
Heap Reference Analysis Using Access Graphs

UDAY P. KHEDKER, AMITABHA SANYAL and AMEY KARKARE

Department of Computer Science & Engg., IIT Bombay.

Despite significant progress in the theory and practice of program analysis, analysing properties
of heap data has not reached the same level of maturity as the analysis of static and stack data.
The spatial and temporal structure of stack and static data is well understood while that of heap
data seems arbitrary and is unbounded. We devise bounded representations which summarize
properties of the heap data. This summarization is based on the structure of the program which
manipulates the heap. The resulting summary representations are certain kinds of graphs called
access graphs. The boundedness of these representations and the monotonicity of the operations
to manipulate them make it possible to compute them through data flow analysis.

An important application which benefits from heap reference analysis is garbage collection,
where currently liveness is conservatively approximated by reachability from program variables.
As a consequence, current garbage collectors leave a lot of garbage uncollected, a fact which
has been confirmed by several empirical studies. We propose the first ever end-to-end static
analysis to distinguish live objects from reachable objects. We use this information to make dead
objects unreachable by modifying the program. This application is interesting because it requires
discovering data flow information representing complex semantics. In particular, we discover four
properties of heap data: liveness, aliasing, availability, and anticipability. Together, they cover all
combinations of directions of analysis (i.e. forward and backward) and confluence of information
(i.e. union and intersection). Our analysis can also be used for plugging memory leaks in C/C++
languages.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Memory management
(garbage collection); Optimization; F.3.2 [Logics and Meanings Of Programs]: Semantics of Programming
Languages—Program analysis

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Aliasing, Data Flow Analysis, Heap References, Liveness

1. INTRODUCTION

Conceptually, data in a program is allocated in either the static data area, stack, or heap.
Despite significant progress in the theory and practice of program analysis, analysing the
properties of heap data has not reached the same level of maturity as the analysis of static
and stack data. Section 1.2 investigates possible reasons.

In order to facilitate a systematic analysis, We devise bounded representations which
summarize properties of the heap data. This summarization is based on the structure of the
program which manipulates the heap. The resulting summary representations are certain
kinds of graphs, called access graphs which are obtained through data flow analysis. We
believe that our technique of summarization is general enough to be also used in contexts
other than heap reference analysis.

1.1 Improving Garbage Collection through Heap Reference Analysis

An important application which benefits from heap reference analysis is garbage collection,
where liveness of heap data is conservatively approximated by reachability. This amounts
to approximating the future of an execution with its past. Since current garbage collectors

2 · Uday Khedker et al.

1. w = x // x points to ma

2. while (x.getdata() < max)
{

3. x = x.rptr
}

4. y = x.lptr
5. z = New class of z // Possible GC Point
6. y = y.lptr
7. z.sum = x.lptr.getdata()+ y.getdata()

(a) A Program Fragment

HeapStack

z

x

w
ma

y

mk

mb
rptr

mc
rptr

md
rptr

me

lptr

m f

lptr mg

lptr

mh

lptr
mi

lptr

m j

lptr

ml

lptr

mm

lptr

(b) Superimposition of memory graphs before line 5.
Dashed arrows capture the effect of different iter-
ations of the while loop. All thick arrows (both
dashed and solid) are live links.

y = z = null

1. w = x
w = null

2. while (x.getdata() < max)

{ x.lptr = null

3. x = x.rptr
}

x.rptr = x.lptr.rptr = x.lptr.lptr.lptr = x.lptr.lptr.rptr = null

4. y = x.lptr
y.rptr = y.lptr.lptr = y.lptr.rptr = null

5. z = New class of z

z.lptr = z.rptr = null

6. y = y.lptr
x.lptr.lptr = y.lptr = y.rptr = null

7. z.sum = x.lptr.getdata()+ y.getdata()

x = y = z = null

(c) The modified program. Highlighted statements in-
dicate the null assignments inserted in the program
using our method. (More details in Section 5)

Fig. 1. A motivating example.

cannot distinguish live data from data that is reachable but not live, they leave a lot of
garbage uncollected. This has been confirmed by empirical studies [Hirzel et al. 2002;
Hirzel et al. 2002; Shaham et al. 2001b; 2001a; 2002] which show that a large number
(24% to 76%) of heap objects which are reachable at a program point are actually not
accessed beyond that point. In order to collect such objects, we perform static analyses
to make dead objects unreachable by setting appropriate references to null . The idea that
doing so would facilitate better garbage collection is well known as “Cedar Mesa Folk
Wisdom” [Gadbois et al.]. The empirical attempts at achieving this have been [Shaham
et al. 2001a; 2002].

Garbage collection is an interesting application for us because it requires discovering
data flow information representing complex semantics. In particular, we need to discover
four properties of heap references: liveness, aliasing, availability, and anticipability. Live-
ness captures references that may be used beyond the program point under consideration.
Only the references that are not live can be considered for null assignments. Safety of null

assignments further requires (a) discovering all possible ways of accessing a given heap
memory cell (aliasing), and (b) ensuring that the reference being nullified is accessible
(availability and anticipability).

For simplicity of exposition, we present our method in a setting similar to Java. Ex-
tensions required for handling C/C++ model of heap usage are easy and are explained in
Appendix C.

We assume that root variable references are on the stack and the actual objects cor-

Heap Reference Analysis Using Access Graphs · 3

responding to the root variables are in the heap. In the rest of the paper we ignore non-
reference variables. We view the heap at a program point as a directed graph called memory
graph. Root variables form the entry nodes of a memory graph. Other nodes in the graph
correspond to objects on the heap and edges correspond to references. The out-edges of
entry nodes are labeled by root variable names while out-edges of other nodes are labeled
by field names. The edges in the memory graph are called links.

Example 1.1. Figure 1 shows a program fragment and its memory graphs before line
5. Depending upon the number of times the while loop is executed x points to ma, mb, mc

etc. Correspondingly, y points to mi, m f , mg etc. The call to New on line 5 may require
garbage collection. A conventional copying collector will preserve all nodes except mk.
However, only a few of them are used beyond line 5.

The modified program is an evidence of the strength of our approach. It makes the
unused nodes unreachable by nullifying relevant links. The modifications in the program
are general enough to nullify appropriate links for any number of iterations of the loop.
Observe that a null assignment has also been inserted within the loop body thereby making
some memory unreachable in each iteration of the loop. 2

After such modifications, a garbage collector will collect a lot more garbage. Further,
since copying collectors process only live data, garbage collection by such collectors will
be faster. Both these facts are corroborated by our empirical measurements (Section 8).

In the context of C/C++, instead of setting the references to null , allocated memory will
have to be explicitly deallocated after checking that no alias is live.

1.2 Difficulties in Analysing Heap Data

A program accesses data through expressions which have l-values and hence are called
access expressions. They can be scalar variables such as x, or may involve an array access
such as a[2∗ i], or can be a reference expression such as x.l.r.

An important question that any program analysis has to answer is: Can an access expres-
sion α1 at program point p1 have the same l-value as α2 at program point p2? Note that
the access expressions or program points could be identical. The precision of the analysis
depends on the precision of the answer to the above question.

When the access expressions are simple and correspond to scalar data, answering the
above question is often easy because, the mapping of access expressions to l-values re-
mains fixed in a given scope throughout the execution of a program. However in the case
of array or reference expressions, the mapping between an access expression and its l-value
is likely to change during execution. From now on, we shall limit our attention to reference
expressions, since these are the expressions that are primarily used to access the heap. Ob-
serve that manipulation of the heap is nothing but changing the mapping between reference
expressions and their l-values. For example, in Figure 1, access expression x.lptr refers to
mi when the execution reaches line number 2 and may refer to mi, m f , mg, or me at line 4.

This implies that, subject to type compatibility, any access expression can correspond to
any heap data, making it difficult to answer the question mentioned above. The problem
is compounded because the program may contain loops implying that the same access
expression appearing at the same program point may refer to different l-values at different
points of time. Besides, the heap data may contain cycles, causing an infinite number
of access expressions to refer to the same l-value. All these make analysis of programs
involving heaps difficult.

4 · Uday Khedker et al.

1.3 Contributions of This Paper

The contributions of this paper fall in the following two categories

—Contributions in Data Flow Analysis. We present a novel data flow framework in
which the data flow values represent complex semantics going beyond the traditional
bit-vectors/tuples. An interesting aspect of our method is the way we obtain bounded
representations of the properties by using the structure of the program which manipulates
the heap. As a consequence of this summarization, the values of data flow information
constitute a complete lattice with finite height. Further, we have carefully identified a
set of monotonic operations to manipulate this data flow information. Hence, the stan-
dard results of data flow analysis can be extended to heap reference analysis. Due to the
generality of this approach, it can be applied to other analyses as well.

—Contributions in Heap Data Analysis. We propose the first ever end-to-end solution
(in the intraprocedural context) for statically discovering heap references which can be
made null to improve garbage collection. The only approach which comes close to our
approach is the heap safety automaton based approach [Shaham et al. 2003]. However,
our approach is superior to their approach in terms of completeness, effectiveness, and
efficiency (details in Section 9.3).

The concept which unifies the contributions is the summarization of heap properties
which uses the fact that the heap manipulations consist of repeating patterns which bear
a close resemblance to the program structure. Our approach to summarization is more
natural and more precise than other approaches because it does not depend on an a-priori
bound [Jones and Muchnick 1979; 1982; Larus and Hilfinger 1988; Chase et al. 1990].

1.4 Organisation of the paper

The rest of the paper is organized as follows. Section 2 defines the relevant properties of
heap references in terms of sets of access paths. Section 3 defines access graphs, which are
finite representations of sets of access paths. Section 4 defines the data flow analyses while
Section 5 explains how null assignments are inserted. Section 6 discusses convergence
and complexity issues. Section 7 shows the soundness of our approach. Section 8 presents
empirical results. Section 9 reviews related work. Appendix A presents the extensions for
handling cycles in heap. Appendix B discusses distributivity properties of our analyses.

2. HEAP REFERENCES AND THEIR PROPERTIES

Our method discovers live links at each program point, i.e., links which may be used in the
program beyond the point under consideration. Links which are not live can be set to null .
In order to discover liveness and other properties, we need a way of naming links in the
memory graph. We do this using access paths.

2.1 Access Paths

An access path is a root variable name followed by a sequence of zero or more field names
and is denoted by ρx ≡ x f1 f2 · · · fk. Since an access path represents a path in a
memory graph, it can be used for naming links and nodes. An access path consisting of
just a root variable name is called a simple access path; it represents a path consisting of a
single link corresponding to the root variable. E denotes an empty access path.

The last field name in an access path ρ is called its frontier and is denoted by Frontier(ρ).
The frontier of a simple access path is the root variable name. The access path correspond-

Heap Reference Analysis Using Access Graphs · 5

ing to the longest sequence of names in ρ excluding its frontier is called its base and is
denoted by Base(ρ). Base of a simple access path is E . The object reached by traversing
an access path ρ is called the target of the access path and is denoted by Target(ρ). When
we use an access path ρ to refer to a link in a memory graph, it denotes the last link in ρ,
i.e. the link corresponding to Frontier(ρ).

Example 2.1. As explained earlier, Figure 1(b) is the superimposition of memory graphs
that can result before line 5 for different executions of the program. For ρx ≡ x lptr lptr,
depending on whether the while loop is executed 0, 1, 2, or 3 times, Target(ρx) denotes
nodes m j, mh, mm, or ml . Frontier(ρx) denotes one of the links mi → m j, m f → mh,
mg → mm or me → ml . Base(ρx) represents the following paths in the heap memory:
x → ma → mi, x → mb → m f , x → mc → mg or x → md → me. 2

In the rest of the paper, α denotes an access expression, ρ denotes an access path and
σ denotes a (possibly empty) sequence of field names separated by . Let the access
expression αx be x. f1. f2 . . . fn. Then, the corresponding access path ρx is x f1 f2 . . . fn.
When the root variable name is not required, we drop the subscripts from αx and ρx.

2.2 Program Flow Graph

In this paper we restrict ourselves to intraprocedural analysis only. Besides, the current
version of analysis does not cover programs containing arrays and threads. For the purpose
of analysis, exception handling can be modeled by explicating possible control flows. We
assume that the program flow graph has a unique Entry and a unique Exit node. Further,
each statement forms a basic block1 and falls in one of the following categories:

—Assignment Statements. These are assignments to references and are denoted by α x = αy.
Only these statements can modify the structure of the heap.

—Use Statements. These statements use heap references to access heap data but do not
modify heap references. For the purpose of analysis, these statements are abstracted as
lists of expressions αy or αy.d where αy is an access expression and d is a non-reference.

—Other Statements. These statements include all statements which do not refer to the
heap. We ignore these statements since they do not influence heap reference analysis.

A path ψ in a program flow graph is a sequence of program points p1 → p2 → . . . → pk

such that for 1 ≤ i ≤ k there is a direct transfer of control from pi to pi+1 (i.e. pi and pi+1

are adjacent program points). For ψ = p1 → . . . → pk, ψ′ = ψ• pk → pk+1 denotes that ψ
is the prefix of ψ′ (ψ′ = p1 → . . . → pk → pk+1), and ψ′′ = p0 → p1 •ψ denotes that ψ is
the suffix of ψ′′ (ψ′′ = p0 → p1 → . . . → pk).

