Index

abstract interpretations, 14
access expressions, 137
access graph, 141
empty, 141
operations, 143–146
cleanUp, 143
CN, 143
extension, 145
factorization, 145
field, 143
lastNode, 143
makeGraph, 143
path removal, 145
root, 143
safety of, 146
union, 144
summarization, 142
access path, 3, 137
aliasing of, 3
base of, 137
directly generated, 139
frontier of, 137
killed, 139
liveness of, 3
simple, 137
summarization, 3, 12
target of, 137
transfer of, 139
algorithm
DFST construction, 60
elimination, 184
iterative
round-robin, 4, 19, 79, 90, 163–164
work list, 165–172, 312, 319, 320, 322
SSA construction
ϕ placement, 196
dominance frontier, 194
renaming, 199
SSA destruction, 214
register allocation, 224
alias analysis, 129–135
data flow equations, 134
of parameters, 268
data flow equations, 269–271
alias relations, 129
aliasing
data flow equations, 134
direct aliases, 131
indirect aliases, 131
link aliases, 130
node aliases, 130
of access paths, 3, 9
of parameters, 267
of pointers, 2, 129–135
all paths analysis, 33
anti-symmetric, 64
anticipable expressions analysis, 37–39
data flow equations, 38
any path analysis, 26
applications of data flow analysis, 16
assignment, 176, 177, 181
maximum fixed point (MFP), 77
maximum safe, 75
meet over paths (MOP), 75
associativity, 66
available expressions analysis, 33–35
common subexpressions elimination,
34
data flow equations, 33
backward data flow problem, 26
backward edges, 61
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>backward flow</td>
<td>24, 160</td>
</tr>
<tr>
<td>basic block</td>
<td>23</td>
</tr>
<tr>
<td>bidirectional data flow equations</td>
<td>39, 42, 184</td>
</tr>
<tr>
<td>bidirectional data flow frameworks</td>
<td>73, 159, 175, 184</td>
</tr>
<tr>
<td>bit vector</td>
<td>23</td>
</tr>
<tr>
<td>bit vector frameworks</td>
<td>23–57, 73, 86, 88, 89, 162, 171</td>
</tr>
<tr>
<td>anticipable expressions analysis</td>
<td>37–39</td>
</tr>
<tr>
<td>available expressions analysis</td>
<td>33–35</td>
</tr>
<tr>
<td>combined may-must availability analysis</td>
<td>53–56</td>
</tr>
<tr>
<td>dead variables analysis</td>
<td>29</td>
</tr>
<tr>
<td>lazy code motion</td>
<td>49–53</td>
</tr>
<tr>
<td>live variables analysis</td>
<td>26–29</td>
</tr>
<tr>
<td>partial redundancy elimination</td>
<td>39–49</td>
</tr>
<tr>
<td>partially available expressions analysis</td>
<td>36–37</td>
</tr>
<tr>
<td>reaching definitions analysis</td>
<td>29–33</td>
</tr>
<tr>
<td>specification in GCC</td>
<td>336–340</td>
</tr>
<tr>
<td>bit vector operations</td>
<td>23, 56</td>
</tr>
<tr>
<td>boundary information (Bi)</td>
<td>26</td>
</tr>
<tr>
<td>bounded lattice</td>
<td>70</td>
</tr>
<tr>
<td>call multigraph</td>
<td>18, 234, 235</td>
</tr>
<tr>
<td>call node</td>
<td>235</td>
</tr>
<tr>
<td>call segment</td>
<td>295</td>
</tr>
<tr>
<td>call site</td>
<td>235</td>
</tr>
<tr>
<td>call string</td>
<td>295, 302</td>
</tr>
<tr>
<td>approximate</td>
<td>328</td>
</tr>
<tr>
<td>data flow equations</td>
<td>298, 303</td>
</tr>
<tr>
<td>restricted</td>
<td>296</td>
</tr>
<tr>
<td>data flow equations</td>
<td>298</td>
</tr>
<tr>
<td>unrestricted</td>
<td>302</td>
</tr>
<tr>
<td>construction</td>
<td>302, 303</td>
</tr>
<tr>
<td>data flow equations</td>
<td>303</td>
</tr>
<tr>
<td>equivalence</td>
<td>312, 317, 318</td>
</tr>
<tr>
<td>for bit vector frameworks</td>
<td>328</td>
</tr>
<tr>
<td>regeneration of</td>
<td>319</td>
</tr>
<tr>
<td>representation of</td>
<td>319</td>
</tr>
<tr>
<td>termination length</td>
<td>328</td>
</tr>
