
Pointer Analysis

Uday Khedker

(www.cse.iitb.ac.in/̃ uday)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

Dec 2019

FP School, PCI Pune Pointer Analysis: About These Slides 1/55

Copyright

These slides constitute the lecture notes for CS618 Program Analysis course at
IIT Bombay and have been made available as teaching material accompanying
the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow
Analysis: Theory and Practice. CRC Press (Taylor and Francis Group).
2009.

(Indian edition published by Ane Books in 2013)

Apart from the above book, some slides are based on the material from the
following book

• M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland Inc. 1977.

These slides are being made available under GNU FDL v1.2 or later purely for
academic or research use.

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Outline 2/55

An Outline of Pointer Analysis Coverage

• The larger perspective

• IR for Points-to Analysis

• Flow-Insensitive Points-to Analysis

• Flow-Sensitive Points-to Analysis

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 3/55

Code Optimization In Presence of Pointers (1)

Program Memory graph at statement 5

1. q = p;
2. while (. . .) {
3. q = q→next;
4. }
5. p→data = r1;
6. print (q→data);
7. p→data = r2;

q

p . . .p next next

• Is p→data live at the exit of line 5? Can we delete line 5?

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 3/55

Code Optimization In Presence of Pointers (1)

Program Memory graph at statement 5

1. q = p;
2. do {
3. q = q→next;
4. } while (. . .)
5. p→data = r1;
6. print (q→data);
7. p→data = r2;

q

p . . .p next next

• Is p→data live at the exit of line 5? Can we delete line 5?

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 3/55

Code Optimization In Presence of Pointers (1)

Program Memory graph at statement 5

1. q = p;
2. do {
3. q = q→next;
4. } while (. . .)
5. p→data = r1;
6. print (q→data);
7. p→data = r2;

q

p . . .p next next

• Is p→data live at the exit of line 5? Can we delete line 5?

• We cannot delete line 5 if p and q can be possibly aliased

(while loop or do-while loop with a circular list)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 3/55

Code Optimization In Presence of Pointers (1)

Program Memory graph at statement 5

1. q = p;
2. do {
3. q = q→next;
4. } while (. . .)
5. p→data = r1;
6. print (q→data);
7. p→data = r2;

q

p . . .p next next

• Is p→data live at the exit of line 5? Can we delete line 5?

• We cannot delete line 5 if p and q can be possibly aliased

(while loop or do-while loop with a circular list)

• We can delete line 5 if p and q are definitely not aliased

(do-while loop without a circular list)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 4/55

Code Optimization In Presence of Pointers (2)

a = 5

x = &a

b = ∗x

Original Program

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 4/55

Code Optimization In Presence of Pointers (2)

a = 5

x = &a

b = ∗x

a = 5

x = &a

b = ∗x

Original Program Constant Propagation
without aliasing

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 4/55

Code Optimization In Presence of Pointers (2)

a = 5

x = &a

b = ∗x

a = 5

x = &a

b = ∗x

a = 5

x = &a

b = 5

Original Program Constant Propagation Constant Propagation
without aliasing with aliasing

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 5/55

Code Optimization In Presence of Pointers (3)

f main g h

b

p = g ;

b

a = 5

f ();

p();

b = ∗x

b

x = &a;

b

b

x = &c ;

b

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 5/55

Code Optimization In Presence of Pointers (3)

f main g h

b

p = g ;

b

a = 5

f ();

p();

b = ∗x

b

x = &a;

b

b

x = &c ;

b

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 5/55

Code Optimization In Presence of Pointers (3)

f main g h

b

p = g ;

b

a = 5

f ();

p();

b = ∗x

b

x = &a;

b

b

x = &c ;

b

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 5/55

Code Optimization In Presence of Pointers (3)

f main g h

b

p = g ;

b

a = 5

f ();

p();

b = 5

b

x = &a;

b

b

x = &c ;

b

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 6/55

Pointer Analysis

• Answers the following questions for indirect accesses:

◮ Which data is read? x = ∗y

◮ Which data is written? ∗x = y

◮ Which procedure is called? p() or x → f ()

• Enables precise data flow and interprocedural control flow analysis

• Computationally intensive analyses are ineffective when supplied with
imprecise points-to information,

(e.g., model checking, interprocedural analyses)

• Needs to scale to large programs

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 7/55

The World of Pointer Analysis

Alias Analysis Pointer Analysis

Alias analysis
of reference
parameters,

fields of unions
array indices

Alias analysis of
data pointers

Points-to
analysis of
data and
function
pointers

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 8/55

Pointer Analysis Musings

• Pointer analysis collects information about indirect accesses in programs

◦ Enables precise data analysis
◦ Enable precise interprocedural control flow analysis

• Needs to scale to large programs

• Pointer Analysis Musings

◦ Which Pointer Analysis should I Use?

Michael Hind and Anthony Pioli. ISTAA 2000

◦ Pointer Analysis: Haven’t we solved this problem ?

Michael Hind PASTE

yet

2001

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 8/55

Pointer Analysis Musings

• Pointer analysis collects information about indirect accesses in programs

◦ Enables precise data analysis
◦ Enable precise interprocedural control flow analysis

• Needs to scale to large programs

• Pointer Analysis Musings

◦ Which Pointer Analysis should I Use?

Michael Hind and Anthony Pioli. ISTAA 2000

◦ Pointer Analysis: Haven’t we solved this problem ?

Michael Hind PASTE

yet

2001

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 8/55

Pointer Analysis Musings

• Pointer analysis collects information about indirect accesses in programs

◦ Enables precise data analysis
◦ Enable precise interprocedural control flow analysis

• Needs to scale to large programs

• Pointer Analysis Musings

◦ Which Pointer Analysis should I Use?

Michael Hind and Anthony Pioli. ISTAA 2000

◦ Pointer Analysis: Haven’t we solved this problem ?

Michael Hind PASTE

yet

2001

◦ 2019 . . .

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 9/55

The Mathematics of Pointer Analysis

In the most general situation

• Alias analysis is undecidable.

Landi-Ryder [POPL 1991], Landi [LOPLAS 1992],
Ramalingam [TOPLAS 1994]

• Flow-insensitive alias analysis is NP-hard

Horwitz [TOPLAS 1997]

• Points-to analysis is undecidable

Chakravarty [POPL 2003]

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 9/55

The Mathematics of Pointer Analysis

In the most general situation

• Alias analysis is undecidable.

Landi-Ryder [POPL 1991], Landi [LOPLAS 1992],
Ramalingam [TOPLAS 1994]

• Flow-insensitive alias analysis is NP-hard

Horwitz [TOPLAS 1997]

• Points-to analysis is undecidable

Chakravarty [POPL 2003]

Adjust your expectations suitably to avoid disappointments!

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 10/55

The Engineering of Pointer Analysis

So what should we expect?

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 10/55

The Engineering of Pointer Analysis

So what should we expect? To quote Hind [PASTE 2001]

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 10/55

The Engineering of Pointer Analysis

So what should we expect? To quote Hind [PASTE 2001]

• “Fortunately many approximations exist”

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 10/55

The Engineering of Pointer Analysis

So what should we expect? To quote Hind [PASTE 2001]

• “Fortunately many approximations exist”

• “Unfortunately too many approximations exist!”

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 10/55

The Engineering of Pointer Analysis

So what should we expect? To quote Hind [PASTE 2001]

• “Fortunately many approximations exist”

• “Unfortunately too many approximations exist!”

Engineering of pointer analysis is much more dominant than its science

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 11/55

Pointer Analysis: Precision versus Scalability

• Ideally, an analysis should be

◦ Sound

◦ Precise

◦ Scalable

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 11/55

Pointer Analysis: Precision versus Scalability

Common belief

• Precision and scalability cannot be
achieved together for exhaustive analysis

Common Practice

• Trade off precision using approximations

• Ideally, an analysis should be

◦ Sound

◦ Precise

◦ Scalable

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 11/55

Pointer Analysis: Precision versus Scalability

• Ideally, an analysis should be

◦ Sound

◦ Precise

◦ Scalable

• The main factors enhancing the precision of an exhaustive (as against a
demand-driven) analysis are

◦ Flow sensitivity

◦ Context sensitivity

◦ Field sensitivity

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 12/55

Demand-Driven Analysis Vs. Exhaustive Analysis

• Exhaustive. Compute all possible information

• Demand-Driven. Compute only the requested information (by a client)

Different from incremental analysis which also computes only some
information but it updates the earlier computed solution

