General Data Flow Frameworks	
Uday Khedker (www.cse.iitb.ac.in/~uday)	Part 1
Department of Computer Science and Engineering, Indian Institute of Technology, Bombay	About These Slides
September 2017	

CS 618	General Frameworks: About These Slides	1/178	CS 618	General Frameworks: Outline	2/178
	Copyright			Outline	
These slides IIT Bombay the book:	constitute the lecture notes for CS618 Program Analysis cou and have been made available as teaching material accompa	rse at nying			
• Uday K	hedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow		 Modelling 	General Flows	
Analysi: 2009.	s: Theory and Practice. CRC Press (Taylor and Francis Grou	p).	Constant I	Propagation	
(Indian	edition published by Ane Books in 2013)		 Strongly L 	ive Variables Analysis	(after mid-sem)
Apart from t	he above book, some slides are based on the material from t	he	 Pointer Ar 	nalyses	(after mid-sem)
following boo	bk		 Heap Refe 	rence Analysis	(after mid-sem)
• M. S. H North-H	lecht. <i>Flow Analysis of Computer Programs</i> . Elsevier Iolland Inc. 1977.				
These slides academic or	are being made available under GNU FDL v1.2 or later purel research use.	ly for			
Sep 2017	IIT Bon	nbay 🎬	Sep 2017		IIT Bombay

- $f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap f^4(x) \sqcap \dots$
- f^* is called the loop closure of f.

CS 618	General Framewo	rks: Constant Propa	gation	30/178				
	Conditional Co	nstant Prop	agation					
	Iteration $#1$	Changes in $\#2$	Changes in $#3$					
Inn	$R,\langle\hat{T},\hat{T},\hat{T},\hat{T},\hat{T},\hat{T},\hat{T},\hat{T}\rangle$							
Out _{n1}	$R, \langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\bot}, \widehat{\top} \rangle$							
In _{n2}	$R,\langle \widehat{\top},\widehat{\top},\widehat{\top},\widehat{\top},\widehat{\top},\widehat{\bot},\widehat{\top},\widehat{\top}\rangle$							
Out _{n2}	$R,\langle 7,2,\widehat{\top},\widehat{\top},\widehat{\bot},\widehat{\bot}\rangle$							
In _{n3}	$R,\langle 7,2,\widehat{\top},\widehat{\uparrow},\widehat{\bot},\widehat{\bot},\widehat{\bot}\rangle$	$R, \langle \widehat{\perp}, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle \widehat{\perp}, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$				Devis 4	
Out _{n3}	$R, \langle 2, 2, \top, \top, \bot, \bot \rangle$	$R, \langle 2, 2, \top, 3, \bot, \bot \rangle$	$R, \langle 2, 2, 6, 3, \bot, \bot \rangle$				Part 4	
In _{n4}	$R, \langle 2, 2, \top, \top, \bot, \bot \rangle$	$R, \langle 2, 2, \top, 3, \bot, \bot \rangle$	$R, \langle 2, 2, 6, 3, \bot, \bot \rangle$					
Out _{n4}	$R, \langle 2, \top, \top, \top, \bot, \bot \rangle$	$R,\langle 2, op, op, 3, op, op angle$	$R,\langle 2,7,6,3,\perp,\perp\rangle$			~ .		
	$N, \top = \langle \top, \top, \top, \top, \top, \top, \top \rangle$					Strongly	I ive Variables	s Analysis
Out _{ns}	$N, I = \langle I, I, I, I, I, I \rangle$					ett engly		, , marysis
In _{n6}	$R, \langle 2, 2, 1, 1, \pm, \pm \rangle$	$R, \langle 2, 2, 1, 3, \pm, \pm \rangle$	$R, \langle 2, 2, 0, 3, \bot, \bot \rangle$					
	$\frac{(1, \langle 2, 2, 1, 1, 1, \pm, \pm \rangle}{R / 2 2 \widehat{\tau} \widehat{\tau} \widehat{\tau} \widehat{\tau}}$	$\begin{array}{c} n, \langle 2, 2, 1, 3, \pm, \pm \rangle \\ R \langle 2, 2, \widehat{+}, 3, \widehat{+}, \widehat{+} \rangle \end{array}$	$\frac{1}{R} \frac{1}{2} \frac{2}{2} \frac{2}{6} \frac{3}{2} \frac{1}{1} \frac{1}{1}$					
	$\frac{R}{2} \frac{2}{2} \hat{\tau} \hat{\tau} \hat{\tau} \hat{\tau} \hat{\tau}$	$\frac{R}{2263}$	$n, \langle 2, 2, 0, 3, \pm, \pm \rangle$					
In_	$R, \langle 2, 2, \widehat{\uparrow}, \widehat{\uparrow}, \widehat{\uparrow}, \widehat{\downarrow}, \widehat{\downarrow} \rangle$	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{1}, \widehat{1} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{1}, \widehat{1} \rangle$					
Outra	$R, \langle 2, 2, \widehat{\top}, 4, \widehat{1}, \widehat{1} \rangle$, (2, 2,, 0, ±, ±/	$R, \langle 2, 2, 6, 4, \widehat{\downarrow}, \widehat{\downarrow} \rangle$					
	$R, \langle 2, 2, \widehat{\uparrow}, 4, \widehat{\bot}, \widehat{\bot} \rangle$	$R, \langle 2, 2, 6, \widehat{\perp}, \widehat{\perp}, \widehat{\perp} \rangle$, (=, =, =, •, •, ±, ±/					
Outno	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\bot}, \widehat{\bot} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$						
In _{n10}	$R,\langle 7,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}\rangle$	$R, \langle \hat{\perp}, 2, \hat{\top}, 3, \hat{\perp}, \hat{\perp} \rangle$	$R, \langle \widehat{\perp}, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$					
$Out_{n_{10}}$	$R,\langle 7,2,\widehat{\top},\widehat{\top},9,\widehat{\bot}\rangle$	$R,\langle \widehat{\perp},2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}\rangle$	$R, \langle \widehat{\perp}, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$					
				S attracts				
0.0017								
Sep 2017			IIT	Bombay				
CS 618	General Frameworks:	Strongly Live Variab	es Analysis	31/178	CS 618	General	Frameworks: Strongly Live Variable	es Analysis 32/178
	Strongly Live	Variables A	nalysis		Understanding Strong Liveness			eness
 A variable i it is u: (same it is u: strong (differ Killing: An (this is sam Generation: (this is differ 	s strongly live if sed in a statement o as simple liveness) sed in an assignment gly live ent from simple liver assignment stateme as killing in simple A direct use or a us erent from generatio	ther than assign : statement defin ness) nt, an input stat : liveness) se for defining v n in simple liven	ment statement, w ning a variable that eement, or BI alues that are stro ess)	or at is ongly live	Simple Liveness $\{x\}$ $\{x\}$ $\{x\}$ \emptyset	Strong Liveness $\downarrow \{x\}$ = x $\downarrow \{x\}$ nt(x) $\downarrow \emptyset$ Same	Simple LivenessStrong Liveness $\{x\}$ $\{x\}$ $\{y\}$ $\{x\}$ $\{y\}$ $\{y\}$ $\{y\}$ $\{y\}$ \emptyset \emptyset Same	Simple LivenessStrong Liveness $\{z, x\}$ $\{z\}$ $\{z, x\}$ $\{z\}$ $\{z\}$ $\{z\}$ $\{z\}$ $\{z\}$ \emptyset \emptyset \emptyset \emptyset Different
Sep 2017			ШТ	Bombay	Sep 2017			IIT Bombay