<tr>
<td>termination, issues in</td>
<td>305–310</td>
</tr>
<tr>
<td>value-based termination</td>
<td>317–324, 328</td>
</tr>
<tr>
<td>calling context</td>
<td>295</td>
</tr>
<tr>
<td>restricted</td>
<td>296–301</td>
</tr>
<tr>
<td>unrestricted</td>
<td>see call string</td>
</tr>
<tr>
<td>canonical SSA</td>
<td>207</td>
</tr>
<tr>
<td>chain</td>
<td>67</td>
</tr>
<tr>
<td>chordal graph</td>
<td>219</td>
</tr>
<tr>
<td>chromatic number</td>
<td>216</td>
</tr>
<tr>
<td>code movement</td>
<td>33</td>
</tr>
<tr>
<td>coloring</td>
<td>222</td>
</tr>
<tr>
<td>combined may-must availability analysis</td>
<td>53</td>
</tr>
<tr>
<td>data flow equations</td>
<td>55</td>
</tr>
<tr>
<td>common subexpression elimination</td>
<td>34</td>
</tr>
<tr>
<td>commutativity</td>
<td>66</td>
</tr>
<tr>
<td>complete lattice</td>
<td>67</td>
</tr>
<tr>
<td>complexity of data flow analysis</td>
<td>bit vector frameworks, 99, 171–175</td>
</tr>
<tr>
<td>depth of CFG</td>
<td>61, 94, 97, 99</td>
</tr>
<tr>
<td>fast frameworks</td>
<td>175–179</td>
</tr>
<tr>
<td>information flow paths</td>
<td>171–184</td>
</tr>
<tr>
<td>non-separable frameworks</td>
<td>179–183</td>
</tr>
<tr>
<td>rapid frameworks</td>
<td>85–99</td>
</tr>
<tr>
<td>width</td>
<td>175</td>
</tr>
<tr>
<td>component function</td>
<td>102, 153</td>
</tr>
<tr>
<td>composite entity functions (cef)</td>
<td>155</td>
</tr>
<tr>
<td>computation of MFP assignment</td>
<td>79</td>
</tr>
<tr>
<td>conditional constant propagation</td>
<td>116</td>
</tr>
<tr>
<td>data flow equations</td>
<td>117</td>
</tr>
<tr>
<td>conservative approximations</td>
<td>11, 65, 142, 147, 151, 238, 246, 250, 251, 254</td>
</tr>
<tr>
<td>constant propagation</td>
<td>108–119, 157</td>
</tr>
<tr>
<td>conditional</td>
<td>116</td>
</tr>
<tr>
<td>copy</td>
<td>118</td>
</tr>
<tr>
<td>data flow equations</td>
<td>112</td>
</tr>
<tr>
<td>linear</td>
<td>119</td>
</tr>
<tr>
<td>constraint resolution systems</td>
<td>13</td>
</tr>
<tr>
<td>context independence</td>
<td>236</td>
</tr>
<tr>
<td>context sensitive analysis</td>
<td>296</td>
</tr>
<tr>
<td>context sensitivity</td>
<td>12, 15, 17, 157, 243</td>
</tr>
<tr>
<td>control flow graph</td>
<td>1</td>
</tr>
</tbody>
</table>
control flow graph (CFG), 18, 23, 24, 235
convergence, 12
converging paths, 189
copy, 32
copy propagation, 32
critical edges, 47, 50
critical nodes, 48
cross edges, 61
CSSA, see canonical SSA
cyclic call sequence, 308
cyclic return sequence, 308
data flow equations, 24
 alias analysis, 134
 alias analysis, of parameters, 269–271
 anticipable expressions analysis, 38
 available expressions analysis, 33
 bidirectional, 39, 42, 160, 184
call string, restricted, 298
call string, unrestricted, 303
 combined may-must availability analysis, 55
 conditional constant propagation, 117
 constant propagation, 112
 explicit liveness, see explicit liveness, data flow equation
 faint variables analysis, 103
generic, 160
interprocedural data flow analysis
 constructing summary flow functions, 278–279
 using summary flow functions, 283
 lazy code motion, 49–52
 liveness, 26
 partial redundancy elimination, 40, 42
points-to analysis, 121
possibly uninitialized variables, 107
reaching definitions, 30
side effects of procedure calls, 261–265
unidirectional, 160
data flow framework, 72
instance of, 73
data flow frameworks
 bit vector, 23–57
 anticipable expressions analysis, 37–39
 available expressions analysis, 33–35
 bidirectional, 39, 42
 combined may-must availability analysis, 53–56
 dead variables analysis, 29
