
An Overview of Compilation

Uday Khedker

(www.cse.iitb.ac.in/̃ uday)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

January 2020

cs302 Compilation Overview: Outline 1/32

Outline

• Introduction

• Compilation phases

• Compilation models

• Incremental construction of compilers

Uday Khedker IIT Bombay

Part 1

Introduction to Compilation

cs302 Compilation Overview: Introduction to Compilation 2/32

Binding

Time

No.of
unbound
objects

Nothing is known except the problem

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 2/32

Binding

Time

No.of
unbound
objects

Conceptualisation

Overall strategy, algorithm, data structures etc.

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 2/32

Binding

Time

No.of
unbound
objects

Conceptualisation Coding

Functions, variables, their types etc.

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 2/32

Binding

Time

No.of
unbound
objects

Conceptualisation Coding Compiling

Machine instructions, registers etc.

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 2/32

Binding

Time

No.of
unbound
objects

Conceptualisation Coding Compiling Linking

Addresses of functions, external data etc.

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 2/32

Binding

Time

No.of
unbound
objects

Conceptualisation Coding Compiling Linking Loading

Actual addresses
of code and data

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 2/32

Binding

Time

No.of
unbound
objects

Conceptualisation Coding Compiling Linking Loading Execution

Values of variables

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 2/32

Binding

Time

No.of
unbound
objects

Conceptualisation Coding Compiling Linking Loading Execution

We will look at dif-
ferent binding times
related to compiling

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 3/32

Implementation Mechanisms

Source Program

Translator

Target Program

Machine

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 3/32

Implementation Mechanisms

Source Program

Translator

Target Program

Machine

Input Data

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 3/32

Implementation Mechanisms

Source Program

Translator

Target Program

Machine

Input Data

Source Program

Interpreter

Machine

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 4/32

Implementation Mechanisms as “Bridges”

• “Gap” between the “levels” of program specification and execution

Program Specification

Machine

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 4/32

Implementation Mechanisms as “Bridges”

• “Gap” between the “levels” of program specification and execution

Program Specification

Machine

Translation

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 4/32

Implementation Mechanisms as “Bridges”

• “Gap” between the “levels” of program specification and execution

Program Specification

Machine

Translation Interpretation

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 4/32

Implementation Mechanisms as “Bridges”

• “Gap” between the “levels” of program specification and execution

Program Specification

Machine

Translation Interpretation

State : Variables
Operations: Expressions,

Control Flow

State : Memory,
Registers

Operations: Machine
Instructions

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 5/32

High and Low Level Abstractions

Input C statement

a = b<10?b:c+5;

Spim assembly equivalent (unoptimized)

lw $v0, 4($fp) ; v0 <- b # Is b smaller

slti $t1, $v0, 10 ; t1 <- v0 < 10 # than 10?

xori $t2, $t1, 1 ; t2 <- !t1

bgtz $t2, L0 ; if t2 > 0 goto L0

lw $t3, 4($fp) ; t3 <- b # YES

b L1 ; goto L1

L0: lw $t4, 8($fp) ;L0: t4 <- c # NO

addi $t3, $t4, 5 ; t3 <- t4 + c # NO

L1: sw 0($fp), $t3 ;L1: a <- t3

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 5/32

High and Low Level Abstractions

Input C statement

a = b<10?b:c+5;

Spim assembly equivalent (unoptimized)

lw $v0, 4($fp) ; v0 <- b # Is b smaller

slti $t1, $v0, 10 ; t1 <- v0 < 10 # than 10?

xori $t2, $t1, 1 ; t2 <- !t1

bgtz $t2, L0 ; if t2 > 0 goto L0

lw $t3, 4($fp) ; t3 <- b # YES

b L1 ; goto L1

L0: lw $t4, 8($fp) ;L0: t4 <- c # NO

addi $t3, $t4, 5 ; t3 <- t4 + c # NO

L1: sw 0($fp), $t3 ;L1: a <- t3

Condition

False Part

True Part

Fall throughConditional jump

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 5/32

High and Low Level Abstractions

Input C statement

a = b<10?b:c+5;

Spim assembly equivalent (unoptimized)

lw $v0, 4($fp) ; v0 <- b # Is b smaller

slti $t1, $v0, 10 ; t1 <- v0 < 10 # than 10?

xori $t2, $t1, 1 ; t2 <- !t1

bgtz $t2, L0 ; if t2 > 0 goto L0

lw $t3, 4($fp) ; t3 <- b # YES

b L1 ; goto L1

L0: lw $t4, 8($fp) ;L0: t4 <- c # NO

addi $t3, $t4, 5 ; t3 <- t4 + c # NO

L1: sw 0($fp), $t3 ;L1: a <- t3

NOT Condition

True Part

False Part

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 5/32

High and Low Level Abstractions

Input C statement

a = b<10?b:c+5;

