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Copyright

These slides constitute the lecture notes for CS618 Program Analysis course at
IIT Bombay and have been made available as teaching material accompanying
the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow
Analysis: Theory and Practice. CRC Press (Taylor and Francis Group).
2009.

(Indian edition published by Ane Books in 2013)

Apart from the above book, some slides are based on the material from the
following book

• M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland Inc. 1977.

These slides are being made available under GNU FDL v1.2 or later purely for

academic or research use.
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Outline

• Modelling General Flows

• Constant Propagation

• Strongly Live Variables Analysis (after mid-sem)

• Pointer Analyses (after mid-sem)

• Heap Reference Analysis (after mid-sem)
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Complexity of Constant Propagation?

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Iteration #1

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = 3 4

5 d = 2 5

Iteration #2

1 a = b + 1 1

2 a = b + 1 2

3 b = 4 3

4 c = 3 4

5 d = 2 5

Iteration #3

1 a = 5 1

2 a = 5 2

3 b = 3 3

4 c = 3 4

5 d = 2 5

Iteration #4
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Loop Closures of Flow Functions

X

p1

X

p2

X
p3

x

f (x)

Paths Terminating at p2 Data Flow Value

p1, p2 x
p1, p2, p3, p2 f (x)
p1, p2, p3, p2, p3, p2 f (f (x)) = f 2(x)
p1, p2, p3, p2, p3, p2, p3, p2 f (f (f (x))) = f 3(x)
. . . . . .

• For static analysis we need to summarize the value at p2 by a value which
is safe after any iteration.

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ f 4(x) ⊓ . . .

• f ∗ is called the loop closure of f .
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Loop Closure Boundedness

• Boundedness of f requires the existence of some k such that

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ . . . ⊓ f k−1(x)

• This follows from the descending chain condition

• For efficiency, we need a constant k that is independent of the size of the
lattice
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Loop Closures in Bit Vector Frameworks

• Flow functions in bit vector frameworks have constant Gen and Kill

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ . . .

f 2(x) = f (Gen ∪ (x − Kill))

= Gen ∪ ((Gen ∪ (x − Kill))− Kill)

= Gen ∪ ((Gen − Kill) ∪ (x − Kill))

= Gen ∪ (Gen − Kill) ∪ (x − Kill)

= Gen ∪ (x − Kill) = f (x)

f ∗(x) = x ⊓ f (x)

• Loop Closures of Bit Vector Frameworks are 2-bounded.

• Intuition: Since Gen and Kill are constant, same things are generated or
killed in every application of f .

Multiple applications of f are not required unless the input value changes.
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Larger Values of Loop Closure Bounds

• Fast Frameworks ≡ 2-bounded frameworks (eg. bit vector frameworks)

Both these conditions must be satisfied

◮ Separability
Data flow values of different entities are independent

◮ Constant or Identity Flow Functions
Flow functions for an entity are either constant or identity

• Non-fast frameworks

At least one of the above conditions is violated
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Separability

f : L → L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

Separable

〈 x̂1, x̂2, . . . , x̂m 〉

f

〈 ŷ1, ŷ 2, . . . , ŷm 〉

Non-Separable

〈 x̂1, x̂2, . . . , x̂m 〉

f

〈 ŷ1, ŷ 2, . . . , ŷm 〉

Example: All bit vector frameworks Example: Constant Propagation
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Separability

f : L → L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

Separable

〈 x̂1, x̂2, . . . , x̂m 〉

ĥ2

〈 ŷ 1, ŷ2, . . . , ŷm 〉

ĥ : L̂ → L̂

Non-Separable

〈 x̂1, x̂2, . . . , x̂m 〉

ĥ2

〈 ŷ 1, ŷ2, . . . , ŷm 〉

ĥ : L → L̂

Example: All bit vector frameworks Example: Constant Propagation
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Separability of Bit Vector Frameworks

• L̂ is {0, 1}, L is {0, 1}m

• ⊓̂ is either boolean AND or boolean OR

• ⊤̂ and ⊥̂ are 0 or 1 depending on ⊓̂.
• ĥ is a bit function and could be one of the following:

Raise Lower Propagate Negate

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

Non-monotonicity
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Larger Values of Loop Closure Bounds

