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Copyright

These slides constitute the lecture notes for CS618 Program Analysis course at
IIT Bombay and have been made available as teaching material accompanying
the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare.
Data Flow Analysis: Theory and Practice. CRC Press (Taylor and Francis
Group). 2009.

(Indian edition published by Ane Books in 2013)

Apart from the above book, some slides are based on the material from the
following books

• A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley. 2006.

• M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland Inc. 1977.

These slides are being made available under GNU FDL v1.2 or later purely for
academic or research use.
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Motivating the Need of Program Analysis

• Some representative examples

◦ Classical optimizations performed by compilers
◦ Optimizing heap memory usage

• Program Model

• Soundness and Precision
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Examples of Optimising Transformations (ALSU, 2006)

A C program and its optimizations

void quicksort(int m, int n)
{ int i, j, v, x;

if (n <= m) return;

i = m-1; j = n; v = a[n]; /⋆ v is the pivot ⋆/
while(1) /⋆ Move values smaller ⋆/
{ do i = i + 1; while (a[i] < v); /⋆ than v to the left of ⋆/

do j = j - 1; while (a[j] > v); /⋆ the split point (sp) ⋆/
if (i >= j) break; /⋆ and other values ⋆/
x = a[i]; a[i] = a[j]; a[j] = x; /⋆ to the right of sp ⋆/

} /⋆ of the split point ⋆/
x = a[i]; a[i] = a[n]; a[n] = x; /⋆ Move the pivot to sp ⋆/

quicksort(m,i); quicksort(i+1,n); /⋆ sort the partitions to ⋆/
} /⋆ the left of sp and to the right of sp independently ⋆/
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Intermediate Code

For the boxed source code

1. i = m - 1
2. j = n

3. t1 = 4 ∗ n
4. t6 = a[t1]

5. v = t6
6. i = i + 1
7. t2 = 4 ∗ i
8. t3 = a[t2]

9. if t3 < v goto 6

10. j = j - 1

11. t4 = 4 ∗ j

12. t5 = a[t4]

13. if t5 > v goto 10

14. if i >= j goto 25

15. t2 = 4 ∗ i
16. t3 = a[t2]

17. x = t3
18. t2 = 4 ∗ i
19. t4 = 4 ∗ j

20. t5 = a[t4]

21. a[t2] = t5

22. t4 = 4 ∗ j

23. a[t4] = x

24. goto 6

25. t2 = 4 ∗ i
26. t3 = a[t2]

27. x = t3
28. t2 = 4 ∗ i
29. t1 = 4 ∗ n
30. t6 = a[t1]

31. a[t2] = t6

32. t1 = 4 ∗ n
33. a[t1] = x
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Intermediate Code : Observations

• Multiple computations of expressions

• Simple control flow (conditional/unconditional goto)

Yet undecipherable!

• Array address calculations
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Understanding Control Flow

• Identify maximal sequences of linear control flow

⇒ Basic Blocks

• No transfer into or out of basic blocks except the first and last statements

Control transfer into the block : only at the first statement.

Control transfer out of the block : only at the last statement.
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Intermediate Code with Basic Blocks

1. i = m - 1
2. j = n

3. t1 = 4 ∗ n
4. t6 = a[t1]

5. v = t6

6. i = i + 1
7. t2 = 4 ∗ i
8. t3 = a[t2]

9. if t3 < v goto 6

10. j = j - 1

11. t4 = 4 ∗ j

12. t5 = a[t4]

13. if t5 > v goto 10

14. if i >= j goto 25

15. t2 = 4 ∗ i
16. t3 = a[t2]

17. x = t3
18. t2 = 4 ∗ i
19. t4 = 4 ∗ j

20. t5 = a[t4]

21. a[t2] = t5

22. t4 = 4 ∗ j

23. a[t4] = x

24. goto 6

25. t2 = 4 ∗ i
26. t3 = a[t2]

27. x = t3
28. t2 = 4 ∗ i
29. t1 = 4 ∗ n
30. t6 = a[t1]

31. a[t2] = t6

32. t1 = 4 ∗ n
33. a[t1] = x
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Program Flow Graph

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6
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Program Flow Graph : Observations

Nesting Level Basic Blocks No. of Statements

0 B1, B6 14
1 B4, B5 11
2 B2, B3 8
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Local Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6
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Local Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6
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Global Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6
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Global Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6

B2
i = i + 1
t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B3

B4

B5 t2 = 4 ∗ i

. . .

. . .
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Global Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6

B2
i = i + 1
t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B3

B4

B5 t2 = 4 ∗ i

. . .

