
Introduction to Program Analysis

Uday Khedker

(www.cse.iitb.ac.in/̃ uday)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

Dec 2019



Part 1

About These Slides



FP School, PCI Pune Intro to PA: About These Slides 1/57

Copyright

These slides constitute the lecture notes for CS618 Program Analysis course at
IIT Bombay and have been made available as teaching material accompanying
the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare.
Data Flow Analysis: Theory and Practice. CRC Press (Taylor and Francis
Group). 2009.

(Indian edition published by Ane Books in 2013)

Apart from the above book, some slides are based on the material from the
following books

• A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley. 2006.

• M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland Inc. 1977.

These slides are being made available under GNU FDL v1.2 or later purely for
academic or research use.

Dec 2019 IIT Bombay

http://www.cse.iitb.ac.in/~uday/dfaBook-web


FP School, PCI Pune Intro to PA: Outline 2/57

Motivating the Need of Program Analysis

• Some representative examples

◦ Classical optimizations performed by compilers
◦ Optimizing heap memory usage

• Program Model

• Soundness and Precision

Dec 2019 IIT Bombay



Part 2

Classical Optimizations



FP School, PCI Pune Intro to PA: Classical Optimizations 3/57

Examples of Optimising Transformations (ALSU, 2006)

A C program and its optimizations

void quicksort(int m, int n)
{ int i, j, v, x;

if (n <= m) return;

i = m-1; j = n; v = a[n]; /⋆ v is the pivot ⋆/
while(1) /⋆ Move values smaller ⋆/
{ do i = i + 1; while (a[i] < v); /⋆ than v to the left of ⋆/

do j = j - 1; while (a[j] > v); /⋆ the split point (sp) ⋆/
if (i >= j) break; /⋆ and other values ⋆/
x = a[i]; a[i] = a[j]; a[j] = x; /⋆ to the right of sp ⋆/

} /⋆ of the split point ⋆/
x = a[i]; a[i] = a[n]; a[n] = x; /⋆ Move the pivot to sp ⋆/

quicksort(m,i); quicksort(i+1,n); /⋆ sort the partitions to ⋆/
} /⋆ the left of sp and to the right of sp independently ⋆/

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 4/57

Intermediate Code

For the boxed source code

1. i = m - 1
2. j = n

3. t1 = 4 ∗ n
4. t6 = a[t1]

5. v = t6
6. i = i + 1
7. t2 = 4 ∗ i
8. t3 = a[t2]

9. if t3 < v goto 6

10. j = j - 1

11. t4 = 4 ∗ j

12. t5 = a[t4]

13. if t5 > v goto 10

14. if i >= j goto 25

15. t2 = 4 ∗ i
16. t3 = a[t2]

17. x = t3
18. t2 = 4 ∗ i
19. t4 = 4 ∗ j

20. t5 = a[t4]

21. a[t2] = t5

22. t4 = 4 ∗ j

23. a[t4] = x

24. goto 6

25. t2 = 4 ∗ i
26. t3 = a[t2]

27. x = t3
28. t2 = 4 ∗ i
29. t1 = 4 ∗ n
30. t6 = a[t1]

31. a[t2] = t6

32. t1 = 4 ∗ n
33. a[t1] = x

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 5/57

Intermediate Code : Observations

• Multiple computations of expressions

• Simple control flow (conditional/unconditional goto)

Yet undecipherable!

• Array address calculations

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 6/57

Understanding Control Flow

• Identify maximal sequences of linear control flow

⇒ Basic Blocks

• No transfer into or out of basic blocks except the first and last statements

Control transfer into the block : only at the first statement.

Control transfer out of the block : only at the last statement.