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Composite flow function for the loop is

f (〈va, vb, vc , vd 〉) = 〈vb + 1, vc + 1, vd + 1, 2〉

f is not 2-bounded because:

f (〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈⊤̂, ⊤̂, ⊤̂, 2〉

f 2(〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈⊤̂, ⊤̂, 3, 2〉

f 3(〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈⊤̂, 4, 3, 2〉

f 4(〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈 5, 4, 3, 2〉

f 5(〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈 5, 4, 3, 2〉
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Example of Constant Propagation

n1

a = 1
b = 2

c = a+ b
n1

n2
c = a+ b
d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

MoP

〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉

〈1, 2, 3, ⊤̂〉

〈⊥̂, ⊥̂, 3, 2〉

〈⊥̂, ⊥̂, 3, 2〉

〈⊥̂, ⊥̂, 3, 2〉

〈2, 1, 3, 2〉

MFP

〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉

〈1, 2, 3, ⊤̂〉

〈⊥̂, ⊥̂, 3, ⊥̂〉

〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉

〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉

〈2, 1, 3, ⊥̂〉
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Component Lattice for Integer Constant Propagation

(⊤̂)
undef or ud

−∞ . . . −1−2 0 1 2 . . . ∞

(⊥̂)

nonconst or nc

⊓̂ 〈v , ud〉 〈v , nc〉 〈v , c1〉
〈v , ud〉 〈v , ud〉 〈v , nc〉 〈v , c1〉
〈v , nc〉 〈v , nc〉 〈v , nc〉 〈v , nc〉
〈v , c2〉 〈v , c2〉 〈v , nc〉 If c1 = c2 then 〈v , c1〉 else 〈v , nc〉
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Overall Lattice for Integer Constant Propagation

• Inn/Outn values are mappings Var → L̂ : Inn,Outn ∈ Var → L̂

• Overall lattice L is a set of mappings Var → L̂ : L = Var → L̂

• ⊓ and ⊓̂ get defined by ⊑ and ⊑̂
◮ Partial order is restricted to data flow values of the same variable

Data flow values of different variables are incomparable

(x , v1) ⊑ (y , v2) ⇔ x = y ∧ v1⊑̂v2

OR x 7→ v1 ⊑ y 7→ v2 ⇔ x = y ∧ v1⊑̂v2

◮ For meet operation, we assume that X is a total function
Partial functions are made total by using ⊤̂value

X ⊓ Y =
{
(x , v1⊓̂v2) | (x , v1) ∈ X , (x , v2) ∈ Y

}

OR X ⊓ Y =
{
x 7→ v1⊓̂v2 | x 7→ v1 ∈ X , x 7→ v2 ∈ Y

}
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Notations for Mappings as Data Flow Values

Accessing and manipulating a mapping X ⊆ A → B

• X (a) denotes the image of a ∈ A

X (a) ∈ B

• X [a 7→ v ] changes the image of a in X to v

X [a 7→ v ] = (X − {(a, u) | u ∈ B}) ∪ {(a, v)}
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Defining Data Flow Equations for Constant Propagation

Inn =





BI = {〈y , ud〉 | y ∈ Var} n = Start

p∈pred(n)
Outp otherwise

Outn = fn(Inn)

fn(X ) =





X [y 7→ c] n is y = c , y ∈ Var, c ∈ Const
X [y 7→ nc] n is input(y), y ∈ var
X [y 7→ X (z)] n is y = z , y ∈ Var, z ∈ Var
X [y 7→ eval(e,X )] n is y = e, y ∈ Var, e ∈ Expr
X otherwise

eval(e,X ) =





nc a ∈ Opd(e) ∩ Var,X (a) = nc
ud a ∈ Opd(e) ∩ Var,X (a) = ud
−X (a) e is − a
X (a)⊕ X (b) e is a⊕ b
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Example Program for Constant Propagation

n1 input (e); n1

n2
a = 7; b = 2; f = e;

if (f > 0) n2

n3
a = 2;

if (f ≥ e + 2) n3

n4
b = c + 1;
if (b ≥ 7) n4

n6 if (f ≥ e + 1) n6

n5 f = f + 1; n5

n7 c = d ∗ a; n7n8 d = a+ b; n8

n9
d = a+ 1;
f = f + 1 n9n10 e = a+ b; n10

false

true
false

false
true false

true

true
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Example Program for Constant Propagation

n1 input (e); n1

n2
a = 7; b = 2; f = e;

if (f > 0) n2

n3
a = 2;

if (f ≥ e + 2) n3

n4
b = c + 1;
if (b ≥ 7) n4

n6 if (f ≥ e + 1) n6

n5 f = f + 1; n5

n7 c = d ∗ a; n7n8 d = a+ b; n8

n9
d = a+ 1;
f = f + 1 n9n10 e = a+ b; n10

false

true
false

false
true false

true

true

For readability, we have combined many
statements in a single block. However, con-
stant propagation requires every basic block
to contain a single statement because of the
presence of dependent parts in flow functions.
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Result of Constant Propagation