Spim assembly equivalent (unoptimized)

lw $v0, 4($fp) ; v0 <- b # Is b smaller

slti $t1, $v0, 10 ; t1 <- v0 < 10 # than 10?

xori $t2, $t1, 1 ; t2 <- !t1

bgtz $t2, L0 ; if t2 > 0 goto L0

lw $t3, 4($fp) ; t3 <- b # YES

b L1 ; goto L1

L0: lw $t4, 8($fp) ;L0: t4 <- c # NO

addi $t3, $t4, 5 ; t3 <- t4 + c # NO

L1: sw 0($fp), $t3 ;L1: a <- t3

NOT Condition

True Part

False Part

Fall throughConditional jump

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 6/32

Implementation Mechanisms

• Translation = Analysis + Synthesis

Interpretation = Analysis + Execution

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 6/32

Implementation Mechanisms

• Translation = Analysis + Synthesis

Interpretation = Analysis + Execution

• Translation Instructions
Equivalent

Instructions

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 6/32

Implementation Mechanisms

• Translation = Analysis + Synthesis

Interpretation = Analysis + Execution

• Translation Instructions
Equivalent

Instructions

Interpretation Instructions
Actions Implied

by Instructions

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 7/32

Language Implementation Models

Analysis

Synthesis

Execution

Compilation

Interpretation

Uday Khedker IIT Bombay

cs302 Compilation Overview: Introduction to Compilation 8/32

Language Processor Models

C,C++

Java,
C#

Front
End

Optimizer

Back
End

Virtual
Machine

Uday Khedker IIT Bombay

Part 2

An Overview of Compilation Phases

cs302 Compilation Overview: An Overview of Compilation Phases 9/32

The Structure of a Simple Compiler

Source Program

Assembly
Program

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 9/32

The Structure of a Simple Compiler

Parser

Scanner

Tokens

Source Program

Semantic
Analyser

Symtab
Handler

Assembly
Program

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 9/32

The Structure of a Simple Compiler

Parser

Scanner

Tokens

Source Program

Semantic
Analyser

Symtab
Handler

IR
GeneratorAST

Assembly
Program

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 9/32

The Structure of a Simple Compiler

Parser

Scanner

Tokens

Source Program

Semantic
Analyser

Symtab
Handler

IR
GeneratorAST

Instruction
SelectorTAC

Register
Allocator

Assembly
Program

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 9/32

The Structure of a Simple Compiler

Parser

Scanner

Tokens

Source Program

Semantic
Analyser

Symtab
Handler

IR
GeneratorAST

Instruction
SelectorTAC

Register
Allocator

Assembly
EmitterRTL

Assembly
Program

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 10/32

Translation Sequence in Our Compiler: Scanning and Parsing

a = b<10 ? b : c+5;

Input

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 10/32

Translation Sequence in Our Compiler: Scanning and Parsing

a = b<10 ? b : c+5;

Input AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name
+

name num

E E

name num

Parse Tree

a = b < 10 ? b : c + 5 ;

How the input is actually stored in the memory

a = b < 10 ? b : c + 5 ;

How we want to see it

Issues:

• Grammar rules,
terminals,
non-terminals

• Order of application
of grammar rules

eg. is it (a =

b<10?) followed by
(b:c)?

• Values of terminal
symbols

eg. string “10” vs.
integer number 10.

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 11/32

Translation Sequence in Our Compiler: Semantic Analysis

a = b<10 ? b : c+5;

Input AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name
+

name num

E E

name num

Parse Tree

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 11/32

Translation Sequence in Our Compiler: Semantic Analysis

a = b<10 ? b : c+5;

Input AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name
+

name num

E E

name num

Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

+
(int)

name
(c,int)

num
(5,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

Issues:

• Symbol tables

Have variables been declared? What are their types?
What is their scope?