. . .
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Global Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6
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Global Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6
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Other Classical Optimizations

• Copy propagation

• Strength Reduction

• Elimination of Induction Variables

• Dead Code Elimination
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Copy Propagation and Dead Code Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6
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Copy Propagation and Dead Code Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = t3

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = t3

B6
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Copy Propagation and Dead Code Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = t3

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = t3

B6
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Strength Reduction and Induction Variable Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = t3

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = t3

B6
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Strength Reduction and Induction Variable Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6
t2 = 4 ∗ i
t4 = 4 ∗ j

B1

B2

i = i + 1
t2 = t2 + 4
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = t4 − 4
t5 = a[t4]

if t5 > v goto B3

B3

B4 if t2>=t4 goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = t3

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = t3

B6
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Final Intermediate Code

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6
t2 = 4 ∗ i
t4 = 4 ∗ j

B1

B2

i = i + 1
t2 = t2 + 4
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = t4 − 4
t5 = a[t4]

if t5 > v goto B3

B3

B4 if t2 >= t4 goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]

x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = t3

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]

x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6

t1 = 4 ∗ n
a[t1] = t3

B6
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Optimized Program Flow Graph

Nesting Level No. of Statements
Original Optimized

0 14 10
1 11 4
2 8 6

If we assume that a loop is executed 10 times, then the number of
computations saved at run time

= (14− 10) + (11− 4)× 10 + (8 − 6)× 102 = 4 + 70 + 200 = 274
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Observations

• Optimizations are transformations based on some information.

• Systematic analysis required for deriving the information.

• We have looked at data flow optimizations.

Many control flow optimizations can also be performed.
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Categories of Optimizing Transformations and Analyses

Code Motion
Redundancy Elimination
Control flow Optimization

Machine Independent
Flow Analysis

(Data + Control)

Loop Transformations Machine Dependent
Dependence Analysis
(Data + Control)

Instruction Scheduling
Register Allocation

Peephole Optimization
Machine Dependent

Several
Independent
Techniques

Vectorization
Parallelization Machine Dependent

Dependence Analysis
(Data + Control)
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Standard Memory Architecture of Programs

Code

Static Data

Stack

Heap

Heap allocation provides the flexibility of

• Variable Sizes. Data structures can grow or
shrink as desired at runtime.

(Not bound to the declarations in program.)

• Variable Lifetimes. Data structures can be
created and destroyed as desired at runtime.

(Not bound to the activations of procedures.)
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Managing Heap Memory

Decision 1: When to Allocate?

• Explicit. Specified in the programs. (eg. Imperative/OO languages)

• Implicit. Decided by the language processors. (eg. Declarative Languages)
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Managing Heap Memory

Decision 1: When to Allocate?

• Explicit. Specified in the programs. (eg. Imperative/OO languages)

• Implicit. Decided by the language processors. (eg. Declarative Languages)

Decision 2: When to Deallocate?

• Explicit. Manual Memory Management (eg. C/C++)

• Implicit. Automatic Memory Management aka Garbage Collection (eg.

Java/Declarative languages)
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State of Art in Manual Deallocation

• Memory leaks

10% to 20% of last development effort goes in plugging leaks

• Tool assisted manual plugging

Purify, Electric Fence, RootCause, GlowCode, yakTest, Leak Tracer, BDW

Garbage Collector, mtrace, memwatch, dmalloc etc.

• All leak detectors

◦ are dynamic (and hence specific to execution instances)
◦ generate massive reports to be perused by programmers
◦ usually do not locate last use but only allocation escaping a call

⇒ At which program point should a leak be “plugged”?
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Garbage Collection ≡ Automatic Deallocation

• Retain active data structure.

Deallocate inactive data structure.

• What is an Active Data Structure?
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Garbage Collection ≡ Automatic Deallocation

• Retain active data structure.

Deallocate inactive data structure.

• What is an Active Data Structure?

If an object does not have an access path, (i.e. it is unreachable)

then its memory can be reclaimed.
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Garbage Collection ≡ Automatic Deallocation

• Retain active data structure.

Deallocate inactive data structure.

• What is an Active Data Structure?

If an object does not have an access path, (i.e. it is unreachable)

then its memory can be reclaimed.

What if an object has an access path, but is not accessed after the
given program point?
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What is Garbage?

1 w = x // x points to ma

2 if (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

We use Java style statements for convenience

Read “x.lptr” as “x→lptr
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What is Garbage?

1 w = x // x points to ma

2 if (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

The blue nodes will be
used after statement 4
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What is Garbage?

1 w = x // x points to ma

2 if (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

The blue nodes will be
used after statement 4
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What is Garbage?

