Pointer Analysis

Uday Khedker
（www．cse．iitb．ac．in／～uday）

Department of Computer Science and Engineering， Indian Institute of Technology，Bombay

Dec 2019

Copyright

These slides constitute the lecture notes for CS618 Program Analysis course at IIT Bombay and have been made available as teaching material accompanying the book:

- Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow Analysis: Theory and Practice. CRC Press (Taylor and Francis Group). 2009.
(Indian edition published by Ane Books in 2013)
Apart from the above book, some slides are based on the material from the following book
- M. S. Hecht. Flow Analysis of Computer Programs. Elsevier North-Holland Inc. 1977.

These slides are being made available under GNU FDL v1.2 or later purely for academic or research use.

An Outline of Pointer Analysis Coverage

- The larger perspective
- IR for Points-to Analysis
- Flow-Insensitive Points-to Analysis
- Flow-Sensitive Points-to Analysis

Code Optimization In Presence of Pointers (1)

- Is $p \rightarrow$ data live at the exit of line 5 ? Can we delete line 5 ?

Code Optimization In Presence of Pointers (1)

- Is $p \rightarrow$ data live at the exit of line 5? Can we delete line 5 ?

Code Optimization In Presence of Pointers (1)

Program	Memory graph at statement 5
1. $\mathrm{q}=\mathrm{p}$; 2. do \{ 3. $\quad \mathrm{q}=\mathrm{q} \rightarrow$ next; 4. $\}$ while (...) 5. $\mathrm{p} \rightarrow \mathrm{data}=\mathrm{r} 1$; 6. print $(q \rightarrow d a t a)$; 7. $\mathrm{p} \rightarrow \mathrm{data}=\mathrm{r} 2$;	

- Is $p \rightarrow$ data live at the exit of line 5? Can we delete line 5 ?
- We cannot delete line 5 if p and q can be possibly aliased (while loop or do-while loop with a circular list)

Code Optimization In Presence of Pointers (1)

Program	Memory graph at statement 5
1. $\mathrm{q}=\mathrm{p}$; 2. do \{ 3. $\quad \mathrm{q}=\mathrm{q} \rightarrow$ next; 4. $\}$ while (...) 5. $p \rightarrow d a t a=r 1$; 6. print $(q \rightarrow d a t a)$; 7. $\mathrm{p} \rightarrow$ data $=\mathrm{r} 2$;	

- Is $p \rightarrow$ data live at the exit of line 5? Can we delete line 5 ?
- We cannot delete line 5 if p and q can be possibly aliased (while loop or do-while loop with a circular list)
- We can delete line 5 if p and q are definitely not aliased (do-while loop without a circular list)

Code Optimization In Presence of Pointers (2)

Original Program

Code Optimization In Presence of Pointers (2)

Original Program Constant Propagation without aliasing

Code Optimization In Presence of Pointers (2)

Original Program
Constant Propagation without aliasing

Constant Propagation with aliasing

Code Optimization In Presence of Pointers (3)

Code Optimization In Presence of Pointers (3)

h

Code Optimization In Presence of Pointers (3)

Code Optimization In Presence of Pointers (3)

Pointer Analysis

- Answers the following questions for indirect accesses:
- Which data is read?

$$
\begin{array}{r}
x=* y \\
* x=y \\
p() \text { or } x \rightarrow f()
\end{array}
$$

- Which data is written?
- Which procedure is called?
- Enables precise data flow and interprocedural control flow analysis
- Computationally intensive analyses are ineffective when supplied with imprecise points-to information, (e.g., model checking, interprocedural analyses)
- Needs to scale to large programs

The World of Pointer Analysis

Pointer Analysis Musings

- Pointer analysis collects information about indirect accesses in programs
- Enables precise data analysis
- Enable precise interprocedural control flow analysis
- Needs to scale to large programs
- Pointer Analysis Musings
- Which Pointer Analysis should I Use?

Michael Hind and Anthony Pioli. ISTAA 2000

- Pointer Analysis: Haven't we solved this problem yet ?

Michael Hind PASTE 2001

Pointer Analysis Musings

- Pointer analysis collects information about indirect accesses in programs
- Enables precise data analysis
- Enable precise interprocedural control flow analysis
- Needs to scale to large programs
- Pointer Analysis Musings
- Which Pointer Analysis should I Use?

Michael Hind and Anthony Pioli. ISTAA 2000

- Pointer Analysis: Haven't we solved this problem yet ?

Michael Hind PASTE 2001

Pointer Analysis Musings

- Pointer analysis collects information about indirect accesses in programs
- Enables precise data analysis
- Enable precise interprocedural control flow analysis
- Needs to scale to large programs
- Pointer Analysis Musings
- Which Pointer Analysis should I Use?

Michael Hind and Anthony Pioli. ISTAA 2000

- Pointer Analysis: Haven't we solved this problem yet ?

Michael Hind PASTE 2001
${ }^{\circ} 2090$ ()

The Mathematics of Pointer Analysis

In the most general situation

- Alias analysis is undecidable.

Landi-Ryder [POPL 1991], Landi [LOPLAS 1992], Ramalingam [TOPLAS 1994]

- Flow-insensitive alias analysis is NP-hard Horwitz [TOPLAS 1997]
- Points-to analysis is undecidable Chakravarty [POPL 2003]

The Mathematics of Pointer Analysis

In the most general situation

- Alias analysis is undecidable.

Landi-Ryder [POPL 1991], Landi [LOPLAS 1992], Ramalingam [TOPLAS 1994]

- Flow-insensitive alias analysis is NP-hard Horwitz [TOPLAS 1997]
- Points-to analysis is undecidable Chakravarty [POPL 2003]

Adjust your expectations suitably to avoid disappointments!

The Engineering of Pointer Analysis

So what should we expect?

The Engineering of Pointer Analysis

So what should we expect? To quote Hind [PASTE 2001]

The Engineering of Pointer Analysis

So what should we expect? To quote Hind [PASTE 2001]

- "Fortunately many approximations exist"

The Engineering of Pointer Analysis

So what should we expect? To quote Hind [PASTE 2001]

- "Fortunately many approximations exist"
- "Unfortunately too many approximations exist!"

The Engineering of Pointer Analysis

So what should we expect? To quote Hind [PASTE 2001]

- "Fortunately many approximations exist"
- "Unfortunately too many approximations exist!"

Engineering of pointer analysis is much more dominant than its science

Pointer Analysis: Precision versus Scalability

- Ideally, an analysis should be
- Sound
- Precise
- Scalable

Pointer Analysis: Precision versus Scalability

- Ideally, an analysis should be
- Sound
- Precise
- Scalable

Common belief

- Precision and scalability cannot be achieved together for exhaustive analysis

Common Practice

- Trade off precision using approximations

Pointer Analysis: Precision versus Scalability

- Ideally, an analysis should be
- Sound
- Precise
- Scalable
- The main factors enhancing the precision of an exhaustive (as against a demand-driven) analysis are
- Flow sensitivity
- Context sensitivity
- Field sensitivity
- Exhaustive. Compute all possible information
- Demand-Driven. Compute only the requested information (by a client)

Different from incremental analysis which also computes only some information but it updates the earlier computed solution

Flow Sensitivity Vs. Flow Insensitivity

Flow Sensitive

Flow Insensitive

Flow Sensitivity Vs. Flow Insensitivity

Flow Sensitive

Flow Insensitive

Assumption: Statements can be executed in any order

Flow Sensitivity Vs. Flow Insensitivity

Flow Sensitive

Flow Insensitive

Flow Sensitivity Vs. Flow Insensitivity

Flow-insensitive analysis is less precise than a flow-sensitive analysis

Start $_{p} \quad x=\& a ;$

Context Sensitivity Vs. Context Insensitivity

Context Sensitivity Vs. Context Insensitivity

Context-insensitive analysis is less precise than a context-sensitive analysis

Field Sensitivity Vs. Field Insensitivity

Program	Field-sensitive points-to graph	Field-insensitive points-to graph
$x \rightarrow f=\& y$ $x \rightarrow g=\& z$ $w=x \rightarrow f$		

Field Sensitivity Vs. Field Insensitivity

Program	Field-sensitive points-to graph	Field-insensitive points-to graph
$x \rightarrow f=\& y$ $x \rightarrow g=\& z$ $w=x \rightarrow f$		

Field Sensitivity Vs. Field Insensitivity

Program	Field-sensitive points-to graph	Field-insensitive points-to graph
$x \rightarrow f=\& y$ $x \rightarrow g=\& z$ $w=x \rightarrow f$		

Field-insensitive analysis is less precise
than a field-sensitive analysis

Pointer Analysis: An Engineer's Landscape

Pointer analysis is a fertile ground for research because the factors that enhance the precision of points-to analysis (flow, context, and field sensitivity), hamper scalability

Pointer Analysis: An Engineer's Landscape

Pointer analysis is a fertile ground for research because the factors that enhance the precision of points-to analysis (flow, context, and field sensitivity), hamper scalability

Pointer Analysis: An Engineer's Landscape

Pointer analysis is a fertile ground for research because the factors that enhance the precision of points-to analysis (flow, context, and field sensitivity), hamper scalability

Pointer Analysis: An Engineer's Landscape

Pointer analysis is a fertile ground for research because the factors that enhance the precision of points-to analysis (flow, context, and field sensitivity), hamper scalability

Pointer Analysis: An Engineer's Landscape

Pointer analysis is a fertile ground for research because the factors that enhance the precision of points-to analysis (flow, context, and field sensitivity), hamper scalability

Pointer Analysis: An Engineer's Landscape

Pointer analysis is a fertile ground for research because the factors that enhance the precision of points-to analysis (flow, context, and field sensitivity), hamper scalability

An Outline of Pointer Analysis Coverage

- The larger perspective
- IR for Points-to Analysis Next Topic
- Flow-Insensitive Points-to Analysis
- Flow-Sensitive Points-to Analysis

Pointer Statements

Pointer assignments	Use pointers in expressions	
Addr $\quad x=\& y$		
Copy $\quad x=y$		
Load	$x=* y$	Use x
	$x=y \rightarrow n$	
Store	$* x=y$	
	$x \rightarrow n=y$	

- Field accesses such as x.n are treated as new compile time names
- Containment of $x . n$ within x is recorded in terms of offsets
- Heap will be introduced later

What Does a Use Statement Represent?