Iteration #1 Changes in Changes in Changes in
iteration #2 iteration #3 iteration #4

Inn1 ⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊤̂
Outn1 ⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊥̂, ⊤̂
Inn2 ⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊥̂, ⊤̂
Outn2 7, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂
Inn3 7, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ ⊥̂, 2, ⊤̂, 3, ⊥̂, ⊥̂ ⊥̂, 2, 6, 3, ⊥̂, ⊥̂ ⊥̂, ⊥̂, 6, 3, ⊥̂, ⊥̂
Outn3 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Inn4 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Outn4 2, ⊤̂, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, ⊤̂, ⊤̂, 3, ⊥̂, ⊥̂ 2, 7, 6, 3, ⊥̂, ⊥̂
Inn5 2, ⊤̂, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, ⊤̂, ⊤̂, 3, ⊥̂, ⊥̂ 2, 7, 6, 3, ⊥̂, ⊥̂
Outn5 2, ⊤̂, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, ⊤̂, ⊤̂, 3, ⊥̂, ⊥̂ 2, 7, 6, 3, ⊥̂, ⊥̂
Inn6 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Outn6 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Inn7 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Outn7 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Inn8 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Outn8 2, 2, ⊤̂, 4, ⊥̂, ⊥̂ 2, 2, ⊤̂, 4, ⊥̂, ⊥̂ 2, 2, 6, 4, ⊥̂, ⊥̂ 2, ⊥̂, 6, ⊥̂, ⊥̂, ⊥̂
Inn9 2, 2, ⊤̂, 4, ⊥̂, ⊥̂ 2, 2, 6, ⊥̂, ⊥̂, ⊥̂ 2, ⊥̂, 6, ⊥̂, ⊥̂, ⊥̂
Outn9 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Inn10 ⊥̂, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ ⊥̂, 2, ⊤̂, 3, ⊥̂, ⊥̂ ⊥̂, ⊥̂, 6, 3, ⊥̂, ⊥̂
Outn10 ⊥̂, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ ⊥̂, 2, ⊤̂, 3, ⊥̂, ⊥̂ ⊥̂, ⊥̂, 6, 3, ⊥̂, ⊥̂
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Result of Constant Propagation

n1 input (e); n1

n2
a = 7; b = 2; f = e;

if (f > 0) n2

n3
a = 2;

if (f ≥ e + 2) n3

n4
b = c + 1;
if (b ≥ 7) n4

c = 6

n6 if (f ≥ e + 1) n6

n5 f = f + 1; n5

n7 c = d ∗ a; n7

a = 2, d = 3

n8 d = a+ b; n8

a = 2

n9
d = a+ 1;
f = f + 1 n9

a = 2

n10 e = a+ b; n10

false

true
false

false
true false

true

true
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Monotonicity of Constant Propagation

Proof obligation: X1 ⊑ X2 ⇒ fn(X1) ⊑ fn(X2)
where,

fn(X ) =





X [y 7→ c] n is y = c , y ∈ Var, c ∈ Const (C1)
X [y 7→ nc] n is input(y), y ∈ var (C2)
X [y 7→ X (z)] n is y = z , y ∈ Var, z ∈ Var (C3)
X [y 7→ eval(e,X )] n is y = e, y ∈ Var, e ∈ Expr (C4)
X otherwise (C5)

• The proof obligation trivially follows for cases C1, C2, C3, and C5

• For case C4, it requires showing

X1 ⊑ X2 ⇒ eval(e,X1) ⊑ eval(e,X2)

which follows from the definition of eval(e,X )
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Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b
n1

n2
c = a+ b
d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

a = 1, b = 2

a = 2, b = 1

• x = 〈1, 2, 3, ?〉 (Along Outn1 → Inn2)

• y = 〈2, 1, 3, 2〉 (Along Outn3 → Inn2)

