
Theoretical Abstractions in Data Flow Analysis

Uday Khedker

(www.cse.iitb.ac.in/̃ uday)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

August 2017

Part 1

About These Slides

CS 618 DFA Theory: About These Slides 1/126

Copyright

These slides constitute the lecture notes for CS618 Program Analysis course at
IIT Bombay and have been made available as teaching material accompanying
the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow
Analysis: Theory and Practice. CRC Press (Taylor and Francis Group).
2009.

(Indian edition published by Ane Books in 2013)

Apart from the above book, some slides are based on the material from the
following books

• M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland Inc. 1977.

• F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag. 1998.

These slides are being made available under GNU FDL v1.2 or later purely for

academic or research use

Aug 2017 IIT Bombay

CS 618 DFA Theory: Outline 2/126

Outline

• The need for a more general setting

• The set of data flow values

• The set of flow functions

• Solutions of data flow analyses

• Algorithms for performing data flow analysis

• Complexity of data flow analysis

Aug 2017 IIT Bombay

Part 2

The Need for a More General Setting

CS 618 DFA Theory: The Need for a More General Setting 3/126

What We Have Seen So Far . . .

Analysis Entity
Attribute

Paths
at p

Live variables Variables Use Starting at p Some
Available expressions Expressions Availability Reaching p All
Partially available

Expressions Availability Reaching p Some
expressions
Anticipable expressions Expressions Use Starting at p All
Reaching definitions Definitions Availability Reaching p Some
Partial redundancy

Expressions
Profitable

Involving p All
elimination hoistability

Aug 2017 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 4/126

The Need for a More General Setting

• We seem to have covered many variations

• Yet there are analyses that do not fit the same mould of bit vector
frameworks

• We use an analysis called Constant Propagation to observe the differences

A variable v is a constant with value c at program point p if in
every execution instance of p, the value of v is c

Aug 2017 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 5/126

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b
n1

n2
c = a+ b
d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1
〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉 . . .

Aug 2017 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 5/126

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b
n1

n2
c = a+ b
d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1
〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉 . . .

Summary Values

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈2, 1, 3, 2〉

Aug 2017 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 5/126

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b
n1

n2
c = a+ b
d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Summary Values

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈2, 1, 3, 2〉

Desired Solution

Aug 2017 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 6/126

Difference #1: Data Flow Values

• Tuples of the form 〈η1, η2, . . . , ηk〉 where ηi is the data flow value for i th

variable

Unlike bit vector frameworks, value ηi is not 0 or 1 (i.e. true or false).
Instead, it is one of the following:

◮ ? indicating that not much is known about the constantness of
variable vi

◮ × indicating that variable vi does not have a constant value
◮ An integer constant c1 if the value of vi is known to be c1 at compile

time

Aug 2017 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 7/126

Difference #2: Dependence of Data Flow Values Across
Entities

• In bit vector frameworks, data flow values of different entities are
independent

◮ Liveness of variable b does not depend on that of any other variable
◮ Availability of expression a ∗ b does not depend on that of any other

expression

• Given a statement a = b ∗ c , can the constantness of a be determined
independently of the constantness of b and c?

No

Aug 2017 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 8/126

Difference #3: Confluence Operation

• Confluence operation 〈a, c1〉 ⊓ 〈a, c2〉

〈a, c1〉 〈a, c2〉

〈a, c2〉

⊓ 〈a, ?〉 〈a,×〉 〈a, c1〉
〈a, ?〉 〈a, ?〉 〈a,×〉 〈a, c1〉
〈a,×〉 〈a,×〉 〈a,×〉 〈a,×〉
〈a, c2〉 〈a, c2〉 〈a,×〉 If c1 = c2 〈a, c1〉

Otherwise 〈a,×〉

• This is neither ∩ nor ∪

What are its properties?

Aug 2017 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 9/126

Difference #4: Flow Functions for Constant Propagation

• Flow function for r = a1 ∗ a2

r = a1 ∗ a2

〈a1, c1〉, 〈a2, c2〉
mult 〈a1, ?〉 〈a1,×〉 〈a1, c1〉
〈a2, ?〉 〈r , ?〉 〈r ,×〉 〈r , ?〉
〈a2,×〉 〈r ,×〉 〈r ,×〉 〈r ,×〉
〈a2, c2〉 〈r , ?〉 〈r ,×〉 〈r , (c1 ∗ c2)〉

• This cannot be expressed in the form

fn(X) = Genn ∪ (X − Killn)

where Genn and Killn are constant effects of block n

Aug 2017 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 10/126

Difference #5: Solution Computed by Iterative Method

n1

a = 1
b = 2

c = a+ b
n1

n2
c = a+ b
d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Desired
solution

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈2, 1, 3, 2〉

Iteration
#1

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, 2〉

〈1, 2, 3, 2〉

〈2, 1, 3, 2〉

Iteration
#2

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×,×,×〉

〈×,×,×,×〉

〈2, 1, 3,×〉

Iteration
#3

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3,×〉

〈×,×,×,×〉

〈×,×,×,×〉

〈2, 1, 3,×〉

Aug 2017 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 11/126

Issues in Data Flow Analysis

A
c
ceptable

O
p
erations

Desired

Solutions

Pra
ct

ic
a
l

Alg
or

it
hm

s

D
at
a

Flo
w

V
al

ue
s

• Representation

• Approximation: Partial
Order, Lattices

• Merge: Commutativity,
Associativity, Idempotence

• Flow Functions: Monotonicity,
Distributivity, Boundedness,
Separability

• Existence, Computability

• Soundness, Precision

• Complexity, efficiency

• Convergence

• Initialization

Aug 2017 IIT Bombay

Part 3

Data Flow Values: An Overview

CS 618 DFA Theory: Data Flow Values: An Overview 12/126

Data Flow Values: An Outline of Our Discussion

• The need to define the notion of abstraction

• Lattices, variants of lattices

• Relevance of lattices for data flow analysis

◮ Partial order relation as approximation of data flow values
◮ Meet operations as confluence of data flow values

• Constructing lattices

• Example of lattices

Aug 2017 IIT Bombay

Part 4

A Digression on Lattices

CS 618 DFA Theory: A Digression on Lattices 13/126

Partially Ordered Sets

Sets in which elements can be compared and ordered

• Total order. Every element in comparable with every element (including
itself)

• Discrete order. Every element is comparable only with itself but not with
any other element

• Partial order. An element is comparable with some but not necessarily all
elements

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 14/126

Partially Ordered Sets and Lattices

Partially ordered sets

Partial order ⊑ is
reflexive, transitive,
and antisymmetric

A lower bound of
x , y is u s.t. u ⊑ x
and u ⊑ y

An upper bound of
x , y is u s.t. x ⊑ u
and y ⊑ u

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 14/126

Partially Ordered Sets and Lattices

Partially ordered sets

Partial order ⊑ is
reflexive, transitive,
and antisymmetric

Lattices

Every non-empty finite
subset has a greatest
lower bound (glb) and a
least upper bound (lub)

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 14/126

Partially Ordered Sets and Lattices

Partially ordered sets

Partial order ⊑ is
reflexive, transitive,
and antisymmetric

Lattices

Every non-empty finite
subset has a greatest
lower bound (glb) and a
least upper bound (lub)

Lattices

glb must be related to all
other lower bounds.
Hence it must be unique

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 15/126

Partially Ordered Sets

Set {1, 2, 3, 4, 6, 9, 12} with ⊑ relation as “divides” (i.e. a ⊑ b iff a divides b)

4 9

2 3

1

6

12

Subset {4, 9, 6} and {12, 9} do not have an upper bound in the set

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 16/126

Lattice

Set {1, 2, 3, 4, 6, 9, 12, 18, 36} with ⊑ relation as “divides”

4 9

2 3

1

6

12 18

36

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 17/126

Complete Lattice

• Lattice: A partially ordered set such that every non-empty finite subset has
a glb and a lub

Example: Lattice Z of integers under “less-than-equal-to” (≤) relation

◮ All finite subsets have a glb and a lub
◮ Infinite subsets do not have a glb or a lub

• Complete Lattice: A lattice in which even ∅ and infinite subsets have a glb
and a lub

Example: Lattice Z of integers under ≤ relation with ∞ and −∞
◮ ∞ is the top element denoted ⊤: ∀i ∈ Z, i ≤ ⊤
◮ −∞ is the bottom element denoted ⊥: ∀i ∈ Z, ⊥ ≤ i

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 18/126

Z ∪ {∞,−∞} is a Complete Lattice

• Infinite subsets of Z ∪ {∞,−∞} have a glb and lub

• What about the empty set?

