Pointer Analysis

Uday Khedker (www.cse.iitb.ac.in/~uday)

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

Dec 2019

(日) (권) (분) (분) 분

Copyright

These slides constitute the lecture notes for CS618 Program Analysis course at IIT Bombay and have been made available as teaching material accompanying the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. *Data Flow Analysis: Theory and Practice.* CRC Press (Taylor and Francis Group). 2009.

(Indian edition published by Ane Books in 2013)

Apart from the above book, some slides are based on the material from the following book

• M. S. Hecht. *Flow Analysis of Computer Programs*. Elsevier North-Holland Inc. 1977.

These slides are being made available under GNU FDL v1.2 or later purely for academic or research use.

An Outline of Pointer Analysis Coverage

- The larger perspective
- IR for Points-to Analysis
- Flow-Insensitive Points-to Analysis
- Flow-Sensitive Points-to Analysis

Is p→data live at the exit of line 5? Can we delete line 5?

Is p→data live at the exit of line 5? Can we delete line 5?

- Is p \rightarrow data live at the exit of line 5? Can we delete line 5?
- We cannot delete line 5 if p and q can be possibly aliased (while loop or do-while loop with a circular list)

- Is p \rightarrow data live at the exit of line 5? Can we delete line 5?
- We cannot delete line 5 if p and q can be possibly aliased (while loop or do-while loop with a circular list)
- We can delete line 5 if p and q are definitely not aliased (do-while loop without a circular list)

4/55

Code Optimization In Presence of Pointers (2)

Original Program

Original Program Constant Propagation without aliasing

Original Program Constant Propagation Constant Propagation without aliasing with aliasing

FP School, PCI Pune

Pointer Analysis

- Answers the following questions for indirect accesses:
 - Which data is read?
 Which data is written?
 x = *y
 x = xy
 - Which procedure is called? p() or $x \to f()$
- Enables precise data flow and interprocedural control flow analysis
- Computationally intensive analyses are ineffective when supplied with imprecise points-to information,
 (e.g., model checking, interprocedural analyses)

(e.g., model checking, interprocedural analyses)

• Needs to scale to large programs

7/55

The World of Pointer Analysis

Pointer Analysis Musings

- Pointer analysis collects information about indirect accesses in programs
 - Enables precise data analysis
 - Enable precise interprocedural control flow analysis
- Needs to scale to large programs
- Pointer Analysis Musings
 - Which Pointer Analysis should I Use?

Michael Hind and Anthony Pioli. ISTAA 2000

Pointer Analysis: Haven't we solved this problem yet ?
 Michael Hind PASTE 2001

Pointer Analysis Musings

- Pointer analysis collects information about indirect accesses in programs
 - Enables precise data analysis
 - Enable precise interprocedural control flow analysis
- Needs to scale to large programs
- Pointer Analysis Musings
 - Which Pointer Analysis should I Use?

Michael Hind and Anthony Pioli. ISTAA 2000

Pointer Analysis: Haven't we solved this problem yet ?
 Michael Hind PASTE 2001

Pointer Analysis Musings

- Pointer analysis collects information about indirect accesses in programs
 - Enables precise data analysis
 - Enable precise interprocedural control flow analysis
- Needs to scale to large programs
- Pointer Analysis Musings
 - Which Pointer Analysis should I Use?

Michael Hind and Anthony Pioli. ISTAA 2000

• Pointer Analysis: Haven't we solved this problem yet ?

Michael Hind PASTE 2001

The Mathematics of Pointer Analysis

In the most general situation

• Alias analysis is undecidable.

Landi-Ryder [POPL 1991], Landi [LOPLAS 1992], Ramalingam [TOPLAS 1994]

- Flow-insensitive alias analysis is NP-hard Horwitz [TOPLAS 1997]
- Points-to analysis is undecidable Chakravarty [POPL 2003]

The Mathematics of Pointer Analysis

In the most general situation

• Alias analysis is undecidable.

Landi-Ryder [POPL 1991], Landi [LOPLAS 1992], Ramalingam [TOPLAS 1994]

- Flow-insensitive alias analysis is NP-hard Horwitz [TOPLAS 1997]
- Points-to analysis is undecidable Chakravarty [POPL 2003]

Adjust your expectations suitably to avoid disappointments!

So what should we expect?

So what should we expect? To quote Hind [PASTE 2001]

So what should we expect? To quote Hind [PASTE 2001]

• "Fortunately many approximations exist"

So what should we expect? To quote Hind [PASTE 2001]

- "Fortunately many approximations exist"
- "Unfortunately too many approximations exist!"

So what should we expect? To quote Hind [PASTE 2001]

- "Fortunately many approximations exist"
- "Unfortunately too many approximations exist!"

Engineering of pointer analysis is much more dominant than its science

Pointer Analysis: Precision versus Scalability

- Ideally, an analysis should be
 - Sound
 - Precise
 - Scalable

Pointer Analysis: Precision versus Scalability

- Ideally, an analysis should be
 - Sound
 - Precise
 - Scalable

Common belief

• Precision and scalability cannot be achieved together for exhaustive analysis

Common Practice

• Trade off precision using approximations

Pointer Analysis: Precision versus Scalability

- Ideally, an analysis should be
 - Sound
 - Precise
 - Scalable
- The main factors enhancing the precision of an exhaustive (as against a demand-driven) analysis are
 - Flow sensitivity
 - Context sensitivity
 - Field sensitivity

Demand-Driven Analysis Vs. Exhaustive Analysis

- Exhaustive. Compute all possible information
- Demand-Driven. Compute only the requested information (by a client)

Different from incremental analysis which also computes only some information but it updates the earlier computed solution

Flow Sensitivity Vs. Flow Insensitivity

Flow Sensitive

Flow Insensitive

Flow Sensitivity Vs. Flow Insensitivity

Flow Sensitive

Flow Insensitive

Assumption: Statements can be executed in any order

Flow Sensitivity Vs. Flow Insensitivity

Flow Sensitive

Flow Insensitive

IIT Bombay

Flow Sensitivity Vs. Flow Insensitivity

Context Sensitivity Vs. Context Insensitivity

Context Sensitivity Vs. Context Insensitivity

Dec 2019

Dec 2019

Dec 2019

Field Sensitivity Vs. Field Insensitivity

Program	Field-sensitive points-to graph	Field-insensitive points-to graph
$x \to f = \& y$ $x \to g = \& z$ $w = x \to f$	f y x g z	

Field Sensitivity Vs. Field Insensitivity

Program	Field-sensitive points-to graph	Field-insensitive points-to graph
$x \to f = \& y$ $x \to g = \& z$ $w = x \to f$	f y x g z	* ^y * z

Field Sensitivity Vs. Field Insensitivity

Program	Field-sensitive points-to graph	Field-insensitive points-to graph
$x \to f = \& y$ $x \to g = \& z$ $w = x \to f$	f y x g z	* ^y * z