IIT Bomba

CS 618

General Frameworks: Pointer Analyses

Andersen's Points-to Sets Steensgaard's Points-to Sets

 $P_x \supseteq \{y\}$

Unify PTS(x, y)

Unify(y, z) for some $z \in P_x$

 $\forall z \in P_v, Unify PTS(x, z)$

 $\forall z \in P_x$, UnifyPTS(y, z)

Andersen's and Steensgaard's Points-to Analysis

62/178 CS 618

General Frameworks: Pointer Analyses

62/178

IIT Bom

Equality

IIT Bomba

Andersen's and Steensgaard's Points-to Analysis

Statement Andersen's Points-to Sets		Steensgaard's Points-to Sets		
$x = \& y \qquad P_x \supseteq \{y\}$		$P_x \supseteq \{y\}$ $Unify(y, z) \text{ for some } z \in P_x$		
$x = y \qquad P_x \supseteq P_y$		UnifyPTS(x, y)		
$x = *y \qquad P_x \supseteq P_z, \ \forall z \in P_y$		$\forall z \in P_y, Unify PTS(x, z)$		
$x = y \qquad P_z \supseteq P_y, \ \forall z \in P_x$		$\forall z \in P_x, \ Unify PTS(y, z)$		

Andersen's view

- x points to pointees of pointees of y
- Include the pointees of pointees of y in the points-to set of x

Steensgaard's view

- Equivalence between: Pointees of x and pointees of pointees of y
- Unify points-to sets of x and pointees of y

