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Open Source Vs. Free Software

• The open source initiative: (http://www.opensource.org/)

Emphasis on development methodology

• The Free Software Foundation: (http://www.fsf.org/)

Emphasis on freedom of the user

• In some cases, open source software has restricted user freedom
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Open Source and Free Software Development Model

• The Cathedral and the Bazaar

Eric S Raymond, 1999.

• Cathedral: Total Centralized Control

Design, implement, test, release

• Bazaar: Total Decentralization

Release early, release often, let users fix bugs
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The Bazaar Approach

Release early, release often, let users fix bugs

• Brooks’ law (The Mythical Man Month, 1975)

I 12 man month effort
I 1 person working for 12 months

OR
12 persons working for 1 month?

• Bazaar approach believes that the two are somewhat equivalent in
internet-based distributed development.

• “Given enough eyeballs, all bugs are shallow”.

Code errors, logical errors, and architectural errors.

A combination of the two seems more sensible
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Implementation Mechanisms

Source Program

Translator

Target Program
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Implementation Mechanisms

Source Program

Translator

Target Program

Machine

Input Data

Source Program

Interpreter
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Implementation Mechanisms as “Bridges”

• “Gap” between the “levels” of program specification and execution

Program Specification

Machine

Translation Interpretation

State : Variables
Operations: Expressions,

Control Flow

State : Memory,
Registers

Operations: Machine
Instructions
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High and Low Level Abstractions

• A source statement

a = b < 10 ? b : c;

• Spim assembly equivalent

lw $t0, 4($fp) # $t0 <- b

slti $t0, $t0, 10 # $t0 <- $t0 < b

not $t0, $t0 # $t0 <- ! $t0

bgtz $t0, L0: # if $t0 >= 0 goto L0:

lw $t0, 4($fp) # $t0 <- b

b L1: # goto L1:

L0: lw $t0, 8($fp) # L0: $t0 <- c

L1: sw 0($fp), $t0 # L1: a <- $t0
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Implementation Mechanisms

• Translation = Analysis + Synthesis

Interpretation = Analysis + Execution
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Implementation Mechanisms

• Translation = Analysis + Synthesis

Interpretation = Analysis + Execution

• Translation Instructions
Equivalent

Instructions

Interpretation Instructions
Actions Implied

by Instructions
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Language Implementation Models

Analysis

Synthesis

Execution

Compilation

Interpretation

GCC Mini Workshop Uday Khedker, IIT Bombay



Jan’08 GRC: Introduction to Compilation 10/1

Language Processor Models

C,C++

Java,
C#

Front
End

Optimizer

Back
End

Virtual
Machine

GCC Mini Workshop Uday Khedker, IIT Bombay



Jan’08 GRC: Introduction to Compilation 11/1

Typical Front Ends

Parser

GCC Mini Workshop Uday Khedker, IIT Bombay



Jan’08 GRC: Introduction to Compilation 11/1

Typical Front Ends

ParserSource
Program

Scanner

Tokens

GCC Mini Workshop Uday Khedker, IIT Bombay



Jan’08 GRC: Introduction to Compilation 11/1

Typical Front Ends

ParserSource
Program

Scanner

Tokens

Semantic
Analyzer

AST

Parse
Tree

AST or Linear IR
+

Symbol Table

GCC Mini Workshop Uday Khedker, IIT Bombay



Jan’08 GRC: Introduction to Compilation 11/1

Typical Front Ends

ParserSource
Program

Scanner

Tokens

Semantic
Analyzer

AST

Parse
Tree

AST or Linear IR
+

Symbol Table

Error
Handler

Symtab
Handler
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Typical Back Ends

M/c Ind.
IR

M/c Ind.
Optimizer

− Compile time
evaluations

− Eliminating
redundant
computations

M/c
Ind.
IR
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Typical Back Ends

M/c Ind.
IR

M/c Ind.
Optimizer

− Compile time
evaluations

− Eliminating
redundant
computations

M/c
Ind.
IR

Code
Generator

M/c
Dep.
IR

− Instruction Selection
− Local Reg Allocation
− Choice of Order of

Evaluation

Assembly Code

Register
Allocator

Instruction
Scheduler

Peephole
Optimizer
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Improving Retargetability and Instruction Selection

• The Problem:

• The Consequences:
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Improving Retargetability and Instruction Selection

• The Problem: Instruction selection algorithms in GCC are very primitive
(employ full tree matching instead of tree tiling).