• Function application before merging

f (x) ⊓ f (y) = f (〈1, 2, 3, ?〉) ⊓ f (〈2, 1, 3, 2〉)
= 〈1, 2, 3, 2〉 ⊓ 〈2, 1, 3, 2〉
= 〈⊥̂, ⊥̂, 3, 2〉

• Function application after merging

f (x ⊓ y) = f (〈1, 2, 3, ?〉 ⊓ 〈2, 1, 3, 2〉)
= f (〈⊥̂, ⊥̂, 3, 2〉)
= 〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉

• f (x ⊓ y) ⊏ f (x) ⊓ f (y)

Sep 2017 IIT Bombay

CS 618 General Frameworks: Constant Propagation 21/178

Why is Constant Propagation Non-Distributive?

a = 1
b = 2

a = 2
b = 1

c = a+ b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a+ b = 3

• Correct combination.
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Why is Constant Propagation Non-Distributive?

a = 1
b = 2

a = 2
b = 1

c = a+ b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a+ b = 3

• Correct combination.
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Why is Constant Propagation Non-Distributive?

a = 1
b = 2

a = 2
b = 1

c = a+ b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a+ b = 2

• Wrong combination.

• Mutually exclusive information.

• No execution path along which this
information holds.
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Why is Constant Propagation Non-Distributive?

a = 1
b = 2

a = 2
b = 1

c = a+ b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a+ b = 4

• Wrong combination.

• Mutually exclusive information.

• No execution path along which this
information holds.
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Tutorial Problem on Constant Propagation

How many iterations do we need?

n1 a = b n1

n2 a = b n1

n3 d = 2 n1n4 a = b n1

n5 c = d n1n6 a = b n1

n7 b = c n1n8 a = b n1

n10 a = b n10n9 a = b n1

23456
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Tutorial Problem on Constant Propagation

How many iterations do we need?

n1 a = b n1

n2 a = b n1

n3 d = 2 n1n4 a = b n1

n5 c = d n1n6 a = b n1

n7 b = c n1n8 a = b n1

n10 a = b n10n9 a = b n1

23456

• Every back edge occurs only once in the ifp
from n3 to n1 that goes via n5, n7, and n9.

• 5 + 1 iterations for computing data flow values

(+1 iteration to detect convergence)
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Tutorial Problem on Constant Propagation

And now how many iterations do we need?

n1 a = b n1

n2 a = b n1

n3 a = b n1n4 a = b n1

n5 b = c n1n6 a = b n1

n7 c = d n1n8 a = b n1

n10 a = b n10n9 d = 2 n1
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Tutorial Problem on Constant Propagation

And now how many iterations do we need?

n1 a = b n1

n2 a = b n1

n3 a = b n1n4 a = b n1

n5 b = c n1n6 a = b n1

n7 c = d n1n8 a = b n1

n10 a = b n10n9 d = 2 n1

Back edge n10 → n1 needs to be
traversed once each for back edges
n9 → n8, n7 → n6, n5 → n4, and
n3 → n2 (in that order).
⇒ 8 + 1 iterations.
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Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a+ 1 5

7 a = 1 1

Summary flow function:
(data flow value at node 7)

f (〈va, vb, vc〉) = 〈 1 ⊓ (vb + 1),
(vc + 1),
(va + 1)

〉

f 0(⊤) = 〈⊤̂, ⊤̂, ⊤̂〉
f 1(⊤) = 〈1, ⊤̂, ⊤̂〉
f 2(⊤) = 〈1, ⊤̂, 2〉
f 3(⊤) = 〈1, 3, 2〉
f 4(⊤) = 〈⊥̂, 3, 2〉
f 5(⊤) = 〈⊥̂, 3, ⊥̂〉
f 6(⊤) = 〈⊥̂, ⊥̂, ⊥̂〉
f 7(⊤) = 〈⊥̂, ⊥̂, ⊥̂〉
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Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a+ 1 5

7 a = 1 1

f ∗(⊤) =

6

i=0
f i(⊤)
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Boundedness of Constant Propagation

The moral of the story:

• The data flow value of every variable could change twice

• In the worst case, only one change may happen in every step of a function
application

