
Mini Workshop on GCC Internals

Uday Khedker

(www.cse.iitb.ac.in/̃ uday)

GCC Resource Center,
Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

January 2008

Part 1

Outline

Jan’08 GRC: Outline 1/1

Outline

• Open Source Vs. Free Software

• GCC Internals

• Major Research Initiatives

• Conclusions

GCC Mini Workshop Uday Khedker, IIT Bombay

Part 2

Open Source Vs. Free Software

Jan’08 GRC: Open Source Vs. Free Software 2/1

Open Source Vs. Free Software

• The open source initiative: (http://www.opensource.org/)

Emphasis on development methodology

• The Free Software Foundation: (http://www.fsf.org/)

Emphasis on freedom of the user

• In some cases, open source software has restricted user freedom

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Open Source Vs. Free Software 3/1

Open Source and Free Software Development Model

• The Cathedral and the Bazaar

Eric S Raymond, 1999.

• Cathedral: Total Centralized Control

Design, implement, test, release

• Bazaar: Total Decentralization

Release early, release often, let users fix bugs

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Open Source Vs. Free Software 4/1

The Bazaar Approach

Release early, release often, let users fix bugs

• Brooks’ law (The Mythical Man Month, 1975)

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Open Source Vs. Free Software 4/1

The Bazaar Approach

Release early, release often, let users fix bugs

• Brooks’ law (The Mythical Man Month, 1975)

I 12 man month effort

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Open Source Vs. Free Software 4/1

The Bazaar Approach

Release early, release often, let users fix bugs

• Brooks’ law (The Mythical Man Month, 1975)

I 12 man month effort
I 1 person working for 12 months

OR
12 persons working for 1 month?

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Open Source Vs. Free Software 4/1

The Bazaar Approach

Release early, release often, let users fix bugs

• Brooks’ law (The Mythical Man Month, 1975)

I 12 man month effort
I 1 person working for 12 months

OR
12 persons working for 1 month?

• Bazaar approach believes that the two are somewhat equivalent in
internet-based distributed development.

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Open Source Vs. Free Software 4/1

The Bazaar Approach

Release early, release often, let users fix bugs

• Brooks’ law (The Mythical Man Month, 1975)

I 12 man month effort
I 1 person working for 12 months

OR
12 persons working for 1 month?

• Bazaar approach believes that the two are somewhat equivalent in
internet-based distributed development.

• “Given enough eyeballs, all bugs are shallow”.

Code errors, logical errors, and architectural errors.

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Open Source Vs. Free Software 4/1

The Bazaar Approach

Release early, release often, let users fix bugs

• Brooks’ law (The Mythical Man Month, 1975)

I 12 man month effort
I 1 person working for 12 months

OR
12 persons working for 1 month?

• Bazaar approach believes that the two are somewhat equivalent in
internet-based distributed development.

• “Given enough eyeballs, all bugs are shallow”.

Code errors, logical errors, and architectural errors.

A combination of the two seems more sensible

GCC Mini Workshop Uday Khedker, IIT Bombay

Part 3

Introduction to Compilation

Jan’08 GRC: Introduction to Compilation 5/1

Implementation Mechanisms

Source Program

Translator

Target Program

Machine

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 5/1

Implementation Mechanisms

Source Program

Translator

Target Program

Machine

Input Data

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 5/1

Implementation Mechanisms

Source Program

Translator

Target Program

Machine

Input Data

Source Program

Interpreter

Machine

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 6/1

Implementation Mechanisms as “Bridges”

• “Gap” between the “levels” of program specification and execution

Program Specification

Machine

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 6/1

Implementation Mechanisms as “Bridges”

• “Gap” between the “levels” of program specification and execution

Program Specification

Machine

Translation

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 6/1

Implementation Mechanisms as “Bridges”

• “Gap” between the “levels” of program specification and execution

Program Specification

Machine

Translation Interpretation

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 6/1

Implementation Mechanisms as “Bridges”

• “Gap” between the “levels” of program specification and execution

Program Specification

Machine

Translation Interpretation

State : Variables
Operations: Expressions,

Control Flow

State : Memory,
Registers

Operations: Machine
Instructions

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 7/1

High and Low Level Abstractions

• A source statement

a = b < 10 ? b : c;

• Spim assembly equivalent

lw $t0, 4($fp) # $t0 <- b

slti $t0, $t0, 10 # $t0 <- $t0 < b

not $t0, $t0 # $t0 <- ! $t0

bgtz $t0, L0: # if $t0 >= 0 goto L0:

lw $t0, 4($fp) # $t0 <- b

b L1: # goto L1:

