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Copyright

These slides constitute the lecture notes for CS618 Program Analysis course at
IIT Bombay and have been made available as teaching material accompanying
the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare.
Data Flow Analysis: Theory and Practice. CRC Press (Taylor and Francis
Group). 2009.

(Indian edition published by Ane Books in 2013)

Apart from the above book, some slides are based on the material from the
following books

• A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley. 2006.

• M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland Inc. 1977.

These slides are being made available under GNU FDL v1.2 or later purely for

academic or research use.
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Motivating the Need of Program Analysis

• Some representative examples

◮ Classical optimizations performed by compilers
◮ Optimizing heap memory usage

• Course details, schedule, assessment policies etc.

• Program Model

• Soundness and Precision
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Examples of Optimising Transformations (ALSU, 2006)

A C program and its optimizations

void quicksort(int m, int n)
{ int i, j, v, x;

if (n <= m) return;

i = m-1; j = n; v = a[n]; /⋆ v is the pivot ⋆/
while(1) /⋆ Move values smaller ⋆/
{ do i = i + 1; while (a[i] < v); /⋆ than v to the left of ⋆/

do j = j - 1; while (a[j] > v); /⋆ the split point (sp) ⋆/
if (i >= j) break; /⋆ and other values ⋆/
x = a[i]; a[i] = a[j]; a[j] = x; /⋆ to the right of sp ⋆/

} /⋆ of the split point ⋆/
x = a[i]; a[i] = a[n]; a[n] = x; /⋆ Move the pivot to sp ⋆/

quicksort(m,i); quicksort(i+1,n); /⋆ sort the partitions to ⋆/
} /⋆ the left of sp and to the right of sp independently ⋆/
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Intermediate Code

For the boxed source code

1. i = m - 1
2. j = n

3. t1 = 4 ∗ n
4. t6 = a[t1]

5. v = t6
6. i = i + 1
7. t2 = 4 ∗ i
8. t3 = a[t2]

9. if t3 < v goto 6

10. j = j - 1

11. t4 = 4 ∗ j

12. t5 = a[t4]

13. if t5 > v goto 10

14. if i >= j goto 25

15. t2 = 4 ∗ i
16. t3 = a[t2]

17. x = t3
18. t2 = 4 ∗ i
19. t4 = 4 ∗ j

20. t5 = a[t4]

21. a[t2] = t5

22. t4 = 4 ∗ j

23. a[t4] = x

24. goto 6

25. t2 = 4 ∗ i
26. t3 = a[t2]

27. x = t3
28. t2 = 4 ∗ i
29. t1 = 4 ∗ n
30. t6 = a[t1]

31. a[t2] = t6

32. t1 = 4 ∗ n
33. a[t1] = x
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Intermediate Code : Observations

• Multiple computations of expressions

• Simple control flow (conditional/unconditional goto)

Yet undecipherable!

• Array address calculations
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Understanding Control Flow

• Identify maximal sequences of linear control flow

⇒ Basic Blocks

• No transfer into or out of basic blocks except the first and last statements

Control transfer into the block : only at the first statement.

Control transfer out of the block : only at the last statement.
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Intermediate Code with Basic Blocks

1. i = m - 1
2. j = n

3. t1 = 4 ∗ n
4. t6 = a[t1]

5. v = t6

6. i = i + 1
7. t2 = 4 ∗ i
8. t3 = a[t2]

9. if t3 < v goto 6

10. j = j - 1

11. t4 = 4 ∗ j

12. t5 = a[t4]

13. if t5 > v goto 10

14. if i >= j goto 25

15. t2 = 4 ∗ i
16. t3 = a[t2]

17. x = t3
18. t2 = 4 ∗ i
19. t4 = 4 ∗ j

20. t5 = a[t4]

21. a[t2] = t5

22. t4 = 4 ∗ j

23. a[t4] = x

24. goto 6

25. t2 = 4 ∗ i
26. t3 = a[t2]

27. x = t3
28. t2 = 4 ∗ i
29. t1 = 4 ∗ n
30. t6 = a[t1]

31. a[t2] = t6

32. t1 = 4 ∗ n
33. a[t1] = x
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Program Flow Graph

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6

July 2017 IIT Bombay

CS 618 Intro to PA: Classical Optimizations 9/62

Program Flow Graph : Observations

Nesting Level Basic Blocks No. of Statements

0 B1, B6 14
1 B4, B5 11
2 B2, B3 8
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Local Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6
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Global Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

x = t3
t2 = 4 ∗ i

a[t2] = t5
t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

x = t3
t2 = 4 ∗ i

t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6
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Global Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6

B2
i = i + 1
t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B3

B4

B5 t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B3

B4

B5 t2 = 4 ∗ i

. . .