• Maximum number of steps: 2× |Var|

• Boundedness parameter k is (2× |Var|) + 1
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Conditional Constant Propagation

n1 input (e); n1

n2
a = 7; b = 2; f = e;

if (f > 0) n2

n3
a = 2;

if (f ≥ e + 2) n3

n4
b = c + 1;
if (b ≥ 7) n4

n6 if (f ≥ e + 1) n6

n5 f = f + 1; n5

n7 c = d ∗ a; n7n8 d = a+ b; n8

n9
d = a+ 1;
f = f + 1 n9n10 e = a+ b; n10

false

true
false

false
true false

true

true

〈2, 2, ?, ?, x , x〉

〈2, 2, ?, ?, x , x〉

〈2, 2, ?, 4, x , x〉

〈2, 2, ?, 3, x , x+1〉

An execution trace of
the program when the value read

for variable e is some number x ≤ 0
(otherwise the loop will

not be entered)
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Conditional Constant Propagation

n1 input (e); n1

n2
a = 7; b = 2; f = e;

if (f > 0) n2

n3
a = 2;

if (f ≥ e + 2) n3

n4
b = c + 1;
if (b ≥ 7) n4

n6 if (f ≥ e + 1) n6

n5 f = f + 1; n5

n7 c = d ∗ a; n7n8 d = a+ b; n8

n9
d = a+ 1;
f = f + 1 n9n10 e = a+ b; n10

false

true
false

false
true false

true

true

〈2, 2, ?, 3, x , x+1〉

〈2, 2, ?, 3, x , x+1〉

〈2, 2, 6, 3, x , x+2〉

〈2, 2, 6, 3, x , x+1〉

An execution trace of
the program when the value read

for variable e is some number x ≤ 0
(otherwise the loop will

not be entered)

Sep 2017 IIT Bombay

CS 618 General Frameworks: Constant Propagation 26/178

Conditional Constant Propagation

n1 input (e); n1

n2
a = 7; b = 2; f = e;

if (f > 0) n2

n3
a = 2;

if (f ≥ e + 2) n3

n4
b = c + 1;
if (b ≥ 7) n4

n6 if (f ≥ e + 1) n6

n5 f = f + 1; n5

n7 c = d ∗ a; n7n8 d = a+ b; n8

n9
d = a+ 1;
f = f + 1 n9n10 e = a+ b; n10

false

true
false

falsefalse
true false

true

true

〈2, 2, 6, 3, x , x+2〉

〈2, 7, 6, 3, x , x+2〉

An execution trace of
the program when the value read

for variable e is some number x ≤ 0
(otherwise the loop will

not be entered)
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Conditional Constant Propagation

n1 input (e); n1

n2
a = 7; b = 2; f = e;

if (f > 0) n2

n3
a = 2;

if (f ≥ e + 2) n3

n4
b = c + 1;
if (b ≥ 7) n4

n6 if (f ≥ e + 1) n6

n5 f = f + 1; n5

n7 c = d ∗ a; n7n8 d = a+ b; n8

n9
d = a+ 1;
f = f + 1 n9n10 e = a+ b; n10

false

true
false

falsefalse
true false

true

true

〈2, 2, 6, 3, ⊥̂, ⊥̂〉

〈2, 7, 6, , 3, ⊥̂, ⊥̂〉
〈2, 2, 6, 3, ⊥̂, ⊥̂〉

〈2, 2, 6, 4, ⊥̂, ⊥̂〉

〈2, 2, 6, 3, ⊥̂, ⊥̂〉

〈2, 2, 6, 3, ⊥̂, ⊥̂〉

regardless of
the input value of e,

b is constant in the loop
(with value 2) and constant

propagation cannot
discover it

An execution trace of
the program when the value read

for variable e is some number x ≤ 0
(otherwise the loop will

not be entered)
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Lattice for Conditional Constant Propagation

notReachable

reachable

× L̂ × L̂ × . . . × L̂

• Let 〈s,X 〉 denote an augmented data flow value where
s ∈ {reachable, notReachable} and X ∈ L.