L0: lw $t0, 8($fp) # L0: $t0 <- c

L1: sw 0($fp), $t0 # L1: a <- $t0

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 8/1

Implementation Mechanisms

• Translation = Analysis + Synthesis

Interpretation = Analysis + Execution

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 8/1

Implementation Mechanisms

• Translation = Analysis + Synthesis

Interpretation = Analysis + Execution

• Translation Instructions
Equivalent

Instructions

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 8/1

Implementation Mechanisms

• Translation = Analysis + Synthesis

Interpretation = Analysis + Execution

• Translation Instructions
Equivalent

Instructions

Interpretation Instructions
Actions Implied

by Instructions

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 9/1

Language Implementation Models

Analysis

Synthesis

Execution

Compilation

Interpretation

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 10/1

Language Processor Models

C,C++

Java,
C#

Front
End

Optimizer

Back
End

Virtual
Machine

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 11/1

Typical Front Ends

Parser

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 11/1

Typical Front Ends

ParserSource
Program

Scanner

Tokens

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 11/1

Typical Front Ends

ParserSource
Program

Scanner

Tokens

Semantic
Analyzer

AST

Parse
Tree

AST or Linear IR
+

Symbol Table

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 11/1

Typical Front Ends

ParserSource
Program

Scanner

Tokens

Semantic
Analyzer

AST

Parse
Tree

AST or Linear IR
+

Symbol Table

Error
Handler

Symtab
Handler

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 12/1

Typical Back Ends

M/c Ind.
IR

M/c Ind.
Optimizer

− Compile time
evaluations

− Eliminating
redundant
computations

M/c
Ind.
IR

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 12/1

Typical Back Ends

M/c Ind.
IR

M/c Ind.
Optimizer

− Compile time
evaluations

− Eliminating
redundant
computations

M/c
Ind.
IR

Code
Generator

M/c
Dep.
IR

− Instruction Selection
− Local Reg Allocation
− Choice of Order of

Evaluation

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 12/1

Typical Back Ends

M/c Ind.
IR

M/c Ind.
Optimizer

− Compile time
evaluations

− Eliminating
redundant
computations

M/c
Ind.
IR

Code
Generator

M/c
Dep.
IR

− Instruction Selection
− Local Reg Allocation
− Choice of Order of

Evaluation

M/c Dep.
Optimizer

Assembly Code

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Introduction to Compilation 12/1

Typical Back Ends

M/c Ind.
IR

M/c Ind.
Optimizer

− Compile time
evaluations

− Eliminating
redundant
computations

M/c
Ind.
IR

Code
Generator

M/c
Dep.
IR

− Instruction Selection
− Local Reg Allocation
− Choice of Order of

Evaluation

Assembly Code

Register
Allocator

Instruction
Scheduler

Peephole
Optimizer

GCC Mini Workshop Uday Khedker, IIT Bombay

Part 4

Major R&D Initiatives

Jan’08 GRC: Major R&D Initiatives 13/1

Improving Retargetability and Instruction Selection

• The Problem:

• The Consequences:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 13/1

Improving Retargetability and Instruction Selection

• The Problem: Instruction selection algorithms in GCC are very primitive
(employ full tree matching instead of tree tiling).

• The Consequences:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 13/1

Improving Retargetability and Instruction Selection

• The Problem: Instruction selection algorithms in GCC are very primitive
(employ full tree matching instead of tree tiling).

• The Consequences:

I A compiler developer needs to visualize and specify meaningful
combinations of instructions for generating good quality code.

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 13/1

Improving Retargetability and Instruction Selection

• The Problem: Instruction selection algorithms in GCC are very primitive
(employ full tree matching instead of tree tiling).

• The Consequences:

I A compiler developer needs to visualize and specify meaningful
combinations of instructions for generating good quality code.

I The machine descriptions are difficult to construct, understand,
maintain, and enhance.

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 13/1

Improving Retargetability and Instruction Selection

• The Problem: Instruction selection algorithms in GCC are very primitive
(employ full tree matching instead of tree tiling).

• The Consequences:

I A compiler developer needs to visualize and specify meaningful
combinations of instructions for generating good quality code.

I The machine descriptions are difficult to construct, understand,
maintain, and enhance.

I GCC has become a hacker’s paradise instead of a clean, production
quality compiler generation framework.

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 14/1

Improving Retargetability and Instruction Selection

• Our Goals:

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 14/1

Improving Retargetability and Instruction Selection

• Our Goals:

I Discover the abstractions required in machine descriptions and
develop a systematic methodology of constructing them.