Field-insensitive analysis is less precise than a field-sensitive analysis

An Outline of Pointer Analysis Coverage

- The larger perspective
- IR for Points-to Analysis
 Next Topic
- Flow-Insensitive Points-to Analysis
- Flow-Sensitive Points-to Analysis

IIT Bomba

Pointer Statements

- Field accesses such as x.n are treated as new compile time names
- Containment of x.n within x is recorded in terms of offsets
- Heap will be introduced later

What Does a Use Statement Represent? (1)

Consider the declaration: int a, *x, **y;

Source	3-Address representation	Our modelling
*x = a	*x = a	Use x
a = *x	a = *x	Use x
if $(x == NULL)$	if $(x == NULL)$	Use x
if $(*x == 5)$	if (* $x == 5$)	Use x
if $(*y == NULL)$	t = *y	t = *y
$\Pi(*y == NOLL)$	if $(t == NULL)$	Use t
(**y = a)	t = *y	t = *y
(**y - a)	*t = a	Use t

We retain only the pointers

What Does a Use Statement Represent? (2)

Consider the declaration:

```
struct s {
    struct s *n;
    int m;
} a, b, *x;
```

Source	3-Address representation	Our modelling
a.n = &b	a.n = &b	a.n = &b
if $(x \rightarrow n == NULL)$	$t = x \rightarrow n$ if $(t == NULL)$	t = x ightarrow n Use t
if (a.n == NULL)	t = a.n if ($t == NULL$)	t = a.n Use t

We retain only the pointers

An Outline of Pointer Analysis Coverage

Next Topic

- The larger perspective
- IR for Points-to Analysis
- Flow-Insensitive Points-to Analysis (
- Flow-Sensitive Points-to Analysis

Flow-Sensitive Vs. Flow-Insensitive Pointer Analysis

- Flow-insensitive pointer analysis
 - Inclusion based: Andersen's approach
 - Equality based: Steensgaard's approach
- Flow-sensitive pointer analysis
 - May points-to analysis
 - Must points-to analysis

Flow Insensitivity in Data Flow Analysis

- Assumption: Statements can be executed in any order.
- Instead of computing point-specific data flow information, summary data flow information is computed.

The summary information is required to be a safe approximation of point-specific information for each point.

The control flow graph is a complete graph (except for the Start and End nodes)

 Type checking/inferencing (What about interpreted languages?)

- Type checking/inferencing (What about interpreted languages?)
- Address taken analysis

Which variables have their addresses taken?

- Type checking/inferencing (What about interpreted languages?)
- Address taken analysis Which variables have their addresses taken?
- Side effects analysis

Does a procedure modify a global variable? Reference Parameter?

Notation for Andersen's and Steensgaard's Points-to Analysis

- $P_{x,f}$ denotes the set of pointees of pointer variable x along field f
 - P_{x.*} (concisely written as P_x) denotes the set of pointees of x
 If x is a structure, P_x is the set of pointees of all fields of x
- Unify(x, y) unifies locations x and y
 - \circ x and y are treated as equivalent locations
 - the pointees of the unified locations are also unified transitively
- UnifyPTS(x, y) unifies the pointees of x and y
 - x and y themselves are not unified
- We use x.f if the pointees of field f of x are to be unified

27/55

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_x \supseteq \{y\}$	$P_{x} \supseteq \{y\} \\ \forall z \in P_{x}. Unify(y, z)$
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
<i>x</i> = * <i>y</i>	$P_x \supseteq P_z. \ \forall z \in P_y$	$\forall z \in P_y$. UnifyPTS (x, z)
*x = y	$\forall z \in P_x. \ P_z \supseteq P_y$	$\forall z \in P_x$. Unify $PTS(y, z)$

27/55

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = & y	$P_x \supseteq \{y\}$	$P_{x} \supseteq \{y\} \\ \forall z \in P_{x}. Unify(y, z)$
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
x = *y	$P_x \supseteq P_z. \ \forall z \in P_y$	$\forall z \in P_y$. UnifyPTS (x, z)
*x = y	$\forall z \in P_x. \ P_z \supseteq P_y$	$\forall z \in P_x$. Unify $PTS(y, z)$

Points-to graph before the assignment

$$x \rightarrow p \rightarrow q \rightarrow r$$

$$y \rightarrow a \rightarrow b \rightarrow c$$

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = & y	$P_x \supseteq \{y\}$	$P_{x} \supseteq \{y\} \\ \forall z \in P_{x}. \ Unify(y, z)$
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
<i>x</i> = * <i>y</i>	$P_x \supseteq P_z. \ \forall z \in P_y$	$\forall z \in P_y$. UnifyPTS (x, z)
*x = y	$\forall z \in P_x. \ P_z \supseteq P_y$	$\forall z \in P_x$. Unify $PTS(y, z)$

Points-to graph before the assignment

$$x \rightarrow p \rightarrow q \rightarrow r$$

С

IIT Bombay

Andersen's graph after the assignment

27/55

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = & y	$P_x \supseteq \{y\}$	$ \left(\begin{array}{c} P_x \supseteq \{y\} \\ \forall z \in P_x. \ Unify(y, z) \end{array} \right) $
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
x = *y	$P_x \supseteq P_z. \ \forall z \in P_y$	$\forall z \in P_y$. UnifyPTS (x, z)
*x = y	$\forall z \in P_x. \ P_z \supseteq P_y$	$\forall z \in P_x$. Unify $PTS(y, z)$

Equality

Points-to graph before the assignment

$$x \rightarrow p \rightarrow q \rightarrow r$$

$$y \rightarrow a \rightarrow b \rightarrow c$$

Andersen's graph after the assignment

Steensgaard's graph after the assignment

27/55

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_x \supseteq \{y\}$	$P_{x} \supseteq \{y\} \\ \forall z \in P_{x}. Unify(y, z)$
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
x = *y	$P_x \supseteq P_z. \ \forall z \in P_y$	$\forall z \in P_y$. UnifyPTS (x, z)
*x = y	$\forall z \in P_x. \ P_z \supseteq P_y$	$\forall z \in P_x$. Unify $PTS(y, z)$

Points-to graph before the assignment

$$x \rightarrow p \rightarrow q \rightarrow r$$

$$y \rightarrow a \rightarrow b \rightarrow c$$

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_x \supseteq \{y\}$	$P_{x} \supseteq \{y\} \\ \forall z \in P_{x}. Unify(y, z)$
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
x = *y	$P_x \supseteq P_z. \ \forall z \in P_y$	$\forall z \in P_y$. UnifyPTS (x, z)
*x = y	$\forall z \in P_x. \ P_z \supseteq P_y$	$\forall z \in P_x$. Unify $PTS(y, z)$

Points-to graph before the assignment

$$x \rightarrow p \rightarrow q \rightarrow r$$

С

Andersen's graph after the assignment

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_x \supseteq \{y\}$	$P_{x} \supseteq \{y\} \\ \forall z \in P_{x}. \ Unify(y, z)$
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
x = *y	$P_x \supseteq P_z. \ \forall z \in P_y$	$\forall z \in P_y$. UnifyPTS (x, z)
*x = y	$\forall z \in P_x. \ P_z \supseteq P_y$	$\forall z \in P_x$. Unify $PTS(y, z)$

