ;
f (a − b);

n4

n5 d = a + b ; n5

n6 f (b + c); n6

n7 g(a + b); n7

n8
h(a − c);
f (b + c);

n8

Jul 2010 IIT Bombay

CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 93/93

Optimized Version of the Running Example

n1

b = 4;
t2 = b + c ;
a = t2;
t0 = a ∗ b;
d = t0;

n1

n2

b = c ;
f (a − c);
t2 = b + c ;

n2

n3
c = t2
t1 = a + b; n3

n4

c = t0;
f (a − b);
t2 = b + c ;

n4

n5
d = t1;
t2 = b + c ; n5

n6 f (t2); n6

n7 g(t1); n7

n8
h(a − c);
f (t2);

n8

Jul 2010 IIT Bombay

	About These Slides
	Outline
	Live Variables Analysis
	3.5inProgram Execution Model and Semantics
	Program Execution Model and Semantics
	3.5inSoundness and Precision of Data Flow Analysis
	Soundness and Precision of Data Flow Analysis
	Available Expressions Analysis
	Anticipable Expressions Analysis
	Reaching Definitions Analysis
	3.5inCommon Features of Bit Vector Data Flow Frameworks
	Common Features of Bit Vector Frameworks
	Partial Redundancy Elimination