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 14/1

Improving Retargetability and Instruction Selection

• Our Goals:

I Discover the abstractions required in machine descriptions and
develop a systematic methodology of constructing them.

I Use tree tiling based instruction selection algorithms to allow for
cleaner and simpler machine descriptions.

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 14/1

Improving Retargetability and Instruction Selection

• Our Goals:

I Discover the abstractions required in machine descriptions and
develop a systematic methodology of constructing them.

I Use tree tiling based instruction selection algorithms to allow for
cleaner and simpler machine descriptions.

• Current Status:

I A methodology of incremental construction has been devised.

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 14/1

Improving Retargetability and Instruction Selection

• Our Goals:

I Discover the abstractions required in machine descriptions and
develop a systematic methodology of constructing them.

I Use tree tiling based instruction selection algorithms to allow for
cleaner and simpler machine descriptions.

• Current Status:

I A methodology of incremental construction has been devised.
I Preliminary investigations in using iburg seem very promising.

(Only 200 rules required for i386 instead of over a 1000!)

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 15/1

In Search of Modularity in Retargetable Compilation

Ta
rg
et

Fe
at
ur
es

So
ur
ce

Fe
at
ur
es

Phases of Compilation

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 15/1

In Search of Modularity in Retargetable Compilation

Phase 1 Phase n

Ta
rg
et

Fe
at
ur
es

So
ur
ce

Fe
at
ur
es

Phases of Compilation

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 16/1

In Search of Modularity in Retargetable Compilation

Ta
rg
et

Fe
at
ur
es

So
ur
ce

Fe
at
ur
es

Phases of CompilationPhase 1 Phase n
Feature 1

Feature n

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 17/1

In Search of Modularity in Retargetable Compilation

Ta
rg
et

Fe
at
ur
es

So
ur
ce

Fe
at
ur
es

Phases of CompilationPhase 1 Phase n
Feature 1

Feature n

Feature 1

Feature n

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 18/1

In Search of Modularity in Retargetable Compilation

M
in
im

al

Ta
rg
et

Fe
at
ur
es

(C
um

ul
at
ive

)
So

ur
ce

Fe
at
ur
es

(C
um

ul
at
ive

)

Phases of Compilation

Ta
rg
et

Level 1

Level n

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 19/1

Systematic Development of Machine Descriptions

Other data types

Conditional control transfers

Function Calls

Arithmetic Expressions

Sequence of
Simple Assignments
involving integers

MD Level 1

MD Level 2

MD Level 3

MD Level 4

MD Level 5

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 20/1

Improving Machine Independent Optimizations in GCC

• The Problems:

• Our Goals:

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 20/1

Improving Machine Independent Optimizations in GCC

• The Problems:

I Primitive algorithms and adhoc designs (too many passes, repetitive
work in passes, inappropriateness of IR).

• Our Goals:

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 20/1

Improving Machine Independent Optimizations in GCC

• The Problems:

I Primitive algorithms and adhoc designs (too many passes, repetitive
work in passes, inappropriateness of IR).

I Whole program analysis does not exist.

• Our Goals:

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 20/1

Improving Machine Independent Optimizations in GCC

• The Problems:

I Primitive algorithms and adhoc designs (too many passes, repetitive
work in passes, inappropriateness of IR).

I Whole program analysis does not exist.

• Our Goals:

I Implement our algorithms of interprocedural analysis.

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 20/1

Improving Machine Independent Optimizations in GCC

• The Problems:

I Primitive algorithms and adhoc designs (too many passes, repetitive
work in passes, inappropriateness of IR).

I Whole program analysis does not exist.

• Our Goals:

I Implement our algorithms of interprocedural analysis.
I Facilitate generation of optimizers from specifications.

− Clean specifications
− Systematic local, global, and interprocedural analysis
− Simple, efficient, generic, and precise algorithms
− Incremental analyses for aggressive optimizations

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 20/1

Improving Machine Independent Optimizations in GCC

• The Problems:

I Primitive algorithms and adhoc designs (too many passes, repetitive
work in passes, inappropriateness of IR).

I Whole program analysis does not exist.

• Our Goals:

I Implement our algorithms of interprocedural analysis.
I Facilitate generation of optimizers from specifications.

− Clean specifications
− Systematic local, global, and interprocedural analysis
− Simple, efficient, generic, and precise algorithms
− Incremental analyses for aggressive optimizations

• Current Status:

I The required algorithms and their formal theory is in place.