Points-to graph before the assignment

$$x \rightarrow p \rightarrow q \rightarrow r$$

$$y \rightarrow a \rightarrow b \rightarrow c$$

Andersen's graph after the assignment

Steensgaard's graph after the assignment

Dec 2019

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_x \supseteq \{y\}$	$P_{x} \supseteq \{y\} \\ \forall z \in P_{x}. Unify(y, z)$
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
x = *y	$P_x \supseteq P_z. \ \forall z \in P_y$	$\forall z \in P_y$. UnifyPTS (x, z)
*x = y	$\forall z \in P_x. \ P_z \supseteq P_y$	$\forall z \in P_x$. Unify $PTS(y, z)$

Points-to graph before the assignment

$$x \rightarrow p \rightarrow q \rightarrow r$$

$$y \rightarrow a \rightarrow b \rightarrow c$$

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_x \supseteq \{y\}$	$P_{x} \supseteq \{y\} \\ \forall z \in P_{x}. Unify(y, z)$
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
x = *y	$P_x \supseteq P_z. \ \forall z \in P_y$	$\forall z \in P_y$. Unify $PTS(x, z)$
*x = y	$\forall z \in P_x. \ P_z \supseteq P_y$	$\forall z \in P_x$. Unify $PTS(y, z)$

Points-to graph before the assignment

$$x \rightarrow p \rightarrow q \rightarrow r$$

С

Andersen's graph after the assignment

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_x \supseteq \{y\}$	$P_{x} \supseteq \{y\} \\ \forall z \in P_{x}. \ Unify(y, z)$
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
x = *y	$P_x \supseteq P_z. \ \forall z \in P_y$	$\forall z \in P_y. \ Unify PTS(x, z)$
*x = y	$\forall z \in P_x. \ P_z \supseteq P_y$	$\forall z \in P_x$. Unify $PTS(y, z)$

Points-to graph before the assignment

$$x \rightarrow p \rightarrow q \rightarrow r$$

$$y \rightarrow a \rightarrow b \rightarrow c$$

Andersen's graph after the assignment

Steensgaard's graph after the assignment

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_x \supseteq \{y\}$	$P_{x} \supseteq \{y\} \\ \forall z \in P_{x}. Unify(y, z)$
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
x = *y	$P_x \supseteq P_z. \ \forall z \in P_y$	$\forall z \in P_y$. UnifyPTS (x, z)
*x = y	$\forall z \in P_x. \ P_z \supseteq P_y$	$\forall z \in P_x$. Unify $PTS(y, z)$

Points-to graph before the assignment

$$x \rightarrow p \rightarrow q \rightarrow r$$

$$y \rightarrow a \rightarrow b \rightarrow c$$

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_x \supseteq \{y\}$	$P_{x} \supseteq \{y\} \\ \forall z \in P_{x}. Unify(y, z)$
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
<i>x</i> = * <i>y</i>	$P_x \supseteq P_z. \ \forall z \in P_y$	$\forall z \in P_y$. UnifyPTS (x, z)
*x = y	$\forall z \in P_x. \ P_z \supseteq P_y$	$\forall z \in P_x$. Unify $PTS(y, z)$

Points-to graph before the assignment

$$x \rightarrow p \rightarrow q \rightarrow r$$

С

Andersen's graph after the assignment

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_x \supseteq \{y\}$	$P_{x} \supseteq \{y\} \\ \forall z \in P_{x}. Unify(y, z)$
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
x = *y	$P_x \supseteq P_z. \ \forall z \in P_y$	$\forall z \in P_y$. UnifyPTS (x, z)
*x = y	$\forall z \in P_x. \ P_z \supseteq P_y$	$\forall z \in P_x. \ Unify PTS(y, z)$

Points-to graph before the assignment

$$x \rightarrow p \rightarrow q \rightarrow r$$

$$y \rightarrow a \rightarrow b \rightarrow c$$

Andersen's graph after the assignment

Steensgaard's graph after the assignment

27/55

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_x \supseteq \{y\}$	$P_{x} \supseteq \{y\} \\ \forall z \in P_{x}. Unify(y, z)$
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
<i>x</i> = * <i>y</i>	$P_x \supseteq P_z. \ \forall z \in P_y$	$\forall z \in P_y$. UnifyPTS (x, z)
*x = y	$\forall z \in P_x. \ P_z \supseteq P_y$	$\forall z \in P_x$. Unify $PTS(y, z)$

Points-to graph before the assignment

$$x \rightarrow p \rightarrow q \rightarrow r$$

$$y \rightarrow a \rightarrow b \rightarrow c$$

Example of Inclusion Based (aka Andersen's) Points-to Analysis

Program

Type declarations

struct s {
 struct s *n;
 int m;
} *x, *y, a, b, c, d;

Dec 2019

Example of Inclusion Based (aka Andersen's) Points-to Analysis

Constraint
$P_x \supseteq \{a\}$
$P_y \supseteq \{b\}$
$\forall z \in P_x, P_{z.n} \supseteq P_y$
$P_y \supseteq P_x$
$\forall z \in P_x, P_{z.n} \supseteq \{c\}$
$P_x \supseteq \{d\}$

Example of Inclusion Based (aka Andersen's) Points-to Analysis

Node	Constraint
1	$P_x \supseteq \{a\}$
2	$P_y \supseteq \{b\}$
3	$\forall z \in P_x, P_{z.n} \supseteq P_y$
4	$P_y \supseteq P_x$
5	$\forall z \in P_x, P_{z.n} \supseteq \{c\}$
6	$P_x \supseteq \{d\}$

Points-to Graph

IIT Bombay

Example of Inclusion Based (aka Andersen's) Points-to Analysis

Node	Constraint
1	$P_x \supseteq \{a\}$
2	$P_y \supseteq \{b\}$
3	$\forall z \in P_x, P_{z.n} \supseteq P_y$
4	$P_y \supseteq P_x$
5	$\forall z \in P_x, P_{z.n} \supseteq \{c\}$
6	$P_x \supseteq \{d\}$
	^ = ()

Example of Inclusion Based (aka Andersen's) Points-to Analysis

Node	Constraint
1	$P_x \supseteq \{a\}$
2	$P_y \supseteq \{b\}$
3	$\forall z \in P_x, P_{z.n} \supseteq P_y$
4	$P_y \supseteq P_x$
5	$\forall z \in P_x, P_{z.n} \supseteq \{c\}$
6	$P_x \supseteq \{d\}$

Example of Inclusion Based (aka Andersen's) Points-to Analysis

Node	Constraint	
1	$P_x \supseteq \{a\}$	
2	$P_y \supseteq \{b\}$	
3	$\forall z \in P_x, P_{z.n} \supseteq P_y$	
4	$P_y \supseteq P_x$	
5	$\forall z \in P_x, P_{z.n} \supseteq \{c\}$	
6	$P_x \supseteq \{d\}$	