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 13/55

Flow Sensitivity Vs. Flow Insensitivity

0 f0 0

1 f1 1

2 f2 2 3 f3 3

i fi i

m fm m

Flow Sensitive

Start

0 f0 0 1 f1 1 2 f2 2 3 f3 3 . . . i fi i . . . m fm m

End

Flow Insensitive

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 13/55

Flow Sensitivity Vs. Flow Insensitivity

0 f0 0

1 f1 1

2 f2 2 3 f3 3

i fi i

m fm m

Flow Sensitive

Start

0 f0 0 1 f1 1 2 f2 2 3 f3 3 . . . i fi i . . . m fm m

End

Flow Insensitive

Assumption: Statements can be executed in
any order

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 13/55

Flow Sensitivity Vs. Flow Insensitivity

0 f0 0

1 f1 1

2 f2 2 3 f3 3

i fi i

m fm m

Flow Sensitive

Start

0 f0 0 1 f1 1 2 f2 2 3 f3 3 . . . i fi i . . . m fm m

End

Flow Insensitive

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 14/55

Flow Sensitivity Vs. Flow Insensitivity

Startp x = &a; Startp

y = x ;ap1

x = &b;p2

Endp y = x ; Endp

{

x−→a, x−→b,

y−→a, y−→b
}

Flow-insensitive analysis is less precise
than a flow-sensitive analysis

Flow-insensitive
points-to information

{

x−→b,

y−→a
}

Flow-sensitive
points-to information

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 15/55

Context Sensitivity Vs. Context Insensitivity

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 15/55

Context Sensitivity Vs. Context Insensitivity

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 15/55

Context Sensitivity Vs. Context Insensitivity

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 15/55

Context Sensitivity Vs. Context Insensitivity

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

c d

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 15/55

Context Sensitivity Vs. Context Insensitivity

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

c d

c d

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 15/55

Context Sensitivity Vs. Context Insensitivity

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

c d

c d

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 15/55

Context Sensitivity Vs. Context Insensitivity

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

c d

c d

a b××

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 15/55

Context Sensitivity Vs. Context Insensitivity

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

c d

c d

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 15/55

Context Sensitivity Vs. Context Insensitivity

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

c d

c d

c d× ×

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 15/55

Context Sensitivity Vs. Context Insensitivity

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

c d

c d

a b c d

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 15/55

Context Sensitivity Vs. Context Insensitivity

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

c d

c d

a b c d

Context-insensitive analysis
is less precise than a

context-sensitive analysis

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 16/55

Field Sensitivity Vs. Field Insensitivity

Program
Field-sensitive
points-to graph

Field-insensitive
points-to graph

x → f = &y
x → g = &z
w = x → f

x

y

z

w

f

g

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 16/55

Field Sensitivity Vs. Field Insensitivity

Program
Field-sensitive
points-to graph

Field-insensitive
points-to graph

x → f = &y
x → g = &z
w = x → f

x

y

z

w

f

g

x

y

z

w

∗

∗

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 16/55

Field Sensitivity Vs. Field Insensitivity

Program
Field-sensitive
points-to graph

Field-insensitive
points-to graph

x → f = &y
x → g = &z
w = x → f

x

y

z

w

f

g

Field-insensitive analysis is less precise
than a field-sensitive analysis

x

y

z

w

∗

∗

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 17/55

Pointer Analysis: An Engineer’s Landscape

FI=

FI⊆

FISSA

FSNoKill

FS

CI CSObjSens CSRecIns CS

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity Increases

Pointer analysis is a fertile ground for research because the factors that enhance the
precision of points-to analysis (flow, context, and field sensitivity), hamper scalability

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 17/55

Pointer Analysis: An Engineer’s Landscape

FI=

FI⊆

FISSA

FSNoKill

FS

CI CSObjSens CSRecIns CS

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity Increases

Pointer analysis is a fertile ground for research because the factors that enhance the
precision of points-to analysis (flow, context, and field sensitivity), hamper scalability

Data structures: BDDs, probabilistic

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 17/55

Pointer Analysis: An Engineer’s Landscape

FI=

FI⊆

FISSA

FSNoKill

FS

CI CSObjSens CSRecIns CS

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity Increases

Pointer analysis is a fertile ground for research because the factors that enhance the
precision of points-to analysis (flow, context, and field sensitivity), hamper scalability

Data structures: BDDs, probabilistic

Methods: Parallel, demand, randomized

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 17/55

Pointer Analysis: An Engineer’s Landscape

FI=

FI⊆

FISSA

FSNoKill

FS

CI CSObjSens CSRecIns CS

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity Increases

Pointer analysis is a fertile ground for research because the factors that enhance the
precision of points-to analysis (flow, context, and field sensitivity), hamper scalability

Data structures: BDDs, probabilistic

Methods: Parallel, demand, randomized

Refinement: Level-wise, bootstrapping

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 17/55

Pointer Analysis: An Engineer’s Landscape

FI=

FI⊆

FISSA

FSNoKill

FS

CI CSObjSens CSRecIns CS

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity Increases

Pointer analysis is a fertile ground for research because the factors that enhance the
precision of points-to analysis (flow, context, and field sensitivity), hamper scalability

Data structures: BDDs, probabilistic

Methods: Parallel, demand, randomized

Refinement: Level-wise, bootstrapping

Data structures: BDDs, probabilistic

Methods: Parallel, demand, randomized

Refinement: Level-wise, bootstrapping

Crowded Area

Th
inl
y

po
pu
lat

ed

Refinement: Level-wise, bootstrapping

Data structures: BDDs, probabilistic

Methods: Parallel, demand, randomized

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 17/55

Pointer Analysis: An Engineer’s Landscape

FI=

FI⊆

FISSA

FSNoKill

FS

CI CSObjSens CSRecIns CS

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity Increases

Pointer analysis is a fertile ground for research because the factors that enhance the
precision of points-to analysis (flow, context, and field sensitivity), hamper scalability

Data structures: BDDs, probabilistic

Methods: Parallel, demand, randomized

Refinement: Level-wise, bootstrapping

Data structures: BDDs, probabilistic

Methods: Parallel, demand, randomized

Refinement: Level-wise, bootstrapping

Crowded Area

Th
inl
y

po
pu
lat

ed

Refinement: Level-wise, bootstrapping

Data structures: BDDs, probabilistic

Methods: Parallel, demand, randomized

That’s the corner
we are trying to
occupy :)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 18/55

An Outline of Pointer Analysis Coverage

• The larger perspective

• IR for Points-to Analysis Next Topic

• Flow-Insensitive Points-to Analysis

• Flow-Sensitive Points-to Analysis

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 19/55

Pointer Statements

Pointer assignments
Use pointers
in expressions

Addr x = &y

Copy x = y

Load x = ∗y

x = y → n

Store ∗x = y

x → n = y

Use x

• Field accesses such as x .n are treated as new compile time names

• Containment of x .n within x is recorded in terms of offsets

• Heap will be introduced later

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 20/55

What Does a Use Statement Represent? (1)

Consider the declaration: int a, *x, **y;

Source 3-Address representation Our modelling

∗x = a ∗x = a Use x
a = ∗x a = ∗x Use x
if (x == NULL) if (x == NULL) Use x
if (∗x == 5) if (∗x == 5) Use x

if (∗y == NULL)
t = ∗y
if (t == NULL)

t = ∗y
Use t

(∗∗ y = a)
t = ∗y
∗t = a

t = ∗y
Use t

We retain only the pointers

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: The Larger Perspective 21/55

What Does a Use Statement Represent? (2)

Consider the declaration: struct s {
struct s *n;

int m;

} a, b, *x;

Source 3-Address representation Our modelling

a.n = &b a.n = &b a.n = &b

if (x → n == NULL)
t = x → n
if (t == NULL)

t = x → n
Use t

if (a.n == NULL)
t = a.n
if (t == NULL)

t = a.n
Use t

We retain only the pointers

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 22/55

An Outline of Pointer Analysis Coverage

• The larger perspective

• IR for Points-to Analysis

• Flow-Insensitive Points-to Analysis Next Topic

• Flow-Sensitive Points-to Analysis

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 23/55

Flow-Sensitive Vs. Flow-Insensitive Pointer Analysis

• Flow-insensitive pointer analysis

◦ Inclusion based: Andersen’s approach
◦ Equality based: Steensgaard’s approach

• Flow-sensitive pointer analysis

◦ May points-to analysis
◦ Must points-to analysis

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 24/55

Flow Insensitivity in Data Flow Analysis

• Assumption: Statements can be executed in any order.

• Instead of computing point-specific data flow information, summary data
flow information is computed.

The summary information is required to be a safe approximation of
point-specific information for each point.

The control flow graph is a complete graph
(except for the Start and End nodes)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 25/55

Examples of Flow-Insensitive Analyses

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 25/55

Examples of Flow-Insensitive Analyses

• Type checking/inferencing

(What about interpreted languages?)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 25/55

Examples of Flow-Insensitive Analyses

• Type checking/inferencing

(What about interpreted languages?)

• Address taken analysis

Which variables have their addresses taken?

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 25/55

Examples of Flow-Insensitive Analyses

• Type checking/inferencing

(What about interpreted languages?)

• Address taken analysis

Which variables have their addresses taken?

• Side effects analysis

Does a procedure modify a global variable? Reference Parameter?

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 26/55

Notation for Andersen’s and Steensgaard’s Points-to
Analysis

• Px.f denotes the set of pointees of pointer variable x along field f

◦ Px.∗ (concisely written as Px) denotes the set of pointees of x
◦ If x is a structure, Px is the set of pointees of all fields of x

• Unify (x , y) unifies locations x and y

◦ x and y are treated as equivalent locations
◦ the pointees of the unified locations are also unified transitively

• UnifyPTS(x , y) unifies the pointees of x and y

◦ x and y themselves are not unified

• We use x .f if the pointees of field f of x are to be unified

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 27/55

Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y}
Px ⊇ {y}
∀z ∈ Px . Unify (y , z)

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz . ∀z ∈ Py ∀z ∈ Py . UnifyPTS(x , z)

∗x = y ∀z ∈ Px . Pz ⊇ Py ∀z ∈ Px . UnifyPTS(y , z)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 27/55

Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y}
Px ⊇ {y}
∀z ∈ Px . Unify (y , z)

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz . ∀z ∈ Py ∀z ∈ Py . UnifyPTS(x , z)

∗x = y ∀z ∈ Px . Pz ⊇ Py ∀z ∈ Px . UnifyPTS(y , z)

x p q r

y a b c

Points-to graph before
the assignment

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 27/55

Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y}
Px ⊇ {y}
∀z ∈ Px . Unify (y , z)

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz . ∀z ∈ Py ∀z ∈ Py . UnifyPTS(x , z)

∗x = y ∀z ∈ Px . Pz ⊇ Py ∀z ∈ Px . UnifyPTS(y , z)

x p q r

y a b c

Points-to graph before
the assignment

x p q r

y a b c

Andersen’s graph after
the assignment

In
cl
u
si
o
n

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 27/55

Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y}
Px ⊇ {y}
∀z ∈ Px . Unify (y , z)

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz . ∀z ∈ Py ∀z ∈ Py . UnifyPTS(x , z)

∗x = y ∀z ∈ Px . Pz ⊇ Py ∀z ∈ Px . UnifyPTS(y , z)

x p q r

y a b c

Points-to graph before
the assignment

x p q r

y a b c

Andersen’s graph after
the assignment

In
cl
u
si
o
n

x
p q r

y a b

c

Steensgaard’s graph after
the assignment

E
q
u
al
it
y

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 27/55

Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y}
Px ⊇ {y}
∀z ∈ Px . Unify (y , z)