1 w = x // x points to ma

2 if (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

The blue nodes will be
used after statement 4
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All white nodes are unused and should be considered garbage
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Is Reachable Same as Live?

From www.memorymanagement.org/glossary

live (also known as alive, active) : Memory(2) or an object is live if the
program will read from it in future. The term is often used more broadly to
mean reachable.

It is not possible, in general, for garbage collectors to determine exactly which
objects are still live. Instead, they use some approximation to detect objects
that are provably dead, such as those that are not reachable.

Similar terms: reachable. Opposites: dead. See also: undead.
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Is Reachable Same as Live?

• Not really. Most of us know that.

Even with the state of art of garbage collection, 24% to 76% unused
memory remains unclaimed

• The state of art compilers, virtual machines, garbage collectors cannot
distinguish between the two
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Reachability and Liveness

Some unused memory remains unclaimed be-
cause garbage collectors collect unreachable
memory and not unused (i.e. non-live) memory

For the heap memory on the right

Allocated White + Blue + Brown nodes
Reachable White + Blue nodes

Live Blue nodes
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Reachability and Liveness

Some unused memory remains unclaimed be-
cause garbage collectors collect unreachable
memory and not unused (i.e. non-live) memory

For the heap memory on the right

Allocated White + Blue + Brown nodes
Reachable White + Blue nodes

Live Blue nodes
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Live ⊆ Reachable ⊆ Allocated

Hence, ¬Live ⊇ ¬Reachable ⊇ ¬Allocated
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Cedar Mesa Folk Wisdom

Make the unused memory unreachable by setting references to NULL. (GC
FAQ: http://www.iecc.com/gclist/GC-harder.html)
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Cedar Mesa Folk Wisdom

Make the unused memory unreachable by setting references to NULL. (GC
FAQ: http://www.iecc.com/gclist/GC-harder.html)
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Cedar Mesa Folk Wisdom

• Most promising, simplest to understand, yet the hardest to implement.

• Which references should be set to NULL?

◦ Most approaches rely on feedback from profiling.
◦ No systematic and clean solution.
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Distinguishing Between Reachable and Live

The state of art

• Eliminating objects reachable from root variables which are not live.

• Implemented in current Sun JVMs.

• Uses liveness data flow analysis of root variables (stack data).

• What about liveness of heap data?
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Liveness of Stack Data: An Informal Introduction (1)

1 w = x // x points to ma

2 while (x.data < MAX)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data

8 return z.sum

We use Java style statements for convenience

Read “x.lptr” as “x→lptr

if changed to while

Stack

Heap

w x y z
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Liveness of Stack Data: An Informal Introduction (1)

1 w = x // x points to ma

2 while (x.data < MAX)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data

8 return z.sum Stack

Heap

w x y z

What is the
meaning of the use

of data?
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Liveness of Stack Data: An Informal Introduction (1)

1 w = x // x points to ma

2 while (x.data < MAX)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data

8 return z.sum Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

What is the
meaning of the use

of data?
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Liveness of Stack Data: An Informal Introduction (1)

1 w = x // x points to ma

2 while (x.data < MAX)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data

8 return z.sum Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

What is the
meaning of the use

of data?

Accessing the location

and reading its contents
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Liveness of Stack Data: An Informal Introduction (1)

1 w = x // x points to ma

2 while (x.data < MAX)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data

8 return z.sum Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

Accessing the location

and reading its contents

Reading x (Stack data)
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Liveness of Stack Data: An Informal Introduction (1)

1 w = x // x points to ma

2 while (x.data < MAX)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data

8 return z.sum Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

Accessing the location

and reading its contents

Reading x.data (Heap data)
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Liveness of Stack Data: An Informal Introduction (1)

1 w = x // x points to ma

2 while (x.data < MAX)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data

8 return z.sum Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

Accessing the location

and reading its contents

Reading x.rptr (Heap data)
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Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum
w x y z

No variable is used beyond this
program point
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Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

Live

Dead

Current value of z is used beyond
this program point
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Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

Live

Dead

Current values of x, y, and z are
used beyond this program point
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Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

• Current values of x, y, and z are
used beyond this program point

• The value of y is different before
and after the assignment to y
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Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

• The current values of x and y are
used beyond this program point

• The current value of z is not used
beyond this program point
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Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

• The current values of x is used
beyond this program point

• Current values of y and z are not
used beyond this program point
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Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

• Nothing is known as of now

• Some information will be available
in the next iteration point
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Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

• Current value of x is used beyond
this program point

• However its value is different before
and after the assignment
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Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

• Current value of x is used beyond
this program point

• There are two control flow paths
beyond this program point
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Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