Consider the declaration: int a, *x, **y;

Source	3-Address representation	Our modelling
$* x=a$	$* x=a$	Use x
$a=* x$	$a=* x$	Use x
if $(x==$ NULL $)$	if $(x==$ NULL $)$	Use x
if $(* x==5)$	if $(* x==5)$	Use x
if $(* y==$ NULL $)$	$t=* y$ if $(t==$ NULL $)$	$t=* y$ Use t
$(* * y=a)$	$t=* y$ $t=a$	$t=* y$
Use t		

We retain only the pointers

What Does a Use Statement Represent?

Consider the declaration:

```
struct s {
    struct s *n;
        int m;
} a, b, *x;
```

Source	3-Address representation	Our modelling
a.n $=\& b$	a.n $n \& b$	a.n $n \& b$
if $(x \rightarrow n==N U L L)$	$t=x \rightarrow n$ if $(t==N U L L)$	$t=x \rightarrow n$ Use t
if $($ a.n $==N U L L)$	$t=$ a.n if $(t==N U L L)$	$t=a . n$ Use t

We retain only the pointers

An Outline of Pointer Analysis Coverage

- The larger perspective
- IR for Points-to Analysis
- Flow-Insensitive Points-to Analysis Next Topic
- Flow-Sensitive Points-to Analysis
- Flow-insensitive pointer analysis
- Inclusion based: Andersen's approach
- Equality based: Steensgaard's approach
- Flow-sensitive pointer analysis
- May points-to analysis
- Must points-to analysis

Flow Insensitivity in Data Flow Analysis

- Assumption: Statements can be executed in any order.
- Instead of computing point-specific data flow information, summary data flow information is computed.

The summary information is required to be a safe approximation of point-specific information for each point.

The control flow graph is a complete graph (except for the Start and End nodes)

Examples of Flow-Insensitive Analyses

Examples of Flow-Insensitive Analyses

- Type checking/inferencing (What about interpreted languages?)

Examples of Flow-Insensitive Analyses

- Type checking/inferencing (What about interpreted languages?)
- Address taken analysis

Which variables have their addresses taken?

Examples of Flow-Insensitive Analyses

- Type checking/inferencing (What about interpreted languages?)
- Address taken analysis

Which variables have their addresses taken?

- Side effects analysis

Does a procedure modify a global variable? Reference Parameter?

Notation for Andersen's and Steensgaard's Points-to Analysis

- $P_{x . f}$ denotes the set of pointees of pointer variable x along field f
- $P_{x . *}$ (concisely written as P_{x}) denotes the set of pointees of x
- If x is a structure, P_{x} is the set of pointees of all fields of x
- Unify (x, y) unifies locations x and y
- x and y are treated as equivalent locations
- the pointees of the unified locations are also unified transitively
- UnifyPTS (x, y) unifies the pointees of x and y
- x and y themselves are not unified
- We use x.f if the pointees of field f of x are to be unified

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
$x=\& y$	$P_{x} \supseteq\{y\}$	$P_{x} \supseteq\{y\}$ $\forall z \in P_{x} . U n i f y ~$
$x=y$	$P_{x} \supseteq P_{y}$	UnifyPTS (x, y)
$x=* y$	$P_{x} \supseteq P_{z} . \forall z \in P_{y}$	$\forall z \in P_{y}$. UnifyPTS (x, z)
$* x=y$	$\forall z \in P_{x} . P_{z} \supseteq P_{y}$	$\forall z \in P_{x} . U n i f y P T S(y, z)$

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
$x=\& y$	$P_{x} \supseteq\{y\}$	$P_{x} \supseteq\{y\}$ $\forall z \in P_{x} . U n i f y ~$
$x=y)$		

Points-to graph before the assignment

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
$x=\& y$	$P_{x} \supseteq\{y\}$	$P_{x} \supseteq\{y\}$ $\forall z \in P_{x}$.
$x=y$	$P_{x} \supseteq P_{y}$	Unify (y, z)
$x=* y$	$P_{x} \supseteq P_{z} . \forall z \in P_{y}$	$\forall z \in P_{y}$. Unify PTS (x, y)
$* x=y$	$\forall z \in P_{x} . P_{z} \supseteq P_{y}$	$\forall z \in P_{x} . U n i f y P T S(y, z)$

Points-to graph before the assignment

Andersen's graph after the assignment

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
$x=\& y$	$P_{x} \supseteq\{y\}$	$\left(\begin{array}{l}P_{x} \supseteq\{y\} \\ \forall z \in P_{x} . U n i f y ~ \\ \\ \hline \hline x, z)\end{array}\right.$
$x=y$	$P_{x} \supseteq P_{y}$	UnifyPTS (x, y)
$x=* y$	$P_{x} \supseteq P_{z} . \forall z \in P_{y}$	$\forall z \in P_{y}$. UnifyPTS (x, z)
$* x=y$	$\forall z \in P_{x} . P_{z} \supseteq P_{y}$	$\forall z \in P_{x}$. UnifyPTS (y, z)

Points-to graph before the assignment

Andersen's graph after the assignment

Steensgaard's graph after the assignment

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
$x=\& y$	$P_{x} \supseteq\{y\}$	$P_{x} \supseteq\{y\}$ $\forall z \in P_{x} . U n i f y ~$
$x, z)$		

Points-to graph before the assignment

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
$x=\& y$	$P_{x} \supseteq\{y\}$	$P_{x} \supseteq\{y\}$ $\forall z \in P_{x} . U n i f y ~$$(y, z)$
$x=y$	$P_{x} \supseteq P_{y}$	UnifyPTS (x, y)
$x=* y$	$P_{x} \supseteq P_{z} . \forall z \in P_{y}$	$\forall z \in P_{y}$. UnifyPTS (x, z)
$* x=y$	$\forall z \in P_{x} . P_{z} \supseteq P_{y}$	$\forall z \in P_{x} . U n i f y P T S(y, z)$

Points-to graph before the assignment

Andersen's graph after the assignment

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
$x=\& y$	$P_{x} \supseteq\{y\}$	$P_{x} \supseteq\{y\}$ $\forall z \in P_{x} . U n i f y ~$
$x, z)$		

Points-to graph before the assignment

Andersen's graph after the assignment

Steensgaard's graph after the assignment

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
$x=\& y$	$P_{x} \supseteq\{y\}$	$P_{x} \supseteq\{y\}$ $\forall z \in P_{x} . U n i f y ~$
$x=y$	$P_{x} \supseteq P_{y}$	UnifyPTS (x, y)
$x=* y$	$P_{x} \supseteq P_{z} . \forall z \in P_{y}$	$\forall z \in P_{y}$. UnifyPTS (x, z)
$* x=y$	$\forall z \in P_{x} . P_{z} \supseteq P_{y}$	$\forall z \in P_{x} . U n i f y P T S(y, z)$

Points-to graph before the assignment

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
$x=\& y$	$P_{x} \supseteq\{y\}$	$P_{x} \supseteq\{y\}$ $\forall z \in P_{x} . U n i f y ~$
$x=y$	$P_{x} \supseteq P_{y}$	UnifyPTS (x, y)
$x=* y$	$P_{x} \supseteq P_{z} . \forall z \in P_{y}$	$\forall z \in P_{y}$. UnifyPTS (x, z)
$* x=y$	$\forall z \in P_{x} . P_{z} \supseteq P_{y}$	$\forall z \in P_{x} . \operatorname{UnifyPTS}(y, z)$

Points-to graph before the assignment

Andersen's graph after the assignment

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
$x=\& y$	$P_{x} \supseteq\{y\}$	$P_{x} \supseteq\{y\}$ $\forall z \in P_{x} . U n i f y ~$
$x=y$	$P_{x} \supseteq P_{y}$	UnifyPTS (x, y)
$x=* y$	$P_{x} \supseteq P_{z} . \forall z \in P_{y}$	$\forall z \in P_{y}$. UnifyPTS (x, z)
$* x=y$	$\forall z \in P_{x} . P_{z} \supseteq P_{y}$	$\forall z \in P_{x} . U n i f y P T S(y, z)$

Points-to graph before the assignment

Andersen's graph after the assignment

Steensgaard's graph after the assignment

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
$x=\& y$	$P_{x} \supseteq\{y\}$	$P_{x} \supseteq\{y\}$ $\forall z \in P_{x} . U n i f y ~$
$x=y$	$P_{x} \supseteq P_{y}$	UnifyPTS (x, y)
$x=* y$	$P_{x} \supseteq P_{z} . \forall z \in P_{y}$	$\forall z \in P_{y}$. UnifyPTS (x, z)
$* x=y$	$\forall z \in P_{x} . P_{z} \supseteq P_{y}$	$\forall z \in P_{x} . U n i f y P T S(y, z)$

Points-to graph before the assignment

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
$x=\& y$	$P_{x} \supseteq\{y\}$	$P_{x} \supseteq\{y\}$ $\forall z \in P_{x} . U n i f y ~$
$x=y$	$P_{x} \supseteq P_{y}$	UnifyPTS (x, y)
$x=* y$	$P_{x} \supseteq P_{z} . \forall z \in P_{y}$	$\forall z \in P_{y}$. UnifyPTS (x, z)
$* x=y$	$\forall z \in P_{x} . P_{z} \supseteq P_{y}$	$\forall z \in P_{x} . U n i f y P T S(y, z)$

Points-to graph before the assignment

Andersen's graph after the assignment

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
$x=\& y$	$P_{x} \supseteq\{y\}$	$P_{x} \supseteq\{y\}$ $\forall z \in P_{x} . U n i f y ~$
$x=y$	$P_{x} \supseteq P_{y}$	UnifyPTS (x, y)
$x=* y$	$P_{x} \supseteq P_{z} . \forall z \in P_{y}$	$\forall z \in P_{y}$. UnifyPTS (x, z)
$* x=y$	$\forall z \in P_{x} . P_{z} \supseteq P_{y}$	$\forall z \in P_{x}$. UnifyPTS (y, z)