• The Consequences:

I A compiler developer needs to visualize and specify meaningful
combinations of instructions for generating good quality code.

I The machine descriptions are difficult to construct, understand,
maintain, and enhance.

I GCC has become a hacker’s paradise instead of a clean, production
quality compiler generation framework.
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Improving Retargetability and Instruction Selection

• Our Goals:

I Discover the abstractions required in machine descriptions and
develop a systematic methodology of constructing them.

I Use tree tiling based instruction selection algorithms to allow for
cleaner and simpler machine descriptions.

• Current Status:

I A methodology of incremental construction has been devised.
I Preliminary investigations in using iburg seem very promising.

(Only 200 rules required for i386 instead of over a 1000!)
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In Search of Modularity in Retargetable Compilation
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Systematic Development of Machine Descriptions

Other data types

Conditional control transfers

Function Calls

Arithmetic Expressions

Sequence of
Simple Assignments
involving integers

MD Level 1

MD Level 2

MD Level 3

MD Level 4

MD Level 5
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• The Problems:

I Primitive algorithms and adhoc designs (too many passes, repetitive
work in passes, inappropriateness of IR).

I Whole program analysis does not exist.

• Our Goals:

I Implement our algorithms of interprocedural analysis.
I Facilitate generation of optimizers from specifications.

− Clean specifications
− Systematic local, global, and interprocedural analysis
− Simple, efficient, generic, and precise algorithms
− Incremental analyses for aggressive optimizations

• Current Status:

I The required algorithms and their formal theory is in place.
I The results of proof of concept implementations are very encouraging.
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Translation Validation of GCC

• Problem:

I Establishing correctness of compilers is important.
I Verifying a real compiler is very difficult.

• Our Objectives: To build a system to verify the correctness of the
translation of given program.

• Our approach:

I Define suitable observation points and observables
I Establish the conditions under which the observables correspond at

the end of the program.
I Derive the conditions under which the observables correspond at the

start of the program.

• Current Status: Formal theory and prototype implementation to show the
correctness of translation of a few programs exist.

• Future work:

I Cleaning up the theory to systematize the termination criteria.
I Extending the approach to include more optimizations.
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Typed Intermediate Representations in GCC

• The Problems:

I The intermediate representations are typeless.
I Enforcing semantic correctness and consistency of IRs is left to te

developer.

• Our Goals:

I Change the Gimple IR to bring in type sensitivity.
I Define appropriate type system.
I The access functions for Gimple IR should enforce type consistency.

• Current Status:

I Problem definition has to be made more precise.
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Linear Types in GCC

• The Problems:

I Aliases created by pointers is a major problem in C.
I Significant imprecision in analysis
I The scope of optimizations is significantly reduced.
I Parallelization and Vectorization becomes difficult.
I Synchronization and correctness problems in threads.

• Our Goals:

I Use linear types to prohibit aliasing.
I Allow reasonable limited relaxations of linearity constraints.
I Define appropriate type system and enforce it.

• Current Status:

I Linearity aspects in C have been studied in details.
I Variants of linearity have been identified.
I An initial draft of the type system is in place.

GCC Mini Workshop Uday Khedker, IIT Bombay



Part 5

Conclusions



Jan’08 GRC: Conclusions 24/1

Conclusions

• Our group on GCC at IIT Bombay

I Synergy from group activities
I Long term commitment to challenging research problems
I A desire to explore real issues in real compilers

A dream to improve GCC
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Conclusions

• Our group on GCC at IIT Bombay

I Synergy from group activities
I Long term commitment to challenging research problems
I A desire to explore real issues in real compilers

A dream to improve GCC

• Would you like to be a part of this dream?
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Last but not the least . . .

Thank You!
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