Current value of x is used be-
yond this program point
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Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum

w x y z

Current value of x is used be-
yond this program point
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Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum
w x y z

w x y z

Live

Dead

w x y z

Live

Dead

w x y z

w x y z

w x y z
w x y z

w x y z
w x y z

w x y z

w x y z

End of iteration #1
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Liveness of Stack Data: An Informal Introduction (2)

w = x

while (x.data < MAX)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

return z.sum
w x y z

w x y z

Live

Dead

w x y z

Live

Dead

w x y z

w x y z

w x y z

w x y z
w x y z

w x y z

w x y z

w x y z

End of iteration #2

Dec 2019 IIT Bombay



FP School, PCI Pune Intro to PA: Optimizing Heap Memory Usage 34/57

Applying Cedar Mesa Folk Wisdom to Heap Data

Liveness Analysis of Heap Data

If the while loop is not executed even once.

1 w = x // x points to ma

2 while (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum
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Applying Cedar Mesa Folk Wisdom to Heap Data

Liveness Analysis of Heap Data

If the while loop is executed once.

1 w = x // x points to ma

2 while (x.data < MAX)
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Applying Cedar Mesa Folk Wisdom to Heap Data

Liveness Analysis of Heap Data

If the while loop is executed twice.

1 w = x // x points to ma

2 while (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum
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The Moral of the Story

• Mappings between access expressions and l-values keep changing

• This is a rule for heap data

For stack and static data, it is an exception!

• Static analysis of programs has made significant progress for stack and
static data.

What about heap data?

◦ Given two access expressions at a program point, do they have the
same l-value?

◦ Given the same access expression at two program points, does it have
the same l-value?
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Our Solution (1)

y = z = null
1 w = x

w = null
2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum
z = null
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Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack
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Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null
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New access expressions are created.
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Discovering information about a given program
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What is Program Analysis?

Discovering information about a given program

• Representing the dynamic behaviour of the program

• Most often obtained without executing the program

◦ Static analysis Vs. Dynamic Analysis
◦ Example of loop tiling for parallelization

• Must represent all execution instances of the program
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Why is it Useful?

• Code optimization

◦ Improving time, space, energy, or power efficiency
◦ Compilation for special architecture (eg. multi-core)
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Why is it Useful?

• Code optimization

◦ Improving time, space, energy, or power efficiency
◦ Compilation for special architecture (eg. multi-core)

• Verification and validation

Giving guarantees such as: The program will

◦ never divide a number by zero
◦ never dereference a NULL pointer
◦ close all opened files, all opened socket connections
◦ not allow buffer overflow security violation

• Software engineering

◦ Maintenance, bug fixes, enhancements, migration
◦ Example: Y2K problem

• Reverse engineering

To understand the program
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Important Requirements of Static Analysis

• We discuss the following important requirements

◦ Soundness
◦ Precision
◦ Efficiency
◦ Scalability

• Soundness and precision are described more formally later in module 2
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Inexactness of Static Analysis Results

• Static analysis predicts run time behaviour of programs

• Static analysis is undecidable

there cannot exist an algorithm that can compute
exact result for every program

• Possible reasons of undecidability

◦ Values of variables not known
◦ Branch outcomes not known
◦ Infinitely many paths in the presence of loops or recursion
◦ Infinitely many values

• Static analysis predictions may not match the actual run time behaviour
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Possible Errors in Static Analysis Predictions

• Some predictions may be erroneous because the predicted behaviour

◦ may not be found in some execution instances, or
◦ may not be found in any execution instance

(Error ≡ Mismatch between run time behaviour and predicted behaviour)

• Some of these errors may be harmless whereas some may be harmful

• Some of these errors may be unavoidable (recall undecidability)

• How do we characterize, identify, and minimize, these errors?
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Examples of Harmless and Harmful Errors in Predictions (1)

• For security check at an airport,

◦ Frisking a person more than others on mere suspicion may be an
error but it is harmless from the view point of security

◦ Not frisking a person much even after a suspicion is an error and it
could be a harmful from the view point of security

• For stopping smuggling of contraband goods

◦ Not checking every passenger may be erroneous but is harmless
◦ Checking every passenger may be right but is harmful

• Weather prediction during rainy season

◦ A doubtful prediction of “heavy to very heavy rain” is harmless
◦ Not predicting “heavy to very heavy rain” could be harmful
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Examples of Harmless and Harmful Errors in Predictions (2)

• For medical diagnosis

◦ Subjecting a person to further investigations may be erroneous but in
most cases it is harmless

◦ Avoiding further investigations even after some suspicions could be
harmful

• For establishing justice in criminal courts

◦ Starting with the assumption that an accused is innocent may be
erroneous but is harmless