Example of Inclusion Based (aka Andersen's) Points-to Analysis

Node	Constraint	
1	$P_x \supseteq \{a\}$	
2	$P_y \supseteq \{b\}$	
3	$\forall z \in P_x, P_{z.n} \supseteq P_y$	
4	$P_y \supseteq P_x$	
5	$\forall z \in P_x, P_{z.n} \supseteq \{c\}$	
6	$P_x \supseteq \{d\}$	

Points-to Graph

IIT Bombay

Example of Inclusion Based (aka Andersen's) Points-to Analysis

Node	Constraint	
1	$P_x \supseteq \{a\}$	
2	$P_y \supseteq \{b\}$	
3	$\forall z \in P_x, P_{z.n} \supseteq P_y$	
4	$P_y \supseteq P_x$	
5	$\forall z \in P_x, P_{z.n} \supseteq \{c\}$	
6	$P_x \supseteq \{d\}$	

Points-to Graph

IIT Bombay

IIT Bombav

Example of Inclusion Based (aka Andersen's) Points-to Analysis

• A plethora of heuristics have been proposed

Example of Inclusion Based (aka Andersen's) Points-to Analysis

• A plethora of heuristics have been proposed

Example of Inclusion Based (aka Andersen's) Points-to Analysis

Node	Constraint	
1	$P_x \supseteq \{a\}$	
2	$P_y \supseteq \{b\}$	
3	$\forall z \in P_x, P_{z.n} \supseteq P_y$	
4	$P_y \supseteq P_x$	
5	$\forall z \in P_x, P_{z.n} \supseteq \{c\}$	
6	$P_x \supseteq \{d\}$	

- Actual graph after statement 6 (red box on the right) is much simpler with many edges killed
- y does not point to d any time in the execution

Example of Inclusion Based (aka Andersen's) Points-to Analysis

Node	Constraint
1	$P_x \supseteq \{a\}$
2	$P_y \supseteq \{b\}$
3	$\forall z \in P_x, P_{z.n} \supseteq P_y$
4	$P_y \supseteq P_x$
5	$\forall z \in P_x, P_{z.n} \supseteq \{c\}$
6	$P_x \supseteq \{d\}$

- A union of all graphs at each program point
- y does not point to d any time in the execution

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Program

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Program	Node	Constraint
1 $x = \&a$	1	$P_x \supseteq \{a\}$ $\forall z \in P_x, Unify(a, z)$
$2 \boxed{y = \&b}$	2	$P_{y} \supseteq \{b\} \\ \forall z \in P_{y}, Unify(b, z)$
-	3	$\forall z \in P_x, Unify PTS(y, z.n)$
3 $x \rightarrow n = y$	4	UnifyPTS(x, y)
4 $y = x$	5	$ \forall z \in P_x, P_{z.n} \supseteq \{c\} \\ \forall w \in P_{z.n}, Unify(w, c) $
$5 x \rightarrow n = \&c$	6	$P_x \supseteq \{d\}$ $\forall z \in P_x, Unify(d, z)$
$6 \boxed{x = \&d}$		

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Points-to Graph

29/55

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Points-to Graph

29/55

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Node	Constraint	
1	$P_x \supseteq \{a\}$ $\forall z \in P_x, Unify(a, z)$	
2	$P_y \supseteq \{b\}$ $\forall z \in P_y, Unify(b, z)$	
3	$\forall z \in P_x, Unify PTS(y, z.n)$	
4	UnifyPTS(x, y)	
5	$ \forall z \in P_x, P_{z.n} \supseteq \{c\} \\ \forall w \in P_{z.n}, Unify(w, c) $	
6	$P_x \supseteq \{d\}$ $\forall z \in P_x, Unify(d, z)$	

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Node	Constraint	
1	$P_x \supseteq \{a\}$ $\forall z \in P_x, Unify(a, z)$	
2	$P_y \supseteq \{b\}$ $\forall z \in P_y, Unify(b, z)$	
3	$\forall z \in P_x, Unify PTS(y, z.n)$	
4	UnifyPTS(x, y)	
5	$ \forall z \in P_x, P_{z.n} \supseteq \{c\} \\ \forall w \in P_{z.n}, Unify(w, c) $	
6	$P_x \supseteq \{d\}$ $\forall z \in P_x, Unify(d, z)$	

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Node	Constraint	
1	$P_x \supseteq \{a\} \\ \forall z \in P_x, Unify(a, z)$	
2	$P_y \supseteq \{b\}$ $\forall z \in P_y, Unify(b, z)$	
3	$\forall z \in P_x, Unify PTS(y, z.n)$	
4	UnifyPTS(x, y)	
5	$ \forall z \in P_x, P_{z.n} \supseteq \{c\} \\ \forall w \in P_{z.n}, Unify(w, c) $	
6	$P_x \supseteq \{d\}$ $\forall z \in P_x, Unify(d, z)$	

Points-to Graph

29/55

29/55 Example of Equality Based (aka Steensgaard's) Points-to Analysis

Node	Constraint	
1	$P_x \supseteq \{a\} \\ \forall z \in P_x, Unify(a, z)$	
2	$P_{y} \supseteq \{b\} \\ \forall z \in P_{y}, Unify(b, z)$	
3	$\forall z \in P_x, Unify PTS(y, z.n)$	
4	UnifyPTS(x, y)	
5	$ \forall z \in P_x, P_{z.n} \supseteq \{c\} \\ \forall w \in P_{z.n}, Unify(w, c) $	
6	$P_x \supseteq \{d\}$ $\forall z \in P_x, Unify(d, z)$	

Points-to Graph

IIT Bombay

No further change

Example of Equality Based (aka Steensgaard's) Points-to Analysis

Node	Constraint	
1	$P_x \supseteq \{a\} \\ \forall z \in P_x, Unify(a, z)$	
2	$P_{y} \supseteq \{b\} \\ \forall z \in P_{y}, Unify(b, z)$	
3	$\forall z \in P_x, Unify PTS(y, z.n)$	
4	UnifyPTS(x, y)	
5	$\forall z \in P_x, P_{z.n} \supseteq \{c\}$ $\forall w \in P_{z.n}, Unify(w, c)$	
6	$P_x \supseteq \{d\}$ $orall z \in P_x$, Unify (d, z)	

Red edges represent field n in the the full blown up graph. It has far more edges than in Andersen's graph Far more efficient but far less precise

Comparing Equality and Inclusion Based Analyses

- Andersen's algorithm is cubic in number of pointers
- Steensgaard's algorithm is nearly linear in number of pointers

Comparing Equality and Inclusion Based Analyses

- Andersen's algorithm is cubic in number of pointers
- Steensgaard's algorithm is nearly linear in number of pointers
 - How can it be more efficient by an orders of magnitude?