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 7/57

Intermediate Code with Basic Blocks

1. i = m - 1
2. j = n

3. t1 = 4 ∗ n
4. t6 = a[t1]

5. v = t6

6. i = i + 1
7. t2 = 4 ∗ i
8. t3 = a[t2]

9. if t3 < v goto 6

10. j = j - 1

11. t4 = 4 ∗ j

12. t5 = a[t4]

13. if t5 > v goto 10

14. if i >= j goto 25

15. t2 = 4 ∗ i
16. t3 = a[t2]

17. x = t3
18. t2 = 4 ∗ i
19. t4 = 4 ∗ j

20. t5 = a[t4]

21. a[t2] = t5

22. t4 = 4 ∗ j

23. a[t4] = x

24. goto 6

25. t2 = 4 ∗ i
26. t3 = a[t2]

27. x = t3
28. t2 = 4 ∗ i
29. t1 = 4 ∗ n
30. t6 = a[t1]

31. a[t2] = t6

32. t1 = 4 ∗ n
33. a[t1] = x

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 8/57

Program Flow Graph

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 9/57

Program Flow Graph : Observations

Nesting Level Basic Blocks No. of Statements

0 B1, B6 14
1 B4, B5 11
2 B2, B3 8

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 10/57

Local Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 10/57

Local Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 11/57

Global Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 12/57

Global Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6

B2
i = i + 1
t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B3

B4

B5 t2 = 4 ∗ i

. . .

. . .

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 12/57

Global Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6

B2
i = i + 1
t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B3

B4

B5 t2 = 4 ∗ i

. . .

. . .

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 13/57

Global Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 13/57

Global Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 14/57

Other Classical Optimizations

• Copy propagation

• Strength Reduction

• Elimination of Induction Variables

• Dead Code Elimination

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 15/57

Copy Propagation and Dead Code Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 15/57

Copy Propagation and Dead Code Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = t3

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = t3

B6

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 15/57

Copy Propagation and Dead Code Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = t3

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = t3

B6

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 16/57

Strength Reduction and Induction Variable Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = t3

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = t3

B6

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 16/57

Strength Reduction and Induction Variable Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6
t2 = 4 ∗ i
t4 = 4 ∗ j

B1

B2

i = i + 1
t2 = t2 + 4
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = t4 − 4
t5 = a[t4]

if t5 > v goto B3

B3

B4 if t2>=t4 goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = t3

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = t3

B6

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 17/57

Final Intermediate Code

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6
t2 = 4 ∗ i
t4 = 4 ∗ j

B1

B2

i = i + 1
t2 = t2 + 4
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = t4 − 4
t5 = a[t4]

if t5 > v goto B3

B3

B4 if t2 >= t4 goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]

x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = t3

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]

x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6

t1 = 4 ∗ n
a[t1] = t3

B6

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 18/57

Optimized Program Flow Graph

Nesting Level No. of Statements
Original Optimized

0 14 10
1 11 4
2 8 6

If we assume that a loop is executed 10 times, then the number of
computations saved at run time

= (14− 10) + (11− 4)× 10 + (8 − 6)× 102 = 4 + 70 + 200 = 274

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 19/57

Observations

• Optimizations are transformations based on some information.

• Systematic analysis required for deriving the information.

• We have looked at data flow optimizations.

Many control flow optimizations can also be performed.

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Classical Optimizations 20/57

Categories of Optimizing Transformations and Analyses

Code Motion
Redundancy Elimination
Control flow Optimization

Machine Independent
Flow Analysis

(Data + Control)

Loop Transformations Machine Dependent
Dependence Analysis
(Data + Control)

Instruction Scheduling
Register Allocation

Peephole Optimization
Machine Dependent

Several
Independent
Techniques

Vectorization
Parallelization Machine Dependent

Dependence Analysis
(Data + Control)

Dec 2019 IIT Bombay



Part 3

Optimizing Heap Memory Usage



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 21/57

Standard Memory Architecture of Programs

Code

Static Data

Stack

Heap

Heap allocation provides the flexibility of

• Variable Sizes. Data structures can grow or
shrink as desired at runtime.

(Not bound to the declarations in program.)

• Variable Lifetimes. Data structures can be
created and destroyed as desired at runtime.

(Not bound to the activations of procedures.)

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 22/57

Managing Heap Memory

Decision 1: When to Allocate?

• Explicit. Specified in the programs. (eg. Imperative/OO languages)

• Implicit. Decided by the language processors. (eg. Declarative Languages)

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 22/57

Managing Heap Memory

Decision 1: When to Allocate?

• Explicit. Specified in the programs. (eg. Imperative/OO languages)

• Implicit. Decided by the language processors. (eg. Declarative Languages)

Decision 2: When to Deallocate?

