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Outline

• Introduction

• Compilation phases

• Compilation models

• Incremental construction of compilers
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Binding
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Binding
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unbound
objects

Conceptualisation Coding Compiling Linking

Addresses of functions, external data etc.
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unbound
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Conceptualisation Coding Compiling Linking Loading

Actual addresses
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Binding

Time

No.of
unbound
objects

Conceptualisation Coding Compiling Linking Loading Execution

We will look at dif-
ferent binding times
related to compiling

Uday Khedker IIT Bombay



cs302 Compilation Overview: Introduction to Compilation 3/32

Implementation Mechanisms

Source Program

Translator

Target Program

Machine
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Implementation Mechanisms as “Bridges”

• “Gap” between the “levels” of program specification and execution

Program Specification

Machine
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Implementation Mechanisms as “Bridges”

• “Gap” between the “levels” of program specification and execution

Program Specification
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Implementation Mechanisms as “Bridges”

• “Gap” between the “levels” of program specification and execution

Program Specification

Machine

Translation Interpretation

State : Variables
Operations: Expressions,

Control Flow

State : Memory,
Registers

Operations: Machine
Instructions
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High and Low Level Abstractions

Input C statement

a = b<10?b:c+5;

Spim assembly equivalent (unoptimized)

lw $v0, 4($fp) ; v0 <- b # Is b smaller

slti $t1, $v0, 10 ; t1 <- v0 < 10 # than 10?

xori $t2, $t1, 1 ; t2 <- !t1

bgtz $t2, L0 ; if t2 > 0 goto L0

lw $t3, 4($fp) ; t3 <- b # YES

b L1 ; goto L1

L0: lw $t4, 8($fp) ;L0: t4 <- c # NO

addi $t3, $t4, 5 ; t3 <- t4 + c # NO

L1: sw 0($fp), $t3 ;L1: a <- t3
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High and Low Level Abstractions

Input C statement

a = b<10?b:c+5;

Spim assembly equivalent (unoptimized)

lw $v0, 4($fp) ; v0 <- b # Is b smaller

slti $t1, $v0, 10 ; t1 <- v0 < 10 # than 10?

xori $t2, $t1, 1 ; t2 <- !t1

bgtz $t2, L0 ; if t2 > 0 goto L0

lw $t3, 4($fp) ; t3 <- b # YES

b L1 ; goto L1

L0: lw $t4, 8($fp) ;L0: t4 <- c # NO

addi $t3, $t4, 5 ; t3 <- t4 + c # NO

L1: sw 0($fp), $t3 ;L1: a <- t3

Condition

False Part

True Part

Fall throughConditional jump
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High and Low Level Abstractions
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Implementation Mechanisms

• Translation = Analysis + Synthesis

Interpretation = Analysis + Execution
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Implementation Mechanisms

• Translation = Analysis + Synthesis

Interpretation = Analysis + Execution

• Translation Instructions
Equivalent

Instructions

Interpretation Instructions
Actions Implied

by Instructions
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Language Implementation Models

Analysis

Synthesis

Execution

Compilation

Interpretation
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Language Processor Models

C,C++

Java,
C#

Front
End

Optimizer

Back
End

Virtual
Machine
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An Overview of Compilation Phases
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The Structure of a Simple Compiler

Source Program

Assembly
Program
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The Structure of a Simple Compiler

Parser

Scanner

Tokens

Source Program

Semantic
Analyser

Symtab
Handler

IR
GeneratorAST

Instruction
SelectorTAC

Register
Allocator

Assembly
EmitterRTL

Assembly
Program
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Translation Sequence in Our Compiler: Scanning and Parsing

a = b<10 ? b : c+5;

Input
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Translation Sequence in Our Compiler: Scanning and Parsing

a = b<10 ? b : c+5;

Input AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name
+

name num

E E

name num

Parse Tree

a = b < 10 ? b : c + 5 ;

How the input is actually stored in the memory

a = b < 10 ? b : c + 5 ;

How we want to see it

Issues:

• Grammar rules,
terminals,
non-terminals

• Order of application
of grammar rules

eg. is it (a =

b<10?) followed by
(b:c)?