Program	Andersen's approach	Steensgaard's approach
a = &b a = &c b.n = &d b.n = &c		

- Andersen's inclusion based wisdom:
 - Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - Merge multiple successors and maintain a single successor of any node

- Andersen's inclusion based wisdom:
 - Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - Merge multiple successors and maintain a single successor of any node

Program	Andersen's approach	Steensgaard's approach
a = &b a = &c b.n = &d b.n = &c	a c	a c

- Andersen's inclusion based wisdom:
 - Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - Merge multiple successors and maintain a single successor of any node

Program	Andersen's approach	Steensgaard's approach
a = &b a = &c b.n = &d b.n = &c	a c	$a \rightarrow b \\ c \\$

- Andersen's inclusion based wisdom:
 - Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - Merge multiple successors and maintain a single successor of any node

Program	Andersen's approach	Steensgaard's approach
a = &b a = &c b.n = &d b.n = &c	a c c	$a \rightarrow \begin{pmatrix} b \\ c \end{pmatrix} \rightarrow d$

- Andersen's inclusion based wisdom:
 - Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - Merge multiple successors and maintain a single successor of any node

- Andersen's inclusion based wisdom:
 - Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - Merge multiple successors and maintain a single successor of any node

- Andersen's inclusion based wisdom:
 - Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - Merge multiple successors and maintain a single successor of any node

- Andersen's inclusion based wisdom:
 - Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - Merge multiple successors and maintain a single successor of any node
 - Since a larger number of pointers treated are alike and fewer distinctions are maintained, we get much smaller points-to graphs

- Andersen's inclusion based wisdom:
 - Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - Merge multiple successors and maintain a single successor of any node
 - Since a larger number of pointers treated are alike and fewer distinctions are maintained, we get much smaller points-to graphs
 - Efficient Union-Find algorithms to merge intersecting subsets

Dec 2019

IIT Bombay

Inclusion Based (aka Andersen's) Points-to Analysis: Example 2

IIT Bombay

Inclusion Based (aka Andersen's) Points-to Analysis: Example 2

Inclusion Based (aka Andersen's) Points-to Analysis: Example 2

- The *f* field of pointees of y should point to pointees of x also
- The *f* field of v should point to u also

Andersen's Points-to Graph

Constraints on Points-to Sets

 $P_{x} \supseteq \{u\}$ $P_{y} \supseteq \{v\}$ $\forall w \in P_{y}, \ P_{w.f} \supseteq P_{x}$

IIT Bombav

Inclusion Based (aka Andersen's) Points-to Analysis: Example 2

struct s {
struct s *f;
int n;
} *x, *y, u, v;

$$1 \boxed{x = \&u}{y = \&v}$$

$$2 y \rightarrow f = x \qquad y = \&u$$

$$4 \boxed{use \ v.f}{use \ x}$$

- The *f* field of pointees of y should point to pointees of x also
- The *f* field of v should point to u also

Andersen's Points-to Graph

Constraints on Points-to Sets

 $P_x \supseteq \{u\}$ $P_y \supseteq \{v\}$ $\forall w \in P_y, \ P_{w.f} \supseteq P_x$

IIT Bombav

Inclusion Based (aka Andersen's) Points-to Analysis: Example 2

Dec 2019

IIT Bombav

Inclusion Based (aka Andersen's) Points-to Analysis: Example 2

Dec 2019

IIT Bombav

Inclusion Based (aka Andersen's) Points-to Analysis: Example 2

Inclusion Based (aka Andersen's) Points-to Analysis: Example 2

Constraints on Points-to Sets

$$\begin{array}{c} P_{x} \supseteq \{u\} \\ P_{y} \supseteq \{v\} \\ \forall w \in P_{y}, \ P_{w,f} \supseteq P_{x} \\ P_{y} \supseteq \{u\} \end{array}$$

Inclusion Based (aka Andersen's) Points-to Analysis: Example 2

Constraints on Points-to Sets

$$\begin{array}{c} P_{x} \supseteq \{u\} \\ P_{y} \supseteq \{v\} \\ \forall w \in P_{y}, \ P_{w,f} \supseteq P_{x} \\ P_{y} \supseteq \{u\} \end{array}$$

Equality Based (aka Steensgaard's) Points-to Analysis: Example 2

- Treat all pointees of a pointer as "equivalent" locations
- Transitive closure Pointees of all equivalent locations become equivalent

Andersen's Points-to Graph

Equality Based (aka Steensgaard's) Points-to Analysis: Example 2

- Treat all pointees of a pointer as "equivalent" locations
- Transitive closure Pointees of all equivalent locations become equivalent

 $x \rightarrow u$ f $y \rightarrow v$

Andersen's Points-to Graph

Effective additional constraints

Unify(u, v)/* pointees of y */

33/55

Equality Based (aka Steensgaard's) Points-to Analysis: Example 2

struct s {
struct s *f;
int n;
} *x, *y, u, v;

$$1 \boxed{x = \&u}{y = \&v}$$

$$2 \boxed{y \rightarrow f = x} \qquad \boxed{y = \&u} 3$$

$$4 \boxed{use \ v.f}{use \ x}$$

- Treat all pointees of a pointer as "equivalent" locations
- Transitive closure Pointees of all equivalent locations become equivalent

Steengaard's Points-to Graph

Effective additional constraints

```
Unify(u, v)
/* pointees of y */
```

 $\Rightarrow u, v$ are equivalent

Equality Based (aka Steensgaard's) Points-to Analysis: Example 2

struct s {
struct s *f;
int n;
} *x, *y, u, v;

$$1 \boxed{x = \&u}{y = \&v}$$

$$2 \underbrace{y \to f = x} \qquad y = \&u \qquad 3$$

$$4 \underbrace{use \ v.f}{use \ x}$$

- Treat all pointees of a pointer as "equivalent" locations
- Transitive closure Pointees of all equivalent locations become equivalent

x u f y v f

Steengaard's Points-to Graph

Effective additional constraints

```
Unify(u, v)
/* pointees of y */
```

 $\Rightarrow u, v$ are equivalent

Equality Based (aka Steensgaard's) Points-to Analysis: Example 2

struct s {
struct s *f;
int n;
} *x, *y, u, v;

$$1 \boxed{x = \&u}{y = \&v}$$

$$2 \underbrace{y \to f = x} \qquad y = \&u \qquad 3$$

$$4 \underbrace{use \ v.f}{use \ x}$$

- Treat all pointees of a pointer as "equivalent" locations
- Transitive closure Pointees of all equivalent locations become equivalent

x y y y f f f

Steengaard's Points-to Graph

Effective additional constraints

```
Unify(u, v)
/* pointees of y */
```

 $\Rightarrow u, v$ are equivalent

An Outline of Pointer Analysis Coverage

- The larger perspective
- IR for Points-to Analysis
- Flow-Insensitive Points-to Analysis
- Flow-Sensitive Points-to Analysis
 Next Topic

Must Points-to Information

Must Points-to Information

37/55

May Points-to Information

37/55

May Points-to Information

Strong and Weak Updates

Strong and Weak Updates

• Weak update: Modification of x or y due to *z in block 5

Only Gen, No Kill

38/55

Strong and Weak Updates

- Weak update: Modification of x or y due to *z in block 5
 Only Gen, No Kill
- Strong update: Modification of *c* due to **w* in block 5

Both Gen and Kill

38/55

Strong and Weak Updates

• Weak update: Modification of x or y due to *z in block 5

Only Gen, No Kill

• Strong update: Modification of *c* due to **w* in block 5

Both Gen and Kill

 How is this concept related to May/Must nature of information?