◮ glb(∅) is ⊤
Every element of Z ∪ {∞,−∞} is vacuously a lower bound of an
element in ∅
OR

Every element in ∅ is stronger than every element in Z ∪ {∞,−∞}
(because there is no element in ∅)
The greatest among these lower bounds is ⊤

◮ lub(∅) is ⊥

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 19/126

Operations on Lattices

• Meet (⊓) and Join (⊔)
◮ x ⊓ y computes the glb of x and y

z = x ⊓ y ⇒ z ⊑ x ∧ z ⊑ y
◮ x ⊔ y computes the lub of x and y

z = x ⊔ y ⇒ z ⊒ x ∧ z ⊒ y
◮ ⊓ and ⊔ are commutative, associative,

and idempotent

• Top (⊤) and Bottom (⊥) elements

∀x ∈ L, x ⊓ ⊤ = x
∀x ∈ L, x ⊔ ⊤ = ⊤
∀x ∈ L, x ⊓ ⊥ = ⊥
∀x ∈ L, x ⊔ ⊥ = x

36

64 9

2 3

1

12 18

x ⊓ y = gcd(x , y)

Greatest common divisor

x ⊔ y = lcm(x , y)Lowest common multiple

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 20/126

Partial Order and Operations

• For a lattice ⊑ induces ⊓ and ⊔ and vice-versa

• The choices of ⊑, ⊓, and ⊔ cannot be arbitrary

They have to be

◮ consistent with each other, and
◮ definable in terms of each other

• For some variants of lattices, ⊓ or ⊔ may not exist

Yet the requirement of its consistency with ⊑ cannot be violated

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 21/126

Finite Lattices are Complete

• Any given set of elements has a glb and a lub

Available Expressions Partially Available
Analysis Expressions Analysis

{e1, e2, e3}
(⊤)

{e1, e2} {e1, e3} {e2, e3}

{e1} {e2} {e3}

∅
(⊥)

∅
(⊤)

{e1} {e2} {e3}

{e1, e2} {e1, e3} {e2, e3}

{e1, e2, e3}
(⊥)

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 22/126

Lattice for May-Must Analysis

• There is no ⊤ among the natural values

May

MustNo

⊥

Interpreting data flow values

− No. Information does not hold along any path

− Must. Information must hold along all paths

− May. Information may hold along some path

• An artificial ⊤ can be added

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 23/126

Some Variants of Lattices

A poset L is

• A lattice iff each non-empty finite subset of L has a glb and lub

• A complete lattice iff each subset of L has a glb and lub

• A meet semilattice iff each non-empty finite subset of L has a glb

• A join semilattice iff each non-empty finite subset of L has a lub

• A bounded lattice iff L is a lattice and has ⊤ and ⊥ elements

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 24/126

A Bounded Lattice Need Not be Complete (1)

• Let A be all finite subsets of Z
Then, A is an infinite set

• The poset L = (A ∪ {Z},⊆) is a bounded lattice with ⊤ = Z and ⊥ = ∅
The join ⊔ of this lattice is ∪

• To see why, consider a set S containing those subsets of L that do not
contain the number 1

There are two possibilities:

◮ S contains only a finite number of sets that not contain 1 (say Sf)
⇒ Sf is a finite set

◮ S contains all finite sets that do not contain 1 (say S∞)
⇒ S∞ is a infinite set

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 24/126

A Bounded Lattice Need Not be Complete (1)

• Let A be all finite subsets of Z
Then, A is an infinite set

• The poset L = (A ∪ {Z},⊆) is a bounded lattice with ⊤ = Z and ⊥ = ∅
The join ⊔ of this lattice is ∪

• To see why, consider a set S containing those subsets of L that do not
contain the number 1

There are two possibilities:

◮ S contains only a finite number of sets that not contain 1 (say Sf)
⇒ Sf is a finite set

◮ S contains all finite sets that do not contain 1 (say S∞)
⇒ S∞ is a infinite set

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 25/126

A Bounded Lattice Need Not be Complete (2)

• Sf contains only a finite number of sets each of which does not contain 1

◮ The union of all its member sets is a finite set excluding 1

◮ Thus Sf has a lub in L

• S∞ contains all finite sets that do not contain 1

◮ Since the number of such sets is infinite, their union is an infinite set

◮ Z− {1} is not contained in L (the only infinite set in L is Z)
◮ S∞ does not have a lub in L

Hence L is not complete

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 25/126

A Bounded Lattice Need Not be Complete (2)

• Sf contains only a finite number of sets each of which does not contain 1

◮ The union of all its member sets is a finite set excluding 1

◮ Thus Sf has a lub in L

• S∞ contains all finite sets that do not contain 1

◮ Since the number of such sets is infinite, their union is an infinite set

◮ Z− {1} is not contained in L (the only infinite set in L is Z)
◮ S∞ does not have a lub in L

Hence L is not complete

• It may be tempting to assume that Z is the lub of S∞
because it is an upper bound of S∞ and no other upper
bound of S∞ in the lattice is weaker Z

• However, the join operation ∪ of L does not compute Z as
the lub of S∞ (because it must exclude 1)

• The join operation ∪ is inconsistent with the partial order
⊇ of L. Hence we say that join does not exist for S∞

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 26/126

A Bounded Lattice Need Not be Complete (2)

• A bounded lattice L has a glb and lub of L in L

• A complete lattice L should have glb and lub of all subsets of L

• A lattice L should have glb and lub of all finite non-empty subsets of L

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 27/126

Ascending and Descending Chains

• Strictly ascending chain x ⊏ y ⊏ · · · ⊏ z

• Strictly descending chain x ⊐ y ⊐ · · · ⊐ z

• DCC: Descending Chain Condition

All strictly descending chains are finite

• ACC: Ascending Chain Condition

All strictly ascending chains are finite

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 28/126

Complete Lattice and Ascending and Descending Chains

• If L satisfies acc and dcc, then

◮ L has finite height, and
◮ L is complete

• A complete lattice need not have finite height (i.e. strict chains may not
be finite)

Example:

Lattice of integers under ≤ relation with ∞ as ⊤ and −∞ as ⊥

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 29/126

Variants of Lattices

Meet Semilattices

Meet Semilattices
with ⊥ element

Meet Semilattices
satisfying dcc

Join Semilattices

Lattices

Join Semilattices
with ⊤ element

Bounded lattices

Join Semilattices
satisfying acc

Complete lattices

Complete lattices with dcc and acc

• dcc: descending chain condition
• acc: ascending chain condition

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 30/126

An Example of Lattices: Maintaining Like Counts on Cloud

Server Blue Server Red Server Green

Page 1

Page 2

Page 3

Maintain n servers and divide the traffic
− Each server maintains an n-tuple for each page
− Updates the counters for its own slot

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 30/126

An Example of Lattices: Maintaining Like Counts on Cloud

Server Blue Server Red Server Green

Page 1

Page 2

Page 3

Like for
Page 1

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 30/126

An Example of Lattices: Maintaining Like Counts on Cloud

Server Blue Server Red Server Green

Page 1

Page 2

Page 3

Like for
Page 3

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 30/126

An Example of Lattices: Maintaining Like Counts on Cloud

Server Blue Server Red Server Green

Page 1

Page 2

Page 3

Like for
Page 1

1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 30/126

An Example of Lattices: Maintaining Like Counts on Cloud

Server Blue Server Red Server Green

Page 1

Page 2

Page 3

Like for
Page 3

1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 30/126

An Example of Lattices: Maintaining Like Counts on Cloud

Server Blue Server Red Server Green

Page 1

Page 2

Page 3

Like for
Page 3

1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 30/126

An Example of Lattices: Maintaining Like Counts on Cloud

Server Blue Server Red Server Green

Page 1

Page 2

Page 3

Like for
Page 3

1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

2 0 0 0 1 0 0 0 1

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 30/126

An Example of Lattices: Maintaining Like Counts on Cloud

Server Blue Server Red Server Green

Page 1

Page 2

Page 3

1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

2 0 0 0 1 0 0 0 1

Synchronize:
− Send the data to other servers
− Update the counters using point-wise max

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 30/126

An Example of Lattices: Maintaining Like Counts on Cloud

Server Blue Server Red Server Green

Page 1

Page 2

Page 3

1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

2 0 0 0 1 0 0 0 1

Synchronize:
− Send the data to other servers
− Update the counters using point-wise max

• Lattice of n-tuples using point-wise ≥ as the partial order

〈x1, x2, . . . , xn〉 ⊑ 〈y1, y2, . . . , yn〉 =
(x1 ≥ y1) ∧ (x2 ≥ y2) . . . ∧ (xn ≥ yn)

• Tuples merged with max operation

〈x1, x2, . . . , xn〉 ⊓ 〈y1, y2, . . . , yn〉 =
〈max(x1, y1),max(x2, y2), . . . ,max(xn, yn)〉

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 30/126

An Example of Lattices: Maintaining Like Counts on Cloud

Server Blue Server Red Server Green

Page 1

Page 2

Page 3

Synchronize:
− Send the data to other servers
− Update the counters using point-wise max

1 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0

2 0 0 2 1 0 0 0 1

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 30/126

An Example of Lattices: Maintaining Like Counts on Cloud

Server Blue Server Red Server Green

Page 1

Page 2

Page 3

Synchronize:
− Send the data to other servers
− Update the counters using point-wise max

1 0 0 1 1 0 1 0 0

0 0 0 0 0 0 0 0 0

2 0 0 2 1 0 2 0 1

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 30/126

An Example of Lattices: Maintaining Like Counts on Cloud

Server Blue Server Red Server Green

Page 1

Page 2

Page 3

Synchronize:
− Send the data to other servers
− Update the counters using point-wise max

1 1 0 1 1 0 1 0 0

0 0 0 0 0 0 0 0 0

2 1 0 2 1 0 2 0 1

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 30/126

An Example of Lattices: Maintaining Like Counts on Cloud

Server Blue Server Red Server Green

Page 1

Page 2

Page 3

Synchronize:
− Send the data to other servers
− Update the counters using point-wise max

1 1 0 1 1 0 1 1 0

0 0 0 0 0 0 0 0 0

2 1 0 2 1 0 2 1 1

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 30/126

An Example of Lattices: Maintaining Like Counts on Cloud

Server Blue Server Red Server Green

Page 1

Page 2

Page 3

Synchronize:
− Send the data to other servers
− Update the counters using point-wise max

1 1 0 1 1 0 1 1 0

0 0 0 0 0 0 0 0 0

2 1 1 2 1 0 2 1 1

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 30/126

An Example of Lattices: Maintaining Like Counts on Cloud

Server Blue Server Red Server Green

Page 1

Page 2

Page 3

Synchronize:
− Send the data to other servers
− Update the counters using point-wise max

1 1 0 1 1 0 1 1 0

0 0 0 0 0 0 0 0 0

2 1 1 2 1 1 2 1 1

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 30/126

An Example of Lattices: Maintaining Like Counts on Cloud

Server Blue Server Red Server Green

Page 1

Page 2

Page 3

1 1 0 1 1 0 1 1 0

0 0 0 0 0 0 0 0 0

2 1 1 2 1 1 2 1 1

After synchronization, all servers have the same data
Count for a page:
− Take sum of all counts at any server for the page