. . .
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Global Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6
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Other Classical Optimizations

• Copy propagation

• Strength Reduction

• Elimination of Induction Variables

• Dead Code Elimination
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Copy Propagation and Dead Code Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = t3

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = t3

B6
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Strength Reduction and Induction Variable Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6
t2 = 4 ∗ i
t4 = 4 ∗ j

B1

B2

i = i + 1
t2 = t2 + 4
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = t4 − 4
t5 = a[t4]

if t5 > v goto B3

B3

B4 if t2>=t4 goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = t3

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = t3

B6
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Final Intermediate Code

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6
t2 = 4 ∗ i
t4 = 4 ∗ j

B1

B2

i = i + 1
t2 = t2 + 4
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = t4 − 4
t5 = a[t4]

if t5 > v goto B3

B3

B4 if t2 >= t4 goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]

x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = t3

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]

x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6

t1 = 4 ∗ n
a[t1] = t3

B6

July 2017 IIT Bombay



CS 618 Intro to PA: Classical Optimizations 18/62

Optimized Program Flow Graph

Nesting Level No. of Statements
Original Optimized

0 14 10
1 11 4
2 8 6

If we assume that a loop is executed 10 times, then the number of
computations saved at run time

= (14− 10) + (11− 4)× 10 + (8 − 6)× 102 = 4 + 70 + 200 = 274
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Observations

• Optimizations are transformations based on some information.

• Systematic analysis required for deriving the information.

• We have looked at data flow optimizations.

Many control flow optimizations can also be performed.
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Categories of Optimizing Transformations and Analyses

Code Motion
Redundancy Elimination
Control flow Optimization

Machine Independent
Flow Analysis

(Data + Control)

Loop Transformations Machine Dependent
Dependence Analysis
(Data + Control)

Instruction Scheduling
Register Allocation

Peephole Optimization
Machine Dependent

Several
Independent
Techniques

Vectorization
Parallelization Machine Dependent

Dependence Analysis
(Data + Control)
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What is Program Analysis?

Discovering information about a given program

• Representing the dynamic behaviour of the program

• Most often obtained without executing the program

◮ Static analysis Vs. Dynamic Analysis
◮ Example of loop tiling for parallelization

• Must represent all execution instances of the program
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Why is it Useful?

• Code optimization

◮ Improving time, space, energy, or power efficiency
◮ Compilation for special architecture (eg. multi-core)

• Verification and validation

Giving guarantees such as: The program will

◮ never divide a number by zero
◮ never dereference a NULL pointer
◮ close all opened files, all opened socket connections
◮ not allow buffer overflow security violation

• Software engineering

◮ Maintenance, bug fixes, enhancements, migration
◮ Example: Y2K problem

• Reverse engineering

To understand the program
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Standard Memory Architecture of Programs

Code

Static Data

Stack

Heap

Heap allocation provides the flexibility of

• Variable Sizes. Data structures can grow or
shrink as desired at runtime.

(Not bound to the declarations in program.)

• Variable Lifetimes. Data structures can be
created and destroyed as desired at runtime.

(Not bound to the activations of procedures.)
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Managing Heap Memory

Decision 1: When to Allocate?

• Explicit. Specified in the programs. (eg. Imperative/OO languages)

• Implicit. Decided by the language processors. (eg. Declarative Languages)

Decision 2: When to Deallocate?

• Explicit. Manual Memory Management (eg. C/C++)

• Implicit. Automatic Memory Management aka Garbage Collection (eg.

Java/Declarative languages)
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State of Art in Manual Deallocation

• Memory leaks

10% to 20% of last development effort goes in plugging leaks

• Tool assisted manual plugging

Purify, Electric Fence, RootCause, GlowCode, yakTest, Leak Tracer, BDW

Garbage Collector, mtrace, memwatch, dmalloc etc.

• All leak detectors

◮ are dynamic (and hence specific to execution instances)
◮ generate massive reports to be perused by programmers
◮ usually do not locate last use but only allocation escaping a call

⇒ At which program point should a leak be “plugged”?
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Garbage Collection ≡ Automatic Deallocation

• Retain active data structure.

Deallocate inactive data structure.

• What is an Active Data Structure?

If an object does not have an access path, (i.e. it is unreachable)

then its memory can be reclaimed.

What if an object has an access path, but is not accessed after the
given program point?
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What is Garbage?

1 w = x // x points to ma

2 if (x.data < max)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data

HeapStack

x

z

w

y

a

p

q

b

i

c

f
g

h

d

e

j

m

k

l

n

o
Garbage

Garbage

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

a

i

m

b

f
hx

y

All white nodes are unused and should be considered garbage
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Is Reachable Same as Live?