Points-to graph before the assignment

Andersen's graph after the assignment

Steensgaard's graph after the assignment

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
$x=\& y$	$P_{x} \supseteq\{y\}$	$P_{x} \supseteq\{y\}$ $\forall z \in P_{x} . U n i f y ~$
$x=y$	$P_{x} \supseteq P_{y}$	UnifyPTS (x, y)
$x=* y$	$P_{x} \supseteq P_{z} . \forall z \in P_{y}$	$\forall z \in P_{y}$. UnifyPTS (x, z)
$* x=y$	$\forall z \in P_{x} . P_{z} \supseteq P_{y}$	$\forall z \in P_{x} . U n i f y P T S(y, z)$

Points-to graph before the assignment

Example of Inclusion Based (aka Andersen's) Points-to Analysis

Program
$5 \quad x \rightarrow n=\& c$
$6 \quad x=\& d$

Type declarations

```
struct s {
    struct s *n;
    int m;
} *x, *y, a, b, c, d;
```

Example of Inclusion Based (aka Andersen's) Points-to Analysis

Example of Inclusion Based (aka Andersen's) Points-to

 Analysis| Program | | | Points-to Graph |
| :---: | :---: | :---: | :---: |
| | Node | Constraint | |
| | 1 | $P_{x} \supseteq\{a\}$ | |
| | 2 | $P_{y} \supseteq\{b\}$ | |
| $2{ }^{2} \mathrm{y}=$ \& | 3 | $\forall z \in P_{x}, P_{z, n} \supseteq P_{y}$ | |
| $3 \begin{aligned} & \downarrow \rightarrow n=y \\ & \end{aligned}$ | 4 | $P_{y} \supseteq P_{x}$ | |
| | 5 | $\forall z \in P_{x}, P_{z . n} \supseteq\{c\}$ | |
| $4 \quad y=x$ | 6 | $P_{x} \supseteq\{d\}$ | |
| \downarrow | | | |
| $5 \times \rightarrow n=\& c$ | | | |
| $6 \frac{\downarrow}{6}$ | | | |

Example of Inclusion Based (aka Andersen's) Points-to

 Analysis

Example of Inclusion Based (aka Andersen's) Points-to

 Analysis

Example of Inclusion Based (aka Andersen's) Points-to

 Analysis

Example of Inclusion Based (aka Andersen's) Points-to

 Analysis

Points-to Graph

Node	Constraint
1	$P_{x} \supseteq\{a\}$
2	$P_{y} \supseteq\{b\}$
3	$\forall z \in P_{x}, P_{z . n} \supseteq P_{y}$
4	$P_{y} \supseteq P_{x}$
5	$\forall z \in P_{x}, P_{z . n} \supseteq\{c\}$
6	$P_{x} \supseteq\{d\}$

Example of Inclusion Based (aka Andersen's) Points-to

 Analysis

Points-to Graph

Example of Inclusion Based (aka Andersen's) Points-to

 Analysis

Points-to Graph

Node	Constraint
1	$P_{x} \supseteq\{a\}$
2	$P_{y} \supseteq\{b\}$
3	$\forall z \in P_{x}, P_{z . n} \supseteq P_{y}$
4	$P_{y} \supseteq P_{x}$
5	$\forall z \in P_{x}, P_{z . n} \supseteq\{c\}$
6	$P_{x} \supseteq\{d\}$

- Since P_{x} has changed, constraints 3, 4, and 5 needs to be processed again
- Order of processing the sets influences the efficiency of this fixed point computation significantly
- A plethora of heuristics have been proposed

Example of Inclusion Based (aka Andersen's) Points-to

 Analysis

Points-to Graph

Node	Constraint
1	$P_{x} \supseteq\{a\}$
2	$P_{y} \supseteq\{b\}$
3	$\forall z \in P_{x}, P_{z . n} \supseteq P_{y}$
4	$P_{y} \supseteq P_{x}$
5	$\forall z \in P_{x}, P_{z . n} \supseteq\{c\}$
6	$P_{x} \supseteq\{d\}$

- Since P_{x} has changed, constraints 3, 4, and 5 needs to be processed again
- Order of processing the sets influences the efficiency of this fixed point computation significantly
- A plethora of heuristics have been proposed

Example of Inclusion Based (aka Andersen's) Points-to Analysis

Node	Constraint
1	$P_{x} \supseteq\{a\}$
2	$P_{y} \supseteq\{b\}$
3	$\forall z \in P_{x}, P_{z . n} \supseteq P_{y}$
4	$P_{y} \supseteq P_{x}$
5	$\forall z \in P_{x}, P_{z . n} \supseteq\{c\}$
6	$P_{x} \supseteq\{d\}$

Points-to Graph

- Actual graph after statement 6 (red box on the right) is much simpler with many edges killed

- y does not point to d any time in the execution

Example of Inclusion Based (aka Andersen's) Points-to Analysis

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Program

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Program	Node	Constraint
$1 \quad x=\& a$	1	$\begin{aligned} & P_{x} \supseteq\{a\} \\ & \forall z \in P_{x}, U n i f y(a, z) \end{aligned}$
$2 \begin{array}{cc} \downarrow & y=\& b \\ \hline \end{array}$	2	$\begin{aligned} & \hline P_{y} \supseteq\{b\} \\ & \forall z \in P_{y}, U n i f y(b, z) \\ & \hline \end{aligned}$
\downarrow	3	$\forall z \in P_{x}$, UnifyPTS (y, z.n)
$3 \times \rightarrow n=y$	4	UnifyPTS (x, y)
$4 \begin{gathered}\downarrow \\ y=x \\ y\end{gathered}$	5	$\begin{aligned} & \forall z \in P_{x}, P_{z . n} \supseteq\{c\} \\ & \forall w \in P_{z . n}, \text { Unify }(w, c) \\ & \hline \end{aligned}$
$5 \longdiv { \downarrow } \frac { \downarrow } { x \rightarrow n = \& c }$	6	$\begin{aligned} & P_{x} \supseteq\{d\} \\ & \forall z \in P_{x}, \operatorname{Unify}(d, z) \end{aligned}$

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Points-to Graph

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Points-to Graph

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Points-to Graph

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Program	Node	Constraint
$1 \quad x=\& a$	1	$\begin{array}{\|l\|} \hline P_{x} \supseteq\{a\} \\ \forall z \in P_{x}, \text { Unify }(a, z) \\ \hline \end{array}$
$2 \frac{\downarrow}{y=\& b}$	2	$\begin{aligned} & P_{y} \supseteq\{b\} \\ & \forall z \in P_{y}, \operatorname{Unify}(b, z) \\ & \hline \end{aligned}$
\downarrow	3	$\forall z \in P_{x}$, UnifyPTS $(y, z . n)$
$3 \quad x \rightarrow n=y$	4	UnifyPTS (x, y)
4	5	$\begin{aligned} & \forall z \in P_{x}, P_{z . n} \supseteq\{c\} \\ & \forall w \in P_{z . n}, \operatorname{Unify}(w, c) \\ & \hline \end{aligned}$
$5 \longdiv { \downarrow }$	6	$\begin{aligned} & P_{x} \supseteq\{d\} \\ & \forall z \in P_{x}, \operatorname{Unify}(d, z) \\ & \hline \end{aligned}$

Points-to Graph

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Program	Node	Constraint
$1 \quad x=\& a$	1	$\begin{array}{\|l\|} \hline P_{x} \supseteq\{a\} \\ \forall z \in P_{x}, \text { Unify }(a, z) \\ \hline \end{array}$
$2 \frac{\downarrow}{y=\& b}$	2	$\begin{aligned} & P_{y} \supseteq\{b\} \\ & \forall z \in P_{y}, \operatorname{Unify}(b, z) \\ & \hline \end{aligned}$
\downarrow	3	$\forall z \in P_{x}$, UnifyPTS $(y, z . n)$
$3 \quad x \rightarrow n=y$	4	UnifyPTS (x, y)
4	5	$\begin{aligned} & \forall z \in P_{x}, P_{z . n} \supseteq\{c\} \\ & \forall w \in P_{z . n}, \operatorname{Unify}(w, c) \\ & \hline \end{aligned}$
$5 \longdiv { \downarrow }$	6	$\begin{aligned} & P_{x} \supseteq\{d\} \\ & \forall z \in P_{x}, \operatorname{Unify}(d, z) \\ & \hline \end{aligned}$

Points-to Graph

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Points-to Graph

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Node	Constraint
1	$P_{x} \supseteq\{a\}$ $\forall z \in P_{x}, U n i f y$ 2
$P_{y} \supseteq\{b\}$ $\forall z \in P_{y}$, Unify (b, z)	
3	$\forall z \in P_{x}, \operatorname{UnifyPTS}(y, z . n)$
4	UnifyPTS(x, y)
5	$\forall z \in P_{x}, P_{z . n} \supseteq\{c\}$ $\forall w \in P_{z . n}, U n i f y(w, c)$
6	$P_{x} \supseteq\{d\}$ $\forall z \in P_{x}, U n i f y(d, z)$

Points-to Graph

No further change

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Red edges represent field n in the the full blown up graph. It has far more edges than in Andersen's graph

Far more efficient but far less precise

Node	Constraint
1	$P_{x} \supseteq\{a\}$ $\forall z \in P_{x}, U n i f y$ (a, z)
2	$P_{y} \supseteq\{b\}$ $\forall z \in P_{y}$, Unify (b, z)
3	$\forall z \in P_{x}, \operatorname{UnifyPTS}(y, z . n)$
4	UnifyPTS(x,y)
5	$\forall z \in P_{x}, P_{z . n} \supseteq\{c\}$ $\forall w \in P_{z . n}, U n i f y(w, c)$
6	$P_{x} \supseteq\{d\}$ $\forall z \in P_{x}, U n i f y(d, z)$

Points-to Graph

IIT Bombay

Comparing Equality and Inclusion Based Analyses

- Andersen's algorithm is cubic in number of pointers
- Steensgaard's algorithm is nearly linear in number of pointers

Comparing Equality and Inclusion Based Analyses

- Andersen's algorithm is cubic in number of pointers
- Steensgaard's algorithm is nearly linear in number of pointers
- How can it be more efficient by an orders of magnitude?