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 31/126

Constructing Lattices

• Powerset construction with subset or superset relation

• Products of lattices

◮ Cartesian product
◮ Lexicographic product
◮ Interval product
◮ Set of mappings

• Lattices on sequences using prefix or suffix as partial orders

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 32/126

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

〈1,a〉

〈2,a〉 〈3,a〉

〈4,a〉

〈1,b〉

〈2,b〉 〈3,b〉

〈4,b〉

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 32/126

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

〈1,a〉

〈2,a〉 〈3,a〉

〈4,a〉

〈1,b〉

〈2,b〉 〈3,b〉

〈4,b〉
〈LC ,⊑C ,⊓C ,⊔C 〉

〈x1, y1〉 ⊑C 〈x2, y2〉 ⇔ x1 ⊑N x2 ∧ y1 ⊑A y2

〈x1, y1〉 ⊓C 〈x2, y2〉 = 〈x1 ⊓N x2, y1 ⊓A y2〉
〈x1, y1〉 ⊔C 〈x2, y2〉 = 〈x1 ⊔N x2, y1 ⊔A y2〉

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 33/126

Example of Cartesian Product: Concept Lattices

• Context of concepts. A collection of objects and their attributes

• Concepts. Sets of attributes as exhibited by specific objects

◮ A concept C is a pair (O,A) where
O is a set of objects exhibiting attributes in the set A

◮ Every object in O has every attribute in A

• Partial order. (O2,A2) ⊑ (O1,A1) ⇔ O2 ⊆ O1

◮ Very few objects have all properties
◮ Since A is the set of attributes common to all objects in O,

O2 ⊆ O1 ⇒ A2 ⊇ A1

As the number of chosen objects decreases, the number of common
attributes increases

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 34/126

Example of Concept Lattice (1)

From Introduction to Lattices and Order by Davey and Priestley [2002]

Size Distance from Sun Moon?
Small Medium Large Near Far Yes No
(ss) (sm) (sl) (dn) (df) (my) (mn)

Mercury Me x x x
Venus V x x x
Earth E x x x
Mars Ma x x x
Jupiter J x x x
Saturn S x x x
Uranus U x x x
Neptune N x x x
Pluto P x x x

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 35/126

Example of Concept Lattice (2)

We write (O,A) as
O
A

{Me,V ,E ,Ma, J, S ,U ,N ,P}
{}

{Me,V ,E ,Ma,P}
{ss}

{E ,Ma, J, S ,U ,N ,P}
{my}

{Me,V ,E ,Ma}
{ss, dn}

{E ,Ma}
{ss,my}

{J, S ,U ,N ,P}
{df ,my}

{Me,V }
{ss, dn,mn}

{E ,Ma}
{ss, dn,my}

{P}
{ss, df ,my}

{J, S}
{sl , df ,my}

{U ,N}
{sm, df ,my}

{}
{ss, sm, sl , dn, df ,my ,mn}

Aug 2017 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 36/126

Variants of Products

In each case L ⊆ L1 × L2

• Cartesian Product

(x1, x2) ⊑ (y1, y2) iff x1 ⊑1 y1 ∧ x2 ⊑2 y2

• Interval Product

(x1, x2) ⊑ (y1, y2) iff x1 ⊑1 y1 ∧ y2 ⊑2 x2

• Lexicographic Product

(x1, x2) ⊑ (y1, y2) iff (x1 ⊏1 y1) ∨ (x1 = y1 ∧ x2 ⊑2 y2)

• Set of mappings L1 → L2

(x1, x2) ⊑ (y1, y2) iff x1 = y1 ∧ x2 ⊑2 y2

Aug 2017 IIT Bombay

Part 5

Data Flow Values: Details

CS 618 DFA Theory: Data Flow Values: Details 37/126

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

• Requirement: glb must exist for all non-empty finite subsets

• Corollary: ⊥ must exist

What guarantees the presence of ⊥?

◮ Assume that two maximal descending chains terminate at
two incomparable elements x1 and x2

◮ Since this is a meet semilattice, glb of {x1, x2} must exist (say z)
⇒ Neither of the chains is maximal
⇒ Both of them can be extended to include z

◮ Extending this argument to all strictly descending chains,
it is easy to see that ⊥ must exist

• ⊤ may not exist. Can be added artificially

◮ lub of arbitrary elements may not exist

Aug 2017 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 38/126

The Set of Data Flow Values For Available Expressions
Analysis

• The powerset of the universal set of expressions

• Partial order is the subset relation

{e1, e2, e3}

{e1, e2} {e1, e3} {e2, e3}

{e1} {e2} {e3}

∅
Set View of the Lattice

Y

X

⊑

111

110 101 011

100 010 001

000

Bit Vector View

Aug 2017 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 39/126

The Concept of Approximation

• x approximates y iff

x can be used in place of y without causing any problems

• Validity of approximation is context specific

x may be approximated by y in one context and by z in another

◮ Approximating Money

Earnings : Rs. 1050 can be safely approximated by Rs. 1000
Expenses : Rs. 1050 can be safely approximated by Rs. 1100

◮ Approximating Time

Travel time: 2 hours required can be safely approximated by 3 hours
Study time: 3 available days can be safely assumed to be only 2 days

Aug 2017 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 40/126

Two Important Objectives in Data Flow Analysis

• The discovered data flow information should be

◮ Exhaustive. No optimization opportunity should be missed

◮ Safe. Optimizations which do not preserve semantics should not be
enabled

• Conservative approximations of these objectives are allowed

• The intended use of data flow information (≡ context) determines validity
of approximations

Aug 2017 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 41/126

Context Determines the Validity of Approximations

Will not do incorrect optimization
May prohibit correct optimization

Will not miss any correct optimization
May enable incorrect optimization

Analysis Application Safe
Approximation

Exhaustive
Approximation

Live variables Dead code
elimination

A dead variable
is considered live

A live variable is
considered dead

Available
expressions

Common
subexpression
elimination

An available
expression is
considered
non-available

A non-available
expression is
considered
available

Spurious Inclusion Spurious Exclusion

Aug 2017 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 42/126

Partial Order Captures Approximation

• ⊑ captures valid approximations for safety

x ⊑ y ⇒ x is weaker than y

◮ The data flow information represented by x can be safely used in
place of the data flow information represented by y

◮ It may be imprecise, though

• ⊒ captures valid approximations for exhaustiveness

x ⊒ y ⇒ x is stronger than y

◮ The data flow information represented by x contains every value
contained in the data flow information represented by y
x ⊓ y will not compute a value weaker than y

◮ It may be unsafe, though

We want most exhaustive information which is also safe

Aug 2017 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 43/126

Most Approximate Values in a Complete Lattice

• Top. ∀x ∈ L, x ⊑ ⊤ Exhaustive approximation of all values

◮ Using ⊤ in place of any data flow value will never miss out (or rule
out) any possible value

◮ The consequences may be semantically unsafe, or incorrect

• Bottom. ∀x ∈ L, ⊥ ⊑ x Safe approximation of all values

◮ Using ⊥ in place of any data flow value will never be unsafe, or
incorrect

◮ The consequences may be undefined or useless because this
replacement might miss out valid values

Appropriate orientation chosen by design

Aug 2017 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 44/126

Setting Up Lattices

Available Expressions Analysis Live Variables Analysis

{e1, e2, e3}

{e1, e2} {e1, e3} {e2, e3}

{e1} {e2} {e3}

∅

∅

{v1} {v2} {v3}

{v1, v2} {v1, v3} {v2, v3}

{v1, v2, v3}

⊑ is ⊆ ⊑ is ⊇

⊓ is ∩ ⊓ is ∪

Aug 2017 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 45/126

Partial Order Relation

Reflexive x ⊑ x x can be safely used in place of x

Transitive x ⊑ y , y ⊑ z

⇒ x ⊑ z

If x can be safely used in place of y

and y can be safely used in place of z ,

then x can be safely used in place of z

Antisymmetric x ⊑ y , y ⊑ x

⇔ x = y

If x can be safely used in place of y

and y can be safely used in place of x ,

then x must be same as y

Aug 2017 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 46/126

Merging Information

• x ⊓ y computes the greatest lower bound of x and y i.e.

largest z such that z ⊑ x and z ⊑ y

The largest safe approximation of combining data flow information x and y

• Commutative x ⊓ y = y ⊓ x The order in which the data

flow information is merged,

does not matter

Associative x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z Allow n-ary merging without

any restriction on the order

Idempotent x ⊓ x = x No loss of information if x is

merged with itself

• ⊤ is the identity of ⊓
◮ Presence of loops ⇒ self dependence of data flow information
◮ Using ⊤ as the initial value ensure exhaustiveness

Aug 2017 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 47/126

More on Lattices in Data Flow Analysis

L = Lattice for all expressions L̂ = Lattice for a single expression

111

110 101 011

100 010 001

000

(Expression e is available)

1 or {e}

0 or ∅
(Expressions e is not available)

Cartesian products if sets are used, vectors (or tuples) if bit are used

• L = L̂× L̂× L̂ and x = 〈x̂1, x̂2, x̂3〉 ∈ L where x̂ i ∈ L̂

• ⊑= ⊑̂ × ⊑̂ × ⊑̂ and ⊓ = ⊓̂ × ⊓̂ × ⊓̂
• ⊤ = ⊤̂ × ⊤̂ × ⊤̂ and ⊥ = ⊥̂ × ⊥̂ × ⊥̂

Aug 2017 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 48/126

Component Lattice for Data Flow Information Represented
By Bit Vectors

(⊤̂)

1

0

(⊥̂)

⊓ is ∩ or Boolean AND

(⊤̂)

0

1

(⊥̂)