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz . ∀z ∈ Py ∀z ∈ Py . UnifyPTS(x , z)

∗x = y ∀z ∈ Px . Pz ⊇ Py ∀z ∈ Px . UnifyPTS(y , z)

x p q r

y a b c

Points-to graph before
the assignment

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 27/55

Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y}
Px ⊇ {y}
∀z ∈ Px . Unify (y , z)

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz . ∀z ∈ Py ∀z ∈ Py . UnifyPTS(x , z)

∗x = y ∀z ∈ Px . Pz ⊇ Py ∀z ∈ Px . UnifyPTS(y , z)

x p q r

y a b c

Points-to graph before
the assignment

x p q r

y a b c

Andersen’s graph after
the assignment

In
cl
u
si
o
n

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 27/55

Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y}
Px ⊇ {y}
∀z ∈ Px . Unify (y , z)

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz . ∀z ∈ Py ∀z ∈ Py . UnifyPTS(x , z)

∗x = y ∀z ∈ Px . Pz ⊇ Py ∀z ∈ Px . UnifyPTS(y , z)

x p q r

y a b c

Points-to graph before
the assignment

x p q r

y a b c

Andersen’s graph after
the assignment

In
cl
u
si
o
n x p q r

y a b c

Steensgaard’s graph after
the assignment

E
q
u
al
it
y

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 27/55

Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y}
Px ⊇ {y}
∀z ∈ Px . Unify (y , z)

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz . ∀z ∈ Py ∀z ∈ Py . UnifyPTS(x , z)

∗x = y ∀z ∈ Px . Pz ⊇ Py ∀z ∈ Px . UnifyPTS(y , z)

x p q r

y a b c

Points-to graph before
the assignment

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 27/55

Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y}
Px ⊇ {y}
∀z ∈ Px . Unify (y , z)

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz . ∀z ∈ Py ∀z ∈ Py . UnifyPTS(x , z)

∗x = y ∀z ∈ Px . Pz ⊇ Py ∀z ∈ Px . UnifyPTS(y , z)

x p q r

y a b c

Points-to graph before
the assignment

x p q r

y a b c

Andersen’s graph after
the assignment

In
cl
u
si
o
n

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 27/55

Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y}
Px ⊇ {y}
∀z ∈ Px . Unify (y , z)

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz . ∀z ∈ Py ∀z ∈ Py . UnifyPTS(x , z)

∗x = y ∀z ∈ Px . Pz ⊇ Py ∀z ∈ Px . UnifyPTS(y , z)

x p q r

y a b c

Points-to graph before
the assignment

x p q r

y a b c

Andersen’s graph after
the assignment

In
cl
u
si
o
n x p q

r
y a b c

Steensgaard’s graph after
the assignment

E
q
u
al
it
y

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 27/55

Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y}
Px ⊇ {y}
∀z ∈ Px . Unify (y , z)

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz . ∀z ∈ Py ∀z ∈ Py . UnifyPTS(x , z)

∗x = y ∀z ∈ Px . Pz ⊇ Py ∀z ∈ Px . UnifyPTS(y , z)

x p q r

y a b c

Points-to graph before
the assignment

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 27/55

Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y}
Px ⊇ {y}
∀z ∈ Px . Unify (y , z)

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz . ∀z ∈ Py ∀z ∈ Py . UnifyPTS(x , z)

∗x = y ∀z ∈ Px . Pz ⊇ Py ∀z ∈ Px . UnifyPTS(y , z)

x p q r

y a b c

Points-to graph before
the assignment

x p q r

y a b c

Andersen’s graph after
the assignment

In
cl
u
si
o
n

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 27/55

Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y}
Px ⊇ {y}
∀z ∈ Px . Unify (y , z)

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz . ∀z ∈ Py ∀z ∈ Py . UnifyPTS(x , z)

∗x = y ∀z ∈ Px . Pz ⊇ Py ∀z ∈ Px . UnifyPTS(y , z)

x p q r

y a b c

Points-to graph before
the assignment

x p q r

y a b c

Andersen’s graph after
the assignment

In
cl
u
si
o
n x p q r

y a b

c

Steensgaard’s graph after
the assignment

E
q
u
al
it
y

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 27/55

Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y}
Px ⊇ {y}
∀z ∈ Px . Unify (y , z)

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz . ∀z ∈ Py ∀z ∈ Py . UnifyPTS(x , z)

∗x = y ∀z ∈ Px . Pz ⊇ Py ∀z ∈ Px . UnifyPTS(y , z)

x p q r

y a b c

Points-to graph before
the assignment

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 28/55

Example of Inclusion Based (aka Andersen’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Type declarations

struct s {
struct s *n;

int m;

} *x, *y, a, b, c, d;

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 28/55

Example of Inclusion Based (aka Andersen’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1 Px ⊇ {a}

2 Py ⊇ {b}

3 ∀z ∈ Px ,Pz.n ⊇ Py

4 Py ⊇ Px

5 ∀z ∈ Px ,Pz.n ⊇ {c}

6 Px ⊇ {d}

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 28/55

Example of Inclusion Based (aka Andersen’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1 Px ⊇ {a}

2 Py ⊇ {b}

3 ∀z ∈ Px ,Pz.n ⊇ Py

4 Py ⊇ Px

5 ∀z ∈ Px ,Pz.n ⊇ {c}

6 Px ⊇ {d}

Points-to Graph

x

a

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 28/55

Example of Inclusion Based (aka Andersen’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1 Px ⊇ {a}

2 Py ⊇ {b}

3 ∀z ∈ Px ,Pz.n ⊇ Py

4 Py ⊇ Px

5 ∀z ∈ Px ,Pz.n ⊇ {c}

6 Px ⊇ {d}

Points-to Graph

x

a

y

b

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 28/55

Example of Inclusion Based (aka Andersen’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1 Px ⊇ {a}

2 Py ⊇ {b}

3 ∀z ∈ Px ,Pz.n ⊇ Py

4 Py ⊇ Px

5 ∀z ∈ Px ,Pz.n ⊇ {c}

6 Px ⊇ {d}

Points-to Graph

x

a

y

b

n

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 28/55

Example of Inclusion Based (aka Andersen’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1 Px ⊇ {a}

2 Py ⊇ {b}

3 ∀z ∈ Px ,Pz.n ⊇ Py

4 Py ⊇ Px

5 ∀z ∈ Px ,Pz.n ⊇ {c}

6 Px ⊇ {d}

Points-to Graph

x

a

y

b

n

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 28/55

Example of Inclusion Based (aka Andersen’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1 Px ⊇ {a}

2 Py ⊇ {b}

3 ∀z ∈ Px ,Pz.n ⊇ Py

4 Py ⊇ Px

5 ∀z ∈ Px ,Pz.n ⊇ {c}

6 Px ⊇ {d}

Points-to Graph

x

a

y

b

n

cn

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 28/55

Example of Inclusion Based (aka Andersen’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1 Px ⊇ {a}

2 Py ⊇ {b}

3 ∀z ∈ Px ,Pz.n ⊇ Py

4 Py ⊇ Px

5 ∀z ∈ Px ,Pz.n ⊇ {c}

6 Px ⊇ {d}

Points-to Graph

x

a

y

b

n

cn
d

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 28/55

Example of Inclusion Based (aka Andersen’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1 Px ⊇ {a}

2 Py ⊇ {b}

3 ∀z ∈ Px ,Pz.n ⊇ Py

4 Py ⊇ Px

5 ∀z ∈ Px ,Pz.n ⊇ {c}

6 Px ⊇ {d}

Points-to Graph

x

a

y

b

n

cn
d

n

n

• Since Px has changed, constraints 3, 4, and 5 needs
to be processed again

• Order of processing the sets influences the efficiency
of this fixed point computation significantly

• A plethora of heuristics have been proposed

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 28/55

Example of Inclusion Based (aka Andersen’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1 Px ⊇ {a}

2 Py ⊇ {b}

3 ∀z ∈ Px ,Pz.n ⊇ Py

4 Py ⊇ Px

5 ∀z ∈ Px ,Pz.n ⊇ {c}

6 Px ⊇ {d}

Points-to Graph

x

a

y

b

n

cn
d

n

n

n

n n

• Since Px has changed, constraints 3, 4, and 5 needs
to be processed again

• Order of processing the sets influences the efficiency
of this fixed point computation significantly

• A plethora of heuristics have been proposed

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 28/55

Example of Inclusion Based (aka Andersen’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1 Px ⊇ {a}

2 Py ⊇ {b}

3 ∀z ∈ Px ,Pz.n ⊇ Py

4 Py ⊇ Px

5 ∀z ∈ Px ,Pz.n ⊇ {c}

6 Px ⊇ {d}

Points-to Graph

x

a

y

b

n

cn
d

n

n

n

n n

x

a

y

cn
d• Actual graph after statement 6

(red box on the right) is much
simpler with many edges killed

• y does not point to d any time
in the execution

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 28/55

Example of Inclusion Based (aka Andersen’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1 Px ⊇ {a}

2 Py ⊇ {b}

3 ∀z ∈ Px ,Pz.n ⊇ Py

4 Py ⊇ Px

5 ∀z ∈ Px ,Pz.n ⊇ {c}

6 Px ⊇ {d}

Points-to Graph

x

a

y

b

n

cn
d

n

n

n

n n

x

a

y

cn
d

b

n
• A union of all graphs at each

program point

• y does not point to d any time
in the execution

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 29/55

Example of Equality Based (aka Steensgaard’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 29/55

Example of Equality Based (aka Steensgaard’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1
Px ⊇ {a}
∀z ∈ Px ,Unify (a, z)

2
Py ⊇ {b}
∀z ∈ Py ,Unify (b, z)

3 ∀z ∈ Px ,UnifyPTS(y , z .n)

4 UnifyPTS(x , y)

5
∀z ∈ Px ,Pz.n ⊇ {c}
∀w ∈ Pz.n,Unify (w , c)

6
Px ⊇ {d}
∀z ∈ Px ,Unify (d , z)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 29/55

Example of Equality Based (aka Steensgaard’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1
Px ⊇ {a}
∀z ∈ Px ,Unify (a, z)