From www.memorymanagement.org/glossary

live (also known as alive, active) : Memory(2) or an object is live if the
program will read from it in future. The term is often used more broadly to
mean reachable.

It is not possible, in general, for garbage collectors to determine exactly which
objects are still live. Instead, they use some approximation to detect objects
that are provably dead, such as those that are not reachable.

Similar terms: reachable. Opposites: dead. See also: undead.
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Is Reachable Same as Live?

• Not really. Most of us know that.

Even with the state of art of garbage collection, 24% to 76% unused
memory remains unclaimed

• The state of art compilers, virtual machines, garbage collectors cannot
distinguish between the two
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Reachability and Liveness

Comparison between different sets of objects:

Live ? Reachable ? Allocated

The objects that are not live must be reclaimed.
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Reachability and Liveness

Comparison between different sets of objects:

Live ⊆ Reachable ⊆ Allocated

The objects that are not live must be reclaimed.
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Reachability and Liveness

Comparison between different sets of objects:

Live ⊆ Reachable ⊆ Allocated

The objects that are not live must be reclaimed.

¬ Live ? ¬ Reachable ? ¬ Allocated
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Reachability and Liveness

Comparison between different sets of objects:

Live ⊆ Reachable ⊆ Allocated

The objects that are not live must be reclaimed.

¬ Live ⊇ ¬ Reachable ⊇ ¬ Allocated

Garbage collectors
collect these
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Cedar Mesa Folk Wisdom

Make the unused memory unreachable by setting references to NULL. (GC
FAQ: http://www.iecc.com/gclist/GC-harder.html)

HeapStack

x

z

w

y

a

p

q

b

i

c

f
g

h

d

e

j

m

k

l

n

o
lptr

rp
tr

lptr

rptr

lptr

rptr

lptr

lptr

rptr

lptr

rptr

lptr

a

i

m

b

f
h

X

X
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Cedar Mesa Folk Wisdom

• Most promising, simplest to understand, yet the hardest to implement.

• Which references should be set to NULL?

◮ Most approaches rely on feedback from profiling.
◮ No systematic and clean solution.
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Distinguishing Between Reachable and Live

The state of art

• Eliminating objects reachable from root variables which are not live.

• Implemented in current Sun JVMs.

• Uses liveness data flow analysis of root variables (stack data).

• What about liveness of heap data?
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Liveness of Stack Data: An Informal Introduction

1 w = x // x points to ma

2 while (x.data < max)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data

if changed to while

Stack

Heap

w x y z
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Liveness of Stack Data: An Informal Introduction

1 w = x // x points to ma

2 while (x.data < max)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data
Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

What is the
meaning of the use

of data?
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Liveness of Stack Data: An Informal Introduction

1 w = x // x points to ma

2 while (x.data < max)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data
Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

What is the
meaning of the use

of data?

Accessing the location

and reading its contents
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Liveness of Stack Data: An Informal Introduction

1 w = x // x points to ma

2 while (x.data < max)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data
Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

Accessing the location

and reading its contents

Reading x (Stack data)
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Liveness of Stack Data: An Informal Introduction

1 w = x // x points to ma

2 while (x.data < max)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data
Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

Accessing the location

and reading its contents

Reading x.data (Heap data)
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Liveness of Stack Data: An Informal Introduction

1 w = x // x points to ma

2 while (x.data < max)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data
Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

Accessing the location

and reading its contents

Reading x.rptr (Heap data)
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Liveness of Stack Data: An Informal Introduction

w = x

while (x.data < max)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

w x y z

w x y z

Live

Dead

w x y z

w x y z

w x y z

w x y z

w x y z

w x y z

w x y z

w x y z

End of iteration #1
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Liveness of Stack Data: An Informal Introduction

w = x

while (x.data < max)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

w x y z

w x y z

Live

Dead

w x y z

w x y z

w x y z

w x y z

w x y z

w x y z

w x y z

w x y z

End of iteration #2
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Applying Cedar Mesa Folk Wisdom to Heap Data

Liveness Analysis of Heap Data
If the while loop is not executed even once.

1 w = x // x points to ma

2 while (x.data < max)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data

HeapStack

x

z

w

y
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p

q

b

i

c

f
g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

a

i

m

July 2017 IIT Bombay

CS 618 Intro to PA: Optimizing Heap Memory Usage 36/62

Applying Cedar Mesa Folk Wisdom to Heap Data

Liveness Analysis of Heap Data
If the while loop is executed once.