• If we can maintain the invariant s = notReachable ⇒ X = ⊤, then the
meet can be defined as

〈s1,X 1〉 ⊓ 〈s2,X 2〉 = 〈s1 ⊓ s2,X 1 ⊓ X 2〉
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Data Flow Equations for Conditional Constant Propagation

Inn =





〈reachable,BI 〉 n is Start

p∈pred(n)
gp→n(Outp) otherwise

Outn =

{
〈reachable, fn(X )〉 Inn = 〈reachable,X 〉
〈notReachable,⊤〉 otherwise

gm→n(s,X ) =

{
〈s,X 〉 label(m → n) ∈ evalCond(m,X )
〈notReachable,⊤〉 otherwise

• label(m → n) is T or F if edge m → n is a conditional branch

Otherwise label(m → n) is T

• evalCond(m,X ) evaluates the condition in block m using the data flow
values in X
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Compile Time Evaluation of Conditions using the Data Flow
Values

evalCond(m,X )

{T ,F} Block m does not have a condition, or

some variable in the condition is ⊥̂ in X

{} No variable in the condition in block m

is ⊥̂ in X , but some variable is ⊤̂ in X

{T} The condition in block m evaluates to
T with the data flow values in X

{F} The condition in block m evaluates to
F with the data flow values in X
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Conditional Constant Propagation

Iteration #1
Changes in Changes in
iteration #2 iteration #3

Inn1 R , 〈⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊤̂〉
Outn1 R , 〈⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊥̂, ⊤̂〉
Inn2 R , 〈⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊥̂, ⊤̂〉
Outn2 R , 〈7, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂〉
Inn3 R , 〈7, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂〉 R , 〈⊥̂, 2, ⊤̂, 3, ⊥̂, ⊥̂〉 R , 〈⊥̂, 2, 6, 3, ⊥̂, ⊥̂〉
Outn3 R , 〈2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂〉 R , 〈2, 2, ⊤̂, 3, ⊥̂, ⊥̂〉 R , 〈2, 2, 6, 3, ⊥̂, ⊥̂〉
Inn4 R , 〈2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂〉 R , 〈2, 2, ⊤̂, 3, ⊥̂, ⊥̂〉 R , 〈2, 2, 6, 3, ⊥̂, ⊥̂〉
Outn4 R , 〈2, ⊤̂, ⊤̂, ⊤̂, ⊥̂, ⊥̂〉 R , 〈2, ⊤̂, ⊤̂, 3, ⊥̂, ⊥̂〉 R , 〈2, 7, 6, 3, ⊥̂, ⊥̂〉
Inn5 N ,⊤ = 〈⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊤̂〉
Outn5 N ,⊤ = 〈⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊤̂〉
Inn6 R , 〈2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂〉 R , 〈2, 2, ⊤̂, 3, ⊥̂, ⊥̂〉 R , 〈2, 2, 6, 3, ⊥̂, ⊥̂〉
Outn6 R , 〈2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂〉 R , 〈2, 2, ⊤̂, 3, ⊥̂, ⊥̂〉 R , 〈2, 2, 6, 3, ⊥̂, ⊥̂〉
Inn7 R , 〈2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂〉 R , 〈2, 2, ⊤̂, 3, ⊥̂, ⊥̂〉 R , 〈2, 2, 6, 3, ⊥̂, ⊥̂〉
Outn7 R , 〈2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂〉 R , 〈2, 2, 6, 3, ⊥̂, ⊥̂〉
Inn8 R , 〈2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂〉 R , 〈2, 2, ⊤̂, 3, ⊥̂, ⊥̂〉 R , 〈2, 2, 6, 3, ⊥̂, ⊥̂〉
Outn8 R , 〈2, 2, ⊤̂, 4, ⊥̂, ⊥̂〉 R , 〈2, 2, 6, 4, ⊥̂, ⊥̂〉
Inn9 R , 〈2, 2, ⊤̂, 4, ⊥̂, ⊥̂〉 R , 〈2, 2, 6, ⊥̂, ⊥̂, ⊥̂〉
Outn9 R , 〈2, 2, ⊤̂, 3, ⊥̂, ⊥̂〉 R , 〈2, 2, 6, 3, ⊥̂, ⊥̂〉
Inn10 R , 〈7, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂〉 R , 〈⊥̂, 2, ⊤̂, 3, ⊥̂, ⊥̂〉 R , 〈⊥̂, ⊥̂, 6, 3, ⊥̂, ⊥̂〉
Outn10 R , 〈7, 2, ⊤̂, ⊤̂, 9, ⊥̂〉 R , 〈⊥̂, 2, ⊤̂, 3, ⊥̂, ⊥̂〉 R , 〈⊥̂, ⊥̂, 6, 3, ⊥̂, ⊥̂〉
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Strongly Live Variables Analysis

• A variable is strongly live if

◮ it is used in a statement other than assignment statement, or
(same as simple liveness)

◮ it is used in an assignment statement defining a variable that is
strongly live
(different from simple liveness)