2
Py ⊇ {b}
∀z ∈ Py ,Unify (b, z)

3 ∀z ∈ Px ,UnifyPTS(y , z .n)

4 UnifyPTS(x , y)

5
∀z ∈ Px ,Pz.n ⊇ {c}
∀w ∈ Pz.n,Unify (w , c)

6
Px ⊇ {d}
∀z ∈ Px ,Unify (d , z)

Points-to Graph

x

a

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 29/55

Example of Equality Based (aka Steensgaard’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1
Px ⊇ {a}
∀z ∈ Px ,Unify (a, z)

2
Py ⊇ {b}
∀z ∈ Py ,Unify (b, z)

3 ∀z ∈ Px ,UnifyPTS(y , z .n)

4 UnifyPTS(x , y)

5
∀z ∈ Px ,Pz.n ⊇ {c}
∀w ∈ Pz.n,Unify (w , c)

6
Px ⊇ {d}
∀z ∈ Px ,Unify (d , z)

Points-to Graph

x

a

y

b

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 29/55

Example of Equality Based (aka Steensgaard’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1
Px ⊇ {a}
∀z ∈ Px ,Unify (a, z)

2
Py ⊇ {b}
∀z ∈ Py ,Unify (b, z)

3 ∀z ∈ Px ,UnifyPTS(y , z .n)

4 UnifyPTS(x , y)

5
∀z ∈ Px ,Pz.n ⊇ {c}
∀w ∈ Pz.n,Unify (w , c)

6
Px ⊇ {d}
∀z ∈ Px ,Unify (d , z)

Points-to Graph

x

a

y

b

n

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 29/55

Example of Equality Based (aka Steensgaard’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1
Px ⊇ {a}
∀z ∈ Px ,Unify (a, z)

2
Py ⊇ {b}
∀z ∈ Py ,Unify (b, z)

3 ∀z ∈ Px ,UnifyPTS(y , z .n)

4 UnifyPTS(x , y)

5
∀z ∈ Px ,Pz.n ⊇ {c}
∀w ∈ Pz.n,Unify (w , c)

6
Px ⊇ {d}
∀z ∈ Px ,Unify (d , z)

Points-to Graph

x

y

a
b

n

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 29/55

Example of Equality Based (aka Steensgaard’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1
Px ⊇ {a}
∀z ∈ Px ,Unify (a, z)

2
Py ⊇ {b}
∀z ∈ Py ,Unify (b, z)

3 ∀z ∈ Px ,UnifyPTS(y , z .n)

4 UnifyPTS(x , y)

5
∀z ∈ Px ,Pz.n ⊇ {c}
∀w ∈ Pz.n,Unify (w , c)

6
Px ⊇ {d}
∀z ∈ Px ,Unify (d , z)

Points-to Graph

x

y

a
b
c

n

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 29/55

Example of Equality Based (aka Steensgaard’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1
Px ⊇ {a}
∀z ∈ Px ,Unify (a, z)

2
Py ⊇ {b}
∀z ∈ Py ,Unify (b, z)

3 ∀z ∈ Px ,UnifyPTS(y , z .n)

4 UnifyPTS(x , y)

5
∀z ∈ Px ,Pz.n ⊇ {c}
∀w ∈ Pz.n,Unify (w , c)

6
Px ⊇ {d}
∀z ∈ Px ,Unify (d , z)

Points-to Graph

x

y

a
b
c
d

n

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 29/55

Example of Equality Based (aka Steensgaard’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1
Px ⊇ {a}
∀z ∈ Px ,Unify (a, z)

2
Py ⊇ {b}
∀z ∈ Py ,Unify (b, z)

3 ∀z ∈ Px ,UnifyPTS(y , z .n)

4 UnifyPTS(x , y)

5
∀z ∈ Px ,Pz.n ⊇ {c}
∀w ∈ Pz.n,Unify (w , c)

6
Px ⊇ {d}
∀z ∈ Px ,Unify (d , z)

Points-to Graph

x

y

a
b
c
d

n

No further change

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 29/55

Example of Equality Based (aka Steensgaard’s) Points-to
Analysis

x = &a

Program

1

y = &b2

x→n = y3

y = x4

x→n = &c5

x = &d6

Node Constraint

1
Px ⊇ {a}
∀z ∈ Px ,Unify (a, z)

2
Py ⊇ {b}
∀z ∈ Py ,Unify (b, z)

3 ∀z ∈ Px ,UnifyPTS(y , z .n)

4 UnifyPTS(x , y)

5
∀z ∈ Px ,Pz.n ⊇ {c}
∀w ∈ Pz.n,Unify (w , c)

6
Px ⊇ {d}
∀z ∈ Px ,Unify (d , z)

Points-to Graph

x

y

a
b
c
d

n

a b

c d

x

y

Red edges represent field n in the the
full blown up graph. It has far more
edges than in Andersen’s graph

Far more efficient but far less precise

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 30/55

Comparing Equality and Inclusion Based Analyses

• Andersen’s algorithm is cubic in number of pointers

• Steensgaard’s algorithm is nearly linear in number of pointers

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 30/55

Comparing Equality and Inclusion Based Analyses

• Andersen’s algorithm is cubic in number of pointers

• Steensgaard’s algorithm is nearly linear in number of pointers

◦ How can it be more efficient by an orders of magnitude?

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 31/55

Efficiency of Equality Based Approach

Program Andersen’s approach Steensgaard’s approach

a = &b
a = &c
b.n = &d
b.n = &c

• Andersen’s inclusion based wisdom:

◦ Add edges and let the number of successors increase

• Steensgaard’s equality based wisdom:

◦ Merge multiple successors and maintain a single successor of any
node

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 31/55

Efficiency of Equality Based Approach

Program Andersen’s approach Steensgaard’s approach

a = &b
a = &c
b.n = &d
b.n = &c

a

b

a

b

• Andersen’s inclusion based wisdom:

◦ Add edges and let the number of successors increase

• Steensgaard’s equality based wisdom:

◦ Merge multiple successors and maintain a single successor of any
node

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 31/55

Efficiency of Equality Based Approach

Program Andersen’s approach Steensgaard’s approach

a = &b
a = &c
b.n = &d
b.n = &c

a

b

c

a

b

c

• Andersen’s inclusion based wisdom:

◦ Add edges and let the number of successors increase

• Steensgaard’s equality based wisdom:

◦ Merge multiple successors and maintain a single successor of any
node

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 31/55

Efficiency of Equality Based Approach

Program Andersen’s approach Steensgaard’s approach

a = &b
a = &c
b.n = &d
b.n = &c

a

b

c

a
b
c

• Andersen’s inclusion based wisdom:

◦ Add edges and let the number of successors increase

• Steensgaard’s equality based wisdom:

◦ Merge multiple successors and maintain a single successor of any
node

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 31/55

Efficiency of Equality Based Approach

Program Andersen’s approach Steensgaard’s approach

a = &b
a = &c
b.n = &d
b.n = &c

a

b

c

d
n

a
b
c d

• Andersen’s inclusion based wisdom:

◦ Add edges and let the number of successors increase

• Steensgaard’s equality based wisdom:

◦ Merge multiple successors and maintain a single successor of any
node

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 31/55

Efficiency of Equality Based Approach

Program Andersen’s approach Steensgaard’s approach

a = &b
a = &c
b.n = &d
b.n = &c

a

b

c

d
n

n a
b
c d

• Andersen’s inclusion based wisdom:

◦ Add edges and let the number of successors increase

• Steensgaard’s equality based wisdom:

◦ Merge multiple successors and maintain a single successor of any
node

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 31/55

Efficiency of Equality Based Approach

Program Andersen’s approach Steensgaard’s approach

a = &b
a = &c
b.n = &d
b.n = &c

a

b

c

d
n

n a
b
c
d

n

• Andersen’s inclusion based wisdom:

◦ Add edges and let the number of successors increase

• Steensgaard’s equality based wisdom:

◦ Merge multiple successors and maintain a single successor of any
node

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 31/55

Efficiency of Equality Based Approach

Program Andersen’s approach Steensgaard’s approach

a = &b
a = &c
b.n = &d
b.n = &c

a

b

c

d
n

n a
b
c
d

n

• Andersen’s inclusion based wisdom:

◦ Add edges and let the number of successors increase

• Steensgaard’s equality based wisdom:

◦ Merge multiple successors and maintain a single successor of any
node

◦ Since a larger number of pointers treated are alike and fewer
distinctions are maintained, we get much smaller points-to graphs

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 31/55

Efficiency of Equality Based Approach

Program Andersen’s approach Steensgaard’s approach

a = &b
a = &c
b.n = &d
b.n = &c

a

b

c

d
n

n a
b
c
d

n

• Andersen’s inclusion based wisdom:

◦ Add edges and let the number of successors increase

• Steensgaard’s equality based wisdom:

◦ Merge multiple successors and maintain a single successor of any
node

◦ Since a larger number of pointers treated are alike and fewer
distinctions are maintained, we get much smaller points-to graphs

◦ Efficient Union-Find algorithms to merge intersecting subsets

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 32/55

Inclusion Based (aka Andersen’s) Points-to Analysis:
Example 2

x = &u
y = &v

struct s {
struct s *f;

int n;

} *x, *y, u, v;

y → f = x y = &u

4
use v .f
use x

4

1

2 3

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 32/55

Inclusion Based (aka Andersen’s) Points-to Analysis:
Example 2

x = &u
y = &v

struct s {
struct s *f;

int n;

} *x, *y, u, v;

y → f = x y = &u

4
use v .f
use x

4

1

2 3

x

Andersen’s Points-to Graph

u

y v

• x “points-to” u

• y “points-to” v

Constraints on
Points-to Sets

Px ⊇ {u}
Py ⊇ {v}

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 32/55

Inclusion Based (aka Andersen’s) Points-to Analysis:
Example 2

x = &u
y = &v

struct s {
struct s *f;

int n;