• Type consistency of operators and operands

The result of computing b<10? is bool and not int

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 12/32

Translation Sequence in Our Compiler: IR Generation

a = b<10 ? b : c+5;

Input AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name
+

name num

E E

name num

Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

+
(int)

name
(c,int)

num
(5,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 12/32

Translation Sequence in Our Compiler: IR Generation

a = b<10 ? b : c+5;

Input AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name
+

name num

E E

name num

Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

+
(int)

name
(c,int)

num
(5,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

T1 = b < 10
T2 = ¬T1

if T2 goto L0
T3 = b

goto L1:
L0: T3 = c + 5
L1: a = T3

TAC List
Issues:

• Convert to three address code (TAC)
separating data and control flow

Simplifies optimization

• Linearise control flow by flattening nested
control constructs

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 13/32

Translation Sequence in Our Compiler: Instruction Selection

a = b<10 ? b : c+5;

Input AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name
+

name num

E E

name num

Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

+
(int)

name
(c,int)

num
(5,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

T1 = b < 10
T2 = ¬T1

if T2 goto L0
T3 = b

goto L1:
L0: T3 = c + 5
L1: a = T3

TAC List

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 13/32

Translation Sequence in Our Compiler: Instruction Selection

a = b<10 ? b : c+5;

Input AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name
+

name num

E E

name num

Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

+
(int)

name
(c,int)

num
(5,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

T1 = b < 10
T2 = ¬T1

if T2 goto L0
T3 = b

goto L1:
L0: T3 = c + 5
L1: a = T3

TAC Listload v0← b

slti t1← v0, 10
not t2← t1
if t2 goto L0
load t3← b

goto L1
L0: load t4← c

addi t3← t4, 5
L1: store a← t3

RTL List

Issues:

• Generate as few
instructions as
possible (list shown
here is unoptimized)

• Use temporaries and
local registers

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 14/32

Translation Sequence in Our Compiler: Emitting Instructions

a = b<10 ? b : c+5;

Input AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name
+

name num

E E

name num

Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

+
(int)

name
(c,int)

num
(5,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

T1 = b < 10
T2 = ¬T1

if T2 goto L0
T3 = b

goto L1:
L0: T3 = c + 5
L1: a = T3

TAC Listload v0← b

slti t1← v0, 10
not t2← t1
if t2 goto L0
load t3← b

goto L1
L0: load t4← c

addi t3← t4, 5
L1: store a← t3

RTL List

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 14/32

Translation Sequence in Our Compiler: Emitting Instructions

a = b<10 ? b : c+5;

Input AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name
+

name num

E E

name num

Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

+
(int)

name
(c,int)

num
(5,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

T1 = b < 10
T2 = ¬T1

if T2 goto L0
T3 = b

goto L1:
L0: T3 = c + 5
L1: a = T3

TAC Listload v0← b

slti t1← v0, 10
not t2← t1
if t2 goto L0
load t3← b

goto L1
L0: load t4← c

addi t3← t4, 5
L1: store a← t3

RTL List

lw $v0, 4($fp)
slti $t1, $t0, 10
xori $t2, $t1, 1
bgtz $t2, L0
lw $t3, 4($fp)
b L1

L0: lw $t4, 8($fp)
addi $t3, $t4, 5

L1: sw 0($fp), $t3

Assembly Code

Issues:

• Offsets of variables in the
stack frame

• Actual register numbers
and assembly mnemonics

• Code to construct and
discard activation records

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 14/32

Translation Sequence in Our Compiler: Emitting Instructions

a = b<10 ? b : c+5;

Input AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name
+

name num

E E

name num

Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

+
(int)

name
(c,int)

num
(5,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

T1 = b < 10
T2 = ¬T1

if T2 goto L0
T3 = b

goto L1:
L0: T3 = c + 5
L1: a = T3

TAC Listload v0← b

slti t1← v0, 10
not t2← t1
if t2 goto L0
load t3← b

goto L1
L0: load t4← c

addi t3← t4, 5
L1: store a← t3

RTL List

lw $v0, 4($fp)
slti $t1, $t0, 10
xori $t2, $t1, 1
bgtz $t2, L0
lw $t3, 4($fp)
b L1

L0: lw $t4, 8($fp)
addi $t3, $t4, 5

L1: sw 0($fp), $t3

Assembly Code

Output

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 15/32

Observations

• A compiler bridges the gap between source program and target
program

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 15/32

Observations

• A compiler bridges the gap between source program and target
program

• Compilation involves gradual lowering of levels of the IR of an input
program

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 15/32

Observations

• A compiler bridges the gap between source program and target
program

• Compilation involves gradual lowering of levels of the IR of an input
program

• The design of IRs is the most critical part of a compiler design

◮ How many IRs should we have?
◮ What are the details that each IR captures?

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 15/32

Observations

• A compiler bridges the gap between source program and target
program

• Compilation involves gradual lowering of levels of the IR of an input
program

• The design of IRs is the most critical part of a compiler design

◮ How many IRs should we have?
◮ What are the details that each IR captures?

• Practical compilers are desired to be retargetable
⇒ Back ends should be generated from specifications

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 16/32

Why Is Compiler Construction a Relevant Course?

Very few people write compilers any way

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 16/32

Why Is Compiler Construction a Relevant Course?