We assume that the conditions that alter flow of control are made up only of simple
variables. If not, the offending reference expression is assigned to a fresh simple variable
before the condition and is replaced by the fresh variable in the condition. When we talk
about the execution path, we shall refer to the execution of the program derived by retaining
all assignment and use statements and ignoring the condition checks in the path.

For simplicity of exposition, we present the analyses assuming that there are no cycles in
the heap. Handling cycles is easy and the required extensions are discussed in Appendix A.
These extensions have been incorporated in our prototype implementation (Section 8).

1This is only for simplicity of exposition. As explained in Section 6.2, multiple statements can be grouped
together in a larger basic block.

6 · Uday Khedker et al.

x

u

v

w

y

p

q

r n

n n n
r

x

u

v

w

y

p

q

r
n n n

r

n

(a) Assignment modifying left hand side only (b) Assignment modifying both left and right hand sides

Fig. 2. Effect of assignment x.r.n = y.n.n. The dotted and the thick arrows represents the links before and after
the assignment.

2.3 Aliasing of Access Paths

Two access paths ρx and ρy are aliased at a program point p if Target(ρx) is same as
Target(ρy) at p during some execution of the program. They are link-aliased if their
frontiers represent the same link; they are node-aliased if they are aliased but their frontiers
do not represent the same link. Link-aliases can be derived from node-aliases (or other
link-aliases) by adding the same field names to aliased access paths.

We compute flow-sensitive aliases i.e. the aliases at a program point depend on the
statements along control flow paths reaching the point. Two access paths are must-aliased
at p if they are aliased along every control flow path reaching p; they are may-aliased if
they are aliased along some control flow path reaching p. As an example, in Figure 1,
x lptr and y are must-node-aliases, x lptr lptr and y lptr are must-link-aliases, and w
and x are node-aliases at line 5. Alias relations have the following properties:

Node-aliasing Link-aliasing

May-aliasing Symmetry Symmetry and Reflexivity
Must-aliasing Symmetry and Transitivity Symmetry, Reflexivity, and Transitivity

Note that since node-aliases cannot share frontier, they are not reflexive.
In the sequel, by alias we shall mean may-alias; a must-alias will be mentioned explicitly.

Example 2.2. Figure 2 shows the effect of assignment x.r.n = y.n.n on the memory
graph. We record node-aliases only and denote the aliasing between ρx and ρy by 〈ρx,ρy〉.
The aliases after the assignment in Figure 2(a) are computed as follows:

(1) Since this assignment changes Frontier(x r n), any alias involving an access path
with a prefix that is must-link-aliased to x r n is killed. Thus, assuming that 〈x,u〉 is
a must-alias, the alias pairs 〈x r n,w〉 and 〈u r n,w〉 are both killed.

(2) As a direct effect of the assignment, all link-aliases of x r n are aliased with all link-
aliases of y n n. This generates the aliases 〈x r n,y n n〉, 〈u r n,y n n〉,
〈x r n,v n n〉 and 〈u r n,v n n〉.

(3) Any alias involving y n n σ will generate aliases formed by replacing y n n
by x r n or any of its link-aliases. Thus the existing alias 〈y n n n, q〉 will
generate aliases 〈x r n n, q〉 and 〈u r n n, q〉. On the other hand, the alias

Heap Reference Analysis Using Access Graphs · 7

〈y n n n, y n n r〉, which involves the same root variable unlike the previous
alias, gives rise to the following aliases involving x:
—〈x r n n, y n n r〉 (replacing the y n n in the first component),
—〈y n n n, x r n r〉 (replacing y n n in the second component), and
—〈x r n n, x r n r〉 (replacing y n n in both components).
There will be a similar set of aliases involving u instead of x (and v instead of y).

The aliases for the assignment in Figure 2(b) are computed much in the same way except
that alias pairs involving y n n (and its must-link-aliases) will not be generated. 2

We now define node-alias relations by generalizing the above observations. Since alias-
ing is influenced by assignments alone, we ignore other statements.

Definition 2.3. May-Node-Aliases. Let APp denote set of node-alias pairs at program
point p. We define APp as follows:

(1) APEntry = /0, where Entry denotes the program entry.
(2) If p is not Entry , then consider a control flow path ψ = Entry → . . . → p′ → p. As-

sume that in this path, p follows an assignment αx = αy and p′ is the program point
immediately before the assignment. Define LhsPaths and RhsPaths as the set of access
paths which are link-aliased to ρx and ρy respectively, at p′. Define KillPaths as the
set of access paths which have a prefix which is must-link-aliased to ρx at p′. Then,
(a) Define APKill as alias pairs where either one or both components are in KillPaths.
(b) Define APDirect as LhsPaths × (RhsPaths−KillPaths). If αy is New . . . or null ,

define APDirect as /0.
(c) Define APTransfer as union of the set of alias pairs

i. 〈ρz, ρu σ〉 such that ρu ∈ LhsPaths, ρz 6∈ KillPaths, and 〈ρz, ρy σ〉 ∈ APp′ .
ii. 〈ρu σ1,ρv σ2〉 such that ρu,ρv ∈ LhsPaths, and 〈ρy σ1, ρy σ2〉 ∈ APp′.

Note that, ρu and ρv can also be same.
If αy is New . . . or null , define APTransfer as /0.

For a given set X of node alias pairs, define

AFψ(X) =

{

X ψ is empty
(AFψ ′(X)−APKill) ∪ APDirect ∪ APTransfer otherwise 2 (1)

where ψ = ψ ′ • p′ → p

APp is defined as the union of alias sets AFψ(/0) along all control flow paths ψ from
Entry to p, closed under symmetry. 2

2.4 Liveness of Access Paths

A link l is live at a program point p if it is used in some control flow path starting from p.
Note that l may be used in two different ways. It may be dereferenced to access an object
or tested for comparison. An erroneous nullification of l would affect the two uses in
different ways: Dereferencing l would result in an exception being raised whereas testing
l for comparison may alter the result of condition and thereby the execution path.

Figure 1(b) shows links that are live before line 5 by thick arrows. For a link l to be live,
there must be at least one access path from some root variable to l such that every link in
this path is live. This is the path that is actually traversed while using l.

2Note that the values of APKill, APDirect and APTransfer depend upon information at p′, i.e. AFψ ′ (X).

8 · Uday Khedker et al.

An access path is defined to be live at p if the link corresponding to its frontier is possibly
live along some path starting at p. We distinguish between the following:

—Explicit liveness. An access path is explicitly live at p if the liveness of its frontier
depends solely on the execution of control flow paths from p to Exit. A formal specifi-
cation of explicit liveness is provided in Definition 2.6.

—Implicit liveness. An access path is implicitly live at p if the liveness of its frontier
depends not only on the execution of paths from p to Exit but also on the execution
of paths from Entry to p due to aliasing. Implicitly live access paths are discovered
by computing may-link-aliases of explicitly live access path. They can be viewed as
alternative names for the links represented by the frontiers of explicitly live access paths.

Example 2.4. If the body of the while loop in Figure 1(a) is not executed even once,
Target(y) = mi at line 5 and the link mi → m j is live at line 5 because it is used in line
6. The access path along which this link is used is y lptr, and therefore both the access
paths y and y lptr are explicitly live. Access path w lptr lptr is implicitly live. Note
that none of its proper prefixes is live at line 5. If the assignment w = x were conditional,
then depending upon whether it is executed, w lptr lptr may or may not be live at line 5.
However, the liveness of y or y lptr does not depend on the past execution. 2

Safety of null assignments requires that the access paths which are either explicitly or
implicitly live are excluded from nullification.

Example 2.5. The assignments in Figure 2 have the following effect on liveness.

—As in the case of alias analysis, any access path which has a prefix that is must-link-
aliased to x r n will be killed. Any access path live after the assignment and not killed
by it is also live before the assignment.

—All prefixes of x r and y n are explicitly live before the assignment.

—If x r n σ is live after the assignment, then y n n σ will be live before the assign-
ment. For example, if x r n n is live after the assignment, then y n n n will be
live before the assignment. The sequence of field names σ is viewed as being trans-
ferred from x r n to y n n. 2

We now define liveness by generalizing the above observations.

Definition 2.6. Explicit Liveness. The set of explicitly live access paths at a program
point p, denoted as ELPp is defined as follows.

(1) ELPExit = /0, where Exit denotes the program exit.

(2) If p is not Exit, then consider a control flow path ψ = p → p′ → . . . → Exit such that
p is followed by statement s and the program point immediately following s is p′.
(a) If s is an assignment αx = αy, then define

i. LKill as the set of all access paths that have a prefix which is must-link-aliased
to ρx at p′. 3

ii. LDirect as the union of the sets of all prefixes of Base(ρx) and all prefixes of
Base(ρy). If αy is New . . . or null , LDirect is the set of all prefixes of Base(ρx).

3Note that aliasing information, which depends on the path from Entry to p, is used only for killing explicit
liveness. Generation of explicitly live paths depends only on the path from p to Exit.

Heap Reference Analysis Using Access Graphs · 9

1 x = New 1

2 x = New 2 3 x.n = New 3

4 x.n = null? 4

5 y = x.r 5 6 x.n.n = New 6

T F

Fig. 3. Availability of Access Paths

iii. LTransfer as the set of all access paths ρy σ where ρx σ is in ELPp′ . Note
that σ may be empty. If αy is New . . . or null , LTransfer is /0.

(b) If s is a use αy.d or αy, then define LDirect as the set of all prefixes of ρy and
LKill = LTransfer = /0.

For a given set X of access paths, define

EFψ(X) =

{

X ψ is empty
(EFψ ′(X)−LKill) ∪ LDirect ∪ LTransfer otherwise

(2)

where ψ = p → p′ •ψ ′

ELPp is defined as the union of access path sets EFψ(/0) along all control flow paths ψ
from p to Exit. 2

The definitions of LKill, LDirect, and LTransfer ensure that the ELPp is a prefix-closed set.

Example 2.7. In Figure 1, it cannot be statically determined which link is represented
by access expression x.lptr at line 4. Depending upon the number of iterations of the while
loop, it may be any of the links represented by thick arrows. Thus at line 1, we have to as-
sume that all access paths {x lptr lptr, x rptr lptr lptr, x rptr rptr lptr lptr, . . .}
are explicitly live. 2

In general, an infinite number of access paths with unbounded lengths may be live before
a loop. Clearly, performing data flow analysis for access paths requires a suitable finite
representation. Section 3 defines access graphs for the purpose.

2.5 Availability and Anticipability of Access Paths

Liveness alone is not enough to decide whether an assignment αx = null can be safely
inserted at p. We have to additionally ensure that dereferencing links during execution of
αx = null does not cause an exception.

Example 2.8. In Figure 3, access path x n n is not live in block 2. However, it cannot
be set to null since the object pointed to by x n does not exist in memory when the execu-
tion reaches block 2. Therefore, insertion of x.n.n = null in block 2 will raise an exception
at run-time. 2

The above example shows that safety of inserting an assignment αx = null at a program
point p requires that whenever control reaches p, every prefix of Base(ρx) has a non-null l-
value. Such an access path is said to be accessible at p. To ensure accessibility, we assume
that the program being analyzed is correct and every use of an access expression appearing
in the program can be dereferenced. In particular,

10 · Uday Khedker et al.

—We define an access path ρ x to be available at a program point p, if along every path
reaching p, there exists a program point p′ such that Frontier(ρx) is either dereferenced
or assigned a non-null l-value at p′ and is not made null between p′ to p.

—We define an access path ρ x to be anticipable at a program point p, if along every path
starting from p, Frontier(ρx) is dereferenced before being assigned.

In either case, testing Frontier(ρx) for comparison is excluded. Clearly, an access path ρx

is accessible at p if all of its prefixes are either available or anticipable at p.

Example 2.9. For the example in Figure 2, we show the effect of the an assignment on
available access paths.

—Any access path which has a prefix that is link-aliased to x r n ceases to be available
after the assignment, unless made available by the right hand side (see below).

—The access paths x and x r becomes available after the assignment.
—The access paths y and y n also become available after the assignment.
—If an access path y n n σ is available before the assignment, then the access path

x r n σ becomes available after the assignment. As examples, if y n n and y n n n
were available before the assignment, then x r n and x r n n become available after
the assignment. Note that σ may be empty.

—Availability is closed under must-link-aliasing. For the assignment in Figure 2(b), this
makes y and v available after the assignment. 2

Similar observations can be made about anticipability of access paths. We generalize
the above observations to define availability of access paths.

Definition 2.10. Availability. Let AVp denote the set of available access paths at pro-
gram point p.

(1) AVEntry = /0, where Entry denotes the program entry.
(2) If p is not Entry , then consider a control flow path ψ = Entry → . . . → p′ → p. As-

sume that in this path, p follows statement s and the program point before s is p′.
(a) If s is an assignment αx = αy, then define

i. AvKill as the set of access paths with a prefix link-aliased to ρx at p′.
ii. AvDirect as

—If α y is New . . . then AvDirect is the set of all prefixes of ρx.
—If α y is null , AvDirect is the set of all prefixes of Base(ρx).
—Otherwise, Av Direct is the union of

. the set of all prefixes of Base(ρx), and

. the set of those prefixes of Base(ρy) which are not in AvKill.
iii. AvTransfer as the set of access paths ρx σ, where ρy σ is in AVp′ . Note that σ

may be empty. If αy is null or New . . . , then AvTransfer is /0.
(b) If s is a use statement αy.d, then define AvDirect as the set of all prefixes of ρy.