◦ Starting with the assumption that an accused is guilty may be
harmful
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Harmless Errors and Harmful Errors in Static Analysis

• For a static analysis,

◦ Harmless errors can be tolerated but should be minimized Precision

◦ Harmful errors MUST be avoided Soundness

• Some behaviours concluded by a static analysis are

◦ uncertain and cannot be guaranteed to occur at run time,
(This uncertainty is harmless and hence is conservative)

◦ certain and can be guaranteed to occur at run time
(The absence of this certainty for these behaviours may be harmful)
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Examples of Conservative and Definite Information

• Liveness is uncertain (also called conservative)

If a variable is declared live at a program point, it may or may not be used
beyond that program point at run time

(Why is it harmless if the variable is not actually used?)

• Deadness (i.e. absence of liveness) is certain (also called definite)

If a variable is declared to be dead at a program point, it is guaranteed to
be not used beyond that program point at run time

(Why is it harmful if the variable is not actually dead?)
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Efficiency and Scalability

• Efficiency

◦ How well are resources used
◦ Measured in terms of work done per unit resource
◦ Resources: time, memory, power, energy, processors, network etc.
◦ Example: Strike rate of a batter in cricket

• Scalability

◦ How large inputs can be handled
◦ Measured in terms of size of the input
◦ Example: Total runs scored by a batter in cricket

• Efficiency and scalability are orthogonal

◦ Efficiency does not necessarily imply scalability
◦ Scalability does not necessarily imply efficiency
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Efficiency and Scalability May be Unrelated

Examples of the combinations of efficiency and scalability from sorting
algorithms

Efficient Inefficient

Scalable Merge Sort Selection Sort

Non-scalable Quicksort Bubble Sort
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Practical Static Analysis

• The goodness of a static analysis lies in minimizing imprecision without
compromising on soundness

Additional expectations: Efficiency and scalability

• Some applications (e.g. debugging) do not need to be sound

Ex: Traffic police catching people for traffic violations

• Some features of a programming language may not be covered

(e.g. “eval” in Javascript, aliasing of array indices, effect of libraries)

• Accept a “soundy” analysis [Livshits et. al. CACM 2015]

OR

Tolerate imprecision for complete soundness
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The Goal of Program Analysis

Constructing suitable abstractions for
sound & precise modelling of
runtime behaviour of programs
efficiently
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Static
Analysis
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Topics Covered

• Live variables analysis (including strong liveness analysis)

• Constant propagation

• Pointer Analysis

We start with the basics but will reach research frontiers and discuss research
being done at IIT Bombay
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Pedagogy

Interleaving of interactive

• Lectures

• Demos

• Paper exercises

• Computer exercises using SPAN tool
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Questions ??
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Program Representation

• Three address code statements

◦ Result, operator, operand1, operand2
◦ Assignments, expressions, conditional jumps
◦ Initially only scalars

Pointers, structures, arrays modelled later

• Control flow graph representation

◦ Nodes represent maximal groups of statements
devoid of any control transfer except fall through

◦ Edges represent control transfers across basic blocks
◦ A unique Start node and a unique End node

Every node reachable from Start, and End reachable from every node

• Initially only intraprocedural programs

Function calls brought in later
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An Example Program

int main()

{ int a, b, c, n;

a = 4;

b = 2;

c = 3;

n = c*2;

while (a <= n)

{

a = a+1;

}

if (a < 12)

a = a+b+c;

return a;

}
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An Example Program

int main()

{ int a, b, c, n;

a = 4;

b = 2;

c = 3;

n = c*2;

while (a <= n)

{

a = a+1;

}

if (a < 12)

a = a+b+c;

return a;

}

1. a = 4

2. b = 2

3. c = 3

4. n = c*2

5. if (!(a≤n))

goto 8

6. a = a + 1

7. goto 5

8. if (!(a<12))

goto 11

9. t1 = a+b

10. a = t1+c

11. return a
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An Example Program

int main()

{ int a, b, c, n;

a = 4;

b = 2;

c = 3;

n = c*2;

while (a <= n)

{

a = a+1;

}

if (a < 12)

a = a+b+c;

return a;

}

1. a = 4

2. b = 2

3. c = 3

4. n = c*2

5. if (!(a≤n))

goto 8

6. a = a + 1

7. goto 5

8. if (!(a<12))

goto 11

9. t1 = a+b

10. a = t1+c

11. return a

a = 4
b = 2
c = 3
n = c*2

n1

if(!(a≤n)) n2

a = a + 1 n3

if(!(a<12)) n4

t1 = a+b
a = t1+c n5

return a n6

F

F

T

T
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