Very few people write compilers any way

• Translation and interpretation are fundamental CS at a conceptual
level

◮ Stepwise refinement Vs. look up
◮ Analytics Vs. Transactional software

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 16/32

Why Is Compiler Construction a Relevant Course?

Very few people write compilers any way

• Translation and interpretation are fundamental CS at a conceptual
level

◮ Stepwise refinement Vs. look up
◮ Analytics Vs. Transactional software

• Computer Science is all about building abstractions and bridging
abstraction gaps

Uday Khedker IIT Bombay

cs302 Compilation Overview: An Overview of Compilation Phases 16/32

Why Is Compiler Construction a Relevant Course?

Very few people write compilers any way

• Translation and interpretation are fundamental CS at a conceptual
level

◮ Stepwise refinement Vs. look up
◮ Analytics Vs. Transactional software

• Computer Science is all about building abstractions and bridging
abstraction gaps

• Knowing compilers internals makes a person a much better
programmer
Writing programs whose data is programs

Uday Khedker IIT Bombay

Part 3

Compilation Models

cs302 Compilation Overview: Compilation Models 17/32

Compilation Models
Aho Ullman

Model
Davidson Fraser

Model

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 17/32

Compilation Models
Aho Ullman

Model
Davidson Fraser

Model

Input Source ProgramFront End

AST

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 17/32

Compilation Models
Aho Ullman

Model
Davidson Fraser

Model

Input Source ProgramFront End

AST

Optimizer

Target Indep. IR

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 17/32

Compilation Models
Aho Ullman

Model
Davidson Fraser

Model

Input Source ProgramFront End

AST

Optimizer

Target Indep. IR

Code
Generator

Target Program

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 17/32

Compilation Models
Aho Ullman

Model
Davidson Fraser

Model

Input Source ProgramFront End

AST

Optimizer

Target Indep. IR

Code
Generator

Target Program

Front End

AST

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 17/32

Compilation Models
Aho Ullman

Model
Davidson Fraser

Model

Input Source ProgramFront End

AST

Optimizer

Target Indep. IR

Code
Generator

Target Program

Front End

AST

Expander

Register Transfers

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 17/32

Compilation Models
Aho Ullman

Model
Davidson Fraser

Model

Input Source ProgramFront End

AST

Optimizer

Target Indep. IR

Code
Generator

Target Program

Front End

AST

Expander

Register Transfers

Optimizer

Register Transfers

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 17/32

Compilation Models
Aho Ullman

Model
Davidson Fraser

Model

Input Source ProgramFront End

AST

Optimizer

Target Indep. IR

Code
Generator

Target Program

Front End

AST

Expander

Register Transfers

Optimizer

Register Transfers

Recognizer

Target Program

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 17/32

Compilation Models
Aho Ullman

Model
Davidson Fraser

Model

Front End

AST

Optimizer

Target Indep. IR

Code
Generator

Target Program

Front End

AST

Expander

Register Transfers

Optimizer

Register Transfers

Recognizer

Target Program

Aho Ullman: Instruction selection

• over optimized IR using

• cost based tree tiling matching

Davidson Fraser: Instruction selection

• over AST using

• simple full tree matching based
algorithms that generate

• naive code which is

◮ target dependent, and is
◮ optimized subsequently

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 18/32

Typical Front Ends

Parser

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 18/32

Typical Front Ends

ParserSource
Program

Scanner

Tokens

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 18/32

Typical Front Ends

ParserSource
Program

Scanner

Tokens

Semantic
Analyzer

AST

Parse
Tree

AST or Linear IR
+

Symbol Table

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 18/32

Typical Front Ends

ParserSource
Program

Scanner

Tokens

Semantic
Analyzer

AST

Parse
Tree

AST or Linear IR
+

Symbol Table

Error
Handler

Symtab
Handler

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 19/32

Typical Back Ends in Aho Ullman Model

m/c Ind.
IR

m/c Ind.
Optimizer

− Compile time
evaluations

− Eliminating
redundant
computations

m/c
Ind.
IR

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 19/32

Typical Back Ends in Aho Ullman Model

m/c Ind.
IR

m/c Ind.
Optimizer

− Compile time
evaluations

− Eliminating
redundant
computations

m/c
Ind.
IR

Code
Generator

m/c
Dep.
IR

− Instruction Selection
− Local Reg Allocation
− Choice of Order of

Evaluation

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 19/32

Typical Back Ends in Aho Ullman Model

m/c Ind.
IR

m/c Ind.
Optimizer

− Compile time
evaluations

− Eliminating
redundant
computations

m/c
Ind.
IR

Code
Generator

m/c
Dep.
IR

− Instruction Selection
− Local Reg Allocation
− Choice of Order of

Evaluation

m/c Dep.
Optimizer

Assembly Code

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 19/32

Typical Back Ends in Aho Ullman Model

m/c Ind.
IR

m/c Ind.
Optimizer

− Compile time