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 20/1

Improving Machine Independent Optimizations in GCC

• The Problems:

I Primitive algorithms and adhoc designs (too many passes, repetitive
work in passes, inappropriateness of IR).

I Whole program analysis does not exist.

• Our Goals:

I Implement our algorithms of interprocedural analysis.
I Facilitate generation of optimizers from specifications.

− Clean specifications
− Systematic local, global, and interprocedural analysis
− Simple, efficient, generic, and precise algorithms
− Incremental analyses for aggressive optimizations

• Current Status:

I The required algorithms and their formal theory is in place.
I The results of proof of concept implementations are very encouraging.

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 21/1

Translation Validation of GCC

• Problem:

• Our Objectives:

• Our approach:

• Current Status:

• Future work:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 21/1

Translation Validation of GCC

• Problem:

I Establishing correctness of compilers is important.
I Verifying a real compiler is very difficult.

• Our Objectives:

• Our approach:

• Current Status:

• Future work:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 21/1

Translation Validation of GCC

• Problem:

I Establishing correctness of compilers is important.
I Verifying a real compiler is very difficult.

• Our Objectives: To build a system to verify the correctness of the
translation of given program.

• Our approach:

• Current Status:

• Future work:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 21/1

Translation Validation of GCC

• Problem:

I Establishing correctness of compilers is important.
I Verifying a real compiler is very difficult.

• Our Objectives: To build a system to verify the correctness of the
translation of given program.

• Our approach:

I Define suitable observation points and observables
I Establish the conditions under which the observables correspond at

the end of the program.
I Derive the conditions under which the observables correspond at the

start of the program.

• Current Status:

• Future work:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 21/1

Translation Validation of GCC

• Problem:

I Establishing correctness of compilers is important.
I Verifying a real compiler is very difficult.

• Our Objectives: To build a system to verify the correctness of the
translation of given program.

• Our approach:

I Define suitable observation points and observables
I Establish the conditions under which the observables correspond at

the end of the program.
I Derive the conditions under which the observables correspond at the

start of the program.

• Current Status: Formal theory and prototype implementation to show the
correctness of translation of a few programs exist.

• Future work:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 21/1

Translation Validation of GCC

• Problem:

I Establishing correctness of compilers is important.
I Verifying a real compiler is very difficult.

• Our Objectives: To build a system to verify the correctness of the
translation of given program.

• Our approach:

I Define suitable observation points and observables
I Establish the conditions under which the observables correspond at

the end of the program.
I Derive the conditions under which the observables correspond at the

start of the program.

• Current Status: Formal theory and prototype implementation to show the
correctness of translation of a few programs exist.

• Future work:

I Cleaning up the theory to systematize the termination criteria.
I Extending the approach to include more optimizations.

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 22/1

Typed Intermediate Representations in GCC

• The Problems:

• Our Goals:

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 22/1

Typed Intermediate Representations in GCC

• The Problems:

I The intermediate representations are typeless.

• Our Goals:

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 22/1

Typed Intermediate Representations in GCC

• The Problems:

I The intermediate representations are typeless.
I Enforcing semantic correctness and consistency of IRs is left to te

developer.

• Our Goals:

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 22/1

Typed Intermediate Representations in GCC

• The Problems:

I The intermediate representations are typeless.
I Enforcing semantic correctness and consistency of IRs is left to te

developer.

• Our Goals:

I Change the Gimple IR to bring in type sensitivity.

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 22/1

Typed Intermediate Representations in GCC

• The Problems:

I The intermediate representations are typeless.
I Enforcing semantic correctness and consistency of IRs is left to te

developer.

• Our Goals:

I Change the Gimple IR to bring in type sensitivity.
I Define appropriate type system.
I The access functions for Gimple IR should enforce type consistency.

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 22/1

Typed Intermediate Representations in GCC

• The Problems:

I The intermediate representations are typeless.
I Enforcing semantic correctness and consistency of IRs is left to te

developer.

• Our Goals:

I Change the Gimple IR to bring in type sensitivity.
I Define appropriate type system.
I The access functions for Gimple IR should enforce type consistency.

• Current Status:

I Problem definition has to be made more precise.

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 23/1

Linear Types in GCC

• The Problems:

• Our Goals:

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 23/1

Linear Types in GCC

• The Problems:

I Aliases created by pointers is a major problem in C.

• Our Goals:

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 23/1

Linear Types in GCC

• The Problems:

I Aliases created by pointers is a major problem in C.
I Significant imprecision in analysis

• Our Goals:

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 23/1

Linear Types in GCC

• The Problems:

I Aliases created by pointers is a major problem in C.
I Significant imprecision in analysis
I The scope of optimizations is significantly reduced.