Otherwise, if s is a use statement αy, then define AvDirect as the set of all prefixes
of Base(ρy). Define AvKill = AvTransfer = /0.

For a given set X of access paths, define

AvFψ(X) =

{

X ψ is empty
(AvFψ ′(X)−AvKill) ∪ AvDirect ∪ AvTransfer otherwise

(3)

where ψ = ψ ′ • p′ → p

Heap Reference Analysis Using Access Graphs · 11

AVp is defined as the must-aliases of the intersection of access path sets AvFψ(/0) along
all control flow paths ψ from Entry to p. 2

In a similar manner, we define anticipability of access paths.

Definition 2.11. Anticipability. Let ANp denote the set of anticipable access paths at
program point p.

(1) ANExit = /0.

(2) If p is not Exit, then consider a control flow path ψ = p → p′ → . . . → Exit. Assume
that in this path, p is followed by the statement s and the program point following s is
p′.
(a) If s is an assignment αx = αy, then define

i. AnKill as the set of access paths with a prefix link-aliased to ρx at p′.
ii. AnDirect as the union of sets of all prefixes of Base(ρx) and all prefixes of

Base(ρy). If αy is New . . . or null , AnDirect is the set of all prefixes of
Base(ρx).

iii. AnTransfer as the set of access paths ρy σ, where ρx σ is in ANp′ . Note that
σ may be empty. If αy is New . . . or null , AnTransfer is /0.

(b) If s is a use statement αy.d, then define AnDirect as the set of all prefixes of ρy.
Otherwise, if s is a use statement αy, then define AnDirect as the set of all prefixes
of Base(ρy). Define AnKill = AnTransfer = /0.

For a given set X of access paths, define

AnFψ(X) =

{

X ψ is empty
(AnFψ ′(X)−AnKill) ∪ AnDirect ∪ AnTransfer otherwise

(4)

where ψ = p → p′ •ψ ′

ANp is defined as the must-aliases of the intersection of access path sets AnFψ(/0) along
all control flow paths ψ from p to Exit. 2

Both AVp and ANp are prefix-closed.

2.6 Nullability of Access Paths

An access path ρx is nullable at a program point p if the assignment αx = null can be
inserted at p without affecting the semantics of the program in any way. As observed in
Example 2.8, safety of inserting αx = null at p requires that (a) ρx should not be live at
p and (b) every prefix of Base(ρx) should be accessible. Further, from considerations of
efficiency, inserting αx = null at p is redundant, if (a) a proper prefix of ρx is nullable at p,
or (b) link corresponding to Frontier(ρx) has already been nullified before p.

The candidate access paths for null assignment at program point p are created using the
notion of accessibility as follows: All prefixes of accessible paths at p are extended by the
relevant field names and the paths which are live at p are excluded. Additional criteria
capturing profitability is used for the final decision (section 5).

Example 2.12. Consider line 3 in the program in Figure 1(a). It is easy to see that the
access path x is both available and anticipable just before line 3. We extend x and observe
that x rptr is live and cannot be nullified. However, x lptr can be set to null . 2

12 · Uday Khedker et al.

1 x = x.n 1

2 x = x.n 2

Live access paths at entry of block 1: {x, x n, x n n}

Corresponding access graph: G2
x x n1 n2

1 x = x.n 1
Live access paths at entry of block 1: {x, x n, x n n, x n n n, . . .}

Corresponding access graph: G1
x x n1

Fig. 4. Approximations in Access Graphs

3. REPRESENTING SETS OF ACCESS PATHS BY ACCESS GRAPHS

In the presence of loops, the set of access paths may be infinite and the lengths of access
paths may be unbounded. If the algorithm for analysis tries to compute sets of access paths
directly, termination cannot be guaranteed. We solve this problem by devising a bounded
representation to summarize sets of access paths.

3.1 Defining Access Graphs

An access graph, denoted by Gv, is a directed graph used for representing a set of access
paths starting from a root variable v.4 It is a 4-tuple 〈n0,NF ,NI ,E〉 where NF is the set of
final nodes, NI is the set of intermediate nodes, n0 ∈ (NF ∪NI) is the entry node with no
in-edges and E is the set of edges. Every path starting with the entry node of an access
graph and reaching a final node represents an access path contained in the access graph.
Except for the empty graph EG which has no nodes or edges, every access graph has at
least one final node, a path from the entry node to all other nodes and a path from every
intermediate node to a final node. Note that, EG does not accept any access path, as there
are no final nodes in it.

The entry node of an access graphs is labeled with the name of the root variable while
the non-entry nodes are labeled with a unique label created as follows: If a field name f
is referenced in basic block b, we create an access graph node with a label 〈 f ,b, i〉 where i
is the instance number used for distinguishing multiple occurrences of the field name f in
block b. Note that this implies that the nodes with the same label are treated as identical.
Often, i is 0 and in such a case we denote the label 〈 f ,b,0〉 by fb for brevity.

A node in the access graph represents one or more links in the memory graph. Addi-
tionally, during analysis, it represents a state of access graph construction (explained in
Section 3.2). An edge fn → gm in an access graph at program point p indicates that a link
corresponding to field f dereferenced in block n may be used to dereference a link corre-
sponding to field g in block m. For liveness analysis, this dependence occurs on some path
starting at p. For alias analysis, this dependence occurs on some path reaching p.

Pictorially, the entry node of an access graph is indicated by an incoming double arrow,
final nodes are indicated by solid circles while dotted circles indicate intermediate nodes.
The access graph y l1 represents two access paths y and y l, while the access graph

w r2 l3 represents the access path w r l only.

4Where the root variable name is not required, we drop the subscript.

Heap Reference Analysis Using Access Graphs · 13

3.2 Summarization

Recall that a link is live at a program point p if it is used along some control flow path
from p to Exit. Since different access paths may be live along different control flow paths
and there may be infinitely many control flow paths in the case of a loop following p, there
may be infinitely many access paths which are live at p. Hence, the lengths of access paths
will be unbounded. In such a case summarization is required.

Summarization is achieved by merging appropriate nodes in access graphs, retaining all
in and out edges of merged nodes. We explain merging with the help of Figure 4:

—Node n 1 in access graph G1
x indicates references of n at different execution instances

of the same program point. Every time this program point is visited during analysis,
the same state is reached in that the pattern of references after n1 is repeated. Thus all
occurrences of n1 are merged into a single state. This creates a cycle which captures the
repeating pattern of references.

—In G 2
x , nodes n1 and n2 indicate referencing n at different program points. Since the

references made after these program points may be different, n1 and n2 are not merged.

Summarization captures the pattern of heap traversal in the most straightforward way.
Traversing a path in the heap requires the presence of reference assignments αx = αy such
that ρx is a proper prefix of some link-alias of ρy. Assignments in Figure 2(b) and Figure 4
are examples of such assignments. The structure of the flow of control between such
assignments in a program determines the pattern of heap traversal. Summarization captures
this pattern without the need of control flow analysis and the resulting structure is reflected
in the access graphs as can be seen in Figure 4. More examples of the resemblance of
program structure and access graph structure can be seen in the access graphs in Figure 8.

3.3 Operations on Access Graphs

Section 2 defined heap properties by applying some operations on access paths. Here we
define corresponding operations on access graphs. All these operations are pure functions
in that they do not modify their arguments. Unless specified otherwise, the binary opera-
tions are applied only to access graphs having same root variable. The auxiliary operations
and associated notations are:

—Root(ρ) denotes the root variable of access path ρ, while Root(G) denotes the root
variable of access graph G.

—Field(n) for a node n denotes the field name component of the label of n.

—GAll(ρ) and GOnly(ρ) construct access graphs corresponding to ρ. GAll(ρ) constructs an
access graph containing all prefixes of ρ, whereas GOnly(ρ) constructs an access graph
containing only ρ. In either case the resulting graph is linear except that GAll(ρ) marks
all nodes as final nodes whereas GOnly(ρ) marks only the last node as final node. Both
of them use the current basic block number and the field names to create appropriate
labels for nodes. The instance number depends on the number of occurrences of a field
name in the block.

—CleanUp(G) deletes the nodes which are not reachable from the entry node or which do
not have a path to a final node.

—CFN(G,G ′) computes the set of nodes of G which correspond to the final nodes of G′.
To compute CFN(G,G′), we define CN(G,G′), the set of pairs of corresponding nodes.

14 · Uday Khedker et al.

Let G = 〈n0,NF ,NI ,E〉 and G′ = 〈n′0,N
′
F ,N′

I ,E
′〉. A node n ∈ NF ∪NI in G corresponds

to a node n′ ∈ N′
F ∪N′

I in G′ if there there exists an access path ρ which starting at n0 in
G, reaches n, and starting at n′0 in G′, reaches n′. Formally,

CN(G,G′) =















/0 Root(G) 6= Root(G′)

FIX({〈n0,n′0〉}∪{〈n j,n′j〉 | Field(n j) = Field(n′j), otherwise5

ni → n j ∈ E,n′i → n′j ∈ E ′,

〈ni,n′i〉 ∈ CN(G,G′)})

where FIX computes the least fixed point of its argument.

CFN(G,G′) = {n | 〈n,n′〉 ∈ CN(G,G′), n′ ∈ N′
F}

Let G = 〈n0,NF ,NI ,E〉 and G′ = 〈n0,N′
F ,N′

I ,E
′〉 be access graphs (having the same en-

try node). The main operations of interest are defined below and are illustrated in Figure 5.

(1) Union (]). G] G′ combines access graphs G and G′ such that any access path con-
tained in G or G′ is contained in the resulting graph.

G] G′ =
〈

n0,NF ∪N′
F ,(NI ∪N′

I)− (NF ∪N′
F),E ∪E ′

〉

Because of associativity,] can be generalized to arbitrary number of arguments in
an obvious manner.

(2) Path Removal (). The operation G	ρ removes those access paths in G which have
ρ as a prefix.

G	ρ =







G ρ = E or Root(ρ) 6= Root(G)
EG ρ is a simple access path
CleanUp(〈n0,NF ,NI ,E −Edel〉) otherwise

where
Edel = {ni → n j | ni → n j ∈ E,ni ∈ CFN(G,GB),Field(n j) = Frontier(ρ),

{ni→
f n j |GB = GOnly(Base(ρ)),UniqueAccessPath?(G,ni)}

UniqueAccessPath?(G, n) returns true if in G, all paths from the entry node to node
n represent the same access path. Note that path removal is conservative in that some
paths having ρ as prefix may not be removed. Since an access graph edge may be
contained in more than one access paths, we have to ensure that access paths which do
not have ρ as prefix are not erroneously deleted.

(3) Factorisation (/). Recall that the Transfer term in Definitions 2.3, 2.6, 2.10, and 2.11
requires extracting suffixes of access paths and attaching them to some other access
paths. The corresponding operations on access graphs are performed using factorisa-
tion and extension.
Given a node n′ ∈ (NF ∪NI −{n0}), let the Factorised Subgraph of an access graph
G, denoted by FG(G, n′), be the subgraph of G reachable from n′. G/G′ computes a

5Note that n0 = n′0 in this case.

Heap Reference Analysis Using Access Graphs · 15

Access Graphs Used in Illustrating the Operations

x

G1

n1 r2

n3 l4 l5 r7

x
G2

n5 n6 x
G3

n2 l6

x
G4

n5 l6 l7 x
G5

n5 l5 l7 x
G6

n2 l3

Path Removal
G1 	 x n l G1 	 x n l l G6 	 x n l

x n1 r2

n3

x n1 r2

n3 l4

x n2 l3

Graph Union
G3] G4 G3] G6 G3] G5

x
n5

l6 l7

n2
x n2

l3

l6
x

n5

n2 l6

l5 l7

Factorisation
CFN(G1,G4) = {l5} CFN(G1,G6) = {n3, l4,n1} CFN(G4,G3) = {l6}

G1/G4 = {εFG, r7 } G1/G6 =



















εFG, l5 r7 ,

l4 l5 r7 ,

n1 r2 , n1r2



















G4/G3 = { l7 }

Extension
G5#(G4/G3) G2#(G1/G6)

x n5 l5 l7 x
G2

n5 n6

n1 r2

l4 l5 r7

The path removal G6 	 x n l does not delete edge n2 → l3, because deleting the edge will also
remove access paths x n n l,x n n n l, . . . ,x n · · · n l in G6. G4/G3 does not contain
εFG because only node in CFN(G4,G3), i.e. l6, is not a final node in G4. G5#(G4/G3) introduces a
loop over l7, because an edge has to be created from l7 in G5 to l7 in G4/G3.

Fig. 5. Examples of operations on access graphs.

16 · Uday Khedker et al.

Operation Access Graphs Access Paths

Union G3 = G1] G2 PG3 ⊇ PG1 ∪ PG2

Path Removal G2 = G1 	 ρ PG2 ⊇ PG1 − {ρ σ | ρ σ ∈ PG1}

Factorisation SF
= G1/G2 PSF = {σ | ρ′ σ ∈ PG1 ,ρ

′ ∈ PG2}

Extension G2 = G1#SF
PG2 ⊇ {ρ σ | ρ ∈ PG1 ,σ ∈ PSF }

Fig. 6. Safety of Access Graph Operations. PGi is the set of access paths in access graph Gi. PSF is the set of
sequences of field names in SF .

set of factorised subgraphs of G with respect to access paths in G′.