MFP of May Points-to Analysis

MFP of Must Points-to Analysis

MFP of May Points-to Analysis

 (a, b) should be in MayIn₅

Holds along path 1-3-4

- (*a*, *b*) should not be killed in node 4
- Possible if pointee set of *c* is Ø
- However, MayIn₄
 contains (c, a)

MFP of Must Points-to Analysis

MFP of May Points-to Analysis

 (a, b) should be in MayIn₅

Holds along path 1-3-4

- (*a*, *b*) should not be killed in node 4
- Possible if pointee set of *c* is Ø
- However, MayIn₄
 contains (c, a)

MFP of Must Points-to Analysis

• (*a*, *b*) should not be in *Mustln*₅

Does not hold along path 1-2-4

- (*a*, *b*) should be killed in node 4
- Possible if pointee set of c is {a}
- However, the pointee set of c is Ø in Mustln₄

MFP of May Points-to Analysis

 (a, b) should be in MayIn₅

Holds along path 1-3-4

- (*a*, *b*) should not be killed in node 4
- Possible if pointee set of c is Ø (Use MustIn₄)
- However, MayIn₄ contains (c, a) (Use MustIn₄)

MFP of Must Points-to Analysis

• (*a*, *b*) should not be in *Mustln*₅

Does not hold along path 1-2-4

- (*a*, *b*) should be killed in node 4
- Possible if pointee set of *c* is {a} (Use MayIn₄)
- However, the pointee set of c is Ø in Mustln₄ (Use Mayln₄)

For killing points-to information through indirection,

- Must points-to analysis should identify pointees of c using MayIn₄
- May points-to analysis should identify pointees of c using Mustln₄

40/55

May and Must Analysis for Killing Points-to Information (2)

- May Points-to analysis should remove a May points-to pair
 - only if it must be removed along all paths
 - Kill should remove ONLY strong updates
 - \Rightarrow should use Must Points-to information
- Must Points-to analysis should remove a Must points-to pair
 - if it can be removed along any path
 - Kill should remove ALL weak updates
 - \Rightarrow should use May Points-to information

Distinguishing Between Strong and Weak Updates

Distinguishing Between Strong and Weak Updates

Distinguishing Between Strong and Weak Updates

Dec 2019

• *BI.* every pointer points to "?" Assume that *e* is a scalar

• *BI.* every pointer points to "?" Assume that *e* is a scalar

- *BI.* every pointer points to "?" Assume that *e* is a scalar
- Perform usual may points-to analysis

- *Bl.* every pointer points to "?" Assume that *e* is a scalar
- Perform usual may points-to analysis

- *BI*. every pointer points to "?" Assume that *e* is a scalar
- Perform usual may points-to analysis

- Bl. every pointer points to "?" Assume that e is a scalar
- Perform usual may points-to analysis
- Since c has multiple pointees, it is a MAY relation

- BI. every pointer points to "?" Assume that e is a scalar
- Perform usual may points-to analysis
- Since c has multiple pointees, it is a MAY relation
- Since a has a single pointee, it is a MUST relation

The use of "?" to derive Must is valid under the following conditions

If there is a definition free path from *Start* to node *i* for pointer *x*, then (x, ?) must reach In_i during the very first visit to node *i* in the analysis.

Conversely, if there is no definition free path from *Start* to node *i* for pointer *x*, then (x, ?) must *not* reach In_i during the very first visit to node *i* in the analysis.

Relevant Algebraic Operations on Relations (1)

- Let $\mathbf{P} \subseteq V$ be the set of pointer variables
- May-points-to information: $\mathcal{A} = \left\langle 2^{\mathbf{P} \times V}, \supseteq \right\rangle$
- Standard algebraic operations on points-to relations
 Given relation R ⊆ P × V and X ⊆ P,
 - Relation application $R X = \{v \mid u \in X \land (u, v) \in R\}$
 - Relation restriction $(R|_X) R|_X = \{(u, v) \in R \mid u \in X\}$

Relevant Algebraic Operations on Relations (1)

- Let $\mathbf{P} \subseteq V$ be the set of pointer variables
- May-points-to information: $\mathcal{A} = \langle 2^{\mathbf{P} \times V}, \supseteq \rangle$
- Standard algebraic operations on points-to relations
 Given relation R ⊆ P × V and X ⊆ P,
 - Relation application R X = {v | u ∈ X ∧ (u, v) ∈ R}
 (Find out the pointees of the pointers contained in X)
 - Relation restriction $(R|_X) R|_X = \{(u, v) \in R \mid u \in X\}$

Relevant Algebraic Operations on Relations (1)

- Let $\mathbf{P} \subseteq V$ be the set of pointer variables
- May-points-to information: $\mathcal{A} = \left\langle 2^{\mathbf{P} \times V}, \supseteq \right\rangle$
- Standard algebraic operations on points-to relations
 Given relation R ⊆ P × V and X ⊆ P,
 - Relation application R X = {v | u ∈ X ∧ (u, v) ∈ R}
 (Find out the pointees of the pointers contained in X)
 - Relation restriction (R|_X) R|_X = {(u, v) ∈ R | u ∈ X} (Restrict the relation only to the pointers contained in X by removing points-to information of other pointers)

Relevant Algebraic Operations on Relations (2)

Let

$$V = \{a, b, c, d, e, f, g, ?\}$$

$$P = \{a, b, c, d, e\}$$

$$R = \{(a, b), (a, c), (b, d), (c, e), (c, g), (d, a), (e, ?)\}$$

$$X = \{a, c\}$$

Then,

$$R X = \{v \mid u \in X \land (u, v) \in R\}$$

$$R|_X = \{(u,v) \in R \mid u \in X\}$$

Relevant Algebraic Operations on Relations (2)

Let

$$V = \{a, b, c, d, e, f, g, ?\}$$

$$P = \{a, b, c, d, e\}$$

$$R = \{(a, b), (a, c), (b, d), (c, e), (c, g), (d, a), (e, ?)\}$$

$$X = \{a, c\}$$

Then,

$$R X = \{v \mid u \in X \land (u, v) \in R\} \\ = \{b, c, e, g\} \\ R|_X = \{(u, v) \in R \mid u \in X\}$$

Relevant Algebraic Operations on Relations (2)

Let

$$V = \{a, b, c, d, e, f, g, ?\}$$

$$P = \{a, b, c, d, e\}$$

$$R = \{(a, b), (a, c), (b, d), (c, e), (c, g), (d, a), (e, ?)\}$$

$$X = \{a, c\}$$

Then,

$$R X = \{v \mid u \in X \land (u, v) \in R\} \\ = \{b, c, e, g\} \\ R|_X = \{(u, v) \in R \mid u \in X\} \\ = \{(a, b), (a, c), (c, e), (c, g)\}$$