 lazy code motion, 49–53
 live variables analysis, 26–29
 partial redundancy elimination, 39–49
 partially available expressions analysis, 36–37
 reaching definitions analysis, 29–33
 side effects analysis of procedure calls, 259
category by flow functions
 bit vector, 73, 86, 162, 171
distributive, 73
 fast, 89, 175
 k-bounded, 86
 monotone, 73
 non-separable, 159, 179
 rapid, 86–90
 separable, 159
direction of flow
 bidirectional, 73, 159, 162, 175, 184
 unidirectional, 73, 159, 162
non-separable, 101–157
 alias analysis, 129–135
 alias analysis of parameters, 268
 constant propagation, 108–119
 faint variables analysis, 103–106
 heap liveness analysis, 135–152
 points-to analysis, 119–129
 possibly uninitialized variables analysis, 106–108
properties of, 86
Index

data flow information
 exhaustiveness of, 11, 66
generation, 24, 56, 102
inherited, 237, 238, 254
invalidation, 24
killing, 56, 102
precision of, 12, 112, 115–119, 128, 131, 147, 152
representation of, 12, 18, 23, 25, 54, 64–70, 112, 120, 130, 141
safety of, 11, 65, 66, 75, 87, 117
synthesized, 237, 238, 254
dead code, 33
dead code elimination, 28
dead variables analysis, 29
def-use chains, 30, 185
depth, see loop connectedness
depth first spanning tree, 60
descending chain condition, 67
DFST, see depth first spanning tree
distributive data flow frameworks, 73
dominance, 62, 191
dominance and reducibility, 62
dominance frontier, 191–193
 algorithm
 complexity, 194
downwards exposed, 25
dynamic analysis, 14
equivalence of iterated join and IDF, 201
exhaustive analysis, 15
explicit liveness
 convergence of, 149
data flow equation, 147
efficiency of, 150
 specification, 140
explicitly live access paths, 138
expression
 anticipable, 38
 available, 33
 partially available, 36
 partially redundant, 36
 redundant, 34
extensive point of function, 78
faint variables analysis, 103–106, 157
 data flow equations, 103
fast data flow framework, 86, 89, 175
fixed point, 77
fixed point assignment, 77
fixed point theorem, 78
flow functions, 64, 71
 backward, 73
distributive, 72, 73, 83, 90
entity functions
 composite (ceff), 155
 primitive (peff), 153, 172, 176, 177, 180, 181, 184
 fast, 86, 89
 forward, 73
 k-bounded, 86
 monotonic, 71–73
 non-separable, 101, 102, 154, 156
 separable, 101
flow insensitive side effects, 248, 263
flow sensitive side effects, 251, 261
flow sensitivity, 12, 15, 17, 157, 241, 261
forbidden subgraph, 62
forward edges, 61
forward flow, 24, 160
garbage collection, 2
generation of liveness, 6
generic data flow analyzer, 360, 368
generic data flow equations, 160
generic flow functions, 162
gimple representation, 334
gimple version of CFG, 342–346
glb, see greatest lower bound, 68, 69
global data flow analysis, 17, 23, 360–362
global data flow information, 24
GNU Compiler Collection (GCC), 333, 365
graph, 59
 access graph, 141
call multigraph, 18, 235
 chordal, 219
coloring of chordal, 222
Data Flow Analysis: Theory and Practice

control flow graph (CFG), 18, 23, 24, 235
depth first spanning tree, 60
depth of, 61
memory graph, 136
parameter binding graph, 273
points-to graph, 129
program summary graph, 291
reducible, 62
supergraph, 18, 235, 293
graph reachability, 291
greatest element, 64
greatest lower bound, 66

Hasse diagram, 65
hoisting
desirability, 41
safety, 40, 41

idempotence, 66
immediate dominator, 192
incremental analysis, 15
induction variable detection, 189
inference systems, 13
information flow
origin of, 171, 176, 180
information flow paths, 165, 172
in bit vector framework, 171