evaluations

− Eliminating
redundant
computations

m/c
Ind.
IR

Code
Generator

m/c
Dep.
IR

− Instruction Selection
− Local Reg Allocation
− Choice of Order of

Evaluation

Assembly Code

Register
Allocator

Instruction
Scheduler

Peephole
Optimizer

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 20/32

Retargetability in Aho Ullman and Davidson Fraser Models

Aho Ullman Model Davidson Fraser Model

Instruction
Selection

• Machine independent IR is expressed in the form of trees
• Machine instructions are described in the form of trees
• Trees in the IR are “covered” using the instruction trees

Optimization

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 20/32

Retargetability in Aho Ullman and Davidson Fraser Models

Aho Ullman Model Davidson Fraser Model

Instruction
Selection

• Machine independent IR is expressed in the form of trees
• Machine instructions are described in the form of trees
• Trees in the IR are “covered” using the instruction trees

Cost based tree pattern
matching

Optimization

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 20/32

Retargetability in Aho Ullman and Davidson Fraser Models

Aho Ullman Model Davidson Fraser Model

Instruction
Selection

• Machine independent IR is expressed in the form of trees
• Machine instructions are described in the form of trees
• Trees in the IR are “covered” using the instruction trees

Cost based tree pattern
matching

Structural tree pattern matching

Optimization

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 20/32

Retargetability in Aho Ullman and Davidson Fraser Models

Aho Ullman Model Davidson Fraser Model

Instruction
Selection

• Machine independent IR is expressed in the form of trees
• Machine instructions are described in the form of trees
• Trees in the IR are “covered” using the instruction trees

Cost based tree pattern
matching

Structural tree pattern matching

Optimization Machine independent

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 20/32

Retargetability in Aho Ullman and Davidson Fraser Models

Aho Ullman Model Davidson Fraser Model

Instruction
Selection

• Machine independent IR is expressed in the form of trees
• Machine instructions are described in the form of trees
• Trees in the IR are “covered” using the instruction trees

Cost based tree pattern
matching

Structural tree pattern matching

Optimization Machine independent

Machine dependent

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 20/32

Retargetability in Aho Ullman and Davidson Fraser Models

Aho Ullman Model Davidson Fraser Model

Instruction
Selection

• Machine independent IR is expressed in the form of trees
• Machine instructions are described in the form of trees
• Trees in the IR are “covered” using the instruction trees

Cost based tree pattern
matching

Structural tree pattern matching

Optimization Machine independent

Machine dependent

Key Insight: Register transfers

are target specific but their form

is target independent

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 21/32

The GNU Tool Chain for C

gcc

Source Program

Target Program

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 21/32

The GNU Tool Chain for C

gcc

Source Program

Target Program

cc1 cpp

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 21/32

The GNU Tool Chain for C

gcc

Source Program

Target Program

cc1 cpp

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 21/32

The GNU Tool Chain for C

gcc

Source Program

Target Program

cc1 cpp

as

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 21/32

The GNU Tool Chain for C

gcc

Source Program

Target Program

cc1 cpp

as

ld

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 21/32

The GNU Tool Chain for C

gcc

Source Program

Target Program

cc1 cpp

as

ld

glibc/newlib

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 21/32

The GNU Tool Chain for C

gcc

Source Program

Target Program

cc1 cpp

as

ld

glibc/newlib

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 22/32

The Architecture of GCC

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator
Code

Machine
Descriptions

Compiler Generation Framework

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 22/32

The Architecture of GCC

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator
Code

Machine
Descriptions

Compiler Generation Framework

Parser Gimplifier
Tree SSA
Optimizer

Expander Optimizer Recognizer

Generated Compiler (cc1)

Source Program Assembly Program

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 22/32

The Architecture of GCC

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator
Code

Machine
Descriptions

Compiler Generation Framework

Parser Gimplifier
Tree SSA
Optimizer

Expander Optimizer Recognizer

Generated Compiler (cc1)

Source Program Assembly Program

Input Language Target Name

Selected Copied

Copied

Generated

Generated

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 22/32

The Architecture of GCC

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator
Code

Machine
Descriptions

Compiler Generation Framework

Parser Gimplifier
Tree SSA
Optimizer

Expander Optimizer Recognizer

Generated Compiler (cc1)