Points-to Analysis Data Flow Equations

$$Pin_{n} = \begin{cases} V \times \{?\} & n \text{ is } Start_{p} \\ \bigcup_{p \in pred(n)} Pout_{p} & \text{otherwise} \end{cases}$$
$$Pout_{n} = \left(Pin_{n} - \left(Kill_{n} \times V\right)\right) \cup \left(Def_{n} \times Pointee_{n}\right)$$

- Pin/Pout: sets of may points-to pairs
- Kill_n, Def_n, and Pointee_n are defined in terms of Pin_n

IIT Bomba

Points-to Analysis Data Flow Equations

$$Pin_n = \begin{cases} V \times \{?\} & n \text{ is } Start_p \\ \bigcup_{p \in pred(n)} Pout_p & \text{otherwise} \end{cases}$$

$$Pout_n = \left(Pin_n - \left(\frac{Kill_n}{N} \times V\right)\right) \cup \left(Def_n \times Pointee_n\right)$$
• Pin/Pout: sets of may points-to pairs

• Kill_n, Def_n, and Pointee_n are defined in terms of Pin_n

Pointers whose points-to relations should be removed for strong update

Points-to Analysis Data Flow Equations

$$Pin_{n} = \begin{cases} V \times \{?\} & n \text{ is } Start_{p} \\ \bigcup_{p \in pred(n)} Pout_{p} & \text{otherwise} \end{cases}$$

$$Pout_{n} = \left(Pin_{n} - \left(Kill_{n} \times V\right)\right) \cup \left(\underbrace{Def_{n}} \times Pointee_{n}\right)$$
• *Pin/Pout*: sets of may points-to pairs

• Kill_n, Def_n, and Pointee_n are defined in terms of Pin

Pointers that are defined (i.e. pointers in which addresses are stored)

IIT Bomba

1

Points-to Analysis Data Flow Equations

$$Pin_{n} = \begin{cases} V \times \{?\} & n \text{ is } Start_{p} \\ \bigcup_{p \in pred(n)} Pout_{p} & \text{ otherwise} \end{cases}$$

$$Pout_{n} = \left(Pin_{n} - \left(Kill_{n} \times V\right)\right) \cup \left(Def_{n} \times Pointee_{n}\right)$$

- *Pin/Pout*: sets of may points-to pairs
- Kill_n, Def_n, and Pointee_n are defined in terms of Pin_n

Points-to Analysis Data Flow Equations

$$Pin_{n} = \begin{cases} V \times \{?\} & n \text{ is } Start_{p} \\ \bigcup_{p \in pred(n)} Pout_{p} & \text{otherwise} \end{cases}$$
$$Pout_{n} = \left(Pin_{n} - \left(Kill_{n} \times V\right)\right) \cup \left(Def_{n} \times Pointee_{n}\right)$$

- Pin/Pout: sets of may points-to pairs
- Kill_n, Def_n, and Pointee_n are defined in terms of Pin_n

	Defn	Kill _n	Pointee _n
use x			
x = &a			
x = y			
x = *y			
*x = y			
other			

Values defined in terms of Pin_n (denoted P)

	(Def _n)	Kill _n	Pointee _n
use x	1		
x = &a			
x = y			
x = *y			
*x = y			
other			

Pointers that are defined (i.e. pointers in which addresses are stored)

Values defined in terms of Pin_n (denoted P)

Dec 2019

	Defn	Kill _n	Pointee _n
use x	Ø	Ø	Ø
x = &a			
x = y			
x = *y			
*x = y			
other			

	Defn	Kill _n	Pointeen
use x	Ø	Ø	Ø
x = &a	$\{x\}$	{ <i>x</i> }	{ a }
x = y			
x = *y			
*x = y			
other			

IIT Bomba

Extractor Functions for Points-to Analysis

Values defined in terms of Pin_n (denoted P)

		Defn	Kill _n	Pointeen
	use x	Ø	Ø	Ø
	x = &a	$\{x\}$	{ <i>x</i> }	{ <i>a</i> }
	x = y	$\{x\}$	{ <i>x</i> }	$\rightarrow P\{y\}$
	x = *y			
	*x = y			
	other			
	/			
Poin n _n are defir	itees of y e the targ ned point	r in gets of ers		

Dec 2019

Pinn

IIT Bomba

Extractor Functions for Points-to Analysis

	Defn	Kill _n	Pointeen
use x	Ø	Ø	Ø
x = &a	$\{x\}$	{ <i>x</i> }	{a}
x = y	$\{x\}$	$\{x\}$	$P\{y\}$
x = *y	$\{x\}$	{x}	$P(P\{y\} \cap \mathbf{P})$
*x = y			
other			
ointees c es of y ir are poir	n Pin _n which	1	

IIT Bomba

Extractor Functions for Points-to Analysis

Values defined in terms of Pin_n (denoted P)

		Defn	Kill _n	Pointeen
	use x	Ø	Ø	Ø
	x = &a	{ <i>x</i> }	$\{x\}$	{ <i>a</i> }
	x = y	$\{x\}$	$\{x\}$	$P\{y\}$
	x = *y	{ <i>x</i> }	{ <i>x</i> }	$P(P\{y\} \cap \mathbf{P})$
	*x = y	$P\{x\} \cap \mathbf{P}$	$Must(P){x} \cap \mathbf{P}$	$P\{y\}$
	other			
Pin	intees of n receive ddresses			

x in

46/55

Extractor Functions for Points-to Analysis

$$Must(R) = \bigcup_{z \in \mathbf{P}} \{z\} \times \begin{cases} \{w\} & R\{z\} = \{w\} \land w \neq ?\\ \emptyset & \text{otherwise} \end{cases}$$

$$Must(R) = \bigcup_{z \in \mathbf{P}} \{z\} \times \begin{cases} \{w\} & R\{z\} = \{w\} \land w \neq ?\\ \emptyset & \text{otherwise} \end{cases}$$
Find out
must-pointees of
all pointers

Dec 2019

z has a single pointee w in must-points-to relation

$$Must(R) = \bigcup_{z \in \mathbf{P}} \{z\} \times \begin{cases} \{w\} & R\{z\} = \{w\} \land w \neq ?\\ \hline \emptyset & \text{otherwise} \end{cases}$$
z has no pointee
in must-points-to
relation

Dec 2019

	Defn	Kill _n	Pointeen
use x	Ø	Ø	Ø
x = &a	$\{x\}$	{ <i>x</i> }	{ a }
x = y	$\{x\}$	{ <i>x</i> }	$P\{y\}$
x = *y	$\{x\}$	{ <i>x</i> }	$P(P\{y\} \cap \mathbf{P})$
*x = y	$P\{x\} \cap \mathbf{P}$	$Must(P)\{x\} \cap \mathbf{P}$	$P\{y\}$
other			

$$Must(R) = \bigcup_{z \in \mathbf{P}} \{z\} \times \begin{cases} \{w\} & R\{z\} = \{w\} \land w \neq ?\\ \emptyset & \text{otherwise} \end{cases}$$