Efficiency of Equality Based Approach

Program	Andersen's approach	Steensgaard's approach
$a=\& b$		
$a=\& c$		
$b . n=\& d$		
b.n $=\& c$		

- Andersen's inclusion based wisdom:
- Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
- Merge multiple successors and maintain a single successor of any node

Efficiency of Equality Based Approach

Program	Andersen's approach	Steensgaard's approach
$\begin{aligned} & a=\& b \\ & a=\& c \\ & b . n=\& d \\ & b . n=\& c \end{aligned}$		

- Andersen's inclusion based wisdom:
- Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
- Merge multiple successors and maintain a single successor of any node

Efficiency of Equality Based Approach

Program	Andersen's approach	Steensgaard's approach
$\mathrm{a}=\& \mathrm{~b}$		
$\mathrm{a}=\& \mathrm{c}$		
$\mathrm{b} . \mathrm{n}=\& \mathrm{~d}$		
$\mathrm{~b} . \mathrm{n}=\& \mathrm{c}$		

- Andersen's inclusion based wisdom:
- Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
- Merge multiple successors and maintain a single successor of any node

Efficiency of Equality Based Approach

Program	Andersen's approach	Steensgaard's approach
$a=\& b$ $a=\& c$ $b . n=\& d$ $b . n=\& c$		

- Andersen's inclusion based wisdom:
- Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
- Merge multiple successors and maintain a single successor of any node

Efficiency of Equality Based Approach

Program	Andersen's approach	Steensgaard's approach
$\begin{aligned} & a=\& b \\ & a=\& c \\ & b . n=\& d \\ & b . n=\& c \end{aligned}$		

- Andersen's inclusion based wisdom:
- Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
- Merge multiple successors and maintain a single successor of any node

Efficiency of Equality Based Approach

Program	Andersen's approach	Steensgaard's approach
$\mathrm{a}=\& \mathrm{~b}$		
$\mathrm{a}=\& \mathrm{c}$		
$\mathrm{b} . \mathrm{n}=\& \mathrm{~d}$		
$\mathrm{~b} . \mathrm{n}=\& \mathrm{c}$		

- Andersen's inclusion based wisdom:
- Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
- Merge multiple successors and maintain a single successor of any node

Efficiency of Equality Based Approach

Program	Andersen's approach	Steensgaard's approach
$\mathrm{a}=\& \mathrm{~b}$		
$\mathrm{a}=\& \mathrm{c}$		
$\mathrm{b} . \mathrm{n}=\& \mathrm{~d}$		
$\mathrm{~b} . \mathrm{n}=\& \mathrm{c}$		

- Andersen's inclusion based wisdom:
- Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
- Merge multiple successors and maintain a single successor of any node

Efficiency of Equality Based Approach

Program	Andersen's approach	Steensgaard's approach
$\mathrm{a}=\& \mathrm{~b}$		
$\mathrm{a}=\& \mathrm{c}$		
$\mathrm{b} . \mathrm{n}=\& \mathrm{~d}$		
$\mathrm{~b} . \mathrm{n}=\& \mathrm{c}$		

- Andersen's inclusion based wisdom:
- Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
- Merge multiple successors and maintain a single successor of any node
- Since a larger number of pointers treated are alike and fewer distinctions are maintained, we get much smaller points-to graphs

Efficiency of Equality Based Approach

Program	Andersen's approach	Steensgaard's approach
$\mathrm{a}=\& \mathrm{~b}$		
$\mathrm{a}=\& \mathrm{c}$		
$\mathrm{b} . \mathrm{n}=\& \mathrm{~d}$		
$\mathrm{~b} . \mathrm{n}=\& \mathrm{c}$		

- Andersen's inclusion based wisdom:
- Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
- Merge multiple successors and maintain a single successor of any node
- Since a larger number of pointers treated are alike and fewer distinctions are maintained, we get much smaller points-to graphs
- Efficient Union-Find algorithms to merge intersecting subsets

Inclusion Based (aka Andersen's) Points-to Analysis: Example 2

```
struct s {
        struct s *f;
        int n;
} *x, *y, u, v;
```


Inclusion Based (aka Andersen's) Points-to Analysis: Example 2

struct $s\{$
\quad struct $s * f ;$
\quad int $\mathrm{n} ;$
$\} \quad * \mathrm{x}, \quad * \mathrm{y}, \mathrm{u}, \mathrm{v} ;$

- x "points-to" u

Constraints on
Points-to Sets

$$
\begin{aligned}
& P_{x} \supseteq\{u\} \\
& P_{y} \supseteq\{v\}
\end{aligned}
$$

Andersen's Points-to Graph

Inclusion Based (aka Andersen's) Points-to Analysis:

 Example 2```
struct s {
 struct s *f;
 int n;
} *x, *y, u, v;
```



- The $f$ field of pointees of $y$ should point to pointees of $x$ also
- The $f$ field of $v$ should point to $u$ also

Constraints on
Points-to Sets


Andersen's Points-to Graph

## Inclusion Based (aka Andersen's) Points-to Analysis:

 Example 2struct $\mathrm{s}\{$
$\quad$ struct $\mathrm{s} * \mathrm{f} ;$
$\quad$ int $\mathrm{n} ;$
$\} \quad * \mathrm{x}, * \mathrm{y}, \mathrm{u}, \mathrm{v} ;$


- The $f$ field of pointees of $y$ should point to pointees of $x$ also
- The $f$ field of $v$ should point to $u$ also

Constraints on
Points-to Sets


Andersen's Points-to Graph

## Inclusion Based (aka Andersen's) Points-to Analysis: Example 2

struct $s\{$
$\quad$ struct $s * f ;$
$\quad$ int $\mathrm{n} ;$
$\} \quad * x, * y, u, v ;$


- y should point to u also

Constraints on
Points-to Sets

$$
\begin{aligned}
P_{x} & \supseteq\{u\} \\
P_{y} & \supseteq\{v\} \\
\forall w \in P_{y}, P_{w . f} & \supseteq P_{x} \\
P_{y} & \supseteq\{u\}
\end{aligned}
$$

Andersen's Points-to Graph

## Inclusion Based (aka Andersen's) Points-to Analysis: Example 2

struct $s\{$
$\quad$ struct $s * f ;$
$\quad$ int $\mathrm{n} ;$
$\} \quad * x, * y, u, v ;$


- y should point to u also

Constraints on
Points-to Sets

$$
\begin{aligned}
P_{x} & \supseteq\{u\} \\
P_{y} & \supseteq\{v\} \\
\forall w \in P_{y}, P_{w . f} & \supseteq P_{x} \\
P_{y} & \supseteq\{u\}
\end{aligned}
$$

Andersen's Points-to Graph

## Inclusion Based (aka Andersen's) Points-to Analysis: Example 2



Andersen's Points-to Graph


## Inclusion Based (aka Andersen's) Points-to Analysis:

 Example 2

Andersen's Points-to Graph

Constraints on
Points-to Sets

$$
\begin{aligned}
P_{x} & \supseteq\{u\} \\
P_{y} & \supseteq\{v\} \\
\forall w \in P_{y}, P_{w \cdot f} & \supseteq P_{x} \\
P_{y} & \supseteq\{u\}
\end{aligned}
$$

## Inclusion Based (aka Andersen's) Points-to Analysis: Example 2