• Values of terminal
symbols

eg. string “10” vs.
integer number 10.
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Translation Sequence in Our Compiler: Semantic Analysis

a = b<10 ? b : c+5;

Input AsgnStmnt

Lhs = E ;

E ? E : E

E < E
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+

name num

E E

name num

Parse Tree
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Translation Sequence in Our Compiler: Semantic Analysis

a = b<10 ? b : c+5;

Input AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name
+

name num

E E

name num

Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

+
(int)

name
(c,int)

num
(5,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

Issues:

• Symbol tables

Have variables been declared? What are their types?
What is their scope?

• Type consistency of operators and operands

The result of computing b<10? is bool and not int
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Translation Sequence in Our Compiler: IR Generation

a = b<10 ? b : c+5;
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Abstract Syntax Tree
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Translation Sequence in Our Compiler: IR Generation

a = b<10 ? b : c+5;

Input AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name
+

name num

E E

name num

Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

+
(int)

name
(c,int)

num
(5,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

T1 = b < 10
T2 = ¬T1

if T2 goto L0
T3 = b

goto L1:
L0: T3 = c + 5
L1: a = T3

TAC List
Issues:

• Convert to three address code (TAC)
separating data and control flow

Simplifies optimization

• Linearise control flow by flattening nested
control constructs
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Translation Sequence in Our Compiler: Instruction Selection
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TAC List
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Translation Sequence in Our Compiler: Instruction Selection

a = b<10 ? b : c+5;

Input AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name
+

name num

E E

name num

Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

+
(int)

name
(c,int)

num
(5,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

T1 = b < 10
T2 = ¬T1

if T2 goto L0
T3 = b

goto L1:
L0: T3 = c + 5
L1: a = T3

TAC Listload v0← b

slti t1← v0, 10
not t2← t1
if t2 goto L0
load t3← b

goto L1
L0: load t4← c

addi t3← t4, 5
L1: store a← t3

RTL List

Issues:

• Generate as few
instructions as
possible (list shown
here is unoptimized)

• Use temporaries and
local registers
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Translation Sequence in Our Compiler: Emitting Instructions

a = b<10 ? b : c+5;

Input AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name
+

name num

E E

name num

Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

+
(int)

name
(c,int)

num
(5,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

T1 = b < 10
T2 = ¬T1

if T2 goto L0
T3 = b

goto L1:
L0: T3 = c + 5
L1: a = T3

TAC Listload v0← b

slti t1← v0, 10
not t2← t1
if t2 goto L0
load t3← b

goto L1
L0: load t4← c

addi t3← t4, 5
L1: store a← t3

RTL List

lw $v0, 4($fp)
slti $t1, $t0, 10
xori $t2, $t1, 1
bgtz $t2, L0
lw $t3, 4($fp)
b L1

L0: lw $t4, 8($fp)
addi $t3, $t4, 5

L1: sw 0($fp), $t3

Assembly Code

Issues:

• Offsets of variables in the
stack frame

• Actual register numbers
and assembly mnemonics

• Code to construct and
discard activation records
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Translation Sequence in Our Compiler: Emitting Instructions
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if t2 goto L0
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goto L1
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L1: store a← t3

RTL List

lw $v0, 4($fp)
slti $t1, $t0, 10
xori $t2, $t1, 1
bgtz $t2, L0
lw $t3, 4($fp)
b L1

L0: lw $t4, 8($fp)
addi $t3, $t4, 5

L1: sw 0($fp), $t3

Assembly Code

Output
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Observations

• A compiler bridges the gap between source program and target
program
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Observations
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◮ What are the details that each IR captures?
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Observations

• A compiler bridges the gap between source program and target
program

• Compilation involves gradual lowering of levels of the IR of an input
program

• The design of IRs is the most critical part of a compiler design

◮ How many IRs should we have?
◮ What are the details that each IR captures?