Source Program Assembly Program

Input Language Target Name

Selected Copied

Copied

Generated

Generated

Development
Time

Build
Time

Use
Time

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 23/32

GCC Retargetability Mechanism

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator
Code

Machine
Descriptions

Compiler Generation Framework

Input Language Target Name

Parser Gimplifier
Tree SSA
Optimizer

Expander Optimizer Recognizer

Selected Copied
Copied

Generated

Generated

Generated Compiler

Development
Time

Build
Time

Use
Time

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 23/32

GCC Retargetability Mechanism

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator
Code

Machine
Descriptions

Compiler Generation Framework

Input Language Target Name

Parser Gimplifier
Tree SSA
Optimizer

Expander Optimizer Recognizer

Selected Copied
Copied

Generated

Generated

Generated Compiler

Development
Time

Build
Time

Use
Time

Gimple → IR-RTL
+

IR-RTL → ASM

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 23/32

GCC Retargetability Mechanism

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator
Code

Machine
Descriptions

Compiler Generation Framework

Input Language Target Name

Parser Gimplifier
Tree SSA
Optimizer

Expander Optimizer Recognizer

Selected Copied
Copied

Generated

Generated

Generated Compiler

Development
Time

Build
Time

Use
Time

Gimple → PN
+

PN → IR-RTL
+

IR-RTL → ASM

Gimple → IR-RTL
+

IR-RTL → ASM

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 23/32

GCC Retargetability Mechanism

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator
Code

Machine
Descriptions

Compiler Generation Framework

Input Language Target Name

Parser Gimplifier
Tree SSA
Optimizer

Expander Optimizer Recognizer

Selected Copied
Copied

Generated

Generated

Generated Compiler

Development
Time

Build
Time

Use
Time

Gimple → PN
+

PN → IR-RTL
+

IR-RTL → ASM

Gimple → IR-RTL
+

IR-RTL → ASM

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 23/32

GCC Retargetability Mechanism

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator
Code

Machine
Descriptions

Compiler Generation Framework

Input Language Target Name

Parser Gimplifier
Tree SSA
Optimizer

Expander Optimizer Recognizer

Selected Copied
Copied

Generated

Generated

Generated Compiler

Development
Time

Build
Time

Use
Time

Gimple → PN
+

PN → IR-RTL
+

IR-RTL → ASM

Gimple → IR-RTL
+

IR-RTL → ASM

Uday Khedker IIT Bombay

cs302 Compilation Overview: Compilation Models 23/32

GCC Retargetability Mechanism

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator
Code

Machine
Descriptions

Compiler Generation Framework

Input Language Target Name

Parser Gimplifier
Tree SSA
Optimizer

Expander Optimizer Recognizer

Selected Copied
Copied

Generated

Generated

Generated Compiler

Development
Time

Build
Time

Use
Time

Gimple → PN
+

PN → IR-RTL
+

IR-RTL → ASM

Gimple → IR-RTL
+

IR-RTL → ASM

The generated compiler uses an adaptation of the Davidson Fraser model

• Generic expander and recognizer

• Machine specific information is isolated in data structures

• Generating a compiler involves generating these data structures

Uday Khedker IIT Bombay

Part 4

Modern Challenges

cs302 Compilation Overview: Modern Challenges 24/32

The Sources of New Challenges

• Languages have changed significantly

• Processors have changed significantly

• Problem sizes have changed significantly

• Expectations have changed significantly

• Analysis techniques have changed significantly

Uday Khedker IIT Bombay

cs302 Compilation Overview: Modern Challenges 24/32

The Sources of New Challenges

• Languages have changed significantly

◮ “The worst thing that has happened to Computer Science is C
because it brought pointers with it.” (Frances Allen, IITK, 2007)

• Processors have changed significantly

• Problem sizes have changed significantly

• Expectations have changed significantly

• Analysis techniques have changed significantly

Uday Khedker IIT Bombay

cs302 Compilation Overview: Modern Challenges 24/32

The Sources of New Challenges

• Languages have changed significantly

◮ “The worst thing that has happened to Computer Science is C
because it brought pointers with it.” (Frances Allen, IITK, 2007)

• Processors have changed significantly

◮ GPUs, Many core processors, Embedded processors

• Problem sizes have changed significantly

• Expectations have changed significantly

• Analysis techniques have changed significantly

Uday Khedker IIT Bombay

cs302 Compilation Overview: Modern Challenges 24/32

The Sources of New Challenges

• Languages have changed significantly

◮ “The worst thing that has happened to Computer Science is C
because it brought pointers with it.” (Frances Allen, IITK, 2007)