⊓ is ∪ or Boolean OR

Aug 2017 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 49/126

Component Lattice for Integer Constant Propagation

(⊤̂)
undef or ud

−∞ . . . −1−2 0 1 2 . . . ∞

(⊥̂)

nonconst or nc

• Overall lattice L is the set of mappings from variables to L̂

• ⊓ and ⊓̂ get defined by ⊑ and ⊑̂

⊓̂ 〈a, ud〉 〈a, nc〉 〈a, c1〉
〈a, ud〉 〈a, ud〉 〈a, nc〉 〈a, c1〉
〈a, nc〉 〈a, nc〉 〈a, nc〉 〈a, nc〉
〈a, c2〉 〈a, c2〉 〈a, nc〉 If c1 = c2 then 〈a, c1〉 else 〈a, nc〉

Aug 2017 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 50/126

Component Lattice for May Points-To Analysis

• Relation between pointer variables and locations in the memory

• Assuming three locations l1, l2, and l3, the component lattice for pointer p
is

(⊤̂)

∅

{p֌ l1} {p֌ l2} {p֌ l3}

{p֌ l1,p֌ l2} {p֌ l1 ,p֌ l3} {p֌ l2,p֌ l3}

{p֌ l1, p֌ l2, p֌ l2}
(⊥̂)

(⊤̂)Alternatively,

∅

{l1} {l2} {l3}

{l1, l2} {l1, l3} {l2, l3}

{l1, l2, l2}
(⊥̂)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 51/126

Component Lattice for Must Points-To Analysis

• A pointer can point to at most one location

(⊤̂)

undef

p֌ l1 p֌ l2 p֌ l3

none

(⊥̂)

Alternatively, (⊤̂)

undef

l1 l2 l3

none

(⊥̂)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 52/126

Combined Total and Partial Availability Analysis

• Two bits per expression rather than one. Can be implemented using AND
(as below) or using OR (reversed lattice)

unknown
(Bits 11)

must-be-available
(Bits 10)

is-not-available
(Bits 01)

may-be-available
(Bits 00)

Can also be implemented as a product of 1-0 and 0-1 lattice with AND for
the first bit and OR for the second bit

• What approximation of safety does this lattice capture?

Uncertain information (= no optimization) is guaranteed to be safe

Aug 2017 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 53/126

General Lattice for May-Must Analysis

Unknown

May

MustNo

⊤

⊥

Interpreting data flow values

− Unknown. Nothing is known as yet

− No. Information does not hold along any path

− Must. Information must hold along all paths

− May. Information may hold along some path

Possible Applications

• Pointer Analysis : No need of separate of May and Must analyses

eg. (p ֌ l ,May), (p ֌ l ,Must), (p ֌ l ,No), or (p ֌ l ,Unknown)

• Type Inferencing for Dynamically Checked Languages

Aug 2017 IIT Bombay

Part 6

Flow Functions

CS 618 DFA Theory: Flow Functions 54/126

Flow Functions: An Outline of Our Discussion

• Defining flow functions

• Properties of flow functions

(Some properties discussed in the context of solutions of data flow
analysis)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Flow Functions 55/126

The Set of Flow Functions

• F is the set of functions f : L → L such that

◮ F contains an identity function

To model “empty” statements, i.e. statements which do not
influence the data flow information

◮ F is closed under composition

Cumulative effect of statements should generate data flow
information from the same set

◮ For every x ∈ L, there must be a finite set of flow functions
{f1, f2, . . . fm} ⊆ F such that

x =
1≤i≤m

fi (BI)

• Properties of f

◮ Monotonicity and Distributivity

◮ Loop Closure Boundedness and Separability

Aug 2017 IIT Bombay

CS 618 DFA Theory: Flow Functions 56/126

Flow Functions in Bit Vector Data Flow Frameworks

• Bit Vector Frameworks: Available Expressions Analysis, Reaching
Definitions Analysis Live variable Analysis, Anticipable Expressions
Analysis, Partial Redundancy Elimination etc

◮ All functions can be defined in terms of constant Gen and Kill

f (x) = Gen ∪ (x − Kill)

◮ Lattices are powersets with partial orders as ⊆ or ⊇ relations
◮ Information is merged using ∩ or ∪

• Flow functions in Strong Liveness Analysis, Pointer Analyses, Constant
Propagation, Possibly Uninitialized Variables cannot be expressed using
constant Gen and Kill

Local context alone is not sufficient to describe the effect of statements
fully

Aug 2017 IIT Bombay

CS 618 DFA Theory: Flow Functions 57/126

Monotonicity of Flow Functions

• Partial order is preserved: If x can be safely used in place of y then f (x)
can be safely used in place of f (y)

∀x , y ∈ L, x ⊑ y ⇒ f (x) ⊑ f (y)

x y

f

f (x) f (y)⊑

⊑

• Alternative definition

∀x , y ∈ L, f (x ⊓ y) ⊑ f (x) ⊓ f (y)

• Merging at intermediate points in shared segments of paths is safe
(However, it may lead to imprecision)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Flow Functions 58/126

Distributivity of Flow Functions

• Merging distributes over function application

∀x , y ∈ L, f (x ⊓ y) = f (x) ⊓ f (y)

x y

f

f (x) ⊓ f (y)

• Merging at intermediate points in shared segments of paths does not lead
to imprecision

Aug 2017 IIT Bombay

CS 618 DFA Theory: Flow Functions 58/126

Distributivity of Flow Functions

• Merging distributes over function application

∀x , y ∈ L, f (x ⊓ y) = f (x) ⊓ f (y)

x y

f

f (x ⊓ y)

• Merging at intermediate points in shared segments of paths does not lead
to imprecision

Aug 2017 IIT Bombay

CS 618 DFA Theory: Flow Functions 59/126

Monotonicity and Distributivity

⊤

⊥

L

⊤

⊥

L

Distributive and
hence monotonic

Monotonic but
not distributive

Aug 2017 IIT Bombay

CS 618 DFA Theory: Flow Functions 60/126

Distributivity of Bit Vector Frameworks

f (x) = Gen ∪ (x − Kill)

f (y) = Gen ∪ (y − Kill)

f (x ∪ y) = Gen ∪ ((x ∪ y)− Kill)

= Gen ∪ ((x − Kill) ∪ (y − Kill))

= (Gen ∪ (x − Kill) ∪ Gen ∪ (y − Kill))

= f (x) ∪ f (y)

f (x ∩ y) = Gen ∪ ((x ∩ y)− Kill)

= Gen ∪ ((x − Kill) ∩ (y − Kill))

= (Gen ∪ (x − Kill) ∩ Gen ∪ (y − Kill))

= f (x) ∩ f (y)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Flow Functions 61/126

Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b
n1

n2
c = a+ b
d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

a = 1, b = 2

a = 2, b = 1

• x = 〈1, 2, 3, ud〉 (Along Outn1 → Inn2)

• y = 〈2, 1, 3, 2〉 (Along Outn3 → Inn2)

• Function application for block n2 before merging

f (x) ⊓ f (y) = f (〈1, 2, 3, ud〉) ⊓ f (〈2, 1, 3, 2〉)
= 〈1, 2, 3, 2〉 ⊓ 〈2, 1, 3, 2〉
= 〈⊥̂, ⊥̂, 3, 2〉

• Function application for block n2 after merging

f (x ⊓ y) = f (〈1, 2, 3, ud〉 ⊓ 〈2, 1, 3, 2〉)
= f (〈⊥̂, ⊥̂, 3, 2〉)
= 〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉

• f (x ⊓ y) ⊏ f (x) ⊓ f (y)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Flow Functions 62/126

Why is Constant Propagation Non-Distributive?

a = 1
b = 2

a = 2
b = 1

c = a+ b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a+ b = 3

• Correct combination

Aug 2017 IIT Bombay

CS 618 DFA Theory: Flow Functions 62/126

Why is Constant Propagation Non-Distributive?

a = 1
b = 2

a = 2
b = 1

c = a+ b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a+ b = 3

• Correct combination

Aug 2017 IIT Bombay

CS 618 DFA Theory: Flow Functions 62/126

Why is Constant Propagation Non-Distributive?

a = 1
b = 2

a = 2
b = 1

c = a+ b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a+ b = 2

• Wrong combination

• Mutually exclusive information

• No execution path along which this
information holds

Aug 2017 IIT Bombay

CS 618 DFA Theory: Flow Functions 62/126

Why is Constant Propagation Non-Distributive?

a = 1
b = 2

a = 2
b = 1

c = a+ b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a+ b = 4

• Wrong combination

• Mutually exclusive information

• No execution path along which this
information holds

Aug 2017 IIT Bombay

Part 7

Solutions of Data Flow Analysis

CS 618 DFA Theory: Solutions of Data Flow Analysis 63/126

Solutions of Data Flow Analysis: An Outline of Our
Discussion

• MoP and MFP assignments and their relationship

• Existence of MoP assignment

◮ Boundedness of flow functions

• Existence and Computability of MFP assignment

◮ Flow functions Vs. function computed by data flow equations

• Safety of MFP solution

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 64/126

Solutions of Data Flow Analysis

• An assignment A associates data flow values with program points

A ⊑ B if for all program points p, A(p) ⊑ B(p)

• Performing data flow analysis

Given

◮ A set of flow functions, a lattice, and merge operation

◮ A program flow graph with a mapping from nodes to flow functions

Find out

◮ An assignment A which is as exhaustive as possible and is safe

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 65/126

An Example For Available Expressions Analysis

Program

a∗b
b∗c1

a∗b2

Some Assignments
A0 A1 A2 A3 A4 A5 A6

In1 11 00 00 00 00 00 00
Out1 11 11 00 11 11 11 11
In2 11 11 00 00 10 01 01
Out2 11 11 00 00 10 01 10

11

10 01

00

Lattice L of data flow
values at a node

Lattice L× L× L× L
for data flow values
at all nodes

A0

A1

A4 A5 A6

A3

A2

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 66/126

Meet Over Paths (MoP) Assignment

Entry

p

Exit

Entry • The largest safe approximation of the information
reaching a program point along all information flow
paths

MoP(p) =
ρ∈Paths(p)

fρ(BI)

◮ fρ represents the compositions of flow functions
along ρ

◮ BI refers to the relevant information from the
calling context

◮ All execution paths are considered potentially
executable by ignoring the results of conditionals

• Any Info(p) ⊑ MoP(p) is safe

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 67/126

Maximum Fixed Point (MFP) Assignment

• Difficulties in computing MoP assignment

◮ In the presence of cycles there are infinite paths

If all paths need to be traversed ⇒ Undecidability

◮ Even if a program is acyclic, every conditional
multiplies the number of paths by two

If all paths need to be traversed ⇒ Intractability

• Why not merge information at intermediate points?