} *x, *y, u, v;

y → f = x y = &u

4
use v .f
use x

4

1

2 3

x

Andersen’s Points-to Graph

u

y v

• The f field of
pointees of y should
point to pointees of x
also

• The f field of v
should point to u also

Constraints on
Points-to Sets

Px ⊇ {u}
Py ⊇ {v}

∀w ∈ Py , Pw.f ⊇ Px

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 32/55

Inclusion Based (aka Andersen’s) Points-to Analysis:
Example 2

x = &u
y = &v

struct s {
struct s *f;

int n;

} *x, *y, u, v;

y → f = x y = &u

4
use v .f
use x

4

1

2 3

x

Andersen’s Points-to Graph

u

y v

• The f field of
pointees of y should
point to pointees of x
also

• The f field of v
should point to u also

f

Constraints on
Points-to Sets

Px ⊇ {u}
Py ⊇ {v}

∀w ∈ Py , Pw.f ⊇ Px

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 32/55

Inclusion Based (aka Andersen’s) Points-to Analysis:
Example 2

x = &u
y = &v

struct s {
struct s *f;

int n;

} *x, *y, u, v;

y → f = x y = &u

4
use v .f
use x

4

1

2 3

x

Andersen’s Points-to Graph

u

y v

• y should point to u
also

f

Constraints on
Points-to Sets

Px ⊇ {u}
Py ⊇ {v}

∀w ∈ Py , Pw.f ⊇ Px

Py ⊇ {u}

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 32/55

Inclusion Based (aka Andersen’s) Points-to Analysis:
Example 2

x = &u
y = &v

struct s {
struct s *f;

int n;

} *x, *y, u, v;

y → f = x y = &u

4
use v .f
use x

4

1

2 3

x

Andersen’s Points-to Graph

u

y v

• y should point to u
also

f

Constraints on
Points-to Sets

Px ⊇ {u}
Py ⊇ {v}

∀w ∈ Py , Pw.f ⊇ Px

Py ⊇ {u}

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 32/55

Inclusion Based (aka Andersen’s) Points-to Analysis:
Example 2

x = &u
y = &v

struct s {
struct s *f;

int n;

} *x, *y, u, v;

y → f = x y = &u

4
use v .f
use x

4

1

2 3

x

Andersen’s Points-to Graph

u

y v
f

Constraints on
Points-to Sets

Px ⊇ {u}
Py ⊇ {v}

∀w ∈ Py , Pw.f ⊇ Px

Py ⊇ {u}

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 32/55

Inclusion Based (aka Andersen’s) Points-to Analysis:
Example 2

x = &u
y = &v

struct s {
struct s *f;

int n;

} *x, *y, u, v;

y → f = x y = &u

4
use v .f
use x

4

1

2 3

x

Andersen’s Points-to Graph

u

y v
f

f

Constraints on
Points-to Sets

Px ⊇ {u}
Py ⊇ {v}

∀w ∈ Py , Pw.f ⊇ Px

Py ⊇ {u}

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 32/55

Inclusion Based (aka Andersen’s) Points-to Analysis:
Example 2

x = &u
y = &v

struct s {
struct s *f;

int n;

} *x, *y, u, v;

y → f = x y = &u

4
use v .f
use x

4

1

2 3

x

Andersen’s Points-to Graph

u

y v
f

f

Constraints on
Points-to Sets

Px ⊇ {u}
Py ⊇ {v}

∀w ∈ Py , Pw.f ⊇ Px

Py ⊇ {u}

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 33/55

Equality Based (aka Steensgaard’s) Points-to Analysis:
Example 2

x = &u
y = &v

struct s {
struct s *f;

int n;

} *x, *y, u, v;

y → f = x y = &u

4
use v .f
use x

4

1

2 3

x u

y v
f

f

Andersen’s Points-to Graph

• Treat all pointees of a
pointer as “equivalent”
locations

• Transitive closure

Pointees of all
equivalent locations
become equivalent

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 33/55

Equality Based (aka Steensgaard’s) Points-to Analysis:
Example 2

x = &u
y = &v

struct s {
struct s *f;

int n;

} *x, *y, u, v;

y → f = x y = &u

4
use v .f
use x

4

1

2 3

x u

y v
f

f

Andersen’s Points-to Graph

• Treat all pointees of a
pointer as “equivalent”
locations

• Transitive closure

Pointees of all
equivalent locations
become equivalent

Effective additional
constraints

Unify(u, v)
/* pointees of y */

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 33/55

Equality Based (aka Steensgaard’s) Points-to Analysis:
Example 2

x = &u
y = &v

struct s {
struct s *f;

int n;

} *x, *y, u, v;

y → f = x y = &u

4
use v .f
use x

4

1

2 3

x u

y v
f

f

Steengaard’s Points-to Graph

• Treat all pointees of a
pointer as “equivalent”
locations

• Transitive closure

Pointees of all
equivalent locations
become equivalent

Effective additional
constraints

Unify(u, v)
/* pointees of y */

⇒ u, v are
equivalent

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 33/55

Equality Based (aka Steensgaard’s) Points-to Analysis:
Example 2

x = &u
y = &v

struct s {
struct s *f;

int n;

} *x, *y, u, v;

y → f = x y = &u

4
use v .f
use x

4

1

2 3

x u

y v

f

f

ff

Steengaard’s Points-to Graph

• Treat all pointees of a
pointer as “equivalent”
locations

• Transitive closure

Pointees of all
equivalent locations
become equivalent

Effective additional
constraints

Unify(u, v)
/* pointees of y */

⇒ u, v are
equivalent

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 33/55

Equality Based (aka Steensgaard’s) Points-to Analysis:
Example 2

x = &u
y = &v

struct s {
struct s *f;

int n;

} *x, *y, u, v;