	Defn	Kill _n	Pointeen
use x	Ø	Ø	Ø
x = &a	$\{x\}$	{ <i>x</i> }	$\{a\}$
x = y	$\{x\}$	$\{x\}$	$P\{y\}$
x = *y	$\{x\}$	{ <i>x</i> }	$P(P\{y\} \cap \mathbf{P})$
*x = y	$P\{x\} \cap \mathbf{P}$	$Must(P){x} \cap \mathbf{P}$	$P\{y\}$
other	Ø	Ø	Ø

$$Must(R) = \bigcup_{z \in \mathbf{P}} \{z\} \times \begin{cases} \{w\} & R\{z\} = \{w\} \land w \neq ?\\ \emptyset & \text{otherwise} \end{cases}$$

	Defn	Kill _n	Pointeen
use x	Ø	Ø	Ø
x = &a	$\{x\}$	{ <i>x</i> }	$\{a\}$
x = y	$\{x\}$	$\{x\}$	$P\{y\}$
x = *y	$\{x\}$	{ <i>x</i> }	$P(P\{y\} \cap \mathbf{P})$
*x = y	$P\{x\} \cap \mathbf{P}$	$Must(P){x} \cap \mathbf{P}$	$P\{y\}$
other	Ø	Ø	Ø

$$Must(R) = \bigcup_{z \in \mathbf{P}} \{z\} \times \begin{cases} \{w\} & R\{z\} = \{w\} \land w \neq ?\\ \emptyset & \text{otherwise} \end{cases}$$

	Defn	Kill _n	Pointeen
use x	Ø	Ø	Ø
x = &a	$\{x\}$	{ <i>x</i> }	$\{a\}$
x = y	$\{x\}$	$\{x\}$	$P\{y\}$
x = *y	$\{x\}$	$\{x\}$	$P(P\{y\} \cap \mathbf{P})$
*x = y	$P\{x\} \cap \mathbf{P}$	$Must(P)\{x\} \cap \mathbf{P}$	$P\{y\}$
other	Ø	Ø	Ø

$$Must(R) = \bigcup_{z \in \mathbf{P}} \{z\} \times \begin{cases} \{w\} & R\{z\} = \{w\} \land w \neq ?\\ \emptyset & \text{otherwise} \end{cases}$$

IIT Bombay

An Example of Flow-Sensitive May Points-to Analysis

w

int *u, *v, *x; int **y, **z;

Dec 2019

48/55

IIT Bombay

Tutorial Problem for Flow-Sensitive Pointer Analysis

int a, b, c, *p, *q, *r; int ** y, ***x;

Solution of Tutorial Problem

	Pin _n	Pout _n
1	$\{(p,?),(q,?),(r,?),(x,?),(y,?)\}$	$\{(p,?),(q,?),(r,?),(x,y),(y,?)\}$
2	$\{(p,?),(q,?),(r,?),(x,y),(y,?)\}$	$\{(p,?),(q,?),(r,?),(x,y),(y,r)\}$
3	$\{(p,?),(q,?),(r,?),(x,y),(y,r)\}$	$\{(p,?), (q,c), (r,?), (x,y), (y,r)\}$
4	$\{(p,?),(q,c),(r,?),(x,y),(y,r)\}$	$\{(p,?), (q,c), (r,?), (x,y), (y,p)\}$
5	$\{(p,?),(q,?),(r,?),(x,y),(y,r)\}$	$\{(p, a), (q, ?), (r, ?), (x, y), (y, r)\}$
6	$\{(p,a),(q,?),(r,?),(x,y),(y,r)\}$	$\{(p,a), (q,?), (r,?), (x,y), (y,q)\}$
7	$\{(p,?),(p,a),(q,?),(q,c),$	$\{(p,?),(p,a),(p,b),(q,?),(q,c),(q,b),$
	$(r,?),(x,y),(y,p)(y,q)\}$	$(r,?),(x,y),(y,p)(y,q)\}$

50/55

Extractor Functions in the Presence of Structures (1)

- We extend pointer to use field names as follows:
 - pointer x is represented by (x, *), and
 - pointer field f of structure variable x is represented by (x, f)
 - points-to information is of the form ((x, f)y)
- For simplicity, we
 - $\circ~$ separate LHS and RHS assuming that
 - $\circ~$ only legal, type-correct pointer expressions are used in a statement
- From LHS, we extract *Def* and Kill as the sets of (x, *) or (a, f) (x is a pointer variable and a is a structure variable)
- From RHS, we extract *Pointee* as the sets of variables x

What About Heap Data?

- Compile time entities, abstract entities, or summarized entities
- Three options:
 - Represent all heap locations by a single abstract heap location
 - Represent all heap locations of a particular type by a single abstract heap location
 - Represent all heap locations allocated at a given memory allocation site by a single abstract heap location
- Summarization of pointer expression: Usually based on the length of pointer expression

52/55

Allocation Site Based Abstraction of Points-to Graph

Program

IIT Bombay

Extractor Functions in the Presence of Structures (2)

LHS	Def _n	Kill _n
x	$\{(x,*)\}$	$\{(x,*)\}$
* X	$\{(z,*) \mid z \in A\{(x,*)\}\}$	$\{(z,*) \mid z \in Must(A)\{(x,*)\}\}$
$x \to f$	$\{(z, f) \mid z \in A\{(x, *)\}\}$	$\{(z, f) \mid z \in Must(A)\{(x, *)\}\}$
x.f	$\{(x,f)\}$	$\{(x,f)\}$

RHS	Pointeen	
&y	{ <i>y</i> }	
у	$\{z \mid z \in A\{(y, *)\}\}$	
* y	$\{z \mid z \in A\{(w,*)\}, w \in A\{(y,*)\}\}$	
$y \to f$	$\{z \mid z \in A\{(w, f)\}, w \in A\{(y, *)\}\}$	
y.f	$\{z \mid z \in A\{(y, f)\}\}$	

Type Information

Andersen's Points-to Graph

Steensgaard's Points-to Graph

Type Information

Andersen's Points-to Graph

Steensgaard's Points-to Graph

Type Information

Andersen's Points-to Graph

Steensgaard's Points-to Graph

54/55

Type Information

Andersen's Points-to Graph

Steensgaard's Points-to Graph

54/55

Type Information

Andersen's Points-to Graph

Steensgaard's Points-to Graph

Type Information

Andersen's Points-to Graph

Steensgaard's Points-to Graph

Type Information

Andersen's Points-to Graph

Steensgaard's Points-to Graph

Type Information

Andersen's Points-to Graph

Steensgaard's Points-to Graph

Non-Distributivity of Points-to Analysis

May Points-to

Must Points-to

55/55

Non-Distributivity of Points-to Analysis

May Points-to

Must Points-to

 $z \rightarrow w$ is spurious

Non-Distributivity of Points-to Analysis

May Points-to

 $z \mapsto w$ is spurious

Must Points-to

 $a \rightarrow d$ is missing