• Processors have changed significantly

◮ GPUs, Many core processors, Embedded processors

• Problem sizes have changed significantly

◮ Programs running in millions of lines of code

• Expectations have changed significantly

• Analysis techniques have changed significantly

Uday Khedker IIT Bombay

cs302 Compilation Overview: Modern Challenges 24/32

The Sources of New Challenges

• Languages have changed significantly

◮ “The worst thing that has happened to Computer Science is C
because it brought pointers with it.” (Frances Allen, IITK, 2007)

• Processors have changed significantly

◮ GPUs, Many core processors, Embedded processors

• Problem sizes have changed significantly

◮ Programs running in millions of lines of code

• Expectations have changed significantly

◮ Interprocedural analysis and optimization, validation, reverse
engineering, parallelization

• Analysis techniques have changed significantly

Uday Khedker IIT Bombay

cs302 Compilation Overview: Modern Challenges 24/32

The Sources of New Challenges

• Languages have changed significantly

◮ “The worst thing that has happened to Computer Science is C
because it brought pointers with it.” (Frances Allen, IITK, 2007)

• Processors have changed significantly

◮ GPUs, Many core processors, Embedded processors

• Problem sizes have changed significantly

◮ Programs running in millions of lines of code

• Expectations have changed significantly

◮ Interprocedural analysis and optimization, validation, reverse
engineering, parallelization

• Analysis techniques have changed significantly

◮ Parsing, Data flow analysis, Parallism Discovery, Heap Analysis

Uday Khedker IIT Bombay

cs302 Compilation Overview: Modern Challenges 25/32

Modern Challenges: Design issues

• The IR interface

What to export? What to hide?

• Retargetability

Extending to the new version of a processor?

Extending to a new processor?

Uday Khedker IIT Bombay

cs302 Compilation Overview: Modern Challenges 26/32

Modern Challenges: Improving Program

• Scaling analysis to large programs without losing precision

◮ Interprocedural analysis
◮ Pointer analysis

• Increasing the precision of analysis

◮ How to interleave difference analysis to benefit from each other?
◮ How to exclude infeasible interprocedural paths?

Uday Khedker IIT Bombay

cs302 Compilation Overview: Modern Challenges 27/32

Modern Challenges: Language Issues

How to efficiently compile

• Dynamic features such as closures, higher order functions

(eg. eval in Javascript)

• Exceptions

What guarantees to give in the presence of undefined behaviour

• Memory accesses such as array access out of bound

Uday Khedker IIT Bombay

cs302 Compilation Overview: Modern Challenges 28/32

Modern Challenges: Target Machine Issues

How to exploit

• Pipelines? (Spectre bug)

• Multiple execution units (pipelined)

• Cache hierarchy

• Parallel processing

(Shared memory, distributed memory, message-passing)

• Data parallelism support in GPUs

• Vector operations

• VLIW and Superscalar instruction issue

Uday Khedker IIT Bombay

cs302 Compilation Overview: Modern Challenges 28/32

Modern Challenges: Target Machine Issues

How to exploit

• Pipelines? (Spectre bug)

• Multiple execution units (pipelined)

• Cache hierarchy

• Parallel processing

(Shared memory, distributed memory, message-passing)

• Data parallelism support in GPUs

• Vector operations

• VLIW and Superscalar instruction issue

The crux of the matter

• Hardware is parallel, (conventional) software is sequential

• Software view of memory model: Strong consistency

Architecture gives weak consistency

• Software view is stable, hardware is disruptive

Uday Khedker IIT Bombay

cs302 Compilation Overview: Modern Challenges 29/32

Modern Challenges: Providing Guarantees

• Correctness of optimizations

◮ Hard even for machine independent optimizations

◮ Verification of a production optimizing compiler is a pipe dream

Requires roving the correctness of translation of ALL programs

◮ Compiler validation is more realistic, and yet not achieved fully

Allows proving the correctness of translation of A program

• Interference with Security

◮ Optimizations disrupt memory view

Correctness is defined in terms of useful states

Clearing stack location by writing all zeros is dead code

◮ Optimizations also disrupt timing estimates

Uday Khedker IIT Bombay

cs302 Compilation Overview: Modern Challenges 30/32

Modern Challenges: New Expectations

• New application domains bringing new challenges

• What are the underlying abstractions of the domains that should become
first class citizens in a programming language?

◮ Language design and compilers for machine learning algorithms?
◮ Langueg design and compilers for streaming applications?

• Can machine learning algorithms help compilers create new optimizations?

◮ Can human ingenuity in design of novel algorithms be replaced by
machine learning?

◮ Can compilers learn from the programs they have compiled and
become “better” over time?