• Killing: An assignment statement, an input statement, or BI

(this is same as killing in simple liveness)

• Generation: A direct use or a use for defining values that are strongly live

(this is different from generation in simple liveness)
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Understanding Strong Liveness

y = x

print (x)

Strong
Liveness

∅

{x}

{x}

Simple
Liveness

∅

{x}

{x}
y = x

print (y)

Strong
Liveness

∅

{y}

{x}

Simple
Liveness

∅

{x}

{y}
y = x

print (z)

Strong
Liveness

∅

{z}

{z}

Simple
Liveness

∅

{z}

{z , x}

Same Same Different
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Live Variables Analysis: Simple and Strong Liveness

• A variable is live at a program
point if its current value is likely
to be used later

• We want to compute the smallest
set of variables that are live

• Simple liveness considers every
use of a variable as useful

• Strong liveness checks the liveness
of the result before declaring the
operands to be live

• Strong liveness is more precise
than simple liveness

a = 1; b = 2
c = 3; n = 6

B1

if a ≤ n B2

a = a + 1 B3

if a ≤ 11 B4

t1 = a + b
a = t1 + c
print ”Hello”

B5

B6 print ”Hi”

T

F

T

F

∅
∅

∅

{ }

}{

}{a, {a, , n}

{a, , n}
, n}{a,
, n}{a,

, n}{a,
∅

a, b, c///////a, b, c

a, b, c///////a, b, c

b, c////b, c

b, c////b, c

b, c////b, c

b, c////b, c

b, c////b, c

b, c////b, c
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Data Flow Equations for Strongly Live Variables Analysis

Inn = fn(Outn)

Outn =





BI n is End⋃

s∈succ(n)

Ins otherwise

where,

fn(X ) =





(X − {y}) ∪ (Opd(e) ∩Var) n is y = e, e ∈ Expr, y ∈ X y ∈ X

X − {y} n is input(y)
X ∪ {y} n is use(y)
X otherwise

If y is not strongly live, the
assignment is skipped using
the “otherwise” clause

Sep 2017 IIT Bombay

CS 618 General Frameworks: Strongly Live Variables Analysis 35/178

Properties of Strongly Live Variable Analysis

• What is L̂ for strongly live variables analysis?

◮ L̂ = {0, 1}, 1 ⊑ 0

• Is strongly live variables analysis a bit vector framework?

◮ No because data flow equations cannot be defined only in terms of
bit vector operations

• Is strongly live variables analysis a separable framework?

◮ No, because strong liveness of variables occurring in RHS of an
assignment may depend on the variable occurring in LHS

• Is strongly live variables analysis distributive? Monotonic?

◮ Distributive, and hence monotonic
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Distributivity of Strongly Live Variables Analysis (1)

We need to prove that

∀X1,X2 ∈ L, fn(X1 ∪ X2) = fn(X1) ∪ fn(X2)

• Intuitively,

◮ The value does not depend on the argument X
◮ Incomparable results cannot be produced

(A fixed set of variable are excluded or included)

• Formally,

◮ We prove it for input(y), use(y), y = e, and empty statements
independently
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Distributivity of Strongly Live Variables Analysis (2)

• For input(y) statement: fn(X1 ∪ X2) = (X1 ∪ X2)− {y}
= (X1 − {y}) ∪ (X2 − {y})
= fn(X1) ∪ fn(X2)

• For use(y) statement: fn(X1 ∪ X2) = (X1 ∪ X2) ∪ {y}
= (X1 ∪ {y}) ∪ (X2 ∪ {y})
= fn(X1) ∪ fn(X2)

• For empty statement: fn(X1 ∪ X2) = X1 ∪ X2 = fn(X1) ∪ fn(X2)
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Distributivity of Strongly Live Variables Analysis (3)

For y = e statement: Let Y = Opd(e) ∩ Var. There are three cases:

• y ∈ X1, y ∈ X2.

fn(X1 ∪ X2) = ((X1 ∪ X2)− {y}) ∪ Y
= (X1 − {y}) ∪ (X2 − {y}) ∪ Y
= ((X1 − {y}) ∪ Y ) ∪ ((X2 − {y}) ∪ Y )
= fn(X1) ∪ fn(X2)

• y ∈ X1, y 6∈ X2.