◮ Merging is safe but may lead to imprecision

◮ Computes fixed point solutions of data flow equations

n

n n

Path based
specification

Edge based
specifications

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 68/126

Computing MFP Vs. Computing MoP

Expression Tree for MFP Program Expression Tree for MoP

f4

⊓

f2 f3

f1 ⊓

BI f1 f3

BI ⊓

f1 . . .

BI

f1

f2 f3

f4

f5

⊓

f4 f4 f4

f2 f3 f3

f1 f1 f3

BI BI f1

BI

f4

f3

f3

f3

f1

BI

. . .

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 69/126

Assignments for Constant Propagation Example

n1

a = 1
b = 2

c = a+ b
n1

n2
c = a+ b
d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

MoP

〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉

〈1, 2, 3, ⊤̂〉

〈⊥̂, ⊥̂, 3, 2〉

〈⊥̂, ⊥̂, 3, 2〉

〈⊥̂, ⊥̂, 3, 2〉

〈2, 1, 3, 2〉

MFP

〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉

〈1, 2, 3, ⊤̂〉

〈⊥̂, ⊥̂, 3, ⊥̂〉

〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉

〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉

〈2, 1, 3, ⊥̂〉

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 70/126

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

∀i , Ini = Outi = ⊤

∀i , Ini = Outi = ⊥

Meet Over Paths Assignment

Maximum Fixed Point

Least Fixed Point

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 71/126

An Instance of Available Expressions Analysis

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions
f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x
f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

• Is the lattice a meet semilattice?

• What is the meet operation that computes glb?

• Are all strictly descending chains finite?

• Does the function space have an identity function?

• Are all values in the lattice computable from a finite merge of flow
functions?

• Is the function space closed under composition?

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 72/126

An Instance of Available Expressions Analysis

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions
f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x
f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments
A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00
Out1 11 00 11 11 11 11
In2 11 00 00 10 01 01
Out2 11 00 00 10 01 10

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 72/126

An Instance of Available Expressions Analysis

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions
f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x
f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments
A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00
Out1 11 00 11 11 11 11
In2 11 00 00 10 01 01
Out2 11 00 00 10 01 10

• Maximum fixed point assignment

• Initialization for round robin iterative
method: 11

• Safe assignment

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 72/126

An Instance of Available Expressions Analysis

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions
f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x
f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments
A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00
Out1 11 00 11 11 11 11
In2 11 00 00 10 01 01
Out2 11 00 00 10 01 10

• Not a fixed point assignment

• Safe assignment

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 72/126

An Instance of Available Expressions Analysis

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions
f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x
f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments
A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00
Out1 11 00 11 11 11 11
In2 11 00 00 10 01 01
Out2 11 00 00 10 01 10

• Minimum fixed point assignment

• Initialization for round robin iterative
method: 00

• Safe assignment

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 72/126

An Instance of Available Expressions Analysis

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions
f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x
f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments
A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00
Out1 11 00 11 11 11 11
In2 11 00 00 10 01 01
Out2 11 00 00 10 01 10

• Fixed point assignment which is
neither maximum nor minimum

• Initialization for round robin iterative
method: 10

• Safe assignment

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 72/126

An Instance of Available Expressions Analysis

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions
f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x
f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments
A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00
Out1 11 00 11 11 11 11
In2 11 00 00 10 01 01
Out2 11 00 00 10 01 10

• Fixed point assignment which is
neither maximum nor minimum

• Initialization for round robin iterative
method: 01

• Safe assignment

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 72/126

An Instance of Available Expressions Analysis

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions
f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x
f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments
A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00
Out1 11 00 11 11 11 11
In2 11 00 00 10 01 01
Out2 11 00 00 10 01 10

• Not a fixed point assignment

• Safe assignment

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 73/126

Lattice of Assignments for Available Expressions Analysis

Program

a∗b
b∗c1

a∗b2

Some Assignments
A0 A1 A2 A3 A4 A5 A6

In1 11 00 00 00 00 00 00
Out1 11 11 00 11 11 11 11
In2 11 11 00 00 10 01 01
Out2 11 11 00 00 10 01 10

Lattice L× L× L× L
for all assignments
(many assignments
omitted, e.g. node 1
could have data flow
values 10 and 01) Safe assignments

Fixed point
assignments

A0

A1

A4 A5 A6

A3

A2

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 74/126

Existence of an MoP Assignment (1)

MoP(p) =
ρ∈Paths(p)

fρ(BI)

• If a finite number of paths reach p, then existence of solution trivially
follows

◮ Function space is closed under composition
◮ glb exists for all non-empty finite subsets of the lattice

(Assuming that the data flow values form a meet semilattice)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 75/126

Existence of an MoP Assignment (2)

MoP(p) =
ρ∈Paths(p)

fρ(BI)

• If an infinite number of paths reach p then,

MoP(p) = fρ1(BI) ⊓ fρ2(BI) ⊓ fρ3(BI) ⊓ . . .

X1

X2

X3

• Every meet results in a weaker value

• The sequence X1,X2,X3, . . . follows a descending chain

• Since all strictly descending chains are finite, MoP exists

(Assuming that our meet semilattice satisfies DCC)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 76/126

Computability of MoP

Does existence of MoP imply it is computable?

X

p1

X

p2

X
p3

x

f (x)

Paths reaching the entry of p2 Data Flow Value

p1, p2 x
p1, p2, p3, p2 f (x)
p1, p2, p3, p2, p3, p2 f (f (x)) = f 2(x)
p1, p2, p3, p2, p3, p2, p3, p2 f (f (f (x))) = f 3(x)
.

MoP(p2) = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ f 4(x) ⊓ . . .

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 77/126

MoP Computation is Undecidable

There does not exist any algorithm that can compute MoP assignment for every
possible instance of every possible monotone data flow framework

• Reducing MPCP (Modified Post’s Correspondence Problem) to constant
propagation

• MPCP is known to be undecidable

• If an algorithm exists for detecting all constants

⇒ MPCP would be decidable

• Since MPCP is undecidable

⇒ There does not exist an algorithm for detecting all constants

⇒ Static analysis is undecidable

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 78/126

Post’s Correspondence Problem (PCP)

• Given strings ui , vi ∈ Σ+ for some alphabet Σ, and two k-tuples,

U = (u1, u2, . . . , uk)

V = (v1, v2, . . . , vk)

Is there a sequence i1, i2, . . . , im of one or more integers such that

ui1ui2 . . . uim = vi1vi2 . . . vim

• For U = (101, 11, 100) and V = (01, 1, 11001) the solution is 2, 3, 2

u2u3u2 = 1110011

v2v3v2 = 1110011

• For U = (1, 10111, 10), V = (111, 10, 0), the solution is 2, 1, 1, 3

• For U = (01, 110), V = (00, 11), there is no solution

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 78/126

Post’s Correspondence Problem (PCP)

• Given strings ui , vi ∈ Σ+ for some alphabet Σ, and two k-tuples,

U = (u1, u2, . . . , uk)

V = (v1, v2, . . . , vk)

Is there a sequence i1, i2, . . . , im of one or more integers such that

ui1ui2 . . . uim = vi1vi2 . . . vim

• For U = (101, 11, 100) and V = (01, 1, 11001) the solution is 2, 3, 2

u2u3u2 = 1110011

v2v3v2 = 1110011

• For U = (1, 10111, 10), V = (111, 10, 0), the solution is 2, 1, 1, 3

• For U = (01, 110), V = (00, 11), there is no solution

• Sets U and V are finite and contain the same number of strings

• The strings in U and V are finite and are of varying lengths

• For constructing the new strings using the strings in U and V

◮ The strings at the same the index of must be used

◮ There is no limit on the length of the new string

Indices could repeat without any bound

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 79/126

Modified Post’s Correspondence Problem (MPCP)

• The first string in the correspondence relation should be the first string
from the k-tuple

u1ui1ui2 . . . uim = v1vi1vi2 . . . vim

• For U = (11, 1, 0111, 10), V = (1, 111, 10, 0), the solution is 3, 2, 2, 4

u1u3u2u2u4 = 1101111110

v1v3v2v2v4 = 1101111110

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 80/126

Hecht’s Reduction of MPCP to Constant Propagation

Given: An instance of MPCP with Σ = {0, 1}

x = u1; y = v1

x = ”1”

x=x@u2
y=y@v2

x=x@u3
y=y@v3

x=x@uk
y=y@vk

x = ”1”

i = atoi(x); j = atoi(y)
r = 1/((i − j)2 + 1)

x = ”1”

ui , vi

Each block in the
loop corresponds
to a particular index

Random branching for
random selection of index

String append

String to integer conversion

Integer division

MoP computation. No merge
at intermediate points. Merge
only at the point of interest

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 80/126

Hecht’s Reduction of MPCP to Constant Propagation

Given: An instance of MPCP with Σ = {0, 1}

x = u1; y = v1

x = ”1”

x=x@u2
y=y@v2

x=x@u3
y=y@v3

x=x@uk
y=y@vk

x = ”1”

i = atoi(x); j = atoi(y)
r = 1/((i − j)2 + 1)

x = ”1”

ui , vi

r 7→ 0 ∈ MoP
r 7→ 1 ∈ MoP

or
r 7→ ⊥ ∈ MoP

• i = j ⇒ r = 1

i 6= j ⇒ r = 0

• If there exists an algorithm
which can determine that

{ ◮ r = 0 along every path
(x is never equal to y ,
MPCP instance does not
have a solution)

◮ r = 1 along some path
(some x is equal to y ,
MPCP instance has a
solution)

}
Then MPCP is decidable

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 80/126

Hecht’s Reduction of MPCP to Constant Propagation

Given: An instance of MPCP with Σ = {0, 1}

x = u1; y = v1

x = ”1”

x=x@u2
y=y@v2

x=x@u3
y=y@v3

x=x@uk
y=y@vk

x = ”1”

i = atoi(x); j = atoi(y)
r = 1/((i − j)2 + 1)

x = ”1”

ui , vi

r 7→ 0 ∈ MoP
r 7→ 1 ∈ MoP

or
r 7→ ⊥ ∈ MoP

• i = j ⇒ r = 1

i 6= j ⇒ r = 0

• If there exists an algorithm
which can determine that

{ ◮ r = 0 along every path
(x is never equal to y ,
MPCP instance does not
have a solution)

◮ r = 1 along some path
(some x is equal to y ,
MPCP instance has a
solution)

}
Then MPCP is decidable

The tricky part!!