Uday Khedker IIT Bombay

Part 5

Incremental Construction of Compilers

cs302 Compilation Overview: Incremental Construction of Compilers 31/32

In Search of Modularity in Compilation

Ta
rg
et

Fe
at
ur
es

So
ur
ce

Fe
at
ur
es

Phases of Compilation

Uday Khedker IIT Bombay

cs302 Compilation Overview: Incremental Construction of Compilers 31/32

In Search of Modularity in Compilation

Phase 1 Phase n

Ta
rg
et

Fe
at
ur
es

So
ur
ce

Fe
at
ur
es

Phases of Compilation

Uday Khedker IIT Bombay

cs302 Compilation Overview: Incremental Construction of Compilers 32/32

In Search of Modularity in Compilation

Ta
rg
et

Fe
at
ur
es

So
ur
ce

Fe
at
ur
es

Phases of CompilationPhase 1 Phase n
Feature 1

Feature m

Uday Khedker IIT Bombay

cs302 Compilation Overview: Incremental Construction of Compilers 33/32

In Search of Modularity in Retargetable Compilation

Ta
rg
et

Fe
at
ur
es

So
ur
ce

Fe
at
ur
es

Phases of CompilationPhase 1 Phase n
Feature 1

Feature k

Feature 1

Feature m

Uday Khedker IIT Bombay

cs302 Compilation Overview: Incremental Construction of Compilers 34/32

In Search of Modularity in Compilation

So
ur
ce

Fe
at
ur
es

(C
um
ul
at
ive
)

Phases of Compilation

Level 1

Level p

Uday Khedker IIT Bombay

cs302 Compilation Overview: Incremental Construction of Compilers 35/32

Language Increments

Function Calls

Control Structures

Comparison and Logical Expressions

Arithmetic Expressions

Assignments with
simple RHS

Level 1

Level 2

Level 3

Level 4

Level 5

Uday Khedker IIT Bombay

cs302 Compilation Overview: Incremental Construction of Compilers 36/32

Proposed Assignment Plan

A series of six assignments; each assignment builds on the previous assignment

scan parse ast tac rtl asm

Level 5

Level 4

Level 3

Level 2

Level 1

Uday Khedker IIT Bombay

cs302 Compilation Overview: Incremental Construction of Compilers 36/32

Proposed Assignment Plan

A series of six assignments; each assignment builds on the previous assignment

scan parse ast tac rtl asm

Level 5

Level 4

Level 3

Level 2

Level 1

A1

Uday Khedker IIT Bombay

cs302 Compilation Overview: Incremental Construction of Compilers 36/32

Proposed Assignment Plan

A series of six assignments; each assignment builds on the previous assignment

scan parse ast tac rtl asm

Level 5

Level 4

Level 3

Level 2

Level 1

A1

A2

Uday Khedker IIT Bombay

cs302 Compilation Overview: Incremental Construction of Compilers 36/32

Proposed Assignment Plan

A series of six assignments; each assignment builds on the previous assignment

scan parse ast tac rtl asm

Level 5

Level 4

Level 3

Level 2

Level 1

A1

A2 A3

Uday Khedker IIT Bombay

cs302 Compilation Overview: Incremental Construction of Compilers 36/32

Proposed Assignment Plan

A series of six assignments; each assignment builds on the previous assignment

scan parse ast tac rtl asm

Level 5

Level 4

Level 3

Level 2

Level 1

A1

A2 A3

A4

Uday Khedker IIT Bombay

cs302 Compilation Overview: Incremental Construction of Compilers 36/32

Proposed Assignment Plan

A series of six assignments; each assignment builds on the previous assignment

scan parse ast tac rtl asm

Level 5

Level 4

Level 3

Level 2

Level 1

A1

A2 A3

A4

A5

Uday Khedker IIT Bombay

cs302 Compilation Overview: Incremental Construction of Compilers 36/32

Proposed Assignment Plan

A series of six assignments; each assignment builds on the previous assignment

scan parse ast tac rtl asm

Level 5

Level 4

Level 3

Level 2

Level 1

A1

A2 A3

A4

A5 A6

Uday Khedker IIT Bombay

cs302 Compilation Overview: Incremental Construction of Compilers 36/32

Proposed Assignment Plan

A series of six assignments; each assignment builds on the previous assignment

scan parse ast tac rtl asm

Level 5

Level 4

Level 3

Level 2

Level 1

A1

A2 A3

A4

A5 A6

Further details will be provided in the lab session

Uday Khedker IIT Bombay

	Outline
	Introduction to Compilation
	An Overview of Compilation Phases
	Compilation Models
	Modern Challenges
	Incremental Construction of Compilers