```
struct s {
 struct s *f;
 int n;
} *x, *y, u, v;
```



Andersen's Points-to Graph

## Equality Based (aka Steensgaard's) Points-to Analysis:

 Example 2

## Equality Based (aka Steensgaard's) Points-to Analysis:

 Example 2

## Equality Based (aka Steensgaard's) Points-to Analysis:

 Example 2

Effective additional constraints

$$
\begin{aligned}
& \hline \text { Unify }(u, v) \\
& \quad / * \text { pointees of } y * / \\
& \hline
\end{aligned}
$$

$\Rightarrow u, v$ are equivalent

Steengaard's Points-to Graph

## Equality Based (aka Steensgaard's) Points-to Analysis:

 Example 2

Steengaard's Points-to Graph

## Equality Based (aka Steensgaard's) Points-to Analysis:

 Example 2

Effective additional constraints

$$
\begin{aligned}
& \text { Unify }(u, v) \\
& \quad / * \text { pointees of } y * /
\end{aligned}
$$

$\Rightarrow u, v$ are equivalent

Steengaard's Points-to Graph

## Tutorial Problem for Flow-Insensitive Pointer Analysis

| Program | Inclusion based | Equality based |
| :--- | :--- | :--- |
|  |  |  |
| $p=\& q$ |  |  |
| $r=\& s$ |  |  |
| $t=\& p$ |  |  |
| $u=p$ |  |  |
| $* t=r$ |  |  |

## Tutorial Problem for Flow-Insensitive Pointer Analysis

| Program | Inclusion based | Equality based |
| :--- | :--- | :--- |
| $p=\& q$ <br> $r=\& s$ <br> $t=\& p$ <br> $u=p$ <br> $*=r$ |  |  |

Tutorial Problem for Flow-Insensitive Pointer Analysis
Program

| $p=\& q$ |
| :--- |
| $r=\& s$ |
| $t=\& p$ |
| $u=p$ |
| $* t=r$ |

Equality based


## Tutorial Problem for Flow-Insensitive Pointer Analysis



## Tutorial Problem for Flow-Insensitive Pointer Analysis



## Tutorial Problem for Flow-Insensitive Pointer Analysis

| Program | Inclusion based | Equality based |
| :---: | :---: | :---: |
| $\begin{aligned} & p=\& q \\ & r=\& s \\ & t=\& p \\ & u=p \\ & * t=r \end{aligned}$ |  |  |

## Tutorial Problem for Flow-Insensitive Pointer Analysis



## Tutorial Problem for Flow-Insensitive Pointer Analysis

| Program | Inclusion based | Equality based |
| :--- | :--- | :--- |
| $p=\& q$ <br> $r=\& s$ <br> $t=\& p$ <br> $u=p$ <br> $*=r$ |  |  |

## Tutorial Problem for Flow-Insensitive Pointer Analysis

| Program | Inclusion based | Equality based |
| :--- | :--- | :--- |
| $p=\& q$ <br> $r=\& s$ <br> $t=\& p$ <br> $u=p$ <br> $*=r$ |  |  |

## Tutorial Problem for Flow-Insensitive Pointer Analysis

$$
\begin{aligned}
& \text { Program } \\
& \\
& p=\& q \\
& r=\& s \\
& t=\& p \\
& u=p \\
& * t=r
\end{aligned}
$$

$\mid$

Inclusion based


Equality based


Tutorial Problem for Flow-Insensitive Pointer Analysis
Program

| $p=\& q$ |
| :--- |
| $r=\& s$ |
| $t=\& p$ |
| $u=p$ |
| $* t=r$ |

Equality based


Tutorial Problem for Flow-Insensitive Pointer Analysis
Program

| $p=\& q$ |
| :--- |
| $r=\& s$ |
| $t=\& p$ |
| $u=p$ |
| $* t=r$ |

Equality based


Tutorial Problem for Flow-Insensitive Pointer Analysis
Program

| $p=\& q$ |
| :--- |
| $r=\& s$ |
| $t=\& p$ |
| $u=p$ |
| $* t=r$ |

Equality based


Tutorial Problem for Flow-Insensitive Pointer Analysis
Program

| $p=\& q$ |
| :--- |
| $r=\& s$ |
| $t=\& p$ |
| $u=p$ |
| $* t=r$ |

Equality based


Tutorial Problem for Flow-Insensitive Pointer Analysis

$$
\begin{aligned}
& \text { Program } \\
& \\
& p=\& q \\
& r=\& s \\
& t=\& p \\
& u=p \\
& * t=r
\end{aligned}
$$

Inclusion based


Equality based


Tutorial Problem for Flow-Insensitive Pointer Analysis

$$
\begin{aligned}
& \text { Program } \\
& \\
& p=\& q \\
& r=\& s \\
& t=\& p \\
& u=p \\
& * t=r
\end{aligned}
$$

Inclusion based


Equality based


Tutorial Problem for Flow-Insensitive Pointer Analysis
Program

| $p=\& q$ |
| :--- |
| $r=\& s$ |
| $t=\& p$ |
| $u=p$ |
| $* t=r$ |

Equality based


## An Outline of Pointer Analysis Coverage

- The larger perspective
- IR for Points-to Analysis
- Flow-Insensitive Points-to Analysis
- Flow-Sensitive Points-to Analysis Next Topic


## Must Points-to Information



## Must Points-to Information



## May Points-to Information



## May Points-to Information



## Strong and Weak Updates



## Strong and Weak Updates



- Weak update: Modification of $x$ or $y$ due to $* z$ in block 5

Only Gen, No Kill

## Strong and Weak Updates



- Weak update: Modification of $x$ or $y$ due to $* z$ in block 5

Only Gen, No Kill

- Strong update: Modification of $c$ due to $* w$ in block 5

Both Gen and Kill

## Strong and Weak Updates



- Weak update: Modification of $x$ or $y$ due to $* z$ in block 5

Only Gen, No Kill

- Strong update: Modification of $c$ due to $* w$ in block 5

Both Gen and Kill

- How is this concept related to May/Must nature of information?


## May and Must Analysis for Killing Points-to Information (1)

MFP of May Points-to Analysis
MFP of Must Points-to Analysis


## May and Must Analysis for Killing Points-to Information (1)

MFP of May Points-to Analysis
MFP of Must Points-to Analysis

- $(a, b)$ should be in Mayln 5
Holds along path 1-3-4
- $(a, b)$ should not be killed in node 4
- Possible if pointee set of $c$ is $\emptyset$
- However, Mayln $n_{4}$ contains ( $c, a$ )



## May and Must Analysis for Killing Points-to Information (1)

MFP of May Points-to Analysis

- $(a, b)$ should be in Mayln $_{5}$
Holds along path 1-3-4
- $(a, b)$ should not be killed in node 4
- Possible if pointee set of $c$ is $\emptyset$
- However, Mayln 4 contains ( $c, a$ )


MFP of Must Points-to Analysis

- $(a, b)$ should not be in Mustln 5

Does not hold along path 1-2-4

- $(a, b)$ should be killed in node 4
- Possible if pointee set of $c$ is $\{a\}$
- However, the pointee set of $c$ is $\emptyset$ in $M u s t l n_{4}$


## May and Must Analysis for Killing Points-to Information (1)

MFP of May Points-to Analysis

- $(a, b)$ should be in Mayln 5
Holds along path 1-3-4
- $(a, b)$ should not be killed in node 4
- Possible if pointee set of $c$ is $\emptyset$ (Use Mustln $n_{4}$ )
- However, Mayln ${ }_{4}$ contains ( $c, a$ ) (Use Mustln4)

MFP of Must Points-to Analysis

- $(a, b)$ should not be in Mustln 5

Does not hold along path 1-2-4

- $(a, b)$ should be killed in node 4
- Possible if pointee set of $c$ is $\{a\}$ (Use Mayln 4 )
- However, the pointee set of $c$ is $\emptyset$ in $M_{\text {Mst }}{ }_{4}$ (Use Mayln $_{4}$ )

For killing points-to information through indirection,

- Must points-to analysis should identify pointees of $c$ using May $I_{4}$
- May points-to analysis should identify pointees of $c$ using $\mathrm{Mustl}_{4}$


## May and Must Analysis for Killing Points-to Information (2)

- May Points-to analysis should remove a May points-to pair
- only if it must be removed along all paths

Kill should remove ONLY strong updates
$\Rightarrow$ should use Must Points-to information

- Must Points-to analysis should remove a Must points-to pair
- if it can be removed along any path

Kill should remove ALL weak updates
$\Rightarrow$ should use May Points-to information

Distinguishing Between Strong and Weak Updates


## Distinguishing Between Strong and Weak Updates



Distinguishing Between Strong and Weak Updates


Discovering Must Points-to Information from May Points-to Information


## Discovering Must Points-to Information from May Points-to

 Information

- Bl. every pointer points to "?"

Assume that $e$ is a scalar

Discovering Must Points-to Information from May Points-to Information


- Bl. every pointer points to "?"

Assume that $e$ is a scalar

## Discovering Must Points-to Information from May Points-to Information



- Bl. every pointer points to "?"

Assume that $e$ is a scalar

- Perform usual may points-to analysis

Discovering Must Points-to Information from May Points-to Information


- Bl. every pointer points to "?"

Assume that $e$ is a scalar

- Perform usual may points-to analysis

Discovering Must Points-to Information from May Points-to Information


- Bl. every pointer points to "?"

Assume that $e$ is a scalar

- Perform usual may points-to analysis

Discovering Must Points-to Information from May Points-to Information


- BI. every pointer points to "?" Assume that $e$ is a scalar
- Perform usual may points-to analysis
- Since c has multiple pointees, it is a MAY relation


## Discovering Must Points-to Information from May Points-to

 Information

- Bl. every pointer points to "?" Assume that $e$ is a scalar
- Perform usual may points-to analysis
- Since c has multiple pointees, it is a MAY relation
- Since a has a single pointee, it is a MUST relation

Discovering Must Points-to Information from May Points-to Information


The use of "?" to derive Must is valid under the following conditions

If there is a definition free path from Start to node $i$ for pointer $x$, then $(x, ?)$ must reach $I n_{i}$ during the very first visit to node $i$ in the analysis.

Conversely, if there is no definition free path from Start to node $i$ for pointer $x$, then $(x, ?)$ must not reach $I n_{i}$ during the very first visit to node $i$ in the analysis.

## Relevant Algebraic Operations on Relations (1)

- Let $\mathbf{P} \subseteq V$ be the set of pointer variables
- May-points-to information: $\mathcal{A}=\left\langle 2^{\mathbf{P} \times V}, \supseteq\right\rangle$
- Standard algebraic operations on points-to relations Given relation $R \subseteq \mathbf{P} \times V$ and $X \subseteq \mathbf{P}$,
- Relation application $R X=\{v \mid u \in X \wedge(u, v) \in R\}$
- Relation restriction $\left.\left(\left.R\right|_{X}\right) R\right|_{X}=\{(u, v) \in R \mid u \in X\}$


## Relevant Algebraic Operations on Relations (1)

- Let $\mathbf{P} \subseteq V$ be the set of pointer variables
- May-points-to information: $\mathcal{A}=\left\langle 2^{\mathbf{P} \times V}, \supseteq\right\rangle$
- Standard algebraic operations on points-to relations Given relation $R \subseteq \mathbf{P} \times V$ and $X \subseteq \mathbf{P}$,
- Relation application $R X=\{v \mid u \in X \wedge(u, v) \in R\}$ (Find out the pointees of the pointers contained in $X$ )
- Relation restriction $\left.\left(\left.R\right|_{X}\right) R\right|_{X}=\{(u, v) \in R \mid u \in X\}$


## Relevant Algebraic Operations on Relations (1)

- Let $\mathbf{P} \subseteq V$ be the set of pointer variables
- May-points-to information: $\mathcal{A}=\left\langle 2^{\mathbf{P} \times V}, \supseteq\right\rangle$
- Standard algebraic operations on points-to relations Given relation $R \subseteq \mathbf{P} \times V$ and $X \subseteq \mathbf{P}$,
- Relation application $R X=\{v \mid u \in X \wedge(u, v) \in R\}$ (Find out the pointees of the pointers contained in $X$ )
- Relation restriction $\left.\left(\left.R\right|_{X}\right) R\right|_{X}=\{(u, v) \in R \mid u \in X\}$ (Restrict the relation only to the pointers contained in $X$ by removing points-to information of other pointers)


## Relevant Algebraic Operations on Relations (2)

Let

$$
\begin{aligned}
& V=\{a, b, c, d, e, f, g, ?\} \\
& \mathbf{P}=\{a, b, c, d, e\} \\
& R=\{(a, b),(a, c),(b, d),(c, e),(c, g),(d, a),(e, ?)\} \\
& X=\{a, c\}
\end{aligned}
$$

Then,

$$
\begin{aligned}
R X & =\{v \mid u \in X \wedge(u, v) \in R\} \\
\left.R\right|_{X} & =\{(u, v) \in R \mid u \in X\}
\end{aligned}
$$

## Relevant Algebraic Operations on Relations (2)

Let

$$
\begin{aligned}
& V=\{a, b, c, d, e, f, g, ?\} \\
& \mathbf{P}=\{a, b, c, d, e\} \\
& R=\{(a, b),(a, c),(b, d),(c, e),(c, g),(d, a),(e, ?)\} \\
& X=\{a, c\}
\end{aligned}
$$

Then,

$$
\begin{aligned}
R X & =\{v \mid u \in X \wedge(u, v) \in R\} \\
& =\{b, c, e, g\} \\
\left.R\right|_{X} & =\{(u, v) \in R \mid u \in X\}
\end{aligned}
$$

## Relevant Algebraic Operations on Relations (2)

Let

$$
\begin{aligned}
& V=\{a, b, c, d, e, f, g, ?\} \\
& \mathbf{P}=\{a, b, c, d, e\} \\
& R=\{(a, b),(a, c),(b, d),(c, e),(c, g),(d, a),(e, ?)\} \\
& X=\{a, c\}
\end{aligned}
$$

Then,

$$
\begin{aligned}
R X & =\{v \mid u \in X \wedge(u, v) \in R\} \\
& =\{b, c, e, g\} \\
\left.R\right|_{X} & =\{(u, v) \in R \mid u \in X\} \\
& =\{(a, b),(a, c),(c, e),(c, g)\}
\end{aligned}
$$

## Points-to Analysis Data Flow Equations

$$
\begin{aligned}
\text { Pin }_{n} & =\left\{\begin{array}{cl}
V \times\{?\} & n \text { is } \text { Start }_{p} \\
\bigcup_{p \in \operatorname{pred}(n)} \text { Pout }_{p} & \text { otherwise }
\end{array}\right. \\
\text { Pout }_{n} & =\left(\operatorname{Pin}_{n}-\left(\text { Kill }_{n} \times V\right)\right) \cup\left(\text { Def }_{n} \times \text { Pointee }_{n}\right)
\end{aligned}
$$

- Pin/Pout: sets of may points-to pairs
- Kill $n_{n}$, Def $f_{n}$, and Pointee $_{n}$ are defined in terms of Pin $_{n}$


## Points-to Analysis Data Flow Equations

$$
\begin{aligned}
\text { Pin }_{n} & =\left\{\begin{array}{cl}
V \times\{?\} & n \text { is Start } \\
p \\