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 80/126

Hecht’s Reduction of MPCP to Constant Propagation

Given: An instance of MPCP with Σ = {0, 1}

x = u1; y = v1

x = ”1”

x=x@u2
y=y@v2

x=x@u3
y=y@v3

x=x@uk
y=y@vk

x = ”1”

i = atoi(x); j = atoi(y)
r = 1/((i − j)2 + 1)

x = ”1”

ui , vi

r 7→ 0 ∈ MoP
r 7→ 1 ∈ MoP

or
r 7→ ⊥ ∈ MoP

• i = j ⇒ r = 1

i 6= j ⇒ r = 0

• If there exists an algorithm
which can determine that

{ ◮ r = 0 along every path
(x is never equal to y ,
MPCP instance does not
have a solution)

◮ r = 1 along some path
(some x is equal to y ,
MPCP instance has a
solution)

}
Then MPCP is decidable

The tricky part!!

• Asserting that no x is equal to y requires
us to examine infinitely many (x , y) pairs

• If we keep finding x and y that are
unequal, how long do we wait to decide
that there is no x that is equal to y?

• In a lucky case we may find an x that is
equal to y , but there is no guarantee

MPCP is not decidable
⇒ Constant Propagation is not decidable

• Descending chains consist of sets of pairs
(x , y) with ⊤ as ∅
Since there is no bound on the length of x
and y , the number of these sets is infinite

⇒ DCC is violated

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 81/126

Is MFP Always Computable?

MFP assignment may not be computable

• if the flow functions are non-monotonic, or

• if some strictly descending chain is not finite

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 82/126

Computability of MFP

• If f is not monotonic, the computation may not converge

1
0

1
0

f
x f (x) f 2(x) f 3(x) f 4(x) . . .

1 0 1 0 1 . . .

MoP = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ . . . = 0

• Computing MFP iteratively

f

f

f

1

1

0

MFP does not
exist and is
not computable

f

f

f

0

0

1

MFP exist
and is
computable

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 83/126

Computability of MFP

x = 0

x = x − 1

x = 0

Point of
interest

⊑ ≤ ≤
⊓ min min

Hasse diagram

0

-1

-2

-3

. . .

0

-1

-2

-3

. . .
−∞

MFP exists? No Yes

MFP computable? No No

MoP exists? No Yes

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 83/126

Computability of MFP

x = 0

x = x − 1

x = 0

Point of
interest

⊑ ≤ ≤
⊓ min min

Hasse diagram

0

-1

-2

-3

. . .

0

-1

-2

-3

. . .
−∞

• Flow functions are monotonic

• Strictly descending chains are not
finite

MFP exists? No Yes

MFP computable? No No

MoP exists? No Yes

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 84/126

Existence and Computation of the Maximum Fixed Point

If L is a meet semilattice satisfying DCC, f : L → L is monotonic, then
MFP(f) = f k+1(⊤) = f k(⊤) such that f j+1(⊤) 6= f j(⊤), j < k

Claims being made:

• ∃k s.t. f k+1(⊤) = f k(⊤)

• Since k is finite, f k(⊤) exists and is computable

• f k(⊤) is a fixed point

• f k(⊤) is a the maximum fixed point

The proof depends on:

• The existence of glb for every pair of values in L

• Finiteness of strictly descending chains

• Monotonicity of f

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 84/126

Existence and Computation of the Maximum Fixed Point

If L is a meet semilattice satisfying DCC, f : L → L is monotonic, then
MFP(f) = f k+1(⊤) = f k(⊤) such that f j+1(⊤) 6= f j(⊤), j < k

⊥

⊤
f (⊤)

f i (⊤)

f k+1(⊤)
= f k(⊤)

• ⊤ ⊒ f (⊤) ⊒ f 2(⊤) ⊒ f 3(⊤) ⊒ f 4(⊤) ⊒ . . .

• Since strictly descending chains are finite, there
must exist f k(⊤) such that f k+1(⊤) = f k(⊤) and
f j+1(⊤) 6= f j(⊤), j < k

• If p is a fixed point of f then p ⊑ f k(⊤)

Proof strategy: Induction on i for f i (⊤)

◮ Basis (i = 0): p ⊑ f 0(⊤) = ⊤
◮ Inductive Hypothesis: Assume that p ⊑ f i(⊤)
◮ Proof: f (p) ⊑ f (f i (⊤)) (f is monotonic)

⇒ p ⊑ f (f i (⊤)) (f (p) = p)
⇒ p ⊑ f i+1(⊤)

• Since this holds for every p that is a fixed point,
f k+1(⊤) must be the Maximum Fixed Point

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 85/126

Fixed Points Computation: Flow Functions Vs. Equations

• Recall that

MFP(f) = f k+1(⊤) = f k(⊤) such that f j+1(⊤) 6= f j(⊤), j < k .

◮ What is f in the above?
◮ Flow function of a block? Which block?

• Our method computes the maximum fixed point of data flow equations!

• What is the relation between the maximum fixed point of data flow
equations and the MFP defined above?

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 86/126

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

In1 = BI
Out1 = f1(In1)
In2 = Out1 ⊓ . . .

Out2 = f2(In2)
. . .

InN = OutN−1 ⊓ . . .
OutN = fN(InN)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 86/126

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

In1 = fIn1(〈In1,Out1, . . . , InN ,OutN〉)
Out1 = fOut1(〈In1,Out1, . . . , InN ,OutN〉)
In2 = fIn2(〈In1,Out1, . . . , InN ,OutN〉)

Out2 = fOut2(〈In1,Out1, . . . , InN ,OutN〉)
. . .

InN = fInN (〈In1,Out1, . . . , InN ,OutN〉)
OutN = fOutN (〈In1,Out1, . . . , InN ,OutN〉)

where each flow function is of the form L× L× . . .× L → L

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 86/126

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

〈In1,Out1, . . . , InN ,OutN〉 = 〈 fIn1(〈In1,Out1, . . . , InN ,OutN〉),
fOut1(〈In1,Out1, . . . , InN ,OutN〉),
. . .
fInN (〈In1,Out1, . . . , InN ,OutN〉),
fOutN (〈In1,Out1, . . . , InN ,OutN〉),

〉

where each flow function is of the form L× L× . . .× L → L

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 86/126

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

X = 〈 fIn1(X),
fOut1(X),
. . .
fInN (X),
fOutN (X),

〉

where X = 〈In1,Out1, . . . , InN ,OutN〉

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 86/126

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

X = F(X)

where X = 〈In1,Out1, . . . , InN ,OutN〉
F(X) = 〈fIn1 (X), fOut1 (X), . . . , fInN (X), fOutN (X)〉

We compute the fixed points of function F defined above

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 87/126

An Instance of Available Expressions Analysis

Program

a∗b
b∗c1

a∗b2

• Conventional data flow equations

In1 = 00 In2 = Out1 ∩Out2
Out1 = 11 Out2 = In2

• Data Flow Equation X = F(X) is

F(〈In1,Out1, In2,Out2〉) = 〈00, 11,Out1 ∩Out2, In2〉

• The maximum fixed point assignment is

F(〈11, 11, 11, 11〉) = 〈00, 11, 11, 11〉

• The minimum fixed point assignment is

F(〈00, 00, 00, 00〉) = 〈00, 11, 00, 00〉

Aug 2017 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 88/126

Safety of FP Assignment: FP ⊑ MoP

Entry

u

v

fu→v

ρu fρu

ρv

• MoP(v) =
ρ∈Paths(v)

fρ(BI)

• Proof Obligation: ∀ρv FP(v) ⊑ fρv (BI)

• Claim 1: ∀u → v ,FP(v) ⊑ fu→v (FP(u))

• Proof Outline: Induction on path length

Base case: Path of length 0

FP(Entry) = MoP(Entry) = BI

Inductive hypothesis: Assume it holds for paths
consisting of k edges (say at u)

FP(u) ⊑ fρu (BI) (Inductive hypothesis)
FP(v) ⊑ fu→v (FP(u)) (Claim 1)

⇒ FP(v) ⊑ fu→v (fρu (BI))
⇒ FP(v) ⊑ fρv (BI)

This holds for every FP an hence for MFP also

Aug 2017 IIT Bombay

Part 8

Theoretical Abstractions: A Summary

CS 618 DFA Theory: Theoretical Abstractions: A Summary 89/126

Theoretical Abstractions: A Summary

Necessary and sufficient conditions for designing a data flow framework

• A meet semilattice satisfying dcc

◮ Meet: commutative, associative, and idempotent
◮ Partial order: reflexive, transitive, and antisymmetric
◮ Existence of ⊥

• A function space

◮ Existence of the identity function
◮ Closure under composition
◮ Monotonic functions