• Explicit. Manual Memory Management (eg. C/C++)

• Implicit. Automatic Memory Management aka Garbage Collection (eg.

Java/Declarative languages)

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 23/57

State of Art in Manual Deallocation

• Memory leaks

10% to 20% of last development effort goes in plugging leaks

• Tool assisted manual plugging

Purify, Electric Fence, RootCause, GlowCode, yakTest, Leak Tracer, BDW

Garbage Collector, mtrace, memwatch, dmalloc etc.

• All leak detectors

◦ are dynamic (and hence specific to execution instances)
◦ generate massive reports to be perused by programmers
◦ usually do not locate last use but only allocation escaping a call

⇒ At which program point should a leak be “plugged”?

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 24/57

Garbage Collection ≡ Automatic Deallocation

• Retain active data structure.

Deallocate inactive data structure.

• What is an Active Data Structure?

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 24/57

Garbage Collection ≡ Automatic Deallocation

• Retain active data structure.

Deallocate inactive data structure.

• What is an Active Data Structure?

If an object does not have an access path, (i.e. it is unreachable)

then its memory can be reclaimed.

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 24/57

Garbage Collection ≡ Automatic Deallocation

• Retain active data structure.

Deallocate inactive data structure.

• What is an Active Data Structure?

If an object does not have an access path, (i.e. it is unreachable)

then its memory can be reclaimed.

What if an object has an access path, but is not accessed after the
given program point?

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 25/57

What is Garbage?

1 w = x // x points to ma

2 if (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

We use Java style statements for convenience

Read “x.lptr” as “x→lptr

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o
Garbage

Garbage

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 25/57

What is Garbage?

1 w = x // x points to ma

2 if (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

The blue nodes will be
used after statement 4

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o
Garbage

Garbage

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

(x.data < MAX)

False

a

i

m

x

y

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 25/57

What is Garbage?

1 w = x // x points to ma

2 if (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

The blue nodes will be
used after statement 4

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o
Garbage

Garbage

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

(x.data < MAX)

True

b

f
hx

y

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 25/57

What is Garbage?

1 w = x // x points to ma

2 if (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

The blue nodes will be
used after statement 4

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o
Garbage

Garbage

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

a

i

m

b

f
hx

y

All white nodes are unused and should be considered garbage

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 26/57

Is Reachable Same as Live?

From www.memorymanagement.org/glossary

live (also known as alive, active) : Memory(2) or an object is live if the
program will read from it in future. The term is often used more broadly to
mean reachable.

It is not possible, in general, for garbage collectors to determine exactly which
objects are still live. Instead, they use some approximation to detect objects
that are provably dead, such as those that are not reachable.

Similar terms: reachable. Opposites: dead. See also: undead.

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 27/57

Is Reachable Same as Live?

• Not really. Most of us know that.

Even with the state of art of garbage collection, 24% to 76% unused
memory remains unclaimed

• The state of art compilers, virtual machines, garbage collectors cannot
distinguish between the two

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 28/57

Reachability and Liveness

Some unused memory remains unclaimed be-
cause garbage collectors collect unreachable
memory and not unused (i.e. non-live) memory

For the heap memory on the right

Allocated White + Blue + Brown nodes
Reachable White + Blue nodes

Live Blue nodes
HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

a

i

m

b

f
h

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 28/57

Reachability and Liveness

Some unused memory remains unclaimed be-
cause garbage collectors collect unreachable
memory and not unused (i.e. non-live) memory

For the heap memory on the right

Allocated White + Blue + Brown nodes
Reachable White + Blue nodes

Live Blue nodes
HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

a

i

m

b

f
h

Live ⊆ Reachable ⊆ Allocated

Hence, ¬Live ⊇ ¬Reachable ⊇ ¬Allocated

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 29/57

Cedar Mesa Folk Wisdom

Make the unused memory unreachable by setting references to NULL. (GC
FAQ: http://www.iecc.com/gclist/GC-harder.html)

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o
lptr

rp
tr

lptr

rptr

lptr

rptr

lptr

lptr

rptr

lptr

rptr

lptr

a

i

m

b

f
h

X

X

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 29/57

Cedar Mesa Folk Wisdom

Make the unused memory unreachable by setting references to NULL. (GC
FAQ: http://www.iecc.com/gclist/GC-harder.html)

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o
lptr

rp
tr

lptr

rptr

lptr

rptr

lptr

lptr

rptr

lptr

rptr

lptr

a

i

m

b

f
h

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 30/57

Cedar Mesa Folk Wisdom

• Most promising, simplest to understand, yet the hardest to implement.