• Our Goals:

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 23/1

Linear Types in GCC

• The Problems:

I Aliases created by pointers is a major problem in C.
I Significant imprecision in analysis
I The scope of optimizations is significantly reduced.
I Parallelization and Vectorization becomes difficult.

• Our Goals:

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 23/1

Linear Types in GCC

• The Problems:

I Aliases created by pointers is a major problem in C.
I Significant imprecision in analysis
I The scope of optimizations is significantly reduced.
I Parallelization and Vectorization becomes difficult.
I Synchronization and correctness problems in threads.

• Our Goals:

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 23/1

Linear Types in GCC

• The Problems:

I Aliases created by pointers is a major problem in C.
I Significant imprecision in analysis
I The scope of optimizations is significantly reduced.
I Parallelization and Vectorization becomes difficult.
I Synchronization and correctness problems in threads.

• Our Goals:

I Use linear types to prohibit aliasing.

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 23/1

Linear Types in GCC

• The Problems:

I Aliases created by pointers is a major problem in C.
I Significant imprecision in analysis
I The scope of optimizations is significantly reduced.
I Parallelization and Vectorization becomes difficult.
I Synchronization and correctness problems in threads.

• Our Goals:

I Use linear types to prohibit aliasing.
I Allow reasonable limited relaxations of linearity constraints.

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 23/1

Linear Types in GCC

• The Problems:

I Aliases created by pointers is a major problem in C.
I Significant imprecision in analysis
I The scope of optimizations is significantly reduced.
I Parallelization and Vectorization becomes difficult.
I Synchronization and correctness problems in threads.

• Our Goals:

I Use linear types to prohibit aliasing.
I Allow reasonable limited relaxations of linearity constraints.
I Define appropriate type system and enforce it.

• Current Status:

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 23/1

Linear Types in GCC

• The Problems:

I Aliases created by pointers is a major problem in C.
I Significant imprecision in analysis
I The scope of optimizations is significantly reduced.
I Parallelization and Vectorization becomes difficult.
I Synchronization and correctness problems in threads.

• Our Goals:

I Use linear types to prohibit aliasing.
I Allow reasonable limited relaxations of linearity constraints.
I Define appropriate type system and enforce it.

• Current Status:

I Linearity aspects in C have been studied in details.

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 23/1

Linear Types in GCC

• The Problems:

I Aliases created by pointers is a major problem in C.
I Significant imprecision in analysis
I The scope of optimizations is significantly reduced.
I Parallelization and Vectorization becomes difficult.
I Synchronization and correctness problems in threads.

• Our Goals:

I Use linear types to prohibit aliasing.
I Allow reasonable limited relaxations of linearity constraints.
I Define appropriate type system and enforce it.

• Current Status:

I Linearity aspects in C have been studied in details.
I Variants of linearity have been identified.

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Major R&D Initiatives 23/1

Linear Types in GCC

• The Problems:

I Aliases created by pointers is a major problem in C.
I Significant imprecision in analysis
I The scope of optimizations is significantly reduced.
I Parallelization and Vectorization becomes difficult.
I Synchronization and correctness problems in threads.

• Our Goals:

I Use linear types to prohibit aliasing.
I Allow reasonable limited relaxations of linearity constraints.
I Define appropriate type system and enforce it.

• Current Status:

I Linearity aspects in C have been studied in details.
I Variants of linearity have been identified.
I An initial draft of the type system is in place.

GCC Mini Workshop Uday Khedker, IIT Bombay

Part 5

Conclusions

Jan’08 GRC: Conclusions 24/1

Conclusions

• Our group on GCC at IIT Bombay

I Synergy from group activities
I Long term commitment to challenging research problems
I A desire to explore real issues in real compilers

A dream to improve GCC

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Conclusions 24/1

Conclusions

• Our group on GCC at IIT Bombay

I Synergy from group activities
I Long term commitment to challenging research problems
I A desire to explore real issues in real compilers

A dream to improve GCC

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Conclusions 24/1

Conclusions

• Our group on GCC at IIT Bombay

I Synergy from group activities
I Long term commitment to challenging research problems
I A desire to explore real issues in real compilers

A dream to improve GCC

• Would you like to be a part of this dream?

GCC Mini Workshop Uday Khedker, IIT Bombay

Jan’08 GRC: Conclusions 25/1

Last but not the least . . .

Thank You!

GCC Mini Workshop Uday Khedker, IIT Bombay