y → f = x y = &u

4
use v .f
use x

4

1

2 3

x u

y v

f

f

ff

Steengaard’s Points-to Graph

• Treat all pointees of a
pointer as “equivalent”
locations

• Transitive closure

Pointees of all
equivalent locations
become equivalent

Effective additional
constraints

Unify(u, v)
/* pointees of y */

⇒ u, v are
equivalent

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 34/55

Tutorial Problem for Flow-Insensitive Pointer Analysis

Program Inclusion based Equality based

p = &q
r = &s
t = &p
u = p
∗t = r

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 34/55

Tutorial Problem for Flow-Insensitive Pointer Analysis

Program Inclusion based Equality based

p = &q
r = &s
t = &p
u = p
∗t = r

t

u

r

p

q

s

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 34/55

Tutorial Problem for Flow-Insensitive Pointer Analysis

Program Inclusion based Equality based

p = &q
r = &s
t = &p
u = p
∗t = r

t

u

r

p

q

s

t

u

r

p

q

s

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 34/55

Tutorial Problem for Flow-Insensitive Pointer Analysis

Program Inclusion based Equality based

p = &q
r = &s
t = &p
u = p
∗t = r

t

u

r

p

q

s

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 34/55

Tutorial Problem for Flow-Insensitive Pointer Analysis

Program Inclusion based Equality based

p = &q
r = &s
t = &p
u = p
∗t = r

t

u

r

p

q

s

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 34/55

Tutorial Problem for Flow-Insensitive Pointer Analysis

Program Inclusion based Equality based

p = &q
r = &s
t = &p
u = p
∗t = r

t

u

r

p

q

s

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 34/55

Tutorial Problem for Flow-Insensitive Pointer Analysis

Program Inclusion based Equality based

p = &q
r = &s
t = &p
u = p
∗t = r

t

u

r

p

q

s

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 34/55

Tutorial Problem for Flow-Insensitive Pointer Analysis

Program Inclusion based Equality based

p = &q
r = &s
t = &p
u = p
∗t = r

t

u

r

p

q

s

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 34/55

Tutorial Problem for Flow-Insensitive Pointer Analysis

Program Inclusion based Equality based

p = &q
r = &s
t = &p
u = p
∗t = r

t

u

r

p

q

s

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 34/55

Tutorial Problem for Flow-Insensitive Pointer Analysis

Program Inclusion based Equality based

p = &q
r = &s
t = &p
u = p
∗t = r

t

u

r

p

q

s

t

u

r

p

q

s

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 34/55

Tutorial Problem for Flow-Insensitive Pointer Analysis

Program Inclusion based Equality based

p = &q
r = &s
t = &p
u = p
∗t = r

t

u

r

p

q

s

t

u

r

p

q

s

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 34/55

Tutorial Problem for Flow-Insensitive Pointer Analysis

Program Inclusion based Equality based

p = &q
r = &s
t = &p
u = p
∗t = r

t

u

r

p

q

s

t

u

r

p

q

s

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 34/55

Tutorial Problem for Flow-Insensitive Pointer Analysis

Program Inclusion based Equality based

p = &q
r = &s
t = &p
u = p
∗t = r

t

u

r

p

q

s

t

u

r

p

q

s

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 34/55

Tutorial Problem for Flow-Insensitive Pointer Analysis

Program Inclusion based Equality based

p = &q
r = &s
t = &p
u = p
∗t = r

t

u

r

p

q

s

t

u

r

p

q

s

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 34/55

Tutorial Problem for Flow-Insensitive Pointer Analysis

Program Inclusion based Equality based

p = &q
r = &s
t = &p
u = p
∗t = r

t

u

r

p

q

s

t

u

r

p

q

s

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 34/55

Tutorial Problem for Flow-Insensitive Pointer Analysis

Program Inclusion based Equality based

p = &q
r = &s
t = &p
u = p
∗t = r

t

u

r

p

q

s

t

u

r

p

q

s

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Insensitive PTA 34/55

Tutorial Problem for Flow-Insensitive Pointer Analysis

Program Inclusion based Equality based

p = &q
r = &s
t = &p
u = p
∗t = r

t

u

r

p

q

s

t

u

r

p

q

s

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 35/55

An Outline of Pointer Analysis Coverage

• The larger perspective

• IR for Points-to Analysis

• Flow-Insensitive Points-to Analysis

• Flow-Sensitive Points-to Analysis Next Topic

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 36/55

Must Points-to Information

1 x = &a 1

2 x = &b 2 3 x = &b 3

4 x = &b 4

a a
x a
b a

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 36/55

Must Points-to Information

1 x = &a 1

2 x = &b 2 3 x = &b 3

4 x = &b 4

a a
x a
b a

a a
x a
b a

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 37/55

May Points-to Information

1 x = &a 1

2 x = &b 2 3 x = &b 3

4 x = &b 4

a a
x a
b a

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 37/55

May Points-to Information

1 x = &a 1

2 x = &b 2 3 x = &b 3

4 x = &b 4

a a
x a
b a

a a
x a
b a

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 38/55

Strong and Weak Updates

1 x = &a 1

2
y = &b
w = &c 2

3 z = &x 3 4 z = &y 4

5
∗z = &e
∗w = &e 5

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 38/55

Strong and Weak Updates

1 x = &a 1

2
y = &b
w = &c 2

3 z = &x 3 4 z = &y 4

5
∗z = &e
∗w = &e 5

• Weak update: Modification of x or y
due to ∗z in block 5

Only Gen, No Kill

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 38/55

Strong and Weak Updates

1 x = &a 1

2
y = &b
w = &c 2

3 z = &x 3 4 z = &y 4

5
∗z = &e
∗w = &e 5

• Weak update: Modification of x or y
due to ∗z in block 5

Only Gen, No Kill

• Strong update: Modification of c due
to ∗w in block 5

Both Gen and Kill

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 38/55

Strong and Weak Updates

1 x = &a 1

2
y = &b
w = &c 2

3 z = &x 3 4 z = &y 4

5
∗z = &e
∗w = &e 5

• Weak update: Modification of x or y
due to ∗z in block 5

Only Gen, No Kill

• Strong update: Modification of c due
to ∗w in block 5

Both Gen and Kill

• How is this concept related to
May/Must nature of information?

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 39/55

May and Must Analysis for Killing Points-to Information (1)

MFP of May Points-to Analysis
MFP of Must Points-to Analysis

1 a=&b 1

c=&a c=d

4 ∗c=&e 4

5 ∗c=e 4

2 3

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 39/55

May and Must Analysis for Killing Points-to Information (1)

MFP of May Points-to Analysis

• (a, b) should be in
MayIn5

Holds along path 1-3-4

• (a, b) should not be
killed in node 4

• Possible if pointee set
of c is ∅

• However, MayIn4
contains (c , a)

MFP of Must Points-to Analysis

1 a=&b 1

c=&a c=d

4 ∗c=&e 4

5 ∗c=e 4

2 3

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 39/55

May and Must Analysis for Killing Points-to Information (1)

MFP of May Points-to Analysis

• (a, b) should be in
MayIn5

Holds along path 1-3-4

• (a, b) should not be
killed in node 4

• Possible if pointee set
of c is ∅

• However, MayIn4
contains (c , a)

MFP of Must Points-to Analysis

• (a, b) should not be in
MustIn5

Does not hold along path
1-2-4

• (a, b) should be killed in
node 4

• Possible if pointee set of
c is {a}

• However, the pointee set
of c is ∅ in MustIn4

1 a=&b 1

c=&a c=d

4 ∗c=&e 4

5 ∗c=e 4

2 3

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 39/55

May and Must Analysis for Killing Points-to Information (1)

MFP of May Points-to Analysis

• (a, b) should be in
MayIn5

Holds along path 1-3-4

• (a, b) should not be
killed in node 4

• Possible if pointee set
of c is ∅ (Use MustIn4)

• However, MayIn4
contains (c , a) (Use
MustIn4)

MFP of Must Points-to Analysis

• (a, b) should not be in
MustIn5

Does not hold along path
1-2-4

• (a, b) should be killed in
node 4

• Possible if pointee set of
c is {a} (Use MayIn4)

• However, the pointee set
of c is ∅ in MustIn4 (Use
MayIn4)

1 a=&b 1

c=&a c=d

4 ∗c=&e 4

5 ∗c=e 4

2 3

For killing points-to information through indirection,

• Must points-to analysis should identify pointees of c using MayIn4

• May points-to analysis should identify pointees of c using MustIn4

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 40/55

May and Must Analysis for Killing Points-to Information (2)

• May Points-to analysis should remove a May points-to pair

◦ only if it must be removed along all paths

Kill should remove ONLY strong updates

⇒ should use Must Points-to information

• Must Points-to analysis should remove a Must points-to pair

◦ if it can be removed along any path

Kill should remove ALL weak updates

⇒ should use May Points-to information

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 41/55

Distinguishing Between Strong and Weak Updates

Indirect assignment
n : ∗x = . . .

pointer x has a
single pointee

pointer x has
multiple pointees

Every path reaching
n has a

definition of x

Strong update Weak update

Some path reaching
n does not have a
definition of x

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 41/55

Distinguishing Between Strong and Weak Updates

Indirect assignment
n : ∗x = . . .

pointer x has a
single pointee

pointer x has
multiple pointees

Every path reaching
n has a

definition of x

Strong update Weak update

Some path reaching
n does not have a
definition of x

Can be eliminated
if definition-free paths

are eliminated

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 41/55

Distinguishing Between Strong and Weak Updates

Indirect assignment
n : ∗x = . . .

pointer x has a
single pointee

pointer x has
multiple pointees

Every path reaching
n has a

definition of x

Strong update Weak update

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 42/55

Discovering Must Points-to Information from May Points-to
Information

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 42/55

Discovering Must Points-to Information from May Points-to
Information

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

• BI. every pointer points to “?”

Assume that e is a scalar

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 42/55

Discovering Must Points-to Information from May Points-to
Information

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

a ? b ?

c ?

• BI. every pointer points to “?”

Assume that e is a scalar

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 42/55

Discovering Must Points-to Information from May Points-to
Information

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

a ? b ?

c ?

c ?

a b e

• BI. every pointer points to “?”

Assume that e is a scalar

• Perform usual may points-to
analysis

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 42/55

Discovering Must Points-to Information from May Points-to
Information

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

a ? b ?

c ?

c ?

a b e

c ?

a b e

• BI. every pointer points to “?”

Assume that e is a scalar

• Perform usual may points-to
analysis

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 42/55

Discovering Must Points-to Information from May Points-to
Information

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

a ? b ?

c ?

c ?

a b e

c ?

a b e

c a b e

?

• BI. every pointer points to “?”

Assume that e is a scalar

• Perform usual may points-to
analysis

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 42/55

Discovering Must Points-to Information from May Points-to
Information

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

a ? b ?

c ?

c ?

a b e

c ?

a b e

c a b e

?

• BI. every pointer points to “?”

Assume that e is a scalar

• Perform usual may points-to
analysis

• Since c has multiple pointees, it
is a MAY relation

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 42/55

Discovering Must Points-to Information from May Points-to
Information

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

a ? b ?

c ?

c ?

a b e

c ?

a b e

c a b e

?

• BI. every pointer points to “?”

Assume that e is a scalar

• Perform usual may points-to
analysis

• Since c has multiple pointees, it
is a MAY relation

• Since a has a single pointee, it
is a MUST relation

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 42/55

Discovering Must Points-to Information from May Points-to
Information

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

a ? b ?

c ?

c ?

a b e

c ?

a b e

c a b e

?

The use of “?” to derive Must is valid
under the following conditions

If there is a definition free path from
Start to node i for pointer x , then
(x , ?) must reach Ini during the very
first visit to node i in the analysis.

Conversely, if there is no definition
free path from Start to node i for
pointer x , then (x , ?) must not reach
Ini during the very first visit to node i
in the analysis.

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 43/55

Relevant Algebraic Operations on Relations (1)

• Let P ⊆ V be the set of pointer variables

• May-points-to information: A =
〈

2P×V
,⊇

〉

• Standard algebraic operations on points-to relations

Given relation R ⊆ P× V and X ⊆ P,

◦ Relation application R X = {v | u ∈X ∧ (u, v) ∈R}

◦ Relation restriction (R |X) R |X = {(u, v) ∈ R | u ∈ X}

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 43/55

Relevant Algebraic Operations on Relations (1)

• Let P ⊆ V be the set of pointer variables

• May-points-to information: A =
〈

2P×V
,⊇

〉

• Standard algebraic operations on points-to relations

Given relation R ⊆ P× V and X ⊆ P,

◦ Relation application R X = {v | u ∈X ∧ (u, v) ∈R}
(Find out the pointees of the pointers contained in X)

◦ Relation restriction (R |X) R |X = {(u, v) ∈ R | u ∈ X}

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 43/55

Relevant Algebraic Operations on Relations (1)

• Let P ⊆ V be the set of pointer variables

• May-points-to information: A =
〈

2P×V
,⊇

〉

• Standard algebraic operations on points-to relations

Given relation R ⊆ P× V and X ⊆ P,

◦ Relation application R X = {v | u ∈X ∧ (u, v) ∈R}
(Find out the pointees of the pointers contained in X)

◦ Relation restriction (R |X) R |X = {(u, v) ∈ R | u ∈ X}
(Restrict the relation only to the pointers contained in X by
removing points-to information of other pointers)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 44/55

Relevant Algebraic Operations on Relations (2)

Let
V = {a, b, c , d , e, f , g , ?}
P = {a, b, c , d , e}
R = {(a, b), (a, c), (b, d), (c , e), (c , g), (d , a), (e, ?)}
X = {a, c}

Then,
R X = {v | u ∈X ∧ (u, v) ∈R}

R |X = {(u, v) ∈ R | u ∈ X}

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 44/55

Relevant Algebraic Operations on Relations (2)

Let
V = {a, b, c , d , e, f , g , ?}
P = {a, b, c , d , e}
R = {(a, b), (a, c), (b, d), (c , e), (c , g), (d , a), (e, ?)}
X = {a, c}

Then,
R X = {v | u ∈X ∧ (u, v) ∈R}

= {b, c , e, g}
R |X = {(u, v) ∈ R | u ∈ X}

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 44/55

Relevant Algebraic Operations on Relations (2)

Let
V = {a, b, c , d , e, f , g , ?}
P = {a, b, c , d , e}
R = {(a, b), (a, c), (b, d), (c , e), (c , g), (d , a), (e, ?)}
X = {a, c}