Sep 2017

CS 618

General Frameworks: Pointer Analyses 62/178 Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets	
x = &y	$P_x \supseteq \{y\}$	$P_x \supseteq \{y\}$ $Unify(y, z)$ for some $z \in P_x$	
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)	
x = *y	$P_x \supseteq P_z, \ \forall z \in P_y$	$\forall z \in P_y, \ Unify PTS(x, z)$	
*x = y	$P_z \supseteq P_y, \ \forall z \in P_x$	$\forall z \in P_x, \ \textit{UnifyPTS}(y, z)$	

Inclusion

Andersen's view

Statement

x = & y

x = y

x = *y

*x = y

• x points to pointees of y

 $P_x \supseteq \{y\}$

 $P_x \supseteq P_y$

 $P_x \supseteq P_z, \forall z \in P_y$

 $P_z \supseteq P_y, \forall z \in P_x$

• Include the pointees of y in the points-to set of x

Steensgaard's view

- Equivalence between: Pointees of x and pointees of y
- Unify points-to sets of x and y

Sep 2017

CS 618	General Frameworks: Pointer Analyses 62/							
	Andersen's and Steensgaard's Points-to Analysis							
	Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets					
	x = &y	$P_x \supseteq \{y\}$	$P_x \supseteq \{y\}$ $Unify(y, z) \text{ for some } z \in P_x$					
	x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)					
	x = *y	$P_x \supseteq P_z, \ \forall z \in P_y$	$\forall z \in P_y, \ Unify PTS(x, z)$					
	*x = y	$(P_z \supseteq P_y, \ \forall z \in P_x)$	$\forall z \in P_x, Unify PTS(y, z)$					

Andersen's view

• Pointees of *x* points to pointees of *y*

• Include the pointees of y in the points-to set of the pointees of x Steensgaard's view

- Equivalence between: Pointees of pointees of x and pointees of y
- Unify points-to sets of pointees of x and y

- Andersen's inclusion based wisdom:
 - Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - Merge multiple successors and maintain a single successor of any node
 - Since a larger number of pointers treated are alike and fewer distinctions are maintained, we get much smaller points-to graphs

• Efficient Union-Find algorithms to merge intersecting subsets

S 618	General Frameworks: Pointer Analyses 78/178	CS 618
	What About Heap Data?	
		Let I
•	Compile time entities, abstract entities, or summarized entities	
•	Three options:	
	 Represent all heap locations by a single abstract heap location Represent all heap locations of a particular type by a single abstract heap location Represent all heap locations allocated at a given memory allocation site by a single abstract heap location 	
•	Summarization: Usually based on the length of pointer expression	
•	Initially, we will restrict ourselves to stack and static data We will later introduce heap using the allocation site based abstraction	