1 w = x // x points to ma

2 while (x.data < max)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data

HeapStack
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Applying Cedar Mesa Folk Wisdom to Heap Data

Liveness Analysis of Heap Data
If the while loop is executed twice.

1 w = x // x points to ma

2 while (x.data < max)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data

HeapStack

x

z

w

y

a
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i

c

f
g
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d

e
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The Moral of the Story

• Mappings between access expressions and l-values keep changing

• This is a rule for heap data

For stack and static data, it is an exception!

• Static analysis of programs has made significant progress for stack and
static data.

What about heap data?

◮ Given two access expressions at a program point, do they have the
same l-value?

◮ Given the same access expression at two program points, does it have
the same l-value?

July 2017 IIT Bombay



CS 618 Intro to PA: Optimizing Heap Memory Usage 38/62

Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }
x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null
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Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }
x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

yy
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p
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h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
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lptr
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Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }
x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack
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yy
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While loop is executed once
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b

f
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Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }
x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

yy

a

p

q

b
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c

f

g

h

d

e
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rptr

lptr

While loop is executed twice
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b

f
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c
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lptr
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r

lptr rptr
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Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }
x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack
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Node i is live but link a → i is nullified
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Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }
x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack
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lptr

rpt
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lptr

rptr

lptr
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rpt
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lptr

rptr

• The memory address that x holds when the
execution reaches a given program point is
not an invariant of program execution

• Whether we dereference lptr out of x or
rptr out of x at a given program point is an
invariant of program execution

• A static analysis can discover only some
invariants
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Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < max)
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Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }
x.rptr = x.lptr.rptr = null
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Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }
x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack
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New access expressions are created.
Can they cause exceptions?
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BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Summary
Heap Data

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory
Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

?

ProfilingStatic
Analysis
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The Main Theme of the Course

Constructing suitable abstractions for
sound & precise modelling of
runtime behaviour of programs
efficiently

Abstract, Bounded, Single Instance Concrete, Unbounded, Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Summary Information

MemoryMemoryMemoryMemoryMemoryMemory

MemoryMemoryMemoryMemoryMemoryMemory
MemoryMemoryMemoryMemoryMemoryMemory

MemoryMemoryMemoryMemoryMemoryMemory

Static
Analysis
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Sequence of Generalizations in the Course Modules

Bit Vector
Frameworks
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Sequence of Generalizations in the Course Modules

Bit Vector
Frameworks

Theoretical abstractions
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Sequence of Generalizations in the Course Modules

Bit Vector
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Sequence of Generalizations in the Course Modules
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Sequence of Generalizations in the Course Modules

Bit Vector
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Intraprocedural Level Interprocedural Level
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Course Pedagogy

• Interleaved lectures and tutorials

• Plenty of problem solving

• Practice problems will be provided,

◮ Ready-made solutions will not be provided
◮ Your solutions will be checked

• Detailed course plan can be found at the course page:

http://www.cse.iitb.ac.in/˜uday/courses/cs618-17/

• Moodle will be used extensively for announcements and discussions
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Assessment Scheme

• Tentative plan

Mid Semester Examination 30%
End Semester Examination 40%
Two Quizzes 10%
Project 20%

Total 100%

• Can be fine tuned based on the class feedback
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Course Strength and Selection Criteria

• Unavailability of TAs forces restricting the strength

Less than 30 is preferable, 40 is tolerable

• Course primarily aimed at M.Tech. 1 students

Follow up course and MTPs

• If the number is large, selection will be based on a test

◮ Separate selection for M.Tech.1 and other students
◮ Preference to M.Tech.1 students
◮ May allow a reasonable number of audits

◦ Attending all lectures is sufficient
◦ No need to appear in examinations or do projects

◮ Need to finalize the logistics of the test
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Questions ??
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Program Representation

• Three address code statements

◮ Result, operator, operand1, operand2
◮ Assignments, expressions, conditional jumps
◮ Initially only scalars

Pointers, structures, arrays modelled later

• Control flow graph representation

◮ Nodes represent maximal groups of statements
devoid of any control transfer except fall through

◮ Edges represent control transfers across basic blocks
◮ A unique Start node and a unique End node

Every node reachable from Start, and End reachable from every node

• Initially only intraprocedural programs

Function calls brought in later
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An Example Program

int main()

{ int a, b, c, n;

a = 4;

b = 2;

c = 3;

n = c*2;

while (a <= n)

{

a = a+1;

}

if (a < 12)

a = a+b+c;

return a;