G/G′ =







/0 C = /0
{FG(G, n j) | ni → n j ∈ E,ni ∈C} C∩NF = /0
{FG(G, n j) | ni → n j ∈ E,ni ∈C}∪{εFG} C∩NF 6= /0

where C = CFN(G,G′) and εFG is a special factorised subgraph which corresponds to
empty suffix.
Note that a factorised subgraph is similar to an access graph except that (a) its entry
node does not correspond to a root variable but to a field name and (b) the entry node
can have incoming edges. Also note that the special factorised subgraph εFG accepts
only empty string.

(4) Extension. This operation is defined only for a non-empty access graph.
(a) Extension with a factorised subgraph (·). G ·FG appends the sequences of field

names in factorised subgraph FG = 〈n′,NFG
F ,NFG

I ,EFG〉 to the access paths in G.

G ·εFG = G

G ·FG = 〈n0,N
FG
F ,(NI ∪NF ∪NFG

I)−NFG
F , E ∪EFG ∪Enew〉

where Enew = {ni → n′ | ni ∈ NF}.
(b) Extension with a set of factorised subgraphs (#). G#SFG extends access graph G

with every factorised subgraph in SFG.

G# /0 = EG

G#SFG =
]

FG∈SFG

(G ·FG)

3.4 Safety of Access Graph Operations

Since access graphs are not exact representations of sets of access paths, the safety of
approximations needs to be defined explicitly. The safety properties defined in Figure 6
have been proved [Iyer 2005] using the PVS theorem prover6.

4. DATA FLOW ANALYSIS FOR HEAP REFERENCES

In this section we define data flow analyses for capturing the properties of aliasing, liveness,
availability, and anticipability of heap references. The data flow equations approximate the
specifications in Section 2. BoundaryInfo denotes a safe approximation of interprocedural

6Available from http://pvs.csl.sri.com.

Heap Reference Analysis Using Access Graphs · 17

information. We do not perform must-alias analysis and conservatively assume that every
access path is must-link-aliased only to itself.

4.1 Alias Analysis

The data flow equations for alias analysis compute the may-node-alias relations defined
in Section 2.3 using access graphs. The alias information is stored in the form of a set
of access graph pairs. A pair 〈Gi,G j〉 indicates that all access paths in Gi are aliased
to all access paths in G j. Though the alias relation represented as access graph pairs is
symmetric, we explicitly store only one of the pairs 〈Gi,G j〉 and 〈G j,Gi〉. A pair 〈Gi,G j〉
is removed from the set of alias pairs if Gi or G j is EG.

AIn(i) and AOut(i) denote the set of may-node-aliases before and after the statement i.
Their initial values are /0.

AIn(i) =







BoundaryInfo i = Entry
[

p∈pred(i)

AOut(p) otherwise (5)

AOut(i) = (AIn(i) − AKill(i)) ∪ AGen(i) (6)

Since all our analyses require link-aliases, we derive them from node-aliases. Given a
set of AS of node-aliases, LnA(Gv,AS) computes a set of graphs representing link-aliases
of an access graph Gv. All link-aliases of every access path in Gv are contained in the
resulting access graphs.

LnA(Gv,AS) = {Gv}∪
{

Gu | Gu = G′
u#(Gv/G′

v −{εFG}),〈G
′
v,G

′
u〉 ∈ AS

}

(7)

Note that link-alias computation should add at least one link to node-aliases and hence
should exclude empty suffixes from extension.

We now define the flow functions for a statement i. Since use statements do not mod-
ify heap references, both AGen(i) and AKill(i) are /0. Thus, AOut(i) = AIn(i) for such
statements. For an assignment αx = αy, access graphs capturing the sets of access paths
LhsPaths and RhsPaths (Definition 2.3) are:

LhsGraphs = LnA(GOnly(ρx),AIn(i))

RhsGraphs = LnA(GOnly(ρy),AIn(i))

KillPaths defined by the specifications includes all paths which have a prefix which is must-
link-aliased to ρx. Since we do not compute must-aliases, we conservatively assume that
an access path is must-aliased only to itself. Hence we approximate KillPaths to contain
all access paths which have ρx as a prefix. In order to remove such paths, the path removal
operation uses ρx. Note that the absence of explicit must-alias information and the path
removal operation both introduce (safe) approximations. Effectively, we kill fewer paths
than are required by the specifications.

The assignment αx = αy kills the aliases involving the access path which contain the
link corresponding to Frontier(ρx). Instead of computing AKill(i) explicitly, we calculate
AIn(i)−AKill(i) directly as:

{〈

G	ρx,G
′	ρx

〉

| 〈G,G′〉 ∈ AIn(i)
}

AGen(i) for the assignment is defined as:

AGen(i) =

{

/0 ρy is null or New . . .
ADirect(i)∪ATransfer(i), otherwise

18 · Uday Khedker et al.

i AIn(i) AOut(i)

1 /0 {〈 x
,

w 〉}

2 {〈 x
,

w r3 〉} {〈 x
,

w r3 〉}

3 {〈 x
,

w r3 〉} {〈 x
,

w r3 〉}

4 {〈 x
,

w r3 〉} {〈 x
,

w r3 〉,〈 y
,

x l4〉,

〈 y
,

w r3 l4〉}

5 {〈 x
,

w r3 〉,〈 y
,

x l4〉, {〈 x
,

w r3 〉,〈 y
,

x l4〉,

〈 y
,

w r3 l4 〉} 〈 y
,

w r3 l4〉}

6 {〈 x
,

w r3 〉,〈 y
,

x l4〉, {〈 x
,

w r3 〉,〈 y
,

x l4 l6〉,

〈 y
,

w r3 l4 〉} 〈 y
,

w r3 l4 l6 〉}

7 {〈 x
,

w r3 〉, {〈 x
,

w r3 〉,

〈 y
,

x l4 l6〉, 〈 y
,

x l4 l6 〉,

〈 y
,

w r3 l4 l6 〉} 〈 y
,

w r3 l4 l6 〉}

Field names lptr and rptr have been abbreviated by l and r. For convenience, multiple pairs have been merged

into a single pair where possible, e.g. alias pair 〈 x , w r3 〉 implies three alias pairs 〈 x , w 〉,

〈 x , w r3 〉, and 〈 x , w r3 〉.

Fig. 7. Aliases for the program in Figure 1.

where

ADirect(i) = LhsGraphs×{G	ρx | G ∈ RhsGraphs}

ATransfer (i) = ATransfer 1(i)∪ATransfer 2(i)

ATransfer 1(i) = {〈Gz 	ρx,Gu#(Gy/GOnly(ρy))〉 |

〈Gz,Gy〉 ∈ AIn(i),Gu ∈ LhsGraphs}

ATransfer 2(i) =
{〈

Gu#(G1
y/GOnly(ρy)),Gv#(G2

y/GOnly(ρy))
〉

|
〈

G1
y ,G

2
y

〉

∈ AIn(i),

Gu ∈ LhsGraphs, Gv ∈ LhsGraphs}

Example 4.1. Figure 7 lists the alias information for the program in Figure 1. We

have shown only the final result. The alias pair
〈

x , w r3

〉

in AIn(3) represents an
infinite number of aliases 〈x,w rptr〉, 〈x,w rptr rptr〉, 〈x,w rptr rptr . . .〉. created
in different execution instances of line 3. Alias 〈x,w〉 is created at line 1 is represented by

Heap Reference Analysis Using Access Graphs · 19

i ELOut(i) ELIn(i)

7 x l7 y z

6 x l7 y z x l7 y l6 z

5 x l7 y l6 z x l7 y l6

4

x l7 y l6 x
l7

l4 l6

3

x r3

l7

l4 l6
x r3

l7

l4 l6

2

x r3

l7

l4 l6
x r3

l7

l4 l6

1

x r3

l7

l4 l6
x r3

l7

l4 l6

Fig. 8. Explicit liveness for the program in Figure 1.

the pair
〈

x , w
〉

. 2

4.2 Liveness Analysis

We perform data flow analysis to discover explicitly live access graphs. For a given root
variable v, ELInv(i) and ELOutv(i) denote the access graphs representing explicitly live
access paths at the entry and exit of basic block i. We use EG as the initial value for
ELInv(i)/ELOutv(i).

ELInv(i) = (ELOutv(i)	ELKillPathv(i))] ELGenv(i)

ELOutv(i) =







BoundaryInfo i = Exit
]

s∈succ(i)

ELInv(s) otherwise

where

ELGenv(i) = LDirectv(i)] LTransferv(i)

We define ELKillPathv(i), LDirectv(i), and LTransferv(i) depending upon the statement.

(1) Assignment statement αx = αy. Apart from defining the desired terms for x and y, we

20 · Uday Khedker et al.

i LOut(i) LIn(i)

7 w r3 l7 x l7

y z

6 w r3 l7 x l7

y z

w r3
l7

l4 l6
x

l7

l4 l6

y l6 z

5 w r3
l7

l4 l6
x

l7

l4 l6

y l6 z

w r3
l7

l4 l6
x

l7

l4 l6

y l6

4 w r3
l7

l4 l6
x

l7

l4 l6

y l6

w r3
l7

l4 l6
x

l7

l4 l6

3
w r3

l7

l4 l6
x r3

l7

l4 l6
w r3

l7

l4 l6
x r3

l7

l4 l6

2
w r3

l7

l4 l6
x r3

l7

l4 l6
w r3

l7

l4 l6
x r3

l7

l4 l6

1
w r3

l7

l4 l6
x r3

l7

l4 l6
x r3

l7

l4 l6

Gray nodes are included by link-alias computation. Besides, intermediate nodes get included in the access graphs.

Fig. 9. Liveness access graphs including implicit liveness information for the program in Figure 1.

also need to define them for any other variable z.

LDirectx(i) = GAll(Base(ρx))

LDirecty(i) =

{EG αy is New . . . or null

GAll(Base(ρy)) otherwise

LDirectz(i) = EG, for any variable z other than x and y

LTransfery(i) =

{EG αy is New or null

GOnly(ρy)#(ELOutx(i)/GOnly(ρx)) otherwise

LTransferz(i) = EG, for any variable z other than y

ELKillPathx(i) = ρx

ELKillPathz(i) = E , for any variable z other than x

Heap Reference Analysis Using Access Graphs · 21

For the same reasons as in alias analysis, we may kill fewer access paths than are
required by the specifications.

(2) Use Statements

LDirecty(i) =
]

GAll(ρy) for every αy or αy.d used in i

LDirectz(i) = EG for any variable z other than y

LTransferv(i) = EG, for every variable v

ELKillPathv(i) = E , for every variable v

Once explicitly live access graphs are computed, implicitly live access graphs at a given
program point can be discovered by computing may-link-aliases of explicitly live access
graphs at that point. Mathematically,

LInv(i) =
]

{Gv | Gv ∈ LnA(ELInu(i),AIn(i)) for some variable u}

LOutv(i) =
]

{Gv | Gv ∈ LnA(ELOutu(i),AOut(i)) for some variable u}

Example 4.2. Figure 8 lists the explicit liveness information, while Figure 9 gives com-
plete liveness information for program in Figure 1. 2

4.3 Availability and Anticipability Analyses

Availability and Anticipability are all (control-flow) paths properties in that the desired
property must hold along every path reaching/leaving the program point under considera-
tion. Thus these analyses identify access paths which are common to all control flow paths
including acyclic control flow paths. Since acyclic control flow paths can generate only
acyclic7 and hence finite access paths, anticipability and availability analyses deal with a
finite number of access paths and summarization is not required.

Thus there is no need to use access graphs for availability and anticipability analyses.
The data flow analysis can be performed using a set of access paths because the access
paths are bounded and the sets would be finite. Besides, the prefix-closed property of these
sets facilitates efficient representation. The data flow equations are exactly same as the
formal specifications of these analyses (Definitions 2.10 and 2.11). AvIn(i) and AvOut(i)
denote the set of available access paths before and after the statement i, while AnIn(i) and
AnOut(i) denote the set of anticipable access paths before and after the statement i. We
use the universal set of access paths as the initial value for all blocks other than Entry for
availability analysis and Exit for anticipability analysis.

Example 4.3. Figure 10 gives the availability and anticipability information for pro-
gram in Figure 1. 2

5. NULL ASSIGNMENT INSERTION

We now explain how the analyses described in preceding sections can be used to insert
appropriate null assignments to nullify dead links. The inserted assignments should be
safe and profitable as defined below.

7In the presence of cycles in heap, cycles in access graphs do not represent summarization (Appendix A).

22 · Uday Khedker et al.

i AvIn(i) AvOut(i) AnIn(i) AnOut(i)

1 /0 /0 {x} {x}
2 /0 {x} {x} {x}
3 {x} /0 {x,x r} {x}
4 {x} {x} {x,x l,x l l} {x,x l,y,y l}
5 {x} {x,z} {x,x l,y,y l} {x,x l,y,y l,z}
6 {x,z} {x,z} {x,x l,y,y l,z} {x,x l,y,z}
7 {x,z} {x,x l,y,z} {x,x l,y,z} /0

Fig. 10. Availability and anticipability for the program in Figure 1.