\bigcup_{p \in \operatorname{pred}(n)} \text { Pout }_{p} & \text { otherwise }
\end{array}\right. \\
\text { Pout }_{n} & =(\text { Pin }_{n}-(\underbrace{\mu}_{\text {Kill }_{n}} \times V)) \cup\left(\text { Def }_{n} \times \text { Pointee }_{n}\right)
\end{aligned}
$$

- Pin/Pout: sets of may-points-to pairs
- Kill ${ }_{n}, D_{n}$, and Pointee $_{n}$ are defined in terms of Pin $_{n}$

Pointers whose points-to relations should
be removed for strong update

## Points-to Analysis Data Flow Equations

$$
\begin{aligned}
& \text { Pin }_{n}= \begin{cases}V \times\{?\} & n \text { is } \text { Start }_{p} \\
\bigcup_{p \in \operatorname{pred}(n)}^{V} \text { Pout }_{p} & \text { otherwise }\end{cases} \\
& \text { Pout }_{n}=\left(\text { Pin }_{n}-\left(\text { Kill }_{n} \times V\right)\right) \cup\left(\text { Def }_{n} \times \text { Pointee }_{n}\right) \\
& \text { - Pin/Pout: sets of may points-to pairs } \\
& \text { - Kill }{ }_{n} \text {, Def } f_{n} \text {, and } \text { Pointee }_{n} \text { are defined in terms of } \text { Pin }_{n}
\end{aligned}
$$

Pointers that are defined (i.e. pointers in which addresses are stored)

## Points-to Analysis Data Flow Equations

$$
\begin{aligned}
& \quad \begin{array}{c}
\begin{array}{c}
\text { Pointees (i.e. locations } \\
\text { whose addresses are } \\
\text { stored) }
\end{array} \\
\operatorname{Pin}_{n}=\left\{\begin{array}{cl}
V \times\{?\} & n \text { is Start }{ }_{p} \\
\bigcup_{p \in \operatorname{pred}(n)} \text { Pout }_{p} & \text { otherwise }
\end{array}\right. \\
\text { Pout }_{n}=\left(\operatorname{Pin}_{n}-\left(\text { Kill }_{n} \times V\right)\right) \cup\left(D e f_{n} \times \text { Pointee }_{n}\right)
\end{array}
\end{aligned}
$$

- Pin/Pout: sets of may points-to pairs
- Kill ${ }_{n}$, Def $_{n}$, and Pointee $_{n}$ are defined in terms of Pin $_{n}$


## Points-to Analysis Data Flow Equations

$$
\begin{aligned}
\text { Pin }_{n} & =\left\{\begin{array}{cl}
V \times\{?\} & n \text { is } \text { Start }_{p} \\
\bigcup_{p \in \operatorname{pred}(n)} \text { Pout }_{p} & \text { otherwise }
\end{array}\right. \\
\text { Pout }_{n} & =\left(\operatorname{Pin}_{n}-\left(\text { Kill }_{n} \times V\right)\right) \cup\left(\text { Def }_{n} \times \text { Pointee }_{n}\right)
\end{aligned}
$$

- Pin/Pout: sets of may points-to pairs
- Kill $n_{n}$, Def $f_{n}$, and Pointee $_{n}$ are defined in terms of Pin $_{n}$


## Extractor Functions for Points-to Analysis

Values defined in terms of $\operatorname{Pin}_{n}($ denoted $P$ )

|  | Def $_{n}$ | Kill $_{n}$ | Pointee $_{n}$ |
| :---: | :--- | :--- | :--- |
| $u s e x$ |  |  |  |
| $x=\& a$ |  |  |  |
| $x=y$ |  |  |  |
| $x=* y$ |  |  |  |
| $* x=y$ |  |  |  |
| other |  |  |  |

## Extractor Functions for Points-to Analysis

Values defined in terms of $\operatorname{Pin}_{n}($ denoted $P)$

|  | $\left(\right.$ Def $\left._{n}\right)$ | Kill $_{n}$ | Pointee $_{n}$ |
| :---: | :---: | :---: | :---: |
| use $x$ |  |  |  |
| $x=\& a$ |  |  |  |
| $x=y /$ |  |  |  |
| $x=* y$ |  |  |  |
| $* x=y$ |  |  |  |
| other |  |  |  |
|  |  |  |  |

Pointers that are defined (i.e. pointers in which addresses are stored)

## Extractor Functions for Points-to Analysis

Values defined in terms of $\operatorname{Pin}_{n}($ denoted $P$ )

|  | Def $_{n}$ | Kill $_{n}$ | (Pointee ${ }_{n}$ |
| :---: | :--- | :--- | :--- |
| use $x$ |  |  |  |
| $x=\& a$ |  |  |  |
| $x=y$ |  |  |  |
| $x=* y$ |  |  |  |
| $* x=y$ |  |  |  |
| other |  |  |  |

Pointees (i.e. locations whose addresses are stored)

## Extractor Functions for Points-to Analysis

Values defined in terms of $\operatorname{Pin}_{n}$ (denoted $P$ )

|  | $D e f_{n}$ | Kill ${ }_{n}$ | Pointee $_{n}$ |
| :---: | :---: | :---: | :---: |
| use $x$ |  | ' |  |
| $x=\& a$ |  | - |  |
| $x=y$ |  |  |  |
| $x=* y$ |  |  |  |
| $* x=y$ |  |  |  |
| other |  |  |  |

Pointers whose points-to relations should be removed for strong update

## Extractor Functions for Points-to Analysis

Values defined in terms of $\operatorname{Pin}_{n}($ denoted $P$ )

|  | Def $_{n}$ | Kill $_{n}$ | Pointee $_{n}$ |
| :---: | :---: | :---: | :---: |
| use $x$ | $\emptyset$ | $\emptyset$ | $\emptyset$ |
| $x=\& a$ |  |  |  |
| $x=y$ |  |  |  |
| $x=* y$ |  |  |  |
| $* x=y$ |  |  |  |
| other |  |  |  |

## Extractor Functions for Points-to Analysis

Values defined in terms of $\operatorname{Pin}_{n}($ denoted $P$ )

|  | Def $_{n}$ | Kill $_{n}$ | Pointee $_{n}$ |
| :---: | :---: | :---: | :---: |
| use $x$ | $\emptyset$ | $\emptyset$ | $\emptyset$ |
| $x=\& a$ | $\{x\}$ | $\{x\}$ | $\{\mathrm{a}\}$ |
| $x=y$ |  |  |  |
| $x=* y$ |  |  |  |
| $* x=y$ |  |  |  |
| other |  |  |  |

## Extractor Functions for Points-to Analysis

Values defined in terms of $\operatorname{Pin}_{n}($ denoted $P)$

|  | Def $_{n}$ | Kill $_{n}$ | Pointee $_{n}$ |
| :---: | :---: | :---: | :---: |
| use $x$ | $\emptyset$ | $\emptyset$ | $\emptyset$ |
| $x=\& a$ | $\{x\}$ | $\{x\}$ | $\{a\}$ |
| $x=y$ | $\{x\}$ | $\{x\}$ | $P\{y\}$ |
| $x=* y$ |  |  |  |
| $* x=y$ |  |  |  |
| other |  |  |  |

Pointees of $y$ in
Pin $_{n}$ are the targets of defined pointers

## Extractor Functions for Points-to Analysis

Values defined in terms of $\operatorname{Pin}_{n}$ (denoted $P$ )

|  | Def $_{n}$ | Kill $_{n}$ | Pointee $_{n}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| use $x$ | $\emptyset$ | $\emptyset$ | $\emptyset$ |  |
| $x=\& a$ | $\{x\}$ | $\{x\}$ | $\{a\}$ |  |
| $x=y$ | $\{x\}$ | $\{x\}$ | $P\{y\}$ |  |
| $x=* y$ | $\{x\}$ | $\{x\}$ | $P(P\{y\} \cap \mathbf{P})$ |  |
| $* x=y$ |  |  |  |  |
| other |  |  |  |  |

Pointees of those
pointees of $y$ in $\operatorname{Pin}_{n}$ which are pointers

## Extractor Functions for Points-to Analysis

Values defined in terms of $\operatorname{Pin}_{n}$ (denoted $P$ )

|  | $D e f_{n}$ | Kill $_{n}$ | Pointee $_{n}$ |
| :---: | :---: | :---: | :---: |
| use $x$ | $\emptyset$ | $\emptyset$ | $\emptyset$ |
| x= \& $a$ | $\{x\}$ | \{x\} | \{a\} |
| $x=y$ | $\{x\}$ | $\{x\}$ | $P\{y\}$ |
| 为 $x=* y$ | $\{x\}$ | $\{x\}$ | $P(P\{y\} \cap \mathbf{P})$ |
| *x $=y$ | $P\{x\} \cap \mathbf{P}$ | $\operatorname{Must}(P)\{x\} \cap \mathbf{P}$ | $P\{y\}$ |
| other | $\uparrow$ |  |  |

Pointees of
$x$ in $\operatorname{Pin}_{n}$ receive new addresses

## Extractor Functions for Points-to Analysis

Values defined in terms of Pi- Strong update using
must-points-to information

|  | Def $_{n}$ | Kill $_{n}$ computed from Pin |  |
| :---: | :---: | :---: | :---: |
| use $x$ | $\emptyset$ | $\emptyset$ | $\emptyset$ |
| $x=\& a$ | $\{x\}$ | $\{x\}$ | $\{a\}$ |
| $x=y$ | $\{x\}$ | $\{x\}$ | $P\{y\}$ |
| $x=* y$ | $\{x\}$ | $\{x\}$ | $P(P\{y\} \cap \mathbf{P})$ |
| $* x=y$ | $P\{x\} \cap \mathbf{P}$ | Must $(P)\{x\} \cap \mathbf{P}$ | $P\{y\}$ |
| other |  |  |  |

$$
\operatorname{Must}(R)=\bigcup_{z \in \mathbf{P}}\{z\} \times\left\{\begin{array}{cl}
\{w\} & R\{z\}=\{w\} \wedge w \neq ? \\
\emptyset & \text { otherwise }
\end{array}\right.
$$

## Extractor Functions for Points-to Analysis

Values defined in terms of Pi- Strong update using
must-points-to information

|  | Def $_{n}$ | Kill $_{n}$ computed from Pin |  |
| :---: | :---: | :---: | :---: |
| use $x$ | $\emptyset$ | $\emptyset$ | $\emptyset$ |
| $x=\& a$ | $\{x\}$ | $\{x\}$ | $\{a\}$ |
| $x=y$ | $\{x\}$ | $\{x\}$ | $P\{y\}$ |
| $x=* y$ | $\{x\}$ | $\{x\}$ | $P(P\{y\} \cap \mathbf{P})$ |
| $* x=y$ | $P\{x\} \cap \mathbf{P}$ | Must $(P)\{x\} \cap \mathbf{P}$ | $P\{y\}$ |
| other |  |  |  |

Find out must-pointees of
all pointers

## Extractor Functions for Points-to Analysis

Values defined in terms of $P^{\text {in }}$ Strong update using
must-points-to information

|  | Def $_{n}$ | Kill $_{n}$ computed from Pin |  |
| :---: | :---: | :---: | :---: |
| use $x$ | $\emptyset$ | $\emptyset$ | $\emptyset$ |
| $x=\& a$ | $\{x\}$ | $\{x\}$ | $\{a\}$ |
| $x=y$ | $\{x\}$ | $\{x\}$ | $P\{y\}$ |
| $x=* y$ | $\{x\}$ | $\{\downarrow\}$ | $P(P\{y\} \cap \mathbf{P})$ |
| $* x=y$ | $P\{x\} \cap \mathbf{P}$ | Must $(P)\{x\} \cap \mathbf{P}$ | $P\{y\}$ |
| other |  |  |  |

$$
\begin{aligned}
& \operatorname{Must}(R)=\bigcup_{z \in \emptyset}\{z\} \times\left\{\begin{array}{c}
\{w\} \\
\emptyset \\
\begin{array}{l}
\text { otherwise } \uparrow \\
\text { ngle pointee } \\
\text { t-points-to } \\
\text { ation }
\end{array}
\end{array} \text { (z\}=\{w\}^w¥?}\right. \text { ? }
\end{aligned}
$$

## Extractor Functions for Points-to Analysis

Values defined in terms of Pi- Strong update using
must-points-to information

|  | Def $_{n}$ | Kill $_{n}$ computed from Pin |  |
| :---: | :---: | :---: | :---: |
| use $x$ | $\emptyset$ | $\emptyset$ | $\emptyset$ |
| $x=\& a$ | $\{x\}$ | $\{x\}$ | $\{a\}$ |
| $x=y$ | $\{x\}$ | $\{x\}$ | $P\{y\}$ |
| $x=* y$ | $\{x\}$ | $\{x\}$ | $P(P\{y\} \cap \mathbf{P})$ |
| $* x=y$ | $P\{x\} \cap \mathbf{P}$ | Must $(P)\{x\} \cap \mathbf{P}$ | $P\{y\}$ |
| other |  |  |  |

$$
\begin{aligned}
& \operatorname{Must}(R)=\bigcup_{z \in R}\{z\} \times\left\{\begin{array}{cc}
\{w\} & R\{z\}=\{w\} \wedge w \neq ? \\
\text { otherwise }
\end{array}\right. \\
& \begin{array}{l}
\text { ointee } \\
\text { ints-to } \\
\mathrm{n}
\end{array}
\end{aligned}
$$

## Extractor Functions for Points-to Analysis

Values defined in terms of $\operatorname{Pin}_{n}$ (denoted $P$ )

|  | Def $_{n}$ | Kill $_{n}$ | Pointee $_{n}$ |
| :---: | :---: | :---: | :---: |
| use $x$ | $\emptyset$ | $\emptyset$ | $\emptyset$ |
| $x=\& a$ | $\{x\}$ | $\{x\}$ | $\{a\}$ |
| $x=y$ | $\{x\}$ | $\{x\}$ | $P\{y\}$ |
| $x=* y$ | $\{x\}$ | $\{x\}$ | $P(P\{y\} \cap \mathbf{P})$ |
| $* x=y$ | $P\{x\} \cap \mathbf{P}$ | $\operatorname{Must}(P)\{x\} \cap \mathbf{P}$ | $P\{y\}$ |
| other |  |  |  |

$$
\operatorname{Must}(R)=\bigcup_{z \in \mathbf{P}}\{z\} \times\left\{\begin{array}{cl}
\{w\} & R\{z\}=\{w\} \wedge w \neq ? \\
\emptyset & \text { otherwise }
\end{array}\right.
$$

## Extractor Functions for Points-to Analysis

Values defined in terms of $\operatorname{Pin}_{n}$ (denoted $P$ )

|  | $D e f_{n}$ | Kill $_{n}$ | Pointee $_{n}$ |
| :---: | :---: | :---: | :---: |
| use $x$ | $\emptyset$ | $\emptyset$ | $\emptyset$ |
| $x=\& a$ | \{x\} | \{x\} | \{a\} |
| $x=y$ | $\{x\}$ | $\{x\}$ | $P\{y\}$ |
| $x=* y$ | $\{x\}$ | $\{x\}$ | $P(P\{y\} \cap \mathbf{P})$ |
| $* x=y$ | $P\{x\} \cap \mathbf{P}$ | $\operatorname{Must}(P)\{x\} \cap \mathbf{P}$ | $\longrightarrow(P\{y\})$ |
| other |  | $\bigcirc$ |  |

## Extractor Functions for Points-to Analysis

Values defined in terms of $\operatorname{Pin}_{n}$ (denoted $P$ )

|  | Def $_{n}$ | Kill $_{n}$ | Pointee $_{n}$ |
| :---: | :---: | :---: | :---: |
| use $x$ | $\emptyset$ | $\emptyset$ | $\emptyset$ |
| $x=\& a$ | $\{x\}$ | $\{x\}$ | $\{a\}$ |
| $x=y$ | $\{x\}$ | $\{x\}$ | $P\{y\}$ |
| $x=* y$ | $\{x\}$ | $\{x\}$ | $P(P\{y\} \cap \mathbf{P})$ |
| $* x=y$ | $P\{x\} \cap \mathbf{P}$ | $\operatorname{Must}(P)\{x\} \cap \mathbf{P}$ | $P\{y\}$ |
| other | $\emptyset$ | $\emptyset$ | $\emptyset$ |

$$
\operatorname{Must}(R)=\bigcup_{z \in \mathbf{P}}\{z\} \times\left\{\begin{array}{cl}
\{w\} & R\{z\}=\{w\} \wedge w \neq ? \\
\emptyset & \text { otherwise }
\end{array}\right.
$$

## Extractor Functions for Points-to Analysis

Values defined in terms of $\operatorname{Pin}_{n}$ (denoted $P$ )

|  | Def $_{n}$ | Kill $_{n}$ | Pointee $_{n}$ |
| :---: | :---: | :---: | :---: |
| use $x$ | $\emptyset$ | $\emptyset$ | $\emptyset$ |
| $x=\& a$ | $\{x\}$ | $\{x\}$ | $\{a\}$ |
| $x=y$ | $\{x\}$ | $\{x\}$ | $P\{y\}$ |
| $x=* y$ | $\{x\}$ | $\{x\}$ | $P(P\{y\} \cap \mathbf{P})$ |
| $* x=y$ | $P\{x\} \cap \mathbf{P}$ | $\operatorname{Must}(P)\{x\} \cap \mathbf{P}$ | $P\{y\}$ |
| other | $\emptyset$ | $\emptyset$ | $\emptyset$ |

$$
\operatorname{Must}(R)=\bigcup_{z \in \mathbf{P}}\{z\} \times\left\{\begin{array}{cl}
\{w\} & R\{z\}=\{w\} \wedge w \neq ? \\
\emptyset & \text { otherwise }
\end{array}\right.
$$

## Extractor Functions for Points-to Analysis

Values defined in terms of $\operatorname{Pin}_{n}$ (denoted $P$ )

|  | Def $_{n}$ | Kill $_{n}$ | Pointee $_{n}$ |
| :---: | :---: | :---: | :---: |
| use $x$ | $\emptyset$ | $\emptyset$ | $\emptyset$ |
| $x=\& a$ | $\{x\}$ | $\{x\}$ | $\{a\}$ |
| $x=y$ | $\{x\}$ | $\{x\}$ | $P\{y\}$ |
| $x=* y$ | $\{x\}$ | $\{x\}$ | $P(P\{y\} \cap \mathbf{P})$ |
| $* x=y$ | $P\{x\} \cap \mathbf{P}$ | $\operatorname{Must}(P)\{x\} \cap \mathbf{P}$ | $P\{y\}$ |
| other | $\emptyset$ | $\emptyset$ | $\emptyset$ |

$$
\operatorname{Must}(R)=\bigcup_{z \in \mathbf{P}}\{z\} \times\left\{\begin{array}{cl}
\{w\} & R\{z\}=\{w\} \wedge w \neq ? \\
\emptyset & \text { otherwise }
\end{array}\right.
$$

An Example of Flow-Sensitive May Points-to Analysis