}

1. a = 4

2. b = 2

3. c = 3

4. n = c*2

5. if (!(a≤n))

goto 8

6. a = a + 1

7. goto 5

8. if (!(a<12))

goto 11

9. t1 = a+b

10. a = t1+c

11. return a

a = 4
b = 2
c = 3
n = c*2

n1

if(!(a≤n)) n2

a = a + 1 n3

if(!(a<12)) n4

t1 = a+b
a = t1+c n5

return a n6

F

F

T

T

July 2017 IIT Bombay



Part 6

Soundness and Precision

CS 618 Intro to PA: Soundness and Precision 50/62

Soundness and Precision of Static Analysis

Example Program Control Flow Graph

int a;

int f(int b)

{ int c;

c = a%2;

b = - abs(b);

while (b < c)

b = b+1;

if (b > 0)

b = 0;

return b;

}

Absolute c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F
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Execution Traces for Concrete Semantics (1)

• States

◮ A data state: Variables → Values
◮ A program state: (Program Point,A data state)

• Execution traces (or traces, for short)

◮ Valid sequences of program states starting with a given initial state
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Execution Traces for Concrete Semantics (2)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

Trace 1
a b c

Entry1, (5, 2, 7)
Entry2, (5,−2, 1)
Entry3, (5,−2, 1)
Entry2, (5,−1, 1)
Entry3, (5,−1, 1)
Entry2, (5, 0, 1)
Entry3, (5, 0, 1)
Entry2, (5, 1, 1)
Entry4, (5, 1, 1)
Entry5, (5, 1, 1)
Entry6, (5, 0, 1)

Trace 2
a b c

Entry1, (−5,−2, 8)
Entry2, (−5,−2,−1)
Entry3, (−5,−2,−1)
Entry2, (−5,−1,−1)
Entry4, (−5,−1,−1)
Entry6, (−5,−1,−1)
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Execution Traces for Concrete Semantics (2)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

Trace 1
a b c

Entry1, (5, 2, 7)
Entry2, (5,−2, 1)
Entry3, (5,−2, 1)
Entry2, (5,−1, 1)
Entry3, (5,−1, 1)
Entry2, (5, 0, 1)
Entry3, (5, 0, 1)
Entry2, (5, 1, 1)
Entry4, (5, 1, 1)
Entry5, (5, 1, 1)
Entry6, (5, 0, 1)

Trace 2
a b c

Entry1, (−5,−2, 8)
Entry2, (−5,−2,−1)
Entry3, (−5,−2,−1)
Entry2, (−5,−1,−1)
Entry4, (−5,−1,−1)
Entry6, (−5,−1,−1)

• A separate trace for each combination of inputs

◮ The number of traces is potentially infinite

• Program points may repeat in the traces

◮ Traces may be very long
◮ Non-terminating traces: Infinitely long
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Static Analysis Computes Abstractions of Traces (1)

Execution
Time

Traces An Abstraction of Traces
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Static Analysis Computes Abstractions of Traces (1)

Execution
Time

Traces An Abstraction of Traces

For compile time modelling of
possible runtime behaviours of a
program

• compute a set of states
that cover all traces

• associate the sets with
appropriate program points

States may be defined in terms
of properties derived from values
of variables
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Static Analysis Computes Abstractions of Traces (2)

Trace 1
a b c

Entry1, (5, 2, 7)
Entry2, (5,−2, 1)
Entry3, (5,−2, 1)
Entry2, (5,−1, 1)
Entry3, (5,−1, 1)
Entry2, (5, 0, 1)
Entry3, (5, 0, 1)
Entry2, (5, 1, 1)
Entry4, (5, 1, 1)
Entry5, (5, 1, 1)
Entry6, (5, 0, 1)

Trace 2
a b c

Entry1, (−5,−2, 8)
Entry2, (−5,−2,−1)
Entry3, (−5,−2,−1)
Entry2, (−5,−1,−1)
Entry4, (−5,−1,−1)
Entry6, (−5,−1,−1)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

{(5, 2, 7), (−5,−2, 8)}

A possible static abstraction using sets

July 2017 IIT Bombay



CS 618 Intro to PA: Soundness and Precision 54/62

Static Analysis Computes Abstractions of Traces (2)

Trace 1
a b c

Entry1, (5, 2, 7)
Entry2, (5,−2, 1)
Entry3, (5,−2, 1)
Entry2, (5,−1, 1)
Entry3, (5,−1, 1)
Entry2, (5, 0, 1)
Entry3, (5, 0, 1)
Entry2, (5, 1, 1)
Entry4, (5, 1, 1)
Entry5, (5, 1, 1)
Entry6, (5, 0, 1)