Aug 2017 IIT Bombay

Part 9

Performing Data Flow Analysis

CS 618 DFA Theory: Performing Data Flow Analysis 90/126

Performing Data Flow Analysis

• Algorithms for computing MFP solution

• Complexity of data flow analysis

• Factor affecting the complexity of data flow analysis

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 91/126

Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (⊤)

• Round Robin. Repeated traversals over nodes in a fixed order

Termination : After values stabilise

+ Simplest to understand and implement

− May perform unnecessary computations

Our examples use
this method

• Work List. Dynamic list of nodes which need recomputation

Termination : When the list becomes empty

+ Demand driven. Avoid unnecessary computations

− Overheads of maintaining work list

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 92/126

Elimination Methods of Performing Data Flow Analysis

Delayed computations of dependent data flow values of dependent nodes

Find suitable single-entry regions

• Interval Based Analysis. Uses graph partitioning

• T1,T2 Based Analysis. Uses graph parsing

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 93/126

Classification of Edges in a Graph

Graph G A depth first spanning tree of G

1

2

6

34

5

7

8

1

2

6

34

5

7

8

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 93/126

Classification of Edges in a Graph

Graph G A depth first spanning tree of G

1

2

6

34

5

7

8

1

2

6

34

5

7

8

Back edges
Forward edges
Tree edges
Cross edges

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 93/126

Classification of Edges in a Graph

Graph G A depth first spanning tree of G

1

2

6

34

5

7

8

1

2

6

34

5

7

8

Back edges
Forward edges

For data flow analysis, we club tree,
forward, and cross edges into forward
edges. Thus we have just forward or
back edges in a control flow graph

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 94/126

Reverse Post Order Traversal

• A reverse post order (rpo) is a topological sort of the graph obtained after
removing back edges

Graph G G ′ obtained after removing
back edges of G

1

2
6

34

5
7

8

1

2
6

34

5
7

8

Practically, RPO of a graph
is determined by a depth
search over the graph

• Some possible RPOs for G are: (1, 2, 3, 4, 5, 6, 7, 8), (1, 6, 7, 2, 3, 4, 5, 8),
(1, 6, 2, 7, 4, 3, 5, 8), and (1, 2, 6, 7, 3, 4, 5, 8)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 95/126

Round Robin Iterative Algorithm

1 In0 = BI
2 for all j 6= 0 do
3 Inj = ⊤
4 change = true
5 while change do
6 { change = false
7 for j = 1 to N − 1 do

8 { temp =
p∈pred(j)

fp(Inp)

9 if temp 6= Inj then
10 { Inj = temp
11 change = true
12 }
13 }
14 }

• Computation of Outj has been
left implicit

Works fine for unidirectional
frameworks

• ⊤ is the identity of ⊓
(line 3)

• Reverse postorder (rpo)
traversal for efficiency
(line 7)

• rpo traversal AND no loops

⇒ no need of initialization

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 96/126

Complexity of Round Robin Iterative Algorithm

• Unidirectional bit vector frameworks

◮ Construct a spanning tree T of G to identify postorder traversal
◮ Traverse G in reverse postorder for forward problems and

Traverse G in postorder for backward problems
◮ Depth d(G ,T): Maximum number of back edges in any acyclic path

Task Number of iterations

First computation of In and Out 1
Convergence

d(G ,T)
(until change remains true)
Verifying convergence

1
(change becomes false)

• What about bidirectional bit vector frameworks?

• What about other frameworks?

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 97/126

Example C Program with d(G,T) = 2

1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i = i + 1

n1

n2

n3

n4

n5

n6

n7

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 97/126

Example C Program with d(G,T) = 2

1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i = i + 1

n1

n2

n3

n4

n5

n6

n7

Availability of a+b
in iteration #1

1

1

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 97/126

Example C Program with d(G,T) = 2

1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i = i + 1

n1

n2

n3

n4

n5

n6

n7

Availability of a+b
in iteration #2

1

0

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 97/126

Example C Program with d(G,T) = 2

1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i = i + 1

n1

n2

n3

n4

n5

n6

n7

Availability of a+b
in iteration #3

0

0

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 97/126

Example C Program with d(G,T) = 2

1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }

3 + 1 iterations for available expressions analysis

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i = i + 1

n1

n2

n3

n4

n5

n6

n7

Availability of a+b
in iteration #4

0

0

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 97/126

Example C Program with d(G,T) = 2

1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }

3 + 1 iterations for available expressions analysis

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i = i + 1

n1

n2

n3

n4

n5

n6

n7

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 98/126

Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Node numbers are in reverse post
order

• Back edges in the graph are n5 → n2
and n10 → n9

• d(G ,T) = 1

• Actual iterations : 5

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 99/126

Complexity of Bidirectional Bit Vector Frameworks

1

6 b∗c

7

8 9

10
b∗c
b=

11 b∗c

12

2

3 4

b∗c

5

Pairs of Out,In Values

Initia-
lization

Changes in
Iterations Final values &

transformation
#1 #2 #3 #4 #5

O,I O,I O,I O,I O,I O,I O,I
12 0,1 0,0 0,0
11 1,1 0,1 0,0 0,0
10 1,1 0,1 0,1 Delete
9 1,1 1,0 1,0 Insert
8 1,1 1,0 1,0 Insert
7 1,1 0,0 0,0
6 1,1 1,0 0,0 0,0
5 1,1 0,0 0,0
4 1,1 0,1 0,0 0,0
3 1,1 0,0 0,0
2 1,1 1,0 0,0 0,0
1 1,1 0,0 0,0

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 100/126

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first iteration

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this sequence
of changes requires 5 iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 100/126

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first iteration

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this sequence
of changes requires 5 iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 101/126

Information Flow and Information Flow Paths

• Default value at each program point: ⊤

• Information flow path

Sequence of adjacent program points
along which data flow values change

• A change in the data flow at a program point could be

◮ Generation of information
Change from ⊤ to a non-⊤ due to local effect (i.e. f (⊤) 6= ⊤)

◮ Propagation of information
Change from x to y such that y ⊑ x due to global effect

• Information flow path (ifp) need not be a graph theoretic path

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 102/126

Edge and Node Flow Functions

n

m

Inn

Outn

Inm

Outm

f fn

f fn→m

f fm

Inn

Outn

Inm

Outm

f bn

f bn→m

f bm

Forward Node Flow Function

Forward Edge Flow Function

Backward Node Flow Function

Backward Edge Flow Function

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 103/126

General Data Flow Equations

Inn =





BIStart ⊓ f bn (Outn) n = Start(

m∈pred(n)
f fm→n(Outm)

)
⊓ f bn (Outn) otherwise

Outn =





BIEnd ⊓ f fn (Inn) n = End(

m∈succ(n)
f bm→n(Inm)

)
⊓ f fn (Inn) otherwise

• Edge flow functions are typically identity

∀x ∈ L, f (x) = x

• If particular flows are absent, the corresponding flow functions are

∀x ∈ L, f (x) = ⊤

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 104/126

Modelling Information Flows Using Edge and Node Flow
Functions

Forward Backward Bidirectional Bidirectional

j j

j

j j

i j

k

l m

j j

j

j j

i j

k

l m

j j

j

j j

i j

k

l m

j j

j

j j

i j

k

l m

f fk→l ◦ f fk ◦ f fi→k f bi→k ◦ f bk ◦ f bk→l f bj→k ◦ f fi→k f fk→l ◦ f bk→m

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 105/126

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary paths

• Theoretically predicted number : 144

• Actual iterations : 5

• Not related to depth (1)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 105/126

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary paths

• Theoretically predicted number : 144

• Actual iterations : 5

• Not related to depth (1)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 106/126

Complexity of Worklist Algorithms for Bit Vector
Frameworks

• Assume n nodes and r entities

• Total number of data flow values = 2 · n · r
• A data flow value can change at most once

• Complexity is O (n · r)
• Must be same for both unidirectional and bidirectional frameworks

(Number of data flow values does not change!)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 107/126

Lacuna with Older Estimates of PRE Complexity

• Lacuna with PRE : Complexity

◮ r is typically O(n)
◮ Assuming that at most one data flow value changes in one traversal
◮ Worst case number of traversals = O

(
n2
)

• Practical graphs may have upto 50 nodes

◮ Predicted number of traversals : 2,500

◮ Practical number of traversals : ≤ 5

• No explanation for about 14 years despite dozens of efforts

• Not much experimentation with performing advanced optimizations
involving bidirectional dependency

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 108/126

Complexity of Round Robin Iterative Method

Chemist Cloth Shop Doctor Tailor X-Ray Clinic

• Buy OTC (Over-The-Counter) medicine No U-Turn 1 Trip

• Buy cloth. Give it to the tailor for stitching No U-Turn 1 Trip

• Buy medicine with doctor’s prescription 1 U-Turn 2 Trips

• Buy medicine with doctor’s prescription 2 U-Turns 3 Trips

The diagnosis requires X-Ray

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 109/126

Information Flow Paths and Width of a Graph

• A traversal u → v in an ifp is

◮ Compatible if u is visited before v in the chosen graph traversal
◮ Incompatible if u is visited after v in the chosen graph traversal

• Every incompatible edge traversal requires one additional iteration

• Width of a program flow graph with respect to a data flow framework

Maximum number of incompatible traversals in any ifp, no part of which is
bypassed

• Width + 1 iterations are sufficient to converge on MFP solution

(1 additional iteration may be required for verifying convergence)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 110/126

Complexity of Bidirectional Bit Vector Frameworks

G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
××

× √

√√×

• Every “incompatible” edge traversal
⇒ One additional graph traversal

• Max. Incompatible edge traversals

= Width of the graph = 4

• Maximum number of traversals =

1 + Max. incompatible edge traversals4 = 5

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 111/126

Width Subsumes Depth

• Depth is applicable only to unidirectional data flow frameworks

• Width is applicable to both unidirectional and bidirectional frameworks

• For a given graph for a unidirectional bit vector framework,

Width ≤ Depth

Width provides a tighter bound

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 112/126

Comparison Between Width and Depth

• Depth is purely a graph theoretic property whereas width depends on
control flow graph as well as the data framework

• Comparison between width and depth is meaningful only

◮ For unidirectional frameworks
◮ When the direction of traversal for computing width is the natural

direction of traversal

• Since width excludes bypassed path segments, width can be smaller than
depth

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 113/126

Width and Depth

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i + 1

n1

n2

n3

n4

n5

n6

n7

Assuming reverse postorder traversal for
available expressions analysis

• Depth = 2

• Information generation point

n5 kills expression “a + b”

• Information propagation path

n5 → n4 → n6 → n2

No Gen or Kill for “a + b” along
this path

• Width = 2

• What about “j + 1”?