```
int W;
int *u, *V, *x;
int **y, **z;
```



An Example of Flow-Sensitive May Points-to Analysis

```
int W;
int *u, *V, *x;
int **y, **z;
```



An Example of Flow-Sensitive May Points-to Analysis


An Example of Flow-Sensitive May Points-to Analysis


## An Example of Flow-Sensitive May Points-to Analysis

int W;
int W;
int *u, *v, *x;
int *u, *v, *x;
int **y, **z;
int **y, **z;


An Example of Flow-Sensitive May Points-to Analysis
int W;
int W;
int *u, *v, *x;
int *u, *v, *x;
int **y, **z;
int **y, **z;


An Example of Flow-Sensitive May Points-to Analysis
int W;
int W;
int *u, *V, *x;
int *u, *V, *x;
int **y, **z;
int **y, **z;


## An Example of Flow-Sensitive May Points-to Analysis

int W;
int W;
int *u, *V, *x;
int *u, *V, *x;
int **y, **z;
int **y, **z;


## Tutorial Problem for Flow-Sensitive Pointer Analysis

$$
\begin{aligned}
& \text { int } a, b, c, * p, * q, * r \\
& \text { int } * * y, * * * x
\end{aligned}
$$



|  | Pin $_{n}$ | Pout $_{n}$ |
| :---: | :--- | :--- |
| 1 | $\{(p, ?),(q, ?),(r, ?),(x, ?),(y, ?)\}$ | $\{(p, ?),(q, ?),(r, ?),(x, y),(y, ?)\}$ |
| 2 | $\{(p, ?),(q, ?),(r, ?),(x, y),(y, ?)\}$ | $\{(p, ?),(q, ?),(r, ?),(x, y),(y, r)\}$ |
| 3 | $\{(p, ?),(q, ?),(r, ?),(x, y),(y, r)\}$ | $\{(p, ?),(q, c),(r, ?),(x, y),(y, r)\}$ |
| 4 | $\{(p, ?),(q, c),(r, ?),(x, y),(y, r)\}$ | $\{(p, ?),(q, c),(r, ?),(x, y),(y, p)\}$ |
| 5 | $\{(p, ?),(q, ?),(r, ?),(x, y),(y, r)\}$ | $\{(p, a),(q, ?),(r, ?),(x, y),(y, r)\}$ |
| 6 | $\{(p, a),(q, ?),(r, ?),(x, y),(y, r)\}$ | $\{(p, a),(q, ?),(r, ?),(x, y),(y, q)\}$ |
| 7 | $\{(p, ?),(p, a),(q, ?),(q, c)$, <br> $(r, ?),(x, y),(y, p)(y, q)\}$ | $\{(p, ?),(p, a),(p, b),(q, ?),(q, c),(q, b)$, <br> $(r, ?),(x, y),(y, p)(y, q)\}$ |

## Extractor Functions in the Presence of Structures

- We extend pointer to use field names as follows:
- pointer $x$ is represented by $(x, *)$, and
- pointer field $f$ of structure variable $x$ is represented by $(x, f)$
- points-to information is of the form $((x, f) y)$
- For simplicity, we
- separate LHS and RHS assuming that
- only legal, type-correct pointer expressions are used in a statement
- From LHS, we extract Def and Kill as the sets of $(x, *)$ or $(a, f)$ ( $x$ is a pointer variable and $a$ is a structure variable)
- From RHS, we extract Pointee as the sets of variables $x$


## What About Heap Data?

- Compile time entities, abstract entities, or summarized entities
- Three options:
- Represent all heap locations by a single abstract heap location
- Represent all heap locations of a particular type by a single abstract heap location
- Represent all heap locations allocated at a given memory allocation site by a single abstract heap location
- Summarization of pointer expression: Usually based on the length of pointer expression


## Allocation Site Based Abstraction of Points-to Graph

## Program



## Allocation Site Based Abstraction of Points-to Graph

Program


Memory graph representing multiple executions


## Allocation Site Based Abstraction of Points-to Graph

Program


Memory graph representing multiple executions


Allocation-site based points-to graph

## Allocation Site Based Abstraction of Points-to Graph

Program
Memory graph representing multiple executions


## Allocation Site Based Abstraction of Points-to Graph

Program
Memory graph representing multiple executions


## Extractor Functions in the Presence of Structures (2)

| LHS | Def $_{n}$ | Kill $_{n}$ |
| :--- | :--- | :--- |
| $x$ | $\{(x, *)\}$ | $\{(x, *)\}$ |
| $* x$ | $\{(z, *) \mid z \in A\{(x, *)\}\}$ | $\{(z, *) \mid z \in \operatorname{Must}(A)\{(x, *)\}\}$ |
| $x \rightarrow f$ | $\{(z, f) \mid z \in A\{(x, *)\}\}$ | $\{(z, f) \mid z \in \operatorname{Must}(A)\{(x, *)\}\}$ |
| $x . f$ | $\{(x, f)\}$ | $\{(x, f)\}$ |


| RHS | Pointee $_{n}$ |
| :--- | :--- |
| $\& y$ | $\{y\}$ |
| $y$ | $\{z \mid z \in A\{(y, *)\}\}$ |
| $* y$ | $\{z \mid z \in A\{(w, *)\}, w \in A\{(y, *)\}\}$ |
| $y \rightarrow f$ | $\{z \mid z \in A\{(w, f)\}, w \in A\{(y, *)\}\}$ |
| $y . f$ | $\{z \mid z \in A\{(y, f)\}\}$ |

## An Example of Flow-Sensitive May Points-to Analysis



Type Information