Trace 2
a b c

Entry1, (−5,−2, 8)
Entry2, (−5,−2,−1)
Entry3, (−5,−2,−1)
Entry2, (−5,−1,−1)
Entry4, (−5,−1,−1)
Entry6, (−5,−1,−1)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

a={−5, 5}, b={−2, 2}, c={7, 8}

A possible static abstraction using sets
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Static Analysis Computes Abstractions of Traces (2)

Trace 1
a b c
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Entry3, (5, 0, 1)
Entry2, (5, 1, 1)
Entry4, (5, 1, 1)
Entry5, (5, 1, 1)
Entry6, (5, 0, 1)

Trace 2
a b c

Entry1, (−5,−2, 8)
Entry2, (−5,−2,−1)
Entry3, (−5,−2,−1)
Entry2, (−5,−1,−1)
Entry4, (−5,−1,−1)
Entry6, (−5,−1,−1)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

a={−5, 5}, b={−2, 2}, c={7, 8}

b={−2,−1, 0, 1}

We only show
the values of b

Combine the values
across all occurrences
of a program point

A possible static abstraction using sets
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Static Analysis Computes Abstractions of Traces (2)

Trace 1
a b c

Entry1, (5, 2, 7)
Entry2, (5,−2, 1)
Entry3, (5,−2, 1)
Entry2, (5,−1, 1)
Entry3, (5,−1, 1)
Entry2, (5, 0, 1)
Entry3, (5, 0, 1)
Entry2, (5, 1, 1)
Entry4, (5, 1, 1)
Entry5, (5, 1, 1)
Entry6, (5, 0, 1)

Trace 2
a b c

Entry1, (−5,−2, 8)
Entry2, (−5,−2,−1)
Entry3, (−5,−2,−1)
Entry2, (−5,−1,−1)
Entry4, (−5,−1,−1)
Entry6, (−5,−1,−1)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

a={−5, 5}, b={−2, 2}, c={7, 8}

b={−2,−1, 0, 1}

We only show
the values of b

Combine the values
across all occurrences
of a program point

b={−2,−1, 0}

A possible static abstraction using sets
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Static Analysis Computes Abstractions of Traces (2)

Trace 1
a b c

Entry1, (5, 2, 7)
Entry2, (5,−2, 1)
Entry3, (5,−2, 1)
Entry2, (5,−1, 1)
Entry3, (5,−1, 1)
Entry2, (5, 0, 1)
Entry3, (5, 0, 1)
Entry2, (5, 1, 1)
Entry4, (5, 1, 1)
Entry5, (5, 1, 1)
Entry6, (5, 0, 1)

Trace 2
a b c

Entry1, (−5,−2, 8)
Entry2, (−5,−2,−1)
Entry3, (−5,−2,−1)
Entry2, (−5,−1,−1)
Entry4, (−5,−1,−1)
Entry6, (−5,−1,−1)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

a={−5, 5}, b={−2, 2}, c={7, 8}

b={−2,−1, 0, 1}

We only show
the values of b

Combine the values
across all occurrences
of a program point

b={−2,−1, 0}b={−1, 1}

A possible static abstraction using sets
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Static Analysis Computes Abstractions of Traces (2)

Trace 1
a b c

Entry1, (5, 2, 7)
Entry2, (5,−2, 1)
Entry3, (5,−2, 1)
Entry2, (5,−1, 1)
Entry3, (5,−1, 1)
Entry2, (5, 0, 1)
Entry3, (5, 0, 1)
Entry2, (5, 1, 1)
Entry4, (5, 1, 1)
Entry5, (5, 1, 1)
Entry6, (5, 0, 1)

Trace 2
a b c

Entry1, (−5,−2, 8)
Entry2, (−5,−2,−1)
Entry3, (−5,−2,−1)
Entry2, (−5,−1,−1)
Entry4, (−5,−1,−1)
Entry6, (−5,−1,−1)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

a={−5, 5}, b={−2, 2}, c={7, 8}

b={−2,−1, 0, 1}

We only show
the values of b

Combine the values
across all occurrences
of a program point

b={−2,−1, 0}b={−1, 1}

b={1}

A possible static abstraction using sets
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Static Analysis Computes Abstractions of Traces (2)

Trace 1
a b c

Entry1, (5, 2, 7)
Entry2, (5,−2, 1)
Entry3, (5,−2, 1)
Entry2, (5,−1, 1)
Entry3, (5,−1, 1)
Entry2, (5, 0, 1)
Entry3, (5, 0, 1)
Entry2, (5, 1, 1)
Entry4, (5, 1, 1)
Entry5, (5, 1, 1)
Entry6, (5, 0, 1)