• Not available on entry to the loop

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 114/126

Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with pre-
mature exits

• Depth = 3

• However, any unidirectional bit vector analysis is
guaranteed to converge in 2 + 1 iterations

• ifp 5 → 4 → 6 is bypassed by the edge 5 → 6

• ifp 6 → 3 → 7 is bypassed by the edge 6 → 7

• ifp 7 → 2 → 8 is bypassed by the edge 7 → 8

• For forward unidirectional frameworks, width is 1

• Splitting the bypassing edges and inserting nodes
along those edges increases the width

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 115/126

Work List Based Iterative Algorithm

Directly traverses information flow paths

1 In0 = BI
2 for all j 6= 0 do
3 { Inj = ⊤
4 Add j to LIST
5 }
6 while LIST is not empty do
7 { Let j be the first node in LIST. Remove it from LIST

8 temp =
p∈pred(j)

fp(Inp)

9 if temp 6= Inj then
10 { Inj = temp
11 Add all successors of j to LIST
12 }
13 }

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 116/126

Tutorial Problem

Perform work list based iterative analysis for earlier examples. Assume that the
work list follows FIFO (First in First Out) policy

Show the trace of the analysis in the following format:

Step Node Remaining work list
Out

Change?
Node

Resulting work list
DFV Added

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 117/126

Tutorial Problem for Work List Based Analysis

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i = i + 1

n1

n2

n3

n4

n5

n6

n7

For available expressions analysis

• Round robin method needs
3+1 iterations

Total number of nodes
processed = 7× 4 = 28

• We illustrate work list
method for expression a+ b

(other expressions are
unavailable in the first
iteration because of BI)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 118/126

Tutorial Problem for Work List Based Analysis

Step Node Remaining work list
Out

Change?
Node

Resulting work list
DFV Added

1 n1 n2, n3, n4, n5, n6, n7 1 No n2, n3, n4, n5, n6, n7
2 n2 n3, n4, n5, n6, n7 1 No n3, n4, n5, n6, n7
3 n3 n4, n5, n6, n7 1 No n4, n5, n6, n7
4 n4 n5, n6, n7 1 No n5, n6, n7
5 n5 n6, n7 0 Yes n4 n6, n7, n4
6 n6 n7, n4 1 No n7, n4
7 n7 n4 1 No n4
8 n4 0 Yes n5, n6 n5, n6
9 n5 n6 0 No n6
10 n6 0 Yes n2 n2
11 n2 0 Yes n3, n7 n3, n7
12 n3 n7 0 Yes n4 n7, n4
13 n7 n4 0 Yes n4
14 n4 0 No Empty ⇒ End

Aug 2017 IIT Bombay

Part 10

Precise Modelling of General Flows

CS 618 DFA Theory: Precise Modelling of General Flows 119/126

Complexity of Constant Propagation?

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Iteration #1

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = 3 4

5 d = 2 5

Iteration #2

1 a = b + 1 1

2 a = b + 1 2

3 b = 4 3

4 c = 3 4

5 d = 2 5

Iteration #3

1 a = 5 1

2 a = 5 2

3 b = 3 3

4 c = 3 4

5 d = 2 5

Iteration #4

Aug 2017 IIT Bombay

Part 11

Extra Topics

CS 618 DFA Theory: Extra Topics 120/126

Tarski’s Fixed Point Theorem

Given monotonic f : L → L where L is a complete lattice

Define
p is a fixed point of f : Fix(f) = {p | f (p) = p}
f is reductive at p : Red(f) = {p | f (p) ⊑ p}
f is extensive at p : Ext(f) = {p | f (p) ⊒ p}

Then

LFP(f) = ⊓Red(f) ∈ Fix(f)
MFP(f) = ⊔Ext(f) ∈ Fix(f)

Guarantees only existence, not computability of fixed points

Aug 2017 IIT Bombay

CS 618 DFA Theory: Extra Topics 121/126

Fixed Points of a Function

⊤

⊥

Red(f)
f n(⊤)

Ext(f)
f n(⊥)

Fix(f)

MFP(f)

LFP(f)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Extra Topics 122/126

Examples of Reductive and Extensive Sets

Finite L Monotonic f : L → L

⊤

v1

v2

v3

v4

⊥

⊤

v1

v2

v3

v4

⊥

Red(f) = {⊤, v3, v4,⊥}
Ext(f) = {⊤, v1, v2,⊥}
Fix(f) = Red(f) ∩ Ext(f)

= {⊤,⊥}
MFP(f) = lub (Ext(f))

= lub (Fix(f))

= ⊤
LFP(f) = glb (Red(f))

= glb (Fix(f))

= ⊥

Aug 2017 IIT Bombay

CS 618 DFA Theory: Extra Topics 123/126

Existence of MFP: Proof of Tarski’s Fixed Point Theorem

Ext(f)

1. Claim 1: Let X ⊆ L.

∀x ∈ X , p ⊒ x ⇒ p ⊒⊔(X).

2. In the following we use Ext(f) as X

Aug 2017 IIT Bombay

CS 618 DFA Theory: Extra Topics 123/126

Existence of MFP: Proof of Tarski’s Fixed Point Theorem

Ext(f)

hi =⊔Ext(f)

1. Claim 1: Let X ⊆ L.

∀x ∈ X , p ⊒ x ⇒ p ⊒⊔(X).

2. In the following we use Ext(f) as X

3. ∀p ∈ Ext(f), hi ⊒ p

Aug 2017 IIT Bombay

CS 618 DFA Theory: Extra Topics 123/126

Existence of MFP: Proof of Tarski’s Fixed Point Theorem

Ext(f)

hi =⊔Ext(f)

f (hi)

1. Claim 1: Let X ⊆ L.

∀x ∈ X , p ⊒ x ⇒ p ⊒⊔(X).

2. In the following we use Ext(f) as X

3. ∀p ∈ Ext(f), hi ⊒ p

4. hi ⊒ p ⇒ f (hi) ⊒ f (p) ⊒ p (monotonicity)
⇒ f (hi) ⊒ hi (claim 1)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Extra Topics 123/126

Existence of MFP: Proof of Tarski’s Fixed Point Theorem

Ext(f)

hi =⊔Ext(f)

f (hi)

1. Claim 1: Let X ⊆ L.

∀x ∈ X , p ⊒ x ⇒ p ⊒⊔(X).

2. In the following we use Ext(f) as X

3. ∀p ∈ Ext(f), hi ⊒ p

4. hi ⊒ p ⇒ f (hi) ⊒ f (p) ⊒ p (monotonicity)
⇒ f (hi) ⊒ hi (claim 1)

5. f is extensive at hi also: hi ∈ Ext(f)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Extra Topics 123/126

Existence of MFP: Proof of Tarski’s Fixed Point Theorem

Ext(f)

hi = f (hi)

1. Claim 1: Let X ⊆ L.

∀x ∈ X , p ⊒ x ⇒ p ⊒⊔(X).

2. In the following we use Ext(f) as X

3. ∀p ∈ Ext(f), hi ⊒ p

4. hi ⊒ p ⇒ f (hi) ⊒ f (p) ⊒ p (monotonicity)
⇒ f (hi) ⊒ hi (claim 1)

5. f is extensive at hi also: hi ∈ Ext(f)

6. f (hi) ⊒ hi ⇒ f 2(hi) ⊒ f (hi)

⇒ f (hi) ∈ Ext(f)

⇒ hi ⊒ f (hi) (from 3)

⇒ hi = f (hi) ⇒ hi ∈ Fix(f)

7. Fix(f) ⊆ Ext(f) (by definition)

⇒ hi ⊒ p, ∀p ∈ Fix(f)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Extra Topics 124/126

Existence and Computation of the Maximum Fixed Point

• For monotonic f : L → L

◮ Existence: MFP(f) =⊔Ext(f) ∈ Fix(f)
Requires L to be complete

◮ Computation: MFP(f) = f k+1(⊤) = f k(⊤) such that
f j+1(⊤) 6= f j(⊤), j < k .
Requires all strictly descending chains to be finite

• Finite strictly descending and ascending chains

⇒ Completeness of lattice

• Completeness of lattice 6⇒ Finite strictly descending chains

• ⇒ Even if MFP exists, it may not be reachable unless all strictly descend-
ing chains are finite

Aug 2017 IIT Bombay

CS 618 DFA Theory: Extra Topics 125/126

Framework Properties Influencing Complexity

Depends on the loop closure properties of the framework

k-Bounded Frameworks

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ . . . ⊓ f k−1(x)

Necessary
and

sufficient

Fast Frameworks (k = 2)

f 2(x) ⊒ f (x) ⊓ x

Rapid Frameworks

f 2(x) ⊒ f (x)

Necessary
but not
sufficient

Bit Vector Frameworks
f 2(x) = f (x)

Aug 2017 IIT Bombay

CS 618 DFA Theory: Extra Topics 126/126

Complexity of Round Robin Iterative Algorithm

• Unidirectional rapid frameworks

Task
Number of iterations

Irreducible G Reducible G

Initialisation 1 1
Convergence

d(G ,T) + 1 d(G ,T)
(until change remains true)
Verifying convergence 1 1
(change becomes false)

Aug 2017 IIT Bombay