• Which references should be set to NULL?

◦ Most approaches rely on feedback from profiling.
◦ No systematic and clean solution.

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 31/57

Distinguishing Between Reachable and Live

The state of art

• Eliminating objects reachable from root variables which are not live.

• Implemented in current Sun JVMs.

• Uses liveness data flow analysis of root variables (stack data).

• What about liveness of heap data?

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 32/57

Liveness of Stack Data: An Informal Introduction (1)

1 w = x // x points to ma

2 while (x.data < MAX)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data

8 return z.sum

We use Java style statements for convenience

Read “x.lptr” as “x→lptr

if changed to while

Stack

Heap

w x y z

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 32/57

Liveness of Stack Data: An Informal Introduction (1)

1 w = x // x points to ma

2 while (x.data < MAX)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data

8 return z.sum Stack

Heap

w x y z

What is the
meaning of the use

of data?

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 32/57

Liveness of Stack Data: An Informal Introduction (1)

1 w = x // x points to ma

2 while (x.data < MAX)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data

8 return z.sum Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

What is the
meaning of the use

of data?

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 32/57

Liveness of Stack Data: An Informal Introduction (1)

1 w = x // x points to ma

2 while (x.data < MAX)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data

8 return z.sum Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

What is the
meaning of the use

of data?

Accessing the location

and reading its contents

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 32/57

Liveness of Stack Data: An Informal Introduction (1)

1 w = x // x points to ma

2 while (x.data < MAX)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data

8 return z.sum Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

Accessing the location

and reading its contents

Reading x (Stack data)

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 32/57

Liveness of Stack Data: An Informal Introduction (1)

1 w = x // x points to ma

2 while (x.data < MAX)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data

8 return z.sum Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

Accessing the location

and reading its contents

Reading x.data (Heap data)

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 32/57

Liveness of Stack Data: An Informal Introduction (1)

1 w = x // x points to ma

2 while (x.data < MAX)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data

8 return z.sum Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

Accessing the location

and reading its contents

Reading x.rptr (Heap data)

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 33/57

Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum
w x y z

No variable is used beyond this
program point

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 33/57

Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

Live

Dead

Current value of z is used beyond
this program point

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 33/57

Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

Live

Dead

Current values of x, y, and z are
used beyond this program point

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 33/57

Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

• Current values of x, y, and z are
used beyond this program point

• The value of y is different before
and after the assignment to y

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 33/57

Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

• The current values of x and y are
used beyond this program point

• The current value of z is not used
beyond this program point

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 33/57

Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

• The current values of x is used
beyond this program point

• Current values of y and z are not
used beyond this program point

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 33/57

Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

• Nothing is known as of now

• Some information will be available
in the next iteration point

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 33/57

Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

• Current value of x is used beyond
this program point

• However its value is different before
and after the assignment

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 33/57

Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

• Current value of x is used beyond
this program point

• There are two control flow paths
beyond this program point

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 33/57

Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

Current value of x is used be-
yond this program point

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 33/57

Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

Current value of x is used be-
yond this program point

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 33/57

Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum
w x y z

w x y z

Live

Dead

w x y z

Live

Dead

w x y z

w x y z

w x y z
w x y z

w x y z
w x y z

w x y z

w x y z

End of iteration #1

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 33/57

Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum
w x y z

w x y z

Live

Dead

w x y z

Live

Dead

w x y z

w x y z

w x y z

w x y z
w x y z

w x y z

w x y z

w x y z

End of iteration #2

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 34/57

Applying Cedar Mesa Folk Wisdom to Heap Data

Liveness Analysis of Heap Data

If the while loop is not executed even once.

1 w = x // x points to ma

2 while (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

a

i

m

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 34/57

Applying Cedar Mesa Folk Wisdom to Heap Data

Liveness Analysis of Heap Data

If the while loop is executed once.