• Practical compilers are desired to be retargetable
⇒ Back ends should be generated from specifications
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Why Is Compiler Construction a Relevant Course?

Very few people write compilers any way
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Why Is Compiler Construction a Relevant Course?

Very few people write compilers any way

• Translation and interpretation are fundamental CS at a conceptual
level

◮ Stepwise refinement Vs. look up
◮ Analytics Vs. Transactional software

• Computer Science is all about building abstractions and bridging
abstraction gaps

• Knowing compilers internals makes a person a much better
programmer
Writing programs whose data is programs

Uday Khedker IIT Bombay
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Compilation Models
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Compilation Models
Aho Ullman

Model
Davidson Fraser

Model
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Compilation Models
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Model
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Target Program
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Compilation Models
Aho Ullman

Model
Davidson Fraser

Model

Front End

AST

Optimizer

Target Indep. IR

Code
Generator

Target Program

Front End

AST

Expander

Register Transfers

Optimizer

Register Transfers

Recognizer

Target Program

Aho Ullman: Instruction selection

• over optimized IR using

• cost based tree tiling matching

Davidson Fraser: Instruction selection

• over AST using

• simple full tree matching based
algorithms that generate

• naive code which is

◮ target dependent, and is
◮ optimized subsequently
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Typical Front Ends

Parser
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Typical Front Ends

ParserSource
Program

Scanner

Tokens
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Typical Front Ends

ParserSource
Program

Scanner

Tokens

Semantic
Analyzer

AST

Parse
Tree

AST or Linear IR
+

Symbol Table
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Typical Front Ends

ParserSource
Program

Scanner

Tokens

Semantic
Analyzer

AST

Parse
Tree

AST or Linear IR
+

Symbol Table

Error
Handler

Symtab
Handler
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Typical Back Ends in Aho Ullman Model

m/c Ind.
IR

m/c Ind.
Optimizer

− Compile time
evaluations

− Eliminating
redundant
computations

m/c
Ind.
IR

Uday Khedker IIT Bombay



cs302 Compilation Overview: Compilation Models 19/32

Typical Back Ends in Aho Ullman Model

m/c Ind.
IR

m/c Ind.
Optimizer

− Compile time
evaluations

− Eliminating
redundant
computations

m/c
Ind.
IR

Code
Generator

m/c
Dep.
IR

− Instruction Selection
− Local Reg Allocation
− Choice of Order of

Evaluation

Uday Khedker IIT Bombay



cs302 Compilation Overview: Compilation Models 19/32

Typical Back Ends in Aho Ullman Model

m/c Ind.
IR

m/c Ind.
Optimizer

− Compile time
evaluations

− Eliminating
redundant
computations

m/c
Ind.
IR

Code
Generator

m/c
Dep.
IR

− Instruction Selection
− Local Reg Allocation
− Choice of Order of

Evaluation

m/c Dep.
Optimizer

Assembly Code

Uday Khedker IIT Bombay



cs302 Compilation Overview: Compilation Models 19/32

Typical Back Ends in Aho Ullman Model

m/c Ind.
IR

m/c Ind.
Optimizer

− Compile time
evaluations

− Eliminating
redundant
computations

m/c
Ind.
IR

Code
Generator

m/c
Dep.
IR

− Instruction Selection
− Local Reg Allocation
− Choice of Order of

Evaluation
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Retargetability in Aho Ullman and Davidson Fraser Models
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Retargetability in Aho Ullman and Davidson Fraser Models

Aho Ullman Model Davidson Fraser Model

Instruction
Selection

• Machine independent IR is expressed in the form of trees
• Machine instructions are described in the form of trees
• Trees in the IR are “covered” using the instruction trees

Cost based tree pattern
matching

Structural tree pattern matching

Optimization Machine independent

Machine dependent

Key Insight: Register transfers

are target specific but their form

is target independent
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The GNU Tool Chain for C
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Source Program

Target Program
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Tree SSA
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Development
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Time
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+