CS 618		General Frame	eworks: Pointer An	alyses	105/178	CS 618		General Frame	eworks: Pointer An	alyses	105/178
		Extractor Fu	nctions for	LFCPA				Extractor Fu	nctions for	LFCPA	
	Unchang	ed from earlier poir	nts-to analysis	Generation of stro	ong liveness		Unchange	ed from earlier poir	nts-to analysis	Generation of st	rong liveness
	V	•	•	<u> </u>	<u> </u>		√	-	<u> </u>	· •	<u>}</u>
	Defn	Kill _n	Pointee _n	Ref_n $Def_n \cap Lout_n \neq \emptyset$	otherwise		Defn	Kill _n	Pointern	$\mathbb{D}ef_n \cap Lout_n \neq 0$) () () () () () () () () () () () () () (
use x	Ø	Ø	Ø	{ <i>x</i> }	{ <i>x</i> }	use x	Ø	0	Ø	<u>{</u> }}	{
x = &a) {x}	{ <i>x</i> }	{a}	Ø	Ø	x = &a	$\{x\}$	{ <i>x</i> }	{a}	Ø	Ø
x = y	{ <i>x</i> }	{ <i>x</i> }	$A\{y\}$	{ <i>y</i> }	Ø	x = y	{x}	{ <i>x</i> }	$A\{y\}$	{ <i>y</i> }	Ø
x = *y	{ <i>x</i> }	{ <i>x</i> }	$A(A\{y\} \cap \mathbf{P})$	$\{y\} \cup A\{y\} \cap \mathbf{P}$	Ø	x = *y	{x}	{ <i>x</i> }	$A(A\{y\} \cap \mathbf{P})$	$\{y\} \cup A\{y\} \cap \mathbf{P}$	Ø
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A){x} \cap \mathbf{P}$	$A\{y\}$	$\{x, y\}$	{ <i>x</i> }	*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A){x} \cap \mathbf{P}$	$A\{y\}$	$\{x, y\}$	{ <i>x</i> }
other	Ø	Ø	Ø	Ø	Ø	other	Ø	Ø	Ø	Ø	Ø
• Re • Re Sep 2017	ef _n , Kill _n , D	ef_n , and $Pointee_n$ a	re defined in te	rms of Ain _n	Bombay	Sep 2017	come live	be live at the read point become	the exit for pointers to ne live	are uncon- liv	ditionally e Bombay
CS 618		General Frame	eworks: Pointer An	alyses	105/178	CS 618		General Frame	eworks: Pointer An	alyses	105/178
		Extractor Fu	nctions for	LFCPA				Extractor Fu	nctions for	LFCPA	
	Unchang √	ed from earlier poir	nts-to analysis	Generation of stro	ong liveness		Unchango √	ed from earlier poir	nts-to analysis	Generation of st	rong liveness
	Defn	Kill _n	Pointeen	$\frac{Ref_n}{Def_n \cap Lout_n \neq \emptyset}$	otherwise		Defn	Kill _n	Pointeen	Ref_n $Def_n \cap Lout_n \neq 0$) otherwise
use x	Ø	Ø	Ø	{ <i>x</i> }	{ <i>x</i> }	use x	Ø	Ø	Ø	{ <i>x</i> }	{ <i>x</i> }
x = &a	$\{x\}$	{ <i>x</i> }	{a}	<u> </u>		x = &a	$\{x\}$	{ <i>x</i> }	{a}	Ø	Ø
x = y	{ <i>x</i> }	{ <i>x</i> }	$A\{y\}$	{ \ \ }	()	x = y	$\{x\}$	{ <i>x</i> }	$A\{y\}$	{ <i>y</i> }	Ø
x = *y	{ <i>x</i> }	{ <i>x</i> }	$A(A\{y\} \cap \mathbf{P})$	$\{y\} \cup A\{y\} \cap \mathbf{P}$	()	x = *y	{ <i>x</i> }	{ <i>x</i> }	$A(A\{y\} \cap \mathbf{P})$	$\{y\}\cup A'\{y\}\cap P$	Ø
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A){x} \cap \mathbf{P}$	$A\{y\}$	$\{x,y\}$	{: <mark>``</mark> }	*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A){x} \cap \mathbf{P}$	$A\{y\}$	$\{\cdot, y\}$	{x}
other	Ø	Ø	Ø	0		other	Ø	Ø	Ø	Ø	Ø
			t	x is unconditionally live		if	<i>y</i> is live defined poi are live	nters			
Sep 2017				IIT	Bombay	Sep 2017				117	Bombay
Jep 2017											

- For convenience, we show complete sweeps of liveness and points-to analysis repeatedly
- This is not required by the computation
- The data flow equations define a single fixed point computation

Sep 2017

Sep 2017

IIT Bombay

IIT Bombay

Sep

Flow Functions for Explicit Liveness Analysis

Let A denote May Aliases at the exit of node n

Statement n	$\operatorname{Gen}_n(X)$	$\operatorname{Kill}_n(X)$
x = y	$\{y \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →∗
x = y.f	$\{y \rightarrow f \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	χ→∗
x.f = y	$\left\{ y \rightarrow \sigma \mid z \rightarrow f \rightarrow \sigma \in X, z \in A(x) \right\}$	$\bigcup_{z \in Must(A)(x)} z \rightarrow f \rightarrow *$
x = new	Ø	<i>x</i> →*
x = null	Ø	<i>x</i> →*
other	Ø	Ø

Flow Functions for Explicit Liveness Analysis

Let A denote May Aliases at the exit of node n

Statement n	$\operatorname{Gen}_n(X)$	$Kill_n(X)$
x = y	$\{y \rightarrow \sigma \mid x \rightarrow \sigma \in A\}$	<i>x</i> →*
x = y.f	$\{y \rightarrow f \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	$\chi \rightarrow *$
x.f = y	$\left\{ y \rightarrow \sigma \mid \boxed{z \rightarrow f \rightarrow \sigma \in X, z \in A(x)} \right\}$	$\bigcup_{z \in Must(A)(x)} z \rightarrow f \rightarrow *$
x = new	0	x ►*
x = null	Ø	<→*
other	Ø	Ø
May link ali	asing for soundness Must li	nk aliasing for precision
		5 T
2017		IIT Bombay

• Unbounded information can be summarized using interesting insights

Contrary to popular perception, heap structure is not arbitrary
 Heap manipulations consist of repeating patterns which bear a close resemblance to program structure

Analysis of heap data is possible despite the fact that the mappings between access expressions and I-values keep changing