Definition 5.1. Safety. It is safe to insert an assignment α = null at a program point p if
and only if ρ is not live at p and Base(ρ) can be dereferenced without raising an exception.

An access path ρ is nullable at a program point p if and only if it is safe to insert
assignment α = null at p.

Definition 5.2. Profitability. It is profitable to insert an assignment α = null at a pro-
gram point p if and only if no proper prefix of ρ is nullable at p and the link corresponding
to Frontier(ρ) is not made null before execution reaches p.

Note that profitability definition is strict in that every control flow path may nullify a
particular link only once. Redundant null assignments on any path are prohibited. Since
control flow paths have common segments, a null assignment may be redundant along one
path but not along some other path. Such null assignments will be deemed unprofitable by
Definition 5.2. Our algorithm may not be able to avoid all redundant assignments.

Example 5.3. We illustrate some situations of safety and profitability for the program
in Figure 1.

—Access path x lptr lptr is not nullable at the entry of 6. This is because x lptr lptr is
implicitly live, due to the use of y lptr in 6. Hence it is not safe to insert x.lptr.lptr = null

at the entry of 6.

—Access path x rptr is nullable at the entry of 4, and continues to be so on the path from
the entry of 4 to the entry of 7. The assignment x.rptr = null is profitable only at the
entry of 4. 2

Section 5.1 describes the criteria for deciding whether a give path ρ should be considered
for a null assignment at a program point p. Section 5.2 describes how we create the set of
candidate access paths.

5.1 Computing Safety and Profitability

To find out if ρ can be nullified at p, we compute two predicates: Nullable and Nullify.
Nullable(ρ, p) captures the safety property—it is true if insertion of assignment α = null

at program point p is safe.

Nullable(ρ, p) = ρ 6∈ Live(p) ∧ Base(ρ) ∈ Available(p) ∪ Anticipable(p) (8)

Heap Reference Analysis Using Access Graphs · 23

where Live(p), Available(p), and Anticipable(p) denote set of live paths, set of available
paths and set of anticipable paths respectively at program point p 8.

Nullify(ρ, p) captures the profitability property—it is true if insertion of assignment
α = null at program point p is profitable. To compute Nullify, we note that it is most
profitable to set a link to null as soon as it ceases to be live. That is, the null assignment
for a memory link should be as close to the entry as possible, taking safety into account.
Therefore, Nullify predicate at a point has to take into account the possibility of null as-
signment insertion at previous point(s). For a statement i in the program, let Ini and Outi

denote respectively the program point immediately before and after i. Then,

Nullify(ρ,Outi) = Nullable(ρ,Outi)∧¬Nullable(Base(ρ),Outi)

∧(¬Nullable(ρ, Ini)∨¬Transp(ρ, i)) (9)

Nullify(ρ, Ini) = Nullable(ρ, Ini)∧¬Nullable(Base(ρ), Ini)

∧ρ 6= lhs(i)∧ (¬
^

j∈pred(i)

Nullable(ρ,Out j)) (10)

where, Transp(ρ, i) denotes that ρ is transparent with respect to statement i, i.e. no prefix
of ρ is may-link-aliased to the access path corresponding to the lhs of statement i at Ini.
lhs(i) denotes the access path corresponding to the lhs access expression of assignment in
statement i. pred(i) is the set of predecessors of statement i in the program.

We insert assignment α = null at program point p if Nullify(ρ, p) is true.

5.2 Computing Candidate Access Paths for null Insertion

The method described above only checks whether a given access path ρ can be nullified
at a given program point p. We can generate the candidate set of access paths for null

insertion at p as follows: For any candidate access path ρ, Base(ρ) must either be avail-
able or anticipable at p. Additionally, all simple access paths are also candidates for null

insertions. Therefore,

Candidates(p) = {ρ f | ρ ∈ Available(p) ∪ Anticipable(p), f ∈ OutField(ρ, p)}

∪{ρ | ρ is a simple access path } (11)

Where OutField(ρ, p) is the set of fields which can be used to extend access path ρ at p. It
can be obtained easily from the type information of the object Target(ρ) at p.

Note that all the information required for Equations 8, 9, 10 and 11 is obtained from the
result of data flow analyses described in preceding sections. Type information of objects
required by Equation 11 can be obtained from the front end of compiler. We use liveness
graphs (Section 4.2) at program point p to find out if an access path is live. Transp uses
may alias information as computed in terms of pairs of access graph (Section 4.1).

Example 5.4. Figure 11 lists a trace of the null insertion algorithm for the program in
Figure 1. 2

5.3 Reducing Redundant null Insertions

Consider a program with an assignment statement i : αx = αy. Assume a situation where,
for some nonempty suffix σ, both Nullify(ρy σ, Ini) and Nullify(ρx σ,Outi) are true. In

8Because availability and anticipability properties are prefix closed, Base(ρ) ∈ Available(p) ∪ Anticipable(p)
guarantees that all proper prefixes of ρ are either available or anticipable.

24 · Uday Khedker et al.

i p Candidates(p) lhs(i) {ρ | ¬Transp(ρ, i)} {ρ | Nullable(ρ, p)} {ρ | Nullify(ρ, p)}

1 In1 {w,x,y,z,x l,x r} w {w,y,z} {y,z}

Out1 {w,x,y,z,x l,x r} {w} {w,y,z} {w}

2 In2 {w,x,y,z,x l,x r} - {w,y,z} /0
Out2 {w,x,y,z,x l,x r} /0 {w,y,z} /0

3 In3
{w,x,y,z,x l,x r,
x r l,x r r}

x {w,y,z,x l} {x l}

Out3 {w,x,y,z,x l,x r}
{x,x l,
x r} {w,y,z} /0

4 In4

{w,x,y,z,x l,x r,
x l l,x l r,
x l l l,
x l l r}

y

{w,y,z,x r,
x l r,
x l l l,
x l l r}

{x r,
x l r,
x l l l,
x l l r}

Out4

{w,x,y,z,x l,x r,
y l,y r,
x l l,x l r,
y l l,y l r}

{y,y l,
y r,
y l l,
y l r}

{w,z,x r,y r,
x l r,
y l l,y l r}

{y r,
y l l,
y l r}

5 In5

{w,x,y,z,x l,x r,
y l,y r,
x l l,x l r,
y l l,y l r}

z
{w,z,x r,y r,
x l r,
y l l,y l r}

/0

Out5

{w,x,y,z,x l,x r,
y l,y r,z l,z r,
x l l,x l r,
y l l,y l r}

{z}
{w,x r,y r,
z l,z r,x l r,
y l l,y l r}

{z l,z r}

6 In6

{w,x,y,z,x l,x r,
y l,y r,z l,z r,
x l l,x l r,
y l l,y l r}

y
{w,x r,y r,
z l,z r,x l r,
y l l,y l r}

/0

Out6

{w,x,y,z,x l,x r,
y l,y r,z l,z r,
x l l,x l r}

{y,y l,
y r}

{w,x r,y l,
y r,z l,z r,
x l l,x l r}

{y l,y r,
x l l}

7 In7

{w,x,y,z,x l,x r,
y l,y r,z l,z r,
x l l,x l r}

-
{w,x r,y l,
y r,z l,z r,
x l l,x l r}

/0

Out7

{w,x,y,z,x l,x r,
y l,y r,z l,z r,
x l l,x l r}

/0
{w,x,y,z,x l,x r,
y l,y r,z l,z r,
x l l,x l r}

{x,y,z}

Fig. 11. Null insertion for the program in Figure 1.

Heap Reference Analysis Using Access Graphs · 25

that case, we will be inserting αy.σ = null at Ini and αx.σ = null at Outi. Clearly, the
latter null assignment is redundant in this case and can be avoided by checking if ρy σ is
nullable at Ini.

If must-alias analysis is performed then redundant assignments can be reduced further.
Recall from Section 2.3 that must-link-alias relation is symmetric, reflexive, and transitive
and hence an equivalence relation. Therefore, the set of candidate paths at a program point
can be divided into equivalence classes based on must-link-alias relation. Redundant null

assignments can be reduced by nullifying atmost one access path in any equivalence class.

6. CONVERGENCE OF HEAP REFERENCE ANALYSIS

The null assignment insertion algorithm makes a single traversal over the control flow
graph. We show the termination of alias and liveness analysis using the properties of
access graph operations. Termination of availability and anticipability can be shown by
similar arguments over finite sets of bounded access paths.

6.1 Monotonicity

For a program there are a finite number of basic blocks, a finite number of fields for any
root variable, and a finite number of field names in any access expression. Hence the
number of access graphs for a program is finite. Further, the number of nodes and hence
the size of each access graph, is bounded by the number of labels which can be created for
a program.

Access graphs for a variable x form a complete lattice with a partial order vG induced
by] . Note that] is commutative, idempotent, and associative. Let G = 〈x,NF ,NI ,E〉
and G′ = 〈x,N ′

F ,N′
I ,E

′〉. The partial order vG is defined as

G vG G′ ⇔
(

N′
F ⊆ NF

)

∧
(

N′
I ⊆ (NF ∪NI)

)

∧
(

E ′ ⊆ E
)

(12)

Clearly, G vG G′ implies that G contains all access paths of G′. We extend vG to a set of
access graphs as follows:

S1 vS S2 ⇔∀G2 ∈ S2,∃G1 ∈ S1 s.t. G1 vG G2

It is easy to verify that vG is reflexive, transitive, and antisymmetric. For a given variable
x, the access graph EG forms the > element of the lattice while the ⊥ element is a greatest
lower bound of all access graphs.

The partial order over access graphs and their sets can be carried over unaltered to fac-
torised subgraphs (vFG) and their sets (vFS), with the added condition that εFG is in-
comparable to any other non empty factorized graph, i.e. for any non empty factorized
subgraph F 6= εFG, we have F 6vFG εFG and εFG 6vFG F .

Access graph operations are monotonic as described in Figure 12. Path removal and
factorisation are monotonic in the first argument but not in the second argument. However,
we show that in each context where they are used, the resulting functions are monotonic:

(1) Path removal is used only for an assignment αx = αy. Its second argument is ρx for
both alias and liveness analysis. Since ρx is constant for any assignment statement
αx = αy, the resulting flow functions are monotonic.

(2) Factorisation is used in the following situations:
(a) Link-alias computation. Since the first argument of link-alias computation is also

the first argument of factorisation, link-alias computation is monotonic in the first

26 · Uday Khedker et al.

Operation Monotonicity

Union G1 vG G′
1 ∧G2 vG G′

2 ⇒ G1] G2 vG G′
1] G′

2

Path Removal G vG G′ ⇒ G	ρ vG G′	ρ

Factorisation G vG G′ ⇒ G/G′′ vFS G′/G′′

Extension SF
1 vS SF

2 ∧G1 vG G2 ⇒ G1#SF
1 vG G2#SF

2

Link-Alias Computation G1 vG G2 ∧AS1 ⊇AS2 ⇒ LnA(G1,AS1) vS LnA(G2,AS2)

Fig. 12. Monotonicity of Access Graph Operations

.

argument. The second argument of link-alias computation is used to derive the
second argument of factorisation. However, it is easy to verify that

AS1 ⊇ AS2 ⇒ LnA(Gv,AS1) = LnA(Gv,AS2)∪LnA(Gv,AS1 −AS2)

⇒ LnA(Gv,AS1) vS LnA(Gv,AS2)

Thus link-alias computation is monotonic in both arguments.
(b) Alias analysis. Factorisation is used for the flow function corresponding to an

assignment αx = αy and its second argument is GOnly(ρy). Since GOnly(ρy) is
constant for any assignment statement αx = αy, the resulting flow functions are
monotonic.

(c) Liveness analysis. Factorisation is used for the flow function corresponding to an
assignment αx = αy and its second argument is GOnly(ρx). Since GOnly(ρx) is
constant for any assignment statement αx = αy, the resulting flow functions are
monotonic.

Thus we conclude that all flow functions are monotonic. Since lattices are finite, termina-
tion of heap reference analysis follows.

6.2 Complexity

This section discusses the issues which influence the complexity and efficiency of perform-
ing heap reference analysis. Empirical measurements which corroborate the observations
made in this section are presented in Section 8.

The data flow frameworks defined in this paper are not separable [Khedker 2002] be-
cause the data flow information of a variable depends on the data flow information of other
variables. Thus the number of iterations over control flow graph is not bounded by the
depth of the graph [Aho et al. 1986; Hecht 1977; Khedker 2002] but would also depend on
the number of root variables which depend on each other.

Although we consider each statement to be a basic block, our control flow graphs retain
only statements involving references. A further reduction in the size of control flow graphs
follows from the fact that successive use statements need not be kept separate and can be
grouped together into a block which ends on a reference assignment.

The amount of work done in each iteration is not fixed but depends on the size of access
graphs. Of all operations performed in an iteration, only CFN(G,G′) is costly. Conversion
to deterministic access graphs is also a costly operations but is performed for a single pass
during null assignment insertion. In practice, the access graphs are quite small because of

Heap Reference Analysis Using Access Graphs · 27

the following reason: Recall that edges in access graphs capture dependence of a reference
made at one program point on some other reference made at another point (Section 3.1).
In real programs, starting from a root variable reference, chains of such dependences are
quite small in size. This is corroborated by Figure 14 which provides the empirical data for
the access graphs in our examples. The average number of nodes in these access graphs is
less than 7 while the average number of edges is less than 12. Hence the complexities of
access graph operations is not a matter of concern.