in fast frameworks, 175, 176
in non-separable framework, 179
width of, 174
interference graph, 216
interprocedual approximation, 6
interprocedural constant propagation, 233
interprocedural data flow analysis, 17
call string
construction, 302, 303
equivalence, 312, 317, 318
for bit vector frameworks, 328
regeneration of, 319
representation of, 319
termination length, 328
termination, issues in, 305–310
value-based termination, 317–324
context insensitive, 157
context sensitive, 157
flow insensitive, 157
equality-based, 157
subset-based, 157
flow sensitive, 157
functional approach, 238, 259–290
summary flow function
construction, 278–282
enumeration, 285–290
reduction, 275–278
side effects of procedure calls, 259–265
using restricted contexts, 296
using unrestricted context, 301
value-based, 239, 293–328
interprocedurally valid
control flow path, 294
information flow path, 295
intraprocedural segment, 295
invocation graph, 329
iterated dominance frontier, 195
complexity of algorithm, 196
iterated join, 198
join, 66, 198
join semilattice, 70
k-bounded data flow framework, 86
killing liveness, 6
lattice, 67
lattice of flow functions, 274
lazy code motion
critical edges, splitting of, 50
data flow equations, 49–52
earliest points of placement, 50, 53
latest points of placement, 51, 54
region of safe placement, 50
transformation, 52
least element, 64
least upper bound, 66
left locations, 120
lifetime of a name, 12
link aliases, 130
live range, 208
interference, 208
live variables analysis, 26–29
data flow equations, 26
liveness, 26
of access paths, 3
of heap data, 135–152
of pointers, 2
summary, 139
liveness analysis, 20
of heap, 135–152
of variables, see live variables analysis
liveness of access paths, 4, 138
local data flow analysis, 17, 23–25, 358–360
local data flow information, 24
constant, 102
dependent, 102
loop closure, 86
loop connectedness, 61
lost-copy problem, 208, 214
lower bound, 66
lub, see least upper bound, 68, 69
maximum fixed point assignment, 77
maximum safe assignment, 75
may alias analysis, 74
may availability analysis, see partially available expressions analysis
may points-to, 121
may-must alias analysis, 69
may-must availability, 69
meet, 66
meet over paths assignment, 75
meet semilattice, 69
memory graph, 136
merge operation, 64
MFP assignment, see maximum fixed point assignment, 81, 82
minimal SSA, 190
model checking, 14
modified Post’s correspondence problem, 84
monotone data flow frameworks, 73
MOP assignment, see meet over paths assignment, 76, 81, 82
undecidability of, 85
MPCP, see modified Post’s correspondence problem
must availability analysis, see available expressions analysis
must points-to, 121
node aliases, 130
non-separable flow functions, 101
non-separable frameworks, 29, 31, 101–157, 159, 179
alias analysis, 129–135
constant propagation, 108–119
faint variables analysis, 103–106
heap liveness analysis, 135–152
points-to analysis, 119–129
possibly uninitialized variables analysis, 106–108
parameter alias analysis, 268
parameter binding graph, 273
partial order, 64
partial redundancy elimination, 39–49
critical edges, 47
critical nodes, 48
data flow equations, 40, 42
hoisting path, 40
transformation, using, 44
limitations of, 45
partial transfer functions, 291
partially available expressions analysis, 36–37
path
in a graph, 59
length, 60
PEO, see perfect elimination order
PEO ordering, 223
perfect elimination order, 223
periodic point, 316
φ-instruction placement, 194
φ-variable renaming, 196
φ-congruence, 209