Then,
R X = {v | u ∈X ∧ (u, v) ∈R}

= {b, c , e, g}
R |X = {(u, v) ∈ R | u ∈ X}

= {(a, b), (a, c), (c , e), (c , g)}

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 45/55

Points-to Analysis Data Flow Equations

Pinn =











V×{?} n is Startp
⋃

p∈pred(n)

Poutp otherwise

Poutn =
(

Pinn −
(

Killn × V
))

∪
(

Defn × Pointeen

)

• Pin/Pout: sets of may points-to pairs

• Killn, Defn, and Pointeen are defined in terms of Pinn

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 45/55

Points-to Analysis Data Flow Equations

Pinn =











V×{?} n is Startp
⋃

p∈pred(n)

Poutp otherwise

Poutn =
(

Pinn −
(

Killn × V
))

∪
(

Defn × Pointeen

)

• Pin/Pout: sets of may points-to pairs

• Killn, Defn, and Pointeen are defined in terms of Pinn

Pointers whose
points-to relations should

be removed for
strong update

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 45/55

Points-to Analysis Data Flow Equations

Pinn =











V×{?} n is Startp
⋃

p∈pred(n)

Poutp otherwise

Poutn =
(

Pinn −
(

Killn × V
))

∪
(

Defn × Pointeen

)

• Pin/Pout: sets of may points-to pairs

• Killn, Defn, and Pointeen are defined in terms of Pinn

Pointers that are
defined (i.e. pointers in
which addresses are

stored)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 45/55

Points-to Analysis Data Flow Equations

Pinn =











V×{?} n is Startp
⋃

p∈pred(n)

Poutp otherwise

Poutn =
(

Pinn −
(

Killn × V
))

∪
(

Defn × Pointeen

)

• Pin/Pout: sets of may points-to pairs

• Killn, Defn, and Pointeen are defined in terms of Pinn

Pointees (i.e. locations
whose addresses are

stored)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 45/55

Points-to Analysis Data Flow Equations

Pinn =











V×{?} n is Startp
⋃

p∈pred(n)

Poutp otherwise

Poutn =
(

Pinn −
(

Killn × V
))

∪
(

Defn × Pointeen

)

• Pin/Pout: sets of may points-to pairs

• Killn, Defn, and Pointeen are defined in terms of Pinn

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 46/55

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x
x = &a

x = y

x = ∗y

∗x = y

other

Values defined in terms of Pinn (denoted P)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 46/55

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x
x = &a

x = y

x = ∗y

∗x = y

other

Values defined in terms of Pinn (denoted P)

Pointers that are
defined (i.e. pointers in
which addresses are

stored)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 46/55

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x
x = &a

x = y

x = ∗y

∗x = y

other

Values defined in terms of Pinn (denoted P)

Pointees (i.e. locations
whose addresses are

stored)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 46/55

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x
x = &a

x = y

x = ∗y

∗x = y

other

Values defined in terms of Pinn (denoted P)

Pointers whose
points-to relations should

be removed for
strong update

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 46/55

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a

x = y

x = ∗y

∗x = y

other

Values defined in terms of Pinn (denoted P)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 46/55

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}

x = y

x = ∗y

∗x = y

other

Values defined in terms of Pinn (denoted P)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 46/55

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}

x = y {x} {x} P{y}

x = ∗y

∗x = y

other

Values defined in terms of Pinn (denoted P)

Pointees of y in
Pinn are the targets of

defined pointers

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 46/55

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}

x = y {x} {x} P{y}

x = ∗y {x} {x} P(P{y} ∩ P)

∗x = y

other

Values defined in terms of Pinn (denoted P)

Pointees of those
pointees of y in Pinn which

are pointers

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 46/55

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}

x = y {x} {x} P{y}

x = ∗y {x} {x} P(P{y} ∩ P)

∗x = y P{x} ∩ P Must(P){x} ∩ P P{y}

other

Values defined in terms of Pinn (denoted P)

Pointees of
x in Pinn receive new

addresses

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 46/55

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}

x = y {x} {x} P{y}

x = ∗y {x} {x} P(P{y} ∩ P)

∗x = y P{x} ∩ P Must(P){x} ∩ P P{y}

other

Must(R) =
⋃

z∈P

{z} ×

{

{w} R{z} = {w} ∧ w 6= ?

∅ otherwise

Values defined in terms of Pinn (denoted P)Strong update using
must-points-to information

computed from Pinn

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 46/55

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}

x = y {x} {x} P{y}

x = ∗y {x} {x} P(P{y} ∩ P)

∗x = y P{x} ∩ P Must(P){x} ∩ P P{y}

other

Must(R) =
⋃

z∈P

{z} ×

{

{w} R{z} = {w} ∧ w 6= ?

∅ otherwise

Values defined in terms of Pinn (denoted P)Strong update using
must-points-to information

computed from Pinn

Find out
must-pointees of

all pointers

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 46/55

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}

x = y {x} {x} P{y}

x = ∗y {x} {x} P(P{y} ∩ P)

∗x = y P{x} ∩ P Must(P){x} ∩ P P{y}

other

Must(R) =
⋃

z∈P

{z} ×

{

{w} R{z} = {w} ∧ w 6= ?

∅ otherwise

Values defined in terms of Pinn (denoted P)Strong update using
must-points-to information

computed from Pinn

z has a single pointee
w in must-points-to

relation

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 46/55

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}

x = y {x} {x} P{y}

x = ∗y {x} {x} P(P{y} ∩ P)

∗x = y P{x} ∩ P Must(P){x} ∩ P P{y}

other

Must(R) =
⋃

z∈P

{z} ×

{

{w} R{z} = {w} ∧ w 6= ?

∅ otherwise

Values defined in terms of Pinn (denoted P)Strong update using
must-points-to information

computed from Pinn

z has no pointee
in must-points-to

relation

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 46/55

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}

x = y {x} {x} P{y}

x = ∗y {x} {x} P(P{y} ∩ P)

∗x = y P{x} ∩ P Must(P){x} ∩ P P{y}

other

Must(R) =
⋃

z∈P

{z} ×

{

{w} R{z} = {w} ∧ w 6= ?

∅ otherwise

Values defined in terms of Pinn (denoted P)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 46/55

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}

x = y {x} {x} P{y}

x = ∗y {x} {x} P(P{y} ∩ P)

∗x = y P{x} ∩ P Must(P){x} ∩ P P{y}

other

Must(R) =
⋃

z∈P

{z} ×

{

{w} R{z} = {w} ∧ w 6= ?

∅ otherwise

Values defined in terms of Pinn (denoted P)

Pointees of y in
Pinn are the targets of

defined pointers

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 46/55

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}

x = y {x} {x} P{y}

x = ∗y {x} {x} P(P{y} ∩ P)

∗x = y P{x} ∩ P Must(P){x} ∩ P P{y}

other ∅ ∅ ∅

Must(R) =
⋃

z∈P

{z} ×

{

{w} R{z} = {w} ∧ w 6= ?

∅ otherwise

Values defined in terms of Pinn (denoted P)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 46/55

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}

x = y {x} {x} P{y}

x = ∗y {x} {x} P(P{y} ∩ P)

∗x = y P{x} ∩ P Must(P){x} ∩ P P{y}

other ∅ ∅ ∅

Must(R) =
⋃

z∈P

{z} ×

{

{w} R{z} = {w} ∧ w 6= ?

∅ otherwise

Values defined in terms of Pinn (denoted P)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 46/55

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}

x = y {x} {x} P{y}

x = ∗y {x} {x} P(P{y} ∩ P)

∗x = y P{x} ∩ P Must(P){x} ∩ P P{y}

other ∅ ∅ ∅

Must(R) =
⋃

z∈P

{z} ×

{

{w} R{z} = {w} ∧ w 6= ?

∅ otherwise

Values defined in terms of Pinn (denoted P)

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 47/55

An Example of Flow-Sensitive May Points-to Analysis

n1

y = &v
z = &u
x = &w

n1

int w;

int *u, *v, *x;

int **y, **z;

n2 ∗z = x n2 n3 z = y n3

n4 Use u n4

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 47/55

An Example of Flow-Sensitive May Points-to Analysis

n1

y = &v
z = &u
x = &w

n1

int w;

int *u, *v, *x;

int **y, **z;

n2 ∗z = x n2 n3 z = y n3

n4 Use u n4

y

z

x

v

u

w

?

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 47/55

An Example of Flow-Sensitive May Points-to Analysis

n1

y = &v
z = &u
x = &w

n1

int w;

int *u, *v, *x;

int **y, **z;

n2 ∗z = x n2 n3 z = y n3

n4 Use u n4

y

z

x

v

u

w

?

y

z

x

v

u

w

?

y

z

x

v

u

w

?

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 47/55

An Example of Flow-Sensitive May Points-to Analysis

n1

y = &v
z = &u
x = &w

n1

int w;

int *u, *v, *x;

int **y, **z;

n2 ∗z = x n2 n3 z = y n3

n4 Use u n4

y

z

x

v

u

w

?

y

z

x

v

u

w

?

y

z

x

v

u

w

?

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 47/55

An Example of Flow-Sensitive May Points-to Analysis

n1

y = &v
z = &u
x = &w

n1

int w;

int *u, *v, *x;

int **y, **z;

n2 ∗z = x n2 n3 z = y n3

n4 Use u n4

y

z

x

v

u

w

?

y

z

x

v

u

w

?

y

z

x

v

u

w

?

y

z

x

v

u

w

?

Strong Update

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 47/55

An Example of Flow-Sensitive May Points-to Analysis

n1

y = &v
z = &u
x = &w

n1

int w;

int *u, *v, *x;

int **y, **z;

n2 ∗z = x n2 n3 z = y n3

n4 Use u n4

y

z

x

v

u

w

?

y

z

x

v

u

w

?

y

z

x

v

u

w

?

y

z

x

v

u

w

?

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 47/55

An Example of Flow-Sensitive May Points-to Analysis

n1

y = &v
z = &u
x = &w

n1

int w;

int *u, *v, *x;

int **y, **z;

n2 ∗z = x n2 n3 z = y n3

n4 Use u n4

y

z

x

v

u

w

?

y

z

x

v

u

w

?

y

z

x

v

u

w

?

y

z

x

v

u

w

?

y

z

x

v

u

w

?