7. SAFETY OF NULL ASSIGNMENT INSERTION

We have to prove that the null assignments inserted by our algorithm (Section 5) in a
program are safe in that they do not alter the result of executing the program. We do this
by showing that (a) an inserted statement itself does not raise an exception, and (b) an
inserted statement does not affect any other statement, both original and inserted.

We use the subscripts b and a for a program point p to denote “before” and “after” in
an execution order. Further, the corresponding program points in the original and modified
program are distinguished by the superscript o and m. The correspondence is defined as
follows: If pm is immediately before or after an inserted assignment α = null , po is the
point where the decision to insert the null assignment is taken. For any other pm, there is
an obvious po.

We first assert the soundness of availability, anticipability and alias analyses without
proving them.

LEMMA 7.1. (Soundness of Availability Analysis). Let AVpa be the set of access paths
available at program point pa. Let ρ ∈ AVpa . Then along every path reaching pa, there ex-
ists a program point pb, such that the link represented by Frontier(ρ) is either dereferenced
or assigned a non-null l-value at pb and is not made null between pb and pa.

LEMMA 7.2. (Soundness of Anticipability Analysis). Let ANp be the set of access
paths anticipable at program point p. Let ρ ∈ ANp. Then along every path starting from p,
the link represented by Frontier(ρ) is dereferenced before being assigned.

For semantically valid input programs (i.e. programs which do not generate exceptions),
Lemma 7.1 and Lemma 7.2 guarantee that if ρ is available or anticipable at p, Target(ρ)
can be dereferenced at p.

LEMMA 7.3. (Soundness of Alias Analysis). Let Frontier(ρx) represents the same link
as Frontier(ρy) at a program point p during some execution of the program. Then link-
alias computation of ρx at p would discover ρy to be link-aliased to ρx.

For the main claim, we relate the access paths at pa to the access paths at pb by incor-
porating the effect of intervening statements only, regardless of the statements executed
before pb. In some execution of a program, let ρ be the access path of interest at pa and the
sequence of statements between pb and pa be s. Then T (s,ρ) represents the access path
at pb which, if non-E, can be used to access the link represented by Frontier(ρ). T (s,ρ)

28 · Uday Khedker et al.

captures the transitive effect of backward transfers of ρ through s. T is defined as follows:

T (s,ρ) =































ρ s is a use statement
ρ s is αx = . . . and ρx is not a prefix of ρ
E s is αx = New and ρ = ρx σ
E s is αx = null and ρ = ρx σ
ρy σ s is αx = αy and ρ = ρx σ
T (s1,T (s2,ρ)) s is a sequence s1;s2

LEMMA 7.4. (Liveness Propagation). Let ρa be in some explicit liveness graph at pa.
Let the sequence of statements between pb to pa be s. Then, if T (s,ρa) = ρb and ρb is not
E , then ρb is in some explicit liveness graph at pb.

PROOF. The proof is by structural induction on s. Since ρb is non-E , the base cases are:

(1) s is a use statement. In this case ρb = ρa.

(2) s is an assignment αx = . . . such that ρx is not a prefix of ρa. Here also ρb = ρa.

(3) s is an assignment αx = αy such that ρa = ρx σ. In this case ρb = ρy σ.

For (1) and (2), since ρa is not in ELKillPath, ρb is in some explicit liveness graph at pb.
For (3), from Equation (8), ρb is in some explicit liveness graph at pb.

For the inductive step, assume that the lemma holds for s1 and s2. From the definition
of T , there exists a non-E ρi at the intermediate point pi between s1 and s2, such that
ρi = T (s2,ρa) and ρb = T (s1,ρi). Since ρa is in some explicit liveness graph at pa, by
the induction hypothesis, ρi must be in some explicit liveness graph at pi. Further, by the
induction hypothesis, ρb must be in some explicit liveness graph at pb.

LEMMA 7.5. Every access path which is in some explicit liveness graph at pm
b is also

in some explicit liveness graph at po
b.

PROOF. If an extra explicitly live access path is is introduced in the modified program,
it could be only because of an inserted assignment α = null at some pm

a . The only access
paths which this statement can add to an explicit liveness graph are the paths corresponding
the proper prefixes of α. However, the algorithm selects α for nullification only if the
access paths corresponding to all its proper prefixes are in some explicit liveness graph.
Therefore every access path which is in some explicit liveness graph at pm

a is also in some
explicit liveness graph at po

a. The same relation would hold at pm
b and po

b.

THEOREM 7.1. (Safety of null insertion). Let the assignment αb = null be inserted by
the algorithm immediately before pm

b . Then:

(1) Execution of αb = null does not raise any exception due to dereferencing.

(2) Let αa be used immediately after pm
a (in an original statement or an inserted null

assignment). Then, execution of αb = null cannot nullify any link used in αa.

PROOF. We prove the two parts separately.

(1) If αb is a root variable, then the execution of αb = null cannot raise an exception.
When αb is not a root variable, from the null assignment algorithm, every proper
prefix ρ′ of ρb is either anticipable or available. From the soundness of both these
analyses, Target(ρ′) exists and the execution of αb = null cannot raise an exception.

Heap Reference Analysis Using Access Graphs · 29

 1800

 2000

 2200

 2400

 2600

 0 400 800 1200 1600

Loop

 1800

 2000

 2200

 2400

 2600

 0 400 800 1200 1600

DLoop

 1800

 2000

 2200

 2400

 2600

 0 400 800 1200 1600

CReverse

 1800

 2000

 2200

 2400

 0 800 1600 2400 3200 4000

BiSort

 1600

 1800

 2000

 2200

 2400

 0 400 800 1200 1600 2000

TreeAdd

 0

 4000

 8000

 12000

 16000

 20000

 0 50000 100000 150000

GCBench

X axis indicates measurement instants in milliseconds. Y axis indicates heap usage in KB. Solid line represents
memory required for original program while dashed line represents memory for the modified program. Observe
that the modified program executed faster than the original program in each case.

Fig. 13. Temporal plots of memory usages.

(2) We prove this by contradiction. Let s denote the sequence of statements between pm
b

and pm
a . Assume that αb = null nullifies a link used in αa. This is possible only if

there exists a prefix ρ′ of ρa such that T (s,ρ′) shares its frontier with ρb at pm
b . Since

null assignments do not generate any new aliases, this sharing must also hold at po
b.

Since αa is used at pm
a , ρ′ is in some explicit liveness graph at pm

a . By Lemma 7.4,
T (s,ρ′) must be in some explicit liveness graph at pm

b and hence at po
b (Lemma 7.5).

Since Frontier(T (s,ρ′)) is same as Frontier(ρb) at po
b, ρb must be discovered to be

link-aliased to Frontier(T (s,ρ′)) at po
b (Lemma 7.3). Hence ρb is in some liveness

graph at po
b. Thus a decision to insert αb = null cannot be taken at po

b.

8. EMPIRICAL MEASUREMENTS

In order to show the effectiveness of heap reference analysis, we have implemented a
prototype heap reference analyzer.

30 · Uday Khedker et al.

Program Analysis Access Graphs Execution
Name Time Nodes Edges #null Time (sec) %

#Iter (sec) #G Avg Max Avg Max Orig. Mod. Gain

Loop 5 0.082 172 1.13 2 0.78 2 9 1.503 1.388 8.3
DLoop 5 1.290 332 2.74 4 5.80 10 11 1.594 1.470 8.4
CReverse 5 0.199 242 1.41 4 1.10 6 8 1.512 1.414 6.9
BiSort 6 0.083 63 2.16 3 3.81 6 5 3.664 3.646 0.5
TreeAdd 6 0.255 132 2.84 7 4.87 14 7 1.976 1.772 11.5
GCBench 6 0.247 136 2.73 7 4.63 14 7 132.99 88.86 49.7

—#Iter is the maximum number of iterations taken by any analysis.
—Analysis Time is the total time taken by all analyses.
—#G is total number of access graphs created by alias analysis and liveness analysis.
—Max nodes (edges) is the maximum over number of nodes (edges) in all access graphs.
—Avg nodes (edges) is the average number of nodes (edges) over all access graphs.
—#null is the number of inserted null assignments.

Fig. 14. Preliminary Measurements for Original and Modified Programs.

8.1 Experimentation Methodology

The prototype has been implemented in XSB-Prolog9. The measurements were made on a
800 MHz Pentium III machine with 128 MB memory running Fedora Core release 2. The
benchmarks used were Loop, DLoop, CReverse, BiSort, TreeAdd and GCBench. Three
of these (Loop, DLoop and CReverse) are similar to those in [Shaham et al. 2003]. Loop
creates a singly linked list and traverses it, DLoop is doubly linked list variation of the same
program, CReverse reverses a singly linked list. BiSort and TreeAdd are taken from Java
version of Olden benchmark suite [Carlisle 1996]. GCBench is taken from [Boehm]. For
TreeAdd, we have analyzed addtree function only, and for GCBench, we have analyzed
Populate function only.

The Java programs were manually translated to Prolog representations. Since our anal-
ysis is currently restricted to intraprocedural level, for the purpose of analysis, the original
Java programs were approximated in the Prolog representations in the following manner:
Calls to non-recursive functions were inlined and calls to recursive functions were replaced
by iterative constructs which approximated the liveness property of heap manipulations in
the function bodies. The result of the analysis was used to manually insert null assignments
in the original Java programs to create modified Java programs.

The prototype implementation, along with the test programs (with their original, modi-
fied, and Prolog versions) are available at [Karkare 2005].

8.2 Measurements and Observations

Our experiments were directed at measuring:

(1) The efficiency of Analysis. We measured the total time required, number of iterations
of round robin analyses, and the number and sizes of access graphs.

(2) The effectiveness of null assignment insertions. The programs were made to create
huge data structures. Memory usage was measured by explicit calls to garbage col-
lector in both modified and original Java programs at specific probing points such as

9Available from http://xsb.sourceforge.net.

Heap Reference Analysis Using Access Graphs · 31

call sites, call returns, loop begins and loop ends. The overall execution time for the
original and the modified programs was also measured.

The results of our experiments are shown in Figure 13 and Figure 14. As can be seen
from Figure 13, nullification of links helped the garbage collector to collect a lot more
garbage, thereby reducing the allocated heap memory. In case of BiSort, however, the links
were last used within a recursive procedure which was called multiple times. Hence, safety
criteria prevented null assignment insertion within the called procedure. Our analysis could
only nullify the root of the data structure at the end of the program. Thus the memory was
released only at the end of the program.

As can be seen from Figure 14, modified programs executed faster. In general, a re-
duction in execution time can be attributed to the following two factors: (a) a decrease in
the number of calls to garbage collector and (b) reduction in the time taken for garbage
collection in each call. The former is possible because of availability of a larger amount of
free memory, the latter is possible because lesser reachable memory needs to be copied.10

In our experiments, factor (a) above was absent because the number of (explicit) calls to
garbage collector were kept same. GCBench showed a large improvement in execution time
after null assignment insertion. This is because GCBench creates large trees in heap, which
are not used in the program after creation and our implementation was able to nullify left
and right subtrees of these trees immediately after their creation. This also reduced the
high water mark of the heap memory requirement.

As explained in Section 6.2, sizes of the access graphs (average number of nodes and
edges) is small. This can be verified from Figure 14. The analysis of DLoop creates a large
number of access graphs because of the presence of cycles in heap. In such a case, a large
number of alias pairs are generated, many of which are redundant. Though it is possible to
reduce analysis time by eliminating redundant alias pairs, our prototype does not do so for
the sake of simplicity.

Our technique and prototype implementation compares well with the technique and re-
sults described in [Shaham et al. 2003]. The implementation described in [Shaham et al.
2003] runs on a 900 MHz P-III with 512 MB RAM running Windows 2000. It takes 1.76
seconds, 2.68 seconds and 4.79 seconds respectively for Loop, DLoop and CReverse for
null assignment insertion. Time required by our prototype implementation for the above
mentioned programs is given in Figure 14. Our implementation automatically computes
the program points for null insertion whereas their method cannot do so (Section 9.3). Our
prototype performs much better in all cases. We expect a C++ implementation to be much
more efficient than XSB-Prolog prototype.

9. RELATED WORK

The properties of heap which have been explored in past are listed below (more details can
be found in [Sagiv et al. 2002b]). All of these properties (except the last) are specific to a
program point under consideration.

(1) Properties of access expressions.
(a) Nullity. Does an access expression evaluate to null address?
(b) Aliasing. Do two access expressions evaluate to the same address?

(2) Properties of heap cells.

10This happens because Java Virtual Machine uses a copying garbage collector.

32 · Uday Khedker et al.

(a) Sharing. Is a heap cell a part of two data structures?
(b) Reachability. Is a heap cell accessible? Through a particular access expression?
(c) Cyclicity. Is a heap cell part of a cycle?
(d) Liveness. Is a heap cell accessed beyond the current program point?

(3) Properties of heap data structures.
(a) Disjointness. Do two data structure have a common heap cell?
(b) Shape. Is a data structure a tree, a DAG, a graph, a cyclic list etc?