PN → IR-RTL
+

IR-RTL → ASM

Gimple → IR-RTL
+

IR-RTL → ASM

The generated compiler uses an adaptation of the Davidson Fraser model

• Generic expander and recognizer

• Machine specific information is isolated in data structures

• Generating a compiler involves generating these data structures
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The Sources of New Challenges

• Languages have changed significantly

• Processors have changed significantly

• Problem sizes have changed significantly

• Expectations have changed significantly

• Analysis techniques have changed significantly
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The Sources of New Challenges

• Languages have changed significantly

◮ “The worst thing that has happened to Computer Science is C
because it brought pointers with it.” (Frances Allen, IITK, 2007)

• Processors have changed significantly

◮ GPUs, Many core processors, Embedded processors

• Problem sizes have changed significantly

◮ Programs running in millions of lines of code

• Expectations have changed significantly

◮ Interprocedural analysis and optimization, validation, reverse
engineering, parallelization

• Analysis techniques have changed significantly

◮ Parsing, Data flow analysis, Parallism Discovery, Heap Analysis
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Modern Challenges: Design issues

• The IR interface

What to export? What to hide?

• Retargetability

Extending to the new version of a processor?

Extending to a new processor?
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Modern Challenges: Improving Program

• Scaling analysis to large programs without losing precision

◮ Interprocedural analysis
◮ Pointer analysis

• Increasing the precision of analysis

◮ How to interleave difference analysis to benefit from each other?
◮ How to exclude infeasible interprocedural paths?
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Modern Challenges: Language Issues

How to efficiently compile

• Dynamic features such as closures, higher order functions

(eg. eval in Javascript)

• Exceptions

What guarantees to give in the presence of undefined behaviour

• Memory accesses such as array access out of bound
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Modern Challenges: Target Machine Issues

How to exploit

• Pipelines? (Spectre bug)

• Multiple execution units (pipelined)

• Cache hierarchy

• Parallel processing

(Shared memory, distributed memory, message-passing)

• Data parallelism support in GPUs

• Vector operations

• VLIW and Superscalar instruction issue
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Modern Challenges: Target Machine Issues

How to exploit

• Pipelines? (Spectre bug)

• Multiple execution units (pipelined)

• Cache hierarchy

• Parallel processing

(Shared memory, distributed memory, message-passing)

• Data parallelism support in GPUs

• Vector operations

• VLIW and Superscalar instruction issue

The crux of the matter

• Hardware is parallel, (conventional) software is sequential

• Software view of memory model: Strong consistency

Architecture gives weak consistency

• Software view is stable, hardware is disruptive
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Modern Challenges: Providing Guarantees

• Correctness of optimizations

◮ Hard even for machine independent optimizations

◮ Verification of a production optimizing compiler is a pipe dream

Requires roving the correctness of translation of ALL programs

◮ Compiler validation is more realistic, and yet not achieved fully

Allows proving the correctness of translation of A program

• Interference with Security

◮ Optimizations disrupt memory view

Correctness is defined in terms of useful states

Clearing stack location by writing all zeros is dead code

◮ Optimizations also disrupt timing estimates
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Modern Challenges: New Expectations

• New application domains bringing new challenges

• What are the underlying abstractions of the domains that should become
first class citizens in a programming language?

◮ Language design and compilers for machine learning algorithms?
◮ Langueg design and compilers for streaming applications?

• Can machine learning algorithms help compilers create new optimizations?

◮ Can human ingenuity in design of novel algorithms be replaced by
machine learning?

◮ Can compilers learn from the programs they have compiled and
become “better” over time?
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In Search of Modularity in Compilation
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In Search of Modularity in Retargetable Compilation
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In Search of Modularity in Compilation
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Language Increments

Function Calls

Control Structures

Comparison and Logical Expressions

Arithmetic Expressions

Assignments with
simple RHS

Level 1

Level 2

Level 3

Level 4

Level 5
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Proposed Assignment Plan

A series of six assignments; each assignment builds on the previous assignment

scan parse ast tac rtl asm
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Proposed Assignment Plan

A series of six assignments; each assignment builds on the previous assignment
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Further details will be provided in the lab session
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