```
 struct s {
 struct s *f;
 int n;
} *x, *y, u, v;
```

Andersen's Points-to Graph

Steensgaard's Points-to Graph

## An Example of Flow-Sensitive May Points-to Analysis



Type Information
struct $\mathrm{s}\{$
$\quad$ struct $\mathrm{s} * \mathrm{f} ;$
int $\mathrm{n} ;$
$\} \quad * \mathrm{x}, \mathrm{yy}, \mathrm{u}, \mathrm{v} ;$

Andersen's Points-to Graph


## An Example of Flow-Sensitive May Points-to Analysis



Type Information
struct $s\{$
struct $s * f ;$
$\quad$ int $n ;$
$\} \quad * x, \quad * y, u, v ;$

Andersen's Points-to Graph


## An Example of Flow-Sensitive May Points-to Analysis



Type Information

$$
\begin{aligned}
& \text { struct } \mathrm{s}\{ \\
& \quad \text { struct } \mathrm{s} * \mathrm{f} ; \\
& \quad \text { int } \mathrm{n} ; \\
& \} \quad * \mathrm{x}, * \mathrm{y}, \mathrm{u}, \mathrm{v} ;
\end{aligned}
$$

Andersen's Points-to Graph


## An Example of Flow-Sensitive May Points-to Analysis



Type Information

$$
\begin{aligned}
& \text { struct } s\{ \\
& \quad \text { struct } s * f ; \\
& \quad \text { int } \mathrm{n} ; \\
& \} \quad * \mathrm{x}, * \mathrm{y}, \mathrm{u}, \mathrm{v} ;
\end{aligned}
$$

Andersen's Points-to Graph


## An Example of Flow-Sensitive May Points-to Analysis



Type Information

$$
\begin{aligned}
& \text { struct } \mathrm{s}\{ \\
& \quad \text { struct } \mathrm{s} * \mathrm{f} ; \\
& \quad \text { int } \mathrm{n} ; \\
& \} \quad * \mathrm{x}, * \mathrm{y}, \mathrm{u}, \mathrm{v} ;
\end{aligned}
$$

Andersen's Points-to Graph


## An Example of Flow-Sensitive May Points-to Analysis



Type Information

$$
\begin{aligned}
& \text { struct } \mathrm{s}\{ \\
& \quad \text { struct } \mathrm{s} * \mathrm{f} ; \\
& \quad \text { int } \mathrm{n} ; \\
& \} \quad * \mathrm{x}, * \mathrm{y}, \mathrm{u}, \mathrm{v} ;
\end{aligned}
$$

Andersen's Points-to Graph


## An Example of Flow-Sensitive May Points-to Analysis



Type Information

$$
\begin{aligned}
& \text { struct } \mathrm{s}\{ \\
& \quad \text { struct } \mathrm{s} * \mathrm{f} ; \\
& \text { int } \mathrm{n} ; \\
& \} \quad * \mathrm{x}, * \mathrm{y}, \mathrm{u}, \mathrm{v} ;
\end{aligned}
$$

Andersen's Points-to Graph


## Non-Distributivity of Points-to Analysis



Must Points-to


## Non-Distributivity of Points-to Analysis



Must Points-to

$z \longmapsto w$ is spurious

## Non-Distributivity of Points-to Analysis


$z \longmapsto w$ is spurious

Must Points-to