(4) Properties of procedures manipulating heap.
(a) Memory leaks. Does a procedure leave behind unreachable heap cells?

Most of these properties are related to each other; they basically differ in the domain for
which the question is being asked. In the rest of this section, we review the related work in
the two main properties of interest: aliasing and liveness. We are not aware of past work
in availability and anticipability analysis of heap references.

9.1 Alias Analysis of Heap Data

There is a plethora of literature on alias analysis of heap data. The distinguishing features
of various investigations have been:

(1) Applications of alias analysis. Alias analysis increases the precision of information
for various optimizing transformations. Apart from the traditional optimizations, it
also helps in parallelization [Larus 1989], compile time garbage collection, improved
register allocation, improved code generation and debugging etc. [Wilson 1997].

(2) Type of aliases discovered. Various categories of aliases which have been explored
are: may-aliases or must-aliases, flow-sensitive aliases or flow-insensitive aliases.
In the case of interprocedural analysis aliases could be context-sensitive or context-
insensitive [Larus and Hilfinger 1988; Choi et al. 1993; Emami et al. 1994; Muchnick
1997; Hind and Pioli 1998; Hind et al. 1999].

(3) Aliasing models. In Java, pointers (references) can point only to the heap data and
not to stack data. Further, pointer dereferencing is implicit and pointer arithmetic and
explicit type casting is not allowed. In C/C++, pointers can point to stack as well
as heap data; pointer arithmetic is allowed and pointer and non-pointer data can be
mixed.

(4) Representations and summarization heuristics used. Various representations for stor-
ing alias information include: Graph Representation [Larus and Hilfinger 1988], Com-
pact Representation, Explicit Representation [Choi et al. 1993; Hind et al. 1999] and
Points-to Abstraction [Ghiya 1992; Emami et al. 1994]. Some techniques used for
approximating alias information are: k-limiting [Jones and Muchnick 1979], s-l limit-
ing [Larus and Hilfinger 1988], and Storage Shape Graph (SSG) [Jones and Muchnick
1982; Chase et al. 1990]. None of them capture the pattern of heap manipulations as
directly as access graphs because
—their primary objective is to identify the shape of the data, rather than the underlying

heap manipulations which create the shape, or
—they use only memory allocation points in the program for summarization and other

address assignments are considered only implicitly.
Further, most of them either do not seem to handle cycles in heap or deal with them in
an ad hoc manner.

Heap Reference Analysis Using Access Graphs · 33

Shape analysis [Sagiv et al. 1999; 2002a; 2002b] is a general method of creating suit-
able abstractions (called Shape Graphs) of heap memory with respect to the relevant
properties. Program execution is then modeled as operations on shape graphs. It seems
to be emerging as the most promising technique for analyzing heap data.

9.2 Liveness Analysis

As noted earlier little or no success has been achieved in analysing liveness of heap ob-
jects; most of the reported literature does not address liveness of individual objects. Since
the precision of a garbage collector depends on its ability to distinguish between reachable
heap objects and live heap objects, even state of art garbage collectors leave a significant
amount of garbage uncollected [Agesen et al. 1998; Shaham et al. 2001b; 2001a; 2002].
All reported attempts to incorporate liveness in garbage collection have been quite approx-
imate. The known approaches have been:

(1) Liveness of root variables. A popular approach (which has also been used in some state
of art garbage collectors) involves identifying liveness of root variable on the stack.
All heap objects reachable from the live root variables are considered live [Agesen
et al. 1998].

(2) Imposing stack discipline on heap objects. These approaches try to change the stati-
cally unpredictable lifetimes of heap objects into predictable lifetimes similar to stack
data. They can be further classified as
—Allocating objects on call stack. These approach try to detect which objects can be

allocated on stack frame so that they are automatically deallocated without the need
of traditional garbage collection. A profile based approach which tracks the last use
of an object is reported in [McDowell 1998], while a static analysis based approach
is reported in [Reid et al. 1999].
Some approaches ask a converse question: which objects are unstackable (i.e. their
lifetimes outlive the procedure which created it)? They use abstract interpretation
and perform escape analysis to discover objects which escape a procedure[Blanchet
1999; 2003; Choi et al. 1999]. All other objects are allocated on stack.

—Associating objects with call stack [Cannarozzi et al. 2000]. This approach identifies
the stackability. The objects are allocated in the heap but are associated with a stack
frame and the runtime support is modified to deallocate these (heap) objects when
the associated stack frame is popped.

—Allocating objects on separate stack. This approach uses a static analysis called re-
gion inference [Tofte and Birkedal 1998; Hallenberg et al. 2002] to identify regions
which are storages for objects. These regions are allocated on a separate region
stack.

All these approaches require modifying the runtime support for the programs.

(3) The Heap Safety Automaton based approach [Shaham et al. 2003] is a recently reported
work which comes closest to our approach since it tries to determine if a reference can
be made null . We discuss this approach in the next section.

9.3 Heap Safety Automaton Based Approach

This approach models safety of inserting a null statement at a given point by an automaton.
A shape graph based abstraction of the program is then model-checked against the heap

34 · Uday Khedker et al.

safety automaton. Additionally, they also consider freeing the object; our approach can be
easily extended to include freeing.

The fundamental differences between the two approaches are

—Their method answers the following question: Given an access expression and a program
point, can the access expression be set to null immediately after that program point?
However, they leave a very important question unanswered: Which access expressions
should we consider and at which point in the program? It is impractical to use their
method to ask this question for every pair of access expression and program point. Our
method answers both the questions by finding out appropriate access expressions and
program points.

—We insert null assignments at the earliest possible point. The effectiveness of any method
to improve garbage collection depends crucially on this aspect. Their method does not
address this issue directly.

—As noted in Section 8, their method is inefficient in practice. For a simple Java program
containing 11 lines of executable statements, it takes over 1.37 MB of storage and takes
1.76 seconds for answering the question: Can the variable y be set to null after line 10?

Hence our approach is superior to their approach in terms of completeness, effectiveness,
and efficiency.

10. CONCLUSIONS AND FURTHER WORK

Two fundamental challenges in analysing heap data are that the temporal and spatial struc-
tures of heap data seem arbitrary and are unbounded. The apparent arbitrariness arises due
to the fact that the mapping between access expressions and l-values varies dynamically.

We create an abstract representation of heap in terms of sets of access paths. Further, a
bounded representation, called access graphs, is used for summarizing sets of access paths.
Summarization is based on the fact that the heap can be viewed as consisting of repeating
patterns which bear a close resemblance to the program structure. Access graphs capture
this fact directly by tagging program points to access graph nodes. Unlike [Horwitz et al.
1989; Chase et al. 1990; Choi et al. 1993; Wilson and Lam 1995; Hind et al. 1999] where
only memory allocation points are remembered, we remember all program points where
references are used. This allows us to combine data flow information arising out of the
same program point, resulting in bounded representations of heap data. These representa-
tions are simpler, more precise, and more natural than the traditional representations.

The dynamically varying mapping between access expressions and l-values is handled
by abstracting out regions in the heap which can possibly be accessed by a program. These
regions are represented by sets of access paths and access graphs which are manipulated
using a carefully chosen set of operations. The computation of access graphs and access
paths using data flow analysis is possible because of their finiteness and the monotonicity of
the chosen operations. We define data flow analyses for aliasing, liveness, availability and
anticipability of heap references. Aliasing and liveness analyses are any path problems,
hence they involve unbounded information requiring access graphs as data flow values.
Availability and anticipability analyses are all paths problems, hence they involve bounded
information which is represented by finite sets of access paths.

An immediate application of these analyses is a technique to improve garbage collection.
This technique works by identifying objects which are dead and rendering them unreach-
able by setting them to null as early as possible. Though this idea was previously known to

Heap Reference Analysis Using Access Graphs · 35

yield benefits [Gadbois et al.], nullification of dead objects was based on profiling [Sha-
ham et al. 2001a; 2002]. Our method, instead, is based on static analysis.

We intend to pursue future work in the following two directions:

(1) Heap reference analysis. We find some scope of improvements and a need of some
important extensions.
—Improvements. We would like to minimize the generation of redundant aliases in

presence of cycles in heap. Besides, we would like to devise a better null insertion
algorithm which ensures that if ρ and ρ′ are link-aliased and nullable, only one of
them is used for null assignment.

—Extensions. We would like to perform this analysis at interprocedural level and also
analyze array fragments. We would also like to implement this approach for C/C++
and use it for plugging memory leaks statically.

(2) Applying the summarization heuristic to other analyses. Our initial explorations indi-
cate that a similar approach would be useful for extending static inferencing of flow-
sensitive monomorphic types [Khedker et al. 2003] to include polymorphic types. This
is possible because polymorphic types represent an infinite set of types and hence dis-
covering them requires summarizing unbounded information.

ACKNOWLEDGMENTS

Several people have contributed to this work. We would particularly like to thank Neha
Adkar, C Arunkumar, Mugdha Jain, and Reena Kharat. Neha’s work was supported by
Tata Infotech Ltd. A prototype implementation of this work was partially supported by
Synopsys India Ltd. Amey Karkare has been supported by Infosys Fellowship.

REFERENCES

AGESEN, O., DETLEFS, D., AND MOSS, J. E. 1998. Garbage collection and local variable type-precision and
liveness in Java virtual machines. In PLDI ’98: Proceedings of the ACM SIGPLAN 1998 conference on
Programming language design and implementation. ACM Press, New York, NY, USA, 269–279.

AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers – Principles, Techniques, and Tools. Addison-
Wesley.

BLANCHET, B. 1999. Escape analysis for object-oriented languages: application to Java. In OOPSLA ’99:
Proceedings of the 14th ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications. ACM Press, New York, NY, USA, 20–34.

BLANCHET, B. 2003. Escape analysis for JavaT M : Theory and practice. ACM Transactions on Programming
Languages and Systems 25, 6, 713–775.

BOEHM, H. An artificial garbage collection benchmark. http://www.hpl.hp.com/personal/Hans_Boehm/
gc/gc_bench.html.

CANNAROZZI, D. J., PLEZBERT, M. P., AND CYTRON, R. K. 2000. Contaminated garbage collection. In PLDI
’00: Proceedings of the ACM SIGPLAN 2000 conference on Programming language design and implementa-
tion. ACM Press, New York, NY, USA, 264–273.

CARLISLE, M. C. 1996. Olden: Parallelizing programs with dynamic data structures on distributed-memory
machines. Ph.D. thesis, Princeton University.

CHASE, D. R., WEGMAN, M., AND ZADECK, F. K. 1990. Analysis of pointers and structures. In PLDI ’90:
Proceedings of the ACM SIGPLAN 1990 conference on Programming language design and implementation.
ACM Press, New York, NY, USA, 296–310.

CHENG, B.-C. AND HWU, W.-M. W. 2000. Modular interprocedural pointer analysis using access paths: de-
sign, implementation, and evaluation. In PLDI ’00: Proceedings of the ACM SIGPLAN 2000 conference on
Programming language design and implementation. ACM Press, New York, NY, USA, 57–69.

36 · Uday Khedker et al.

CHOI, J.-D., BURKE, M., AND CARINI, P. 1993. Efficient flow-sensitive interprocedural computation of pointer-
induced aliases and side effects. In POPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. ACM Press, New York, NY, USA, 232–245.

CHOI, J.-D., GUPTA, M., SERRANO, M., SREEDHAR, V. C., AND MIDKIFF, S. 1999. Escape analysis for
Java. In OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications. ACM Press, New York, NY, USA, 1–19.

EMAMI, M., GHIYA, R., AND HENDREN, L. J. 1994. Context-sensitive interprocedural points-to analysis in
the presence of function pointers. In PLDI ’94: Proceedings of the ACM SIGPLAN 1994 conference on
Programming language design and implementation. ACM Press, New York, NY, USA, 242–256.

GADBOIS, D., FITERMAN, C., CHASE, D., SHAPIRO, M., NILSEN, K., HAAHR, P., BARNES, N., AND PIRI-
NEN, P. P. The GC FAQ. http://www.iecc.com/gclist/GC-faq.html.

GHIYA, R. 1992. Interprocedural analysis in the presence of function pointers. Tech. rep., ACAPS Technical
Memo 62. School of Computer Science, McGill University. December.

HALLENBERG, N., ELSMAN, M., AND TOFTE, M. 2002. Combining region inference and garbage collection.
In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design and
implementation. ACM Press, New York, NY, USA, 141–152.

HECHT, M. S. 1977. Flow Analysis of Computer Programs. Elsevier North-Holland Inc.
HIND, M., BURKE, M., CARINI, P., AND CHOI, J.-D. 1999. Interprocedural pointer alias analysis. ACM

Transactions on Programming Languages and Systems 21, 4, 848–894.
HIND, M. AND PIOLI, A. 1998. Assessing the effects of flow-sensitivity on pointer alias analyses. In SAS ’98:

Proceedings of the 5th International Symposium on Static Analysis. Springer-Verlag, London, UK, 57–81.
HIRZEL, M., DIWAN, A., AND HENKEL, J. 2002. On the usefulness of type and liveness accuracy for garbage

collection and leak detection. ACM Transactions on Programming Languages and Systems 24, 6, 593–624.