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 47/55

An Example of Flow-Sensitive May Points-to Analysis

n1

y = &v
z = &u
x = &w

n1

int w;

int *u, *v, *x;

int **y, **z;

n2 ∗z = x n2 n3 z = y n3

n4 Use u n4

y

z

x

v

u

w

?

y

z

x

v

u

w

?

y

z

x

v

u

w

?

y

z

x

v

u

w

?

y

z

x

v

u

w

?

y

z

x

v

u

w

?

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 48/55

Tutorial Problem for Flow-Sensitive Pointer Analysis

int a, b, c , ∗p, ∗q, ∗r ;
int ∗∗ y , ∗∗∗x ;

x = &y

y = &r

q = &c

∗x = &p

p = &a

∗x = &q

∗y = &b

1

2

3

4

7

5

6

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 49/55

Solution of Tutorial Problem

Pinn Poutn

1 {(p, ?), (q, ?), (r , ?), (x , ?), (y , ?)} {(p, ?), (q, ?), (r , ?), (x , y), (y , ?)}

2 {(p, ?), (q, ?), (r , ?), (x , y), (y , ?)} {(p, ?), (q, ?), (r , ?), (x , y), (y , r)}

3 {(p, ?), (q, ?), (r , ?), (x , y), (y , r)} {(p, ?), (q, c), (r , ?), (x , y), (y , r)}

4 {(p, ?), (q, c), (r , ?), (x , y), (y , r)} {(p, ?), (q, c), (r , ?), (x , y), (y , p)}

5 {(p, ?), (q, ?), (r , ?), (x , y), (y , r)} {(p, a), (q, ?), (r , ?), (x , y), (y , r)}

6 {(p, a), (q, ?), (r , ?), (x , y), (y , r)} {(p, a), (q, ?), (r , ?), (x , y), (y , q)}

7
{(p, ?), (p, a), (q, ?), (q, c),

(r , ?), (x , y), (y , p)(y , q)}

{(p, ?), (p, a), (p, b), (q, ?), (q, c), (q, b),

(r , ?), (x , y), (y , p)(y , q)}

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 50/55

Extractor Functions in the Presence of Structures (1)

• We extend pointer to use field names as follows:

◦ pointer x is represented by (x , ∗), and
◦ pointer field f of structure variable x is represented by (x , f)
◦ points-to information is of the form ((x , f) y)

• For simplicity, we

◦ separate LHS and RHS assuming that
◦ only legal, type-correct pointer expressions are used in a statement

• From LHS, we extract Def and Kill as the sets of (x , ∗) or (a, f)

(x is a pointer variable and a is a structure variable)

• From RHS, we extract Pointee as the sets of variables x

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 51/55

What About Heap Data?

• Compile time entities, abstract entities, or summarized entities

• Three options:

◦ Represent all heap locations by a single abstract heap location
◦ Represent all heap locations of a particular type by a single abstract

heap location
◦ Represent all heap locations allocated at a given memory allocation

site by a single abstract heap location

• Summarization of pointer expression: Usually based on the length of
pointer expression

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 52/55

Allocation Site Based Abstraction of Points-to Graph

x = malloc(. . .)

y = x

y → f = malloc(. . .)

y = y → f

assert (y 6= NULL)

1

2

3

4

5

Program

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 52/55

Allocation Site Based Abstraction of Points-to Graph

x = malloc(. . .)

y = x

y → f = malloc(. . .)

y = y → f

assert (y 6= NULL)

1

2

3

4

5

Program

x

y

. . .

Memory graph representing multiple executions

f f f ff f

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 52/55

Allocation Site Based Abstraction of Points-to Graph

x = malloc(. . .)

y = x

y → f = malloc(. . .)

y = y → f

assert (y 6= NULL)

1

2

3

4

5

Program

x

y

. . .

Memory graph representing multiple executions

f f f ff f

x

y

Allocation-site based
points-to graph

f
f

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 52/55

Allocation Site Based Abstraction of Points-to Graph

x = malloc(. . .)

y = x

y → f = malloc(. . .)

y = y → f

assert (y 6= NULL)

1

2

3

4

5

Program

x

y

. . .

Memory graph representing multiple executions

f f f ff f

x

y

Allocation-site based
points-to graph

f
f

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 52/55

Allocation Site Based Abstraction of Points-to Graph

x = malloc(. . .)

y = x

y → f = malloc(. . .)

y = y → f

assert (y 6= NULL)

1

2

3

4

5

Program

x

y

. . .

Memory graph representing multiple executions

f f f ff f

x

y

Allocation-site based
points-to graph

f
f

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 53/55

Extractor Functions in the Presence of Structures (2)

LHS Defn Killn

x {(x , ∗)} {(x , ∗)}

∗ x {(z , ∗) | z ∈ A{(x , ∗)}} {(z , ∗) | z ∈ Must(A){(x , ∗)}}

x → f {(z , f) | z ∈ A{(x , ∗)}} {(z , f) | z ∈ Must(A){(x , ∗)}}

x .f {(x , f)} {(x , f)}

RHS Pointeen

&y {y}

y {z | z ∈ A{(y , ∗)}}

∗ y {z | z ∈ A{(w , ∗)},w ∈ A{(y , ∗)}}

y → f {z | z ∈ A{(w , f)},w ∈ A{(y , ∗)}}

y .f {z | z ∈ A{(y , f)}}

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 54/55

An Example of Flow-Sensitive May Points-to Analysis

x = &u
y = &v

y → f = x y = &u

4
use v .f
use x

4

1

2 3

Type Information

struct s {
struct s *f;

int n;

} *x, *y, u, v;

Andersen’s Points-to Graph

Steensgaard’s Points-to Graph

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 54/55

An Example of Flow-Sensitive May Points-to Analysis

x = &u
y = &v

y → f = x y = &u

4
use v .f
use x

4

1

2 3

Type Information

struct s {
struct s *f;

int n;

} *x, *y, u, v;

Andersen’s Points-to Graph

x u

y v
f

f

Steensgaard’s Points-to Graph

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 54/55

An Example of Flow-Sensitive May Points-to Analysis

x = &u
y = &v

y → f = x y = &u

4
use v .f
use x

4

1

2 3

Type Information

struct s {
struct s *f;

int n;

} *x, *y, u, v;

Andersen’s Points-to Graph

x u

y v
f

f

Steensgaard’s Points-to Graph

x u

y v

f

f

ff

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 54/55

An Example of Flow-Sensitive May Points-to Analysis

x = &u
y = &v

y → f = x y = &u

4
use v .f
use x

4

1

2 3

x u

y v

?
f

f Type Information

struct s {
struct s *f;

int n;

} *x, *y, u, v;

Andersen’s Points-to Graph

x u

y v
f

f

Steensgaard’s Points-to Graph

x u

y v

f

f

ff

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 54/55

An Example of Flow-Sensitive May Points-to Analysis

x = &u
y = &v

y → f = x y = &u

4
use v .f
use x

4

1

2 3

x u

y v

?
f

f

x u

y v

?
f

f

Type Information

struct s {
struct s *f;

int n;

} *x, *y, u, v;

Andersen’s Points-to Graph

x u

y v
f

f

Steensgaard’s Points-to Graph

x u

y v

f

f

ff

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 54/55

An Example of Flow-Sensitive May Points-to Analysis

x = &u
y = &v

y → f = x y = &u

4
use v .f
use x

4

1

2 3

x u

y v

?
f

f

x u

y v

?
f

f

x u

y v

?f

f

Type Information

struct s {
struct s *f;

int n;

} *x, *y, u, v;

Andersen’s Points-to Graph

x u

y v
f

f

Steensgaard’s Points-to Graph

x u

y v

f

f

ff

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 54/55

An Example of Flow-Sensitive May Points-to Analysis

x = &u
y = &v

y → f = x y = &u

4
use v .f
use x

4

1

2 3

x u

y v

?
f

f

x u

y v

?
f

f

x u

y v

?f

f x u

y v

?
f

f

Type Information

struct s {
struct s *f;

int n;

} *x, *y, u, v;

Andersen’s Points-to Graph

x u

y v
f

f

Steensgaard’s Points-to Graph

x u

y v

f

f

ff

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 54/55

An Example of Flow-Sensitive May Points-to Analysis

x = &u
y = &v

y → f = x y = &u

4
use v .f
use x

4

1

2 3

x u

y v

?
f

f

x u

y v

?
f

f

x u

y v

?f

f x u

y v

?
f

f

x u

y v

?f

f

f

Type Information

struct s {
struct s *f;

int n;

} *x, *y, u, v;

Andersen’s Points-to Graph

x u

y v
f

f

Steensgaard’s Points-to Graph

x u

y v

f

f

ff

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 55/55

Non-Distributivity of Points-to Analysis

May Points-to Must Points-to

n1 ∗x = y n1

n2 x = &z n2 n3 y = &w n3

n4 ∗x = y n4

n1 ∗x = y n1

n2
b = &c
c = &d n2 n3

b = &e
e = &d n3

n4 a = ∗b n4

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 55/55

Non-Distributivity of Points-to Analysis

May Points-to Must Points-to

n1 ∗x = y n1

n2 x = &z n2 n3 y = &w n3

n4 ∗x = y n4

n1 ∗x = y n1

n2
b = &c
c = &d n2 n3

b = &e
e = &d n3

n4 a = ∗b n4

z֌w is spurious

Dec 2019 IIT Bombay

FP School, PCI Pune Pointer Analysis: Flow-Sensitive PTA 55/55

Non-Distributivity of Points-to Analysis

May Points-to Must Points-to

n1 ∗x = y n1

n2 x = &z n2 n3 y = &w n3

n4 ∗x = y n4

n1 ∗x = y n1

n2
b = &c
c = &d n2 n3

b = &e
e = &d n3

n4 a = ∗b n4

z֌w is spurious a֌d is missing

Dec 2019 IIT Bombay

	About These Slides
	Outline
	The Larger Perspective
	Flow-Insensitive PTA
	Flow-Sensitive PTA