1 w = x // x points to ma

2 while (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

b

f
h

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 34/57

Applying Cedar Mesa Folk Wisdom to Heap Data

Liveness Analysis of Heap Data

If the while loop is executed twice.

1 w = x // x points to ma

2 while (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

c
e

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 35/57

The Moral of the Story

• Mappings between access expressions and l-values keep changing

• This is a rule for heap data

For stack and static data, it is an exception!

• Static analysis of programs has made significant progress for stack and
static data.

What about heap data?

◦ Given two access expressions at a program point, do they have the
same l-value?

◦ Given the same access expression at two program points, does it have
the same l-value?

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 36/57

Our Solution (1)

y = z = null
1 w = x

w = null
2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum
z = null

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 37/57

Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 37/57

Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 37/57

Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 37/57

Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 37/57

Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 37/57

Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 37/57

Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 37/57

Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is executed once

a

i

m

b

f
hlptr

rp
tr

rpt
r

lptr rptr

lptr

rptr

lptr

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 37/57

Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is executed twice

a

i

m

b

f
h

c
e

lptr

rp
tr

rpt
r

lptr rptr

lptr

rpt
r

rptr

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 38/57

Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

Node i is live but link a → i is nullified

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 38/57

Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

• The memory address that x holds when the
execution reaches a given program point is
not an invariant of program execution

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 38/57

Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

• The memory address that x holds when the
execution reaches a given program point is
not an invariant of program execution

• Whether we dereference lptr out of x or
rptr out of x at a given program point is an
invariant of program execution

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 38/57

Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

• The memory address that x holds when the
execution reaches a given program point is
not an invariant of program execution

• Whether we dereference lptr out of x or
rptr out of x at a given program point is an
invariant of program execution

• A static analysis can discover only

invariants

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 38/57

Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

New access expressions are created.
Can they cause exceptions?
• The memory address that x holds when the

execution reaches a given program point is
not an invariant of program execution

• Whether we dereference lptr out of x or
rptr out of x at a given program point is an
invariant of program execution

• A static analysis can discover only some

invariants

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 39/57

BTW, What is Static Analysis of Heap?

Static Dynamic

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 39/57

BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 39/57

BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory
Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 39/57

BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Summary
Heap Data

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory
Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

?

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 39/57

BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Summary
Heap Data

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory
Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

?

Profiling

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 39/57

BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Summary
Heap Data

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory
Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

?

Static
Analysis

Dec 2019 IIT Bombay



Part 4

What is Program Analysis?



FP School, PCI Pune Intro to PA: What is Program Analysis? 40/57

What is Program Analysis?

Discovering information about a given program

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 40/57

What is Program Analysis?

Discovering information about a given program

• Representing the dynamic behaviour of the program

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 40/57

What is Program Analysis?

Discovering information about a given program

• Representing the dynamic behaviour of the program

• Most often obtained without executing the program

◦ Static analysis Vs. Dynamic Analysis
◦ Example of loop tiling for parallelization

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 40/57

What is Program Analysis?

Discovering information about a given program

• Representing the dynamic behaviour of the program

• Most often obtained without executing the program

◦ Static analysis Vs. Dynamic Analysis
◦ Example of loop tiling for parallelization

• Must represent all execution instances of the program

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 41/57

Why is it Useful?

• Code optimization

◦ Improving time, space, energy, or power efficiency
◦ Compilation for special architecture (eg. multi-core)

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 41/57

Why is it Useful?

• Code optimization

◦ Improving time, space, energy, or power efficiency
◦ Compilation for special architecture (eg. multi-core)

• Verification and validation

Giving guarantees such as: The program will

◦ never divide a number by zero
◦ never dereference a NULL pointer
◦ close all opened files, all opened socket connections
◦ not allow buffer overflow security violation

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 41/57

Why is it Useful?

• Code optimization

◦ Improving time, space, energy, or power efficiency
◦ Compilation for special architecture (eg. multi-core)

• Verification and validation

Giving guarantees such as: The program will

◦ never divide a number by zero
◦ never dereference a NULL pointer
◦ close all opened files, all opened socket connections
◦ not allow buffer overflow security violation

• Software engineering

◦ Maintenance, bug fixes, enhancements, migration
◦ Example: Y2K problem

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 41/57

Why is it Useful?