Trace 2
a b c

Entry1, (−5,−2, 8)
Entry2, (−5,−2,−1)
Entry3, (−5,−2,−1)
Entry2, (−5,−1,−1)
Entry4, (−5,−1,−1)
Entry6, (−5,−1,−1)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

a={−5, 5}, b={−2, 2}, c={7, 8}

b={−2,−1, 0, 1}

We only show
the values of b

Combine the values
across all occurrences
of a program point

b={−2,−1, 0}b={−1, 1}

b={1}

b={−1, 0}

A possible static abstraction using sets

July 2017 IIT Bombay

CS 618 Intro to PA: Soundness and Precision 55/62

Computing Static Abstraction for Liveness of Variables

Trace 1
a b c

Entry1, (1, 1, 0)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry4, (0, 1, 0)
Entry5, (0, 0, 0)
Entry6, (0, 1, 0)

Trace 2
a b c

Entry1, (1, 1, 0)
Entry2, (0, 1, 1)
Entry3, (0, 0, 1)
Entry2, (0, 1, 1)
Entry4, (0, 1, 0)
Entry6, (0, 1, 0)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

110 or {a, b}

At a program point p
a 7→ 1 ⇒ a is live at p
a 7→ 0 ⇒ a is not live at p
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Computing Static Abstraction for Liveness of Variables

Trace 1
a b c

Entry1, (1, 1, 0)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry4, (0, 1, 0)
Entry5, (0, 0, 0)
Entry6, (0, 1, 0)

Trace 2
a b c

Entry1, (1, 1, 0)
Entry2, (0, 1, 1)
Entry3, (0, 0, 1)
Entry2, (0, 1, 1)
Entry4, (0, 1, 0)
Entry6, (0, 1, 0)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

110 or {a, b}

011 or {b, c}

At a program point p
a 7→ 1 ⇒ a is live at p
a 7→ 0 ⇒ a is not live at p
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Computing Static Abstraction for Liveness of Variables

Trace 1
a b c

Entry1, (1, 1, 0)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry4, (0, 1, 0)
Entry5, (0, 0, 0)
Entry6, (0, 1, 0)

Trace 2
a b c

Entry1, (1, 1, 0)
Entry2, (0, 1, 1)
Entry3, (0, 0, 1)
Entry2, (0, 1, 1)
Entry4, (0, 1, 0)
Entry6, (0, 1, 0)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

110 or {a, b}

011 or {b, c}

011 or {b, c}

At a program point p
a 7→ 1 ⇒ a is live at p
a 7→ 0 ⇒ a is not live at p

July 2017 IIT Bombay

CS 618 Intro to PA: Soundness and Precision 55/62

Computing Static Abstraction for Liveness of Variables

Trace 1
a b c

Entry1, (1, 1, 0)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry4, (0, 1, 0)
Entry5, (0, 0, 0)
Entry6, (0, 1, 0)

Trace 2
a b c

Entry1, (1, 1, 0)
Entry2, (0, 1, 1)
Entry3, (0, 0, 1)
Entry2, (0, 1, 1)
Entry4, (0, 1, 0)
Entry6, (0, 1, 0)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

110 or {a, b}

011 or {b, c}

011 or {b, c}010 or {b}

At a program point p
a 7→ 1 ⇒ a is live at p
a 7→ 0 ⇒ a is not live at p
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Computing Static Abstraction for Liveness of Variables

Trace 1
a b c

Entry1, (1, 1, 0)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry4, (0, 1, 0)
Entry5, (0, 0, 0)
Entry6, (0, 1, 0)

Trace 2
a b c

Entry1, (1, 1, 0)
Entry2, (0, 1, 1)
Entry3, (0, 0, 1)
Entry2, (0, 1, 1)
Entry4, (0, 1, 0)
Entry6, (0, 1, 0)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

110 or {a, b}

011 or {b, c}

011 or {b, c}010 or {b}

000 or ∅

At a program point p
a 7→ 1 ⇒ a is live at p
a 7→ 0 ⇒ a is not live at p
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Computing Static Abstraction for Liveness of Variables

Trace 1
a b c

Entry1, (1, 1, 0)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry4, (0, 1, 0)
Entry5, (0, 0, 0)
Entry6, (0, 1, 0)

Trace 2
a b c

Entry1, (1, 1, 0)
Entry2, (0, 1, 1)
Entry3, (0, 0, 1)
Entry2, (0, 1, 1)
Entry4, (0, 1, 0)
Entry6, (0, 1, 0)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

110 or {a, b}

011 or {b, c}

011 or {b, c}010 or {b}

000 or ∅

010 or {b}

At a program point p
a 7→ 1 ⇒ a is live at p
a 7→ 0 ⇒ a is not live at p
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Computing Static Abstraction for Liveness of Variables