φ-function, 186
Data Flow Analysis: Theory and Practice

φ-instruction, 186
φ-related, 209
φ-variable renaming algorithm, 197–199
φ-variables, 187
pointer analysis, 157
 strong update, 120
 weak update, 120
points-to analysis, 119–129
 data flow equations, 121
 degree of certainty, 125
 inverse dependence of, 124
 left locations, 120
 may points-to, 121
 must points-to, 121
 right locations, 120
 strong update, 120
 weak update, 120
points-to graph, 129
poset, 64
 for available expression, 65
 for live variables, 64
possibly uninitialized variables analysis, 31, 106–108
 data flow equations, 107
postorder, 28
predecessor, 24
primitive entity functions (pef), 153, 172, 176, 177, 180, 181, 184
procedure cloning, 254
procedure inlining, 254
product lattice, 101
 components, 68
program entities, 23
program representations, 16, 17
program summary graph, 291
pruned SSA, 190
qualified data flow value, 295
rapid condition, 88
rapid data flow framework, 86–90
reaching definitions analysis, 19, 29–33
 data flow equations, 30
 def-use chains, 30
 for copy propagation, 32
use-def chains, 30
reducible, 62
reducing function compositions, 275
reducing function confluences, 275
reductive point of function, 78
reflexive, 64
register allocation, 28
register allocation via graph coloring, 216
register copies, 226
register transfer graph, 226
relation, 64
return node, 235
return segment, 295
reverse postorder, 28, 61
right locations, 120
round-robin iterative algorithm, 4, 19, 79, 90, 163–164
safe assignment, 75
safety of data flow analysis, 11
scalar variables, 23
separable, 102
separable frameworks, 159
shape analysis, 157
side effects, 256
 flow insensitive, 263
 flow sensitive, 261
side effects analysis, 20, 244, 248, 259, 290
simplicial, 222
spanning tree, 60
spilling algorithm, 220
SSA
 construction, 189
 construction algorithm
 φ placement, 196
 dominance frontier, 194
 renaming, 199
 correctness of construction, 198–206
 destruction, 207
 destruction algorithm, 214
 destruction through register allocation, 216
 coalescing, 223
 coloring algorithm, 224
register copies, 226
dominance property, 206
form program, 186
stabilization of descending chain, 67
static analysis, 14
strict dominance, 191
strictly stronger than, 64
strictly weaker than, 64
strong update, 120
stronger than, 64
strongly live variables analysis, 157
successor, 24
summarization, 7, 12
 of liveness, 6
summary flow function, 236, 238, 290
 construction, 278–282
 data flow equations, 278–279
 data flow equations, using, 283
 enumeration, 285–290
 reduction, 275–278
 side effects of procedure calls, 259–265
supergraph, 18, 235, 293
swap problem, 208, 215
symmetric segment, 295
termination of call string construction, 305
traditional register allocator, 216–217
transfer, 101
transfer of access path, 6
transformed SSA, 207
transitive, 64
traversal
 conforming, 174
 non-conforming, 174
tree edges, 61
TSSA, see transformed SSA
undecidability of MOP assignment, 83
unidirectional data flow frameworks, 73, 159
unrestricted context, 302
upper bound, 66
upwards exposed, 25
use of the variable, 25
use-def chains, 30, 185
valid transformation to SSA form, 190
variable
 dead, 29
 faint, 103
 live, 26
 possibly uninitialized, 31, 106
 strongly live, 157
variable definition, 206
variable use, 206
variable versions, 186
very busy expressions analysis, 37
weak update, 120
weaker than, 64
whole program analysis, 253, 274, 290
 context insensitive, 253
 context sensitive, 254
work list iterative algorithm, 165–172, 312, 319, 320, 322