HIRZEL, M., HENKEL, J., DIWAN, A., AND HIND, M. 2002. Understanding the connectivity of heap objects. In
ISMM ’02: Proceedings of the 3rd international symposium on Memory management. ACM Press, New York,
NY, USA, 36–49.

HORWITZ, S., PFEIFFER, P., AND REPS, T. 1989. Dependence analysis for pointer variables. In PLDI ’89:
Proceedings of the ACM SIGPLAN 1989 Conference on Programming language design and implementation.
ACM Press, New York, NY, USA, 28–40.

IYER, P. C. 2005. PVS based proofs of safety properties of access graph operations. http://www.cse.iitb.
ac.in/~uday/hraResources/AGSafety.html.

JONES, N. D. AND MUCHNICK, S. S. 1979. Flow analysis and optimization of lisp-like structures. In POPL
’79: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of programming languages.
ACM Press, New York, NY, USA, 244–256.

JONES, N. D. AND MUCHNICK, S. S. 1982. A flexible approach to interprocedural data flow analysis and
programs with recursive data structures. In POPL ’82: Proceedings of the 9th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages. ACM Press, New York, NY, USA, 66–74.

KARKARE, A. 2005. XSB-Prolog based prototype implementation of heap reference analysis. http://www.

cse.iitb.ac.in/~uday/hraResources/hraPrototpye.html.
KHEDKER, U. P. 2002. Data flow analysis. In Compiler Design Handbook: Optimizations and Machine Code

Generation, Y. N. Srikant and P. Shankar, Eds. CRC Press, Inc., Boca Raton, FL, USA.
KHEDKER, U. P., DHAMDHERE, D. M., AND MYCROFT, A. 2003. Bidirectional data flow analysis for type

inferencing. Computer Languages, Systems and Structures 29, 1-2, 15–44.
LARUS, J. R. 1989. Restructuring symbolic programs for concurrent execution on multiprocessors. Ph.D. thesis,

University of California at Berkeley.

LARUS, J. R. AND HILFINGER, P. N. 1988. Detecting conflicts between structure accesses. In PLDI ’88:
Proceedings of the ACM SIGPLAN 1988 conference on Programming Language design and Implementation.
ACM Press, New York, NY, USA, 24–31.

MCDOWELL, C. E. 1998. Reducing garbage in java. SIGPLAN Notices 33, 9, 84–86.
MUCHNICK, S. S. 1997. Advanced compiler design and implementation. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA.
REID, A., MCCORQUODALE, J., BAKER, J., HSIEH, W., AND ZACHARY, J. 1999. The need for predictable

garbage collection. In Proceedings of the ACM SIGPLAN Workshop on Compiler Support for System Software
(WCSSS’99).

Heap Reference Analysis Using Access Graphs · 37

x

y n n r y

x

n
n

nn

x.r = y x.n.n.n.n = y.n.n.n

x

y n n r

r
y

x

n
n

nn

n

(a) Creation of a new cycle (b) Modification of an existing cycle

Fig. 15. Memory graphs before and after assignment showing creation of cycles.

SAGIV, M., REPS, T., AND WILHELM, R. 1999. Parametric shape analysis via 3-valued logic. In POPL ’99:
Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM
Press, New York, NY, USA, 105–118.

SAGIV, M., REPS, T., AND WILHELM, R. 2002a. Parametric shape analysis via 3-valued logic. ACM Transac-
tions on Programming Languages and Systems 24, 3, 217–298.

SAGIV, M., REPS, T., AND WILHELM, R. 2002b. Shape analysis and applications. In Compiler Design Hand-
book: Optimizations and Machine Code Generation, Y. N. Srikant and P. Shankar, Eds. CRC Press, Inc, Boca
Raton, FL, USA.

SHAHAM, R., KOLODNER, E. K., AND SAGIV, M. 2001a. Heap profiling for space-efficient java. In PLDI ’01:
Proceedings of the ACM SIGPLAN 2001 conference on Programming language design and implementation.
ACM Press, New York, NY, USA, 104–113.

SHAHAM, R., KOLODNER, E. K., AND SAGIV, M. 2001b. On effectiveness of GC in Java. SIGPLAN No-
tices 36, 1, 12–17.

SHAHAM, R., KOLODNER, E. K., AND SAGIV, M. 2002. Estimating the impact of heap liveness information
on space consumption in Java. In ISMM ’02: Proceedings of the 3rd international symposium on Memory
management. ACM Press, New York, NY, USA, 64–75.

SHAHAM, R., YAHAV, E., KOLODNERE, E. K., AND SAGIV, S. 2003. Establishing local temporal heap safety
properties with applications to compile-time memory management. In SAS ’03: Proceedings of the 10th
International Symposium on Static Analysis. Springer-Verlag, London, UK, 483–503.

TOFTE, M. AND BIRKEDAL, L. 1998. A region inference algorithm. ACM Transactions on Programming
Languages and Systems 20, 4, 724–767.

WILSON, R. P. 1997. Efficient, context-sensitive pointer analysis for C programs. Ph.D. thesis, Stanford Univer-
sity.

WILSON, R. P. AND LAM, M. S. 1995. Efficient, context-sensitive pointer analysis for C programs. In PLDI ’95:
Proceedings of the ACM SIGPLAN 1995 conference on Programming language design and implementation.
ACM Press, New York, NY, USA, 1–12.

YONG, S. H., HORWITZ, S., AND REPS, T. 1999. Pointer analysis for programs with structures and casting.
In PLDI ’99: Proceedings of the ACM SIGPLAN 1999 conference on Programming language design and
implementation. ACM Press, New York, NY, USA, 91–103.

A. HANDLING CYCLIC DATA STRUCTURES

The specifications in Section 2 and the resulting data flow equations in Section 4 do not
capture the effect of cycles in heap. This section defines the extensions required to handle
them. These have been incorporated in our prototype implementation (Section 8).

Example A.1. We illustrate the issues through Figure 15.

—Creation of infinite pairs of node-aliases. In Figure 15(a), alias 〈x,y n n〉 exists be-
fore the assignment. Following the specifications in Section 2 the assignment creates

38 · Uday Khedker et al.

1. function GraphCycleClosure(AG,〈Gx,G′
x〉)

2. /? G′
x contains some prefix of Gx and AG is the set of access graph pairs ?/

3. { NewAG = /0
4. Gpre

x = Gx#(Gx/G′
x)

5. for each pair 〈G,G′〉 ∈ AG
6. { Gcyc = Gpre

x #(G/G′
x)

7. G
′cyc = Gpre

x #(G′/G′
x)

8. if ((Gcyc 6= EG) && (G
′cyc 6= EG)) then

9. NewAG = NewAG ∪ 〈Gcyc,G
′cyc〉

10. }
11. return AG∪NewAG
12. }

Fig. 16. Generating infinitely many alias pairs in the presence of cycles in heap.

the following new node-aliases: 〈x r,y〉 and 〈y,y n n r〉. Since y and y n n r
have the same l-value, it follows that all access paths y, y n n r, y n n n r n r,
. . . y n n r · · · n n r have the same l-value. The corresponding aliases must be
detected to ensure that live access paths are not missed.

—Modification of cyclic access paths in aliases. A cycle may exist before the assign-
ment and may get folded into a shorter cycle due to modification of some access path in
Base(ρx). As illustrated in Figure 15(b), the assignment modifies Frontier(x n n)
apart from Frontier(x n n n n). As a result, shorter aliases like 〈x n,y n n〉,
〈x n n,y n〉, 〈x n n,x n〉, and 〈y n n,y n〉 and cycles involving them also are
created and should be detected. 2

The creation of cycles is characterized by the presence of alias 〈Base(ρx),ρy σ〉 before
an assignment αx = αy. In general, after a cycle-creating assignment, node-aliases of the
kind 〈ρv σ,ρv〉 are created. We compute their transitive closures to create infinite node-
aliases. All pairs in the closure can be generated based on the following intuition:

For a node-alias 〈ρv σ,ρv〉, since ρv σ and ρv have the same l-value, we view
them as having reached the same state of access path construction as the state
reached after suffixing any number of σ’s to ρv.

We capture this using the operation of extension in function GraphCycleClosure (Fig-
ure 16) which is invoked whenever node-aliases at a program point are computed.

Creation of cycles does not require change in liveness analysis because link-alias com-
putation provides a safe approximation of live access paths. In case of availability and
anticipability analyses, a proper prefix of left hand side of assignment may also get mod-
ified due to presence of cycle, and hence information generated at an assignment should
not report such prefixes as available/anticipable. This is a conservative approximation.

B. NON-DISTRIBUTIVITY IN HEAP REFERENCE ANALYSIS

Alias and liveness analyses defined in this paper are not distributive whereas availability
and anticipability analyses are distributive.

Example B.1. Figure 17 shows an example of non-distributivity of aliasing. Since ev-
ery may-node-alias of y n should be may-node-aliased to every may-node-alias of z, our

Heap Reference Analysis Using Access Graphs · 39

1 x.n = y 1

2 x = y 23 x = z 3

4 y.n = z 4

y

x

z

ma

mb

mc

y

z

x
n

y

x

z

ma

mb

mc

y

z

x
n

Program Memory graph at the end of block Memory graph at the end of block
4 when path 1 → 2 → 4 is executed 4 when path 1 → 3 → 4 is executed

Fig. 17. Non-distributivity of alias analysis. x n is not aliased to x along any execution path in the program.

analysis concludes that x is aliased to x n. However, it can be verified from the memory
graphs that this is not possible. Let f4 denote the flow function of block 4. Then, it is easy
to see that

f4(AOut(2)∪AOut(4)) ⊃ f4(AOut(2))∪ f4(AOut(4))

because of the spurious alias 〈x,x n〉. The spurious node-alias 〈x,x n〉 generates further
spurious aliases due the cycle closure. 2

As Example B.1 illustrates, aliasing is non-distributive because though the confluence
(∪) is an exact operation, the flow functions are not exact since they work on a combination
of elements in the input set. The flow functions in liveness analysis are exact because they
work on individual elements in the set of the paths represented by the access graph. How-
ever, it is non-distributive because of the approximation introduced by the] operation.
G1] G2 may contain access paths which are neither in G1 nor in G2.

Example B.2. Figure 18 illustrates the non-distributivity of liveness analysis. Liveness
graphs associated with the entry each block is shown in shaded boxes. Let f1 denote the
flow function which computes x-rooted liveness graphs at the entry of block 1. Neither
ELInx(2) nor ELInx(4) contains the access path x r n r but their union contains it. It is
easy to see that

f1(ELInx(2)] ELInx(4)) vG f1(ELInx(2))] f1(ELInx(4))

2

The confluence operation used in availability and anticipability analyses use ∩ operation
which is exact. Further the flow functions are also exact in the sense that they work on
each element of the set independently rather than on a combination of elements. Hence
availability and anticipability analyses are distributive.

C. ACCESS GRAPHS FOR C++ TYPE OF LANGUAGES

In order to extend the concept of access graphs to C++ type of languages, we need to take
care of two major differences in C++ and Java memory model:

(1) Unlike Java, C++ has explicit pointers. Field of a structure (struct or class) can
be accessed in two different ways in C++: (a) using pointer dereferencing (∗.), e.g.
(∗x).lptr11 or (b) using simple dereferencing (.) , e.g. y.rptr. We need to differentiate
between the two ways.

11This is equivalently written as x−>lptr.

40 · Uday Khedker et al.

1 x.n = null 1

2 x = x.n 2 4 x = x.r 4

3 x.n.n = null 3 5 x.n.r = null 5

6 x = x.n 6

7 z = x.n 77 z = x.n 7 8 z = x.r 8

x n7 x r8

x n6

r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
x r4

n6 n7

n5 x
n2

n3

r4
n5

n6

n7

r8

ELOutx(1)

x r4
n5

n6

n7

r8

f1(ELInx(2)] ELInx(4))

x r4

n6 n7

n5

f1(ELInx(2))] f1(ELInx(4))

Fig. 18. Non-distributivity of liveness analysis. Access path x r n r is a spurious access path which does not
get killed by the assignment in block 1.

(2) In C++, root variables are on stack, same as that in Java. However, C++, through the
use of addressof (&) operator, allows a pointer/reference to point to root variables on
stack. Java does not allow a reference to point to stack. Root nodes in access graphs,
following Java model, do not have an incoming edge by definition. Therefore, it is not
possible to use access graphs directly to represent memory links in C++. We need to
create a view of C++ memory model such that this view follows Java model.

We create access graphs for C++ memory model as follows:

(1) We treat dereference of a pointer as a field reference, i.e., ∗ is considered as a field.
For example, an access expression (∗x).lptr is viewed as x.∗ .lptr, and corresponding
access path is x * lptr. The access path for x.lptr is x lptr.

(2) Even though a pointer can point to a variable x, it is not possible to point to &x.
In Java we partitioned memory as stack and heap, and had root variables of access
graphs correspond to stack variables. In C++, we partition the memory as address of
variables and rest of the memory (stack and heap together). We make the roots of
access graphs correspond to addresses of variables. A root variable y is represented

as ∗&y. Thus, &y ∗1 l2 represents access paths &y and &y ∗ and &y ∗ l,
which correspond to access expressions &y, y and y.l respectively.

Handling pointer arithmetic and type casting in C++ is orthogonal to above discussion,
and requires techniques similar to [Yong et al. 1999; Cheng and Hwu 2000] to be used.