Trace 1
a b c

Entry1, (1, 1, 0)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry3, (0, 1, 1)
Entry2, (0, 1, 1)
Entry4, (0, 1, 0)
Entry5, (0, 0, 0)
Entry6, (0, 1, 0)

Trace 2
a b c

Entry1, (1, 1, 0)
Entry2, (0, 1, 1)
Entry3, (0, 0, 1)
Entry2, (0, 1, 1)
Entry4, (0, 1, 0)
Entry6, (0, 1, 0)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

110 or {a, b}

011 or {b, c}

011 or {b, c}010 or {b}

000 or ∅

010 or {b}

At a program point p
a 7→ 1 ⇒ a is live at p
a 7→ 0 ⇒ a is not live at p

Trace 2 does not
add anything to
the abstraction
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Soundness of Abstractions (1)

Sound

• An over-approximation
of traces is sound

• Missing any state in
any trace causes
unsoundness

Unsound

July 2017 IIT Bombay

CS 618 Intro to PA: Soundness and Precision 57/62

Soundness of Abstractions (2)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

a={−5, 5}, b={−2, 2}, c={7, 8}

b={−2,−1, 0, 1}

b={−2,−1, 0}b={−1, 1}

b={1}

b={−1, 0}

An unsound abstraction

All variables can have arbitrary
values at the start.

b can have many more values
at the entry of

• blocks 2 and 3 (e.g. -3,
-8, . . . )

• block 4 (e.g. 0)
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Soundness of Abstractions (2)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

a={−5, 5}, b={−2, 2}, c={7, 8}

b={−2,−1, 0, 1}

b={−2,−1, 0}b={−1, 1}

b={1}

b={−1, 0}

An unsound abstraction

• Overapproximated range of
values denoted by

[
low limit, high limit

]

• Inclusive limits with

low limit ≤ high limit

• One continuous range per
variable with no “holes”

A sound abstraction using intervals

b can be 1
because of the increment

in basic block 1
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Soundness of Abstractions (2)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

a={−5, 5}, b={−2, 2}, c={7, 8}

b={−2,−1, 0, 1}

b={−2,−1, 0}b={−1, 1}

b={1}

b={−1, 0}

An unsound abstraction

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

a=[−∞,∞] , b=[−∞,∞] , c=[−∞,∞]

b=[−∞, 1]

b=[−∞, 0]b=[−1, 1]

b=[1, 1]

b=[−1, 0]

A sound abstraction using intervals

b can be 1
because of the increment

in basic block 1
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Soundness of Abstractions for Liveness Analysis

A sound abstraction An unsound abstraction

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

{a, b}

{b, c}

{b, c}{b}

∅

{b}

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

∅

∅

∅∅

∅

∅
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Precision of Sound Abstractions(1)

Sound but imprecise Sound and more precise
Sound and even
more precise
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Precision of Sound Abstractions(1)

Sound but imprecise Sound and more precise
Sound and even
more precise

• Precision is relative, soundness is absolute

• Qualifiers “more precise” and “less precise”
are meaningful

• Qualifiers “more sound” and “less sound”
are not meaningful
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Precision of Sound Abstractions(2)

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

a=[−∞,∞] , b=[−∞,∞] , c=[−∞,∞]

b=[−∞, 1]

b=[−∞, 0]b=[−1, 1]

b=[1, 1]

b=[−1, 0]

A precise abstraction using intervals

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

a=[−∞,∞] , b=[−∞,∞] , c=[−∞,∞]

b=[−∞,∞]

b=[−∞,∞]b=[−∞,∞]

b=[−∞,∞]

b=[−∞,∞]

An imprecise abstraction using intervals
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Precision of Abstractions for Liveness Analysis

A precise abstraction An imprecise abstraction

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

{a, b}

{b, c}

{b, c}{b}

∅

{b}

c = a%2
b = - abs(b)1

if (b<c)2

b = b+13if (b>0)4

b = 05

return b6

TF

T

F

{a, b, c}

{a, b, c}

{a, b, c}{a, b, c}

∅

{a, b, c}
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Limitations of Static Analysis

• In general, the computation of exact static abstraction is undecidable

◮ Possible reasons

◦ Values of variables not known
◦ Branch outcomes not known
◦ Infinitely many paths in the presence of loops or recursion
◦ Infinitely many values

◮ We have to settle for some imprecision
◮ How are data states compared to distinguish between a sound and

unsound (or a precise or an imprecise result)?

◦ We have introduced the concepts intuitively
◦ Will define them formally in a later module

• Goodness of a static analysis lies in minimizing imprecision without
compromising on soundness

Additional expectations: Efficiency and scalability
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