• Code optimization

◦ Improving time, space, energy, or power efficiency
◦ Compilation for special architecture (eg. multi-core)

• Verification and validation

Giving guarantees such as: The program will

◦ never divide a number by zero
◦ never dereference a NULL pointer
◦ close all opened files, all opened socket connections
◦ not allow buffer overflow security violation

• Software engineering

◦ Maintenance, bug fixes, enhancements, migration
◦ Example: Y2K problem

• Reverse engineering

To understand the program

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 42/57

Important Requirements of Static Analysis

• We discuss the following important requirements

◦ Soundness
◦ Precision
◦ Efficiency
◦ Scalability

• Soundness and precision are described more formally later in module 2

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 43/57

Inexactness of Static Analysis Results

• Static analysis predicts run time behaviour of programs

• Static analysis is undecidable

there cannot exist an algorithm that can compute
exact result for every program

• Possible reasons of undecidability

◦ Values of variables not known
◦ Branch outcomes not known
◦ Infinitely many paths in the presence of loops or recursion
◦ Infinitely many values

• Static analysis predictions may not match the actual run time behaviour

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 44/57

Possible Errors in Static Analysis Predictions

• Some predictions may be erroneous because the predicted behaviour

◦ may not be found in some execution instances, or
◦ may not be found in any execution instance

(Error ≡ Mismatch between run time behaviour and predicted behaviour)

• Some of these errors may be harmless whereas some may be harmful

• Some of these errors may be unavoidable (recall undecidability)

• How do we characterize, identify, and minimize, these errors?

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 45/57

Examples of Harmless and Harmful Errors in Predictions (1)

• For security check at an airport,

◦ Frisking a person more than others on mere suspicion may be an
error but it is harmless from the view point of security

◦ Not frisking a person much even after a suspicion is an error and it
could be a harmful from the view point of security

• For stopping smuggling of contraband goods

◦ Not checking every passenger may be erroneous but is harmless
◦ Checking every passenger may be right but is harmful

• Weather prediction during rainy season

◦ A doubtful prediction of “heavy to very heavy rain” is harmless
◦ Not predicting “heavy to very heavy rain” could be harmful

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 46/57

Examples of Harmless and Harmful Errors in Predictions (2)

• For medical diagnosis

◦ Subjecting a person to further investigations may be erroneous but in
most cases it is harmless

◦ Avoiding further investigations even after some suspicions could be
harmful

• For establishing justice in criminal courts

◦ Starting with the assumption that an accused is innocent may be
erroneous but is harmless

◦ Starting with the assumption that an accused is guilty may be
harmful

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 47/57

Harmless Errors and Harmful Errors in Static Analysis

• For a static analysis,

◦ Harmless errors can be tolerated but should be minimized Precision

◦ Harmful errors MUST be avoided Soundness

• Some behaviours concluded by a static analysis are

◦ uncertain and cannot be guaranteed to occur at run time,
(This uncertainty is harmless and hence is conservative)

◦ certain and can be guaranteed to occur at run time
(The absence of this certainty for these behaviours may be harmful)

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 48/57

Examples of Conservative and Definite Information

• Liveness is uncertain (also called conservative)

If a variable is declared live at a program point, it may or may not be used
beyond that program point at run time

(Why is it harmless if the variable is not actually used?)

• Deadness (i.e. absence of liveness) is certain (also called definite)

If a variable is declared to be dead at a program point, it is guaranteed to
be not used beyond that program point at run time

(Why is it harmful if the variable is not actually dead?)

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 49/57

Efficiency and Scalability

• Efficiency

◦ How well are resources used
◦ Measured in terms of work done per unit resource
◦ Resources: time, memory, power, energy, processors, network etc.
◦ Example: Strike rate of a batter in cricket

• Scalability

◦ How large inputs can be handled
◦ Measured in terms of size of the input
◦ Example: Total runs scored by a batter in cricket

• Efficiency and scalability are orthogonal

◦ Efficiency does not necessarily imply scalability
◦ Scalability does not necessarily imply efficiency

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 50/57

Efficiency and Scalability May be Unrelated

Examples of the combinations of efficiency and scalability from sorting
algorithms

Efficient Inefficient

Scalable Merge Sort Selection Sort

Non-scalable Quicksort Bubble Sort

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 51/57

Practical Static Analysis

• The goodness of a static analysis lies in minimizing imprecision without
compromising on soundness

Additional expectations: Efficiency and scalability

• Some applications (e.g. debugging) do not need to be sound

Ex: Traffic police catching people for traffic violations

• Some features of a programming language may not be covered

(e.g. “eval” in Javascript, aliasing of array indices, effect of libraries)

• Accept a “soundy” analysis [Livshits et. al. CACM 2015]

OR

Tolerate imprecision for complete soundness

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 52/57

The Goal of Program Analysis

Constructing suitable abstractions for
sound & precise modelling of
runtime behaviour of programs
efficiently

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: What is Program Analysis? 52/57

The Goal of Program Analysis

Constructing suitable abstractions for
sound & precise modelling of
runtime behaviour of programs
efficiently

Abstract, Bounded, Single Instance Concrete, Unbounded, Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Summary Information

MemoryMemoryMemoryMemoryMemoryMemory

MemoryMemoryMemoryMemoryMemoryMemory
MemoryMemoryMemoryMemoryMemoryMemory

MemoryMemoryMemoryMemoryMemoryMemory

Static
Analysis

Dec 2019 IIT Bombay



Part 5

An Overview of the Tutorial



FP School, PCI Pune Intro to PA: An Overview of the Tutorial 53/57

Topics Covered

• Live variables analysis (including strong liveness analysis)

• Constant propagation

• Pointer Analysis

We start with the basics but will reach research frontiers and discuss research
being done at IIT Bombay

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: An Overview of the Tutorial 54/57

Pedagogy

Interleaving of interactive

• Lectures

• Demos

• Paper exercises

• Computer exercises using SPAN tool

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: An Overview of the Tutorial 55/57

Questions ??

Dec 2019 IIT Bombay



Part 6

Program Model



FP School, PCI Pune Intro to PA: Program Model 56/57

Program Representation

• Three address code statements

◦ Result, operator, operand1, operand2
◦ Assignments, expressions, conditional jumps
◦ Initially only scalars

Pointers, structures, arrays modelled later

• Control flow graph representation

◦ Nodes represent maximal groups of statements
devoid of any control transfer except fall through

◦ Edges represent control transfers across basic blocks
◦ A unique Start node and a unique End node

Every node reachable from Start, and End reachable from every node

• Initially only intraprocedural programs

Function calls brought in later

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Program Model 57/57

An Example Program

int main()

{ int a, b, c, n;

a = 4;

b = 2;

c = 3;

n = c*2;

while (a <= n)

{

a = a+1;

}

if (a < 12)

a = a+b+c;

return a;

}

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Program Model 57/57

An Example Program

int main()

{ int a, b, c, n;

a = 4;

b = 2;

c = 3;

n = c*2;

while (a <= n)

{

a = a+1;

}

if (a < 12)

a = a+b+c;

return a;

}

1. a = 4

2. b = 2

3. c = 3

4. n = c*2

5. if (!(a≤n))

goto 8

6. a = a + 1

7. goto 5

8. if (!(a<12))

goto 11

9. t1 = a+b

10. a = t1+c

11. return a

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Program Model 57/57

An Example Program

int main()

{ int a, b, c, n;

a = 4;

b = 2;

c = 3;

n = c*2;

while (a <= n)

{

a = a+1;

}

if (a < 12)

a = a+b+c;

return a;

}

1. a = 4

2. b = 2

3. c = 3

4. n = c*2

5. if (!(a≤n))

goto 8

6. a = a + 1

7. goto 5

8. if (!(a<12))

goto 11

9. t1 = a+b

10. a = t1+c

11. return a

a = 4
b = 2
c = 3
n = c*2

n1

if(!(a≤n)) n2

a = a + 1 n3

if(!(a<12)) n4

t1 = a+b
a = t1+c n5

return a n6

F

F

T

T

Dec 2019 IIT Bombay


	About These Slides
	Outline
	Classical Optimizations
	Optimizing Heap Memory Usage
	What is Program Analysis?
	An Overview of the Tutorial
	Program Model