fn(X1 ∪ X2) = ((X1 ∪ X2)− {y}) ∪ Y
= ((X1 − {y}) ∪ Y ) ∪ (X2) (∵ y /∈ X2)
= fn(X1) ∪ fn(X2) y /∈ X2 ⇒ fn(X2) is identity

• y 6∈ X1, y 6∈ X2.

fn(X1 ∪ X2) = X1 ∪ X2 = fn(X1) ∪ fn(X2)
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Tutorial Problem for strongly Live Variables Analysis

n1 a = 0 n1

n2 if a ≥ 2 n2

n3 a = b n3 n4 b = c n4

n5 a = a+ 1 n5

n6 print a n6
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Result of Strongly Live Variables Analysis

N
o
d
e Iteration #1 Iteration #2 Iteration #3 Iteration #4

Outn Inn Outn Inn Outn Inn Outn Inn

n6 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
n5 ∅ ∅ {a} {a} {a, b} {a, b} {a, b, c} {a, b, c}
n4 ∅ ∅ {a} {a} {a, b} {a, c} {a, b, c} {a, c}
n3 ∅ ∅ {a} {b} {a, b} {b} {a, b, c} {b, c}
n2 ∅ {a} {a, b} {a, b} {a, b, c} {a, b, c} {a, b, c} {a, b, c}
n1 {a} ∅ {a, b} {b} {a, b, c} {b, c} {a, b, c} {b, c}
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Tutorial Problem: Strongly May-Must Liveness Analysis?

• Instead of viewing liveness information as

◮ a map Var → {0, 1} with the lattice {0, 1},
view it as

◮ a map Var → L̂ where L̂ is the May-Must Lattice

• Write the data flow equations

• Prove that the flow functions are distributive
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An Outline of Pointer Analysis Coverage

• The larger perspective

• Comparing Points-to and Alias information

• Flow Insensitive Points-to Analysis

• Flow Sensitive Points-to Analysis

• Pointer Analyses: An Engineer’s Landscape

• Liveness Based Points-to Analysis

• Generalizations to Heap, Arrays, Pointer Arithmetic, and Unions
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Code Optimization In Presence of Pointers

Program Memory graph at statement 5

1. q = p;
2. while (. . . ) {do {
3. q = q→next;
4. }while (. . . )
5. p→data = r1;
6. print (q→data);
7. p→data = r2;

q

p . . .p next next

• Is p→data live at the exit of line 5? Can we delete line 5?

• We cannot delete line 5 if p and q can be possibly aliased

(while loop or do-while loop with a circular list)

• We can delete line 5 if p and q are definitely not aliased

(do-while loop without a circular list)
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Code Optimization In Presence of Pointers

a = 5

x = &a

b = ∗x

a = 5

x = &a

b = ∗x

a = 5

x = &a

b = 5

Original Program Constant Propagation Constant Propagation
without aliasing with aliasing
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The World of Pointer Analysis

Alias Analysis Pointer Analysis

Alias analysis
of reference
parameters,

fields of unions
array indices

Alias analysis of
data pointers

Points-to
analysis of
data and
function
pointers

Sep 2017 IIT Bombay

CS 618 General Frameworks: Pointer Analyses 46/178

Pointer Analysis Musings

• Pointer analysis collects information about indirect accesses in programs

◮ Enables precise data analysis
◮ Enable precise interprocedural control flow analysis

• Needs to scale to large programs

• Pointer Analysis Musings

◦ Which Pointer Analysis should I Use?

Michael Hind and Anthony Pioli. ISTAA 2000

◦ Pointer Analysis: Haven’t we solved this problem ?

Michael Hind PASTE

yetyet

20012001

◦ 2017 . . .
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The Mathematics of Pointer Analysis

In the most general situation

• Alias analysis is undecidable.

Landi-Ryder [POPL 1991], Landi [LOPLAS 1992],
Ramalingam [TOPLAS 1994]

• Flow insensitive alias analysis is NP-hard

Horwitz [TOPLAS 1997]

• Points-to analysis is undecidable

Chakravarty [POPL 2003]

Adjust your expectations suitably to avoid disappointments!
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The Engineering of Pointer Analysis

So what should we expect? To quote Hind [PASTE 2001]

• “Fortunately many approximations exist”

• “Unfortunately too many approximations exist!”

Engineering of pointer analysis is much more dominant than its science
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Pointer Analysis: Engineering or Science?

• Engineering view. ◮ Build quick approximations
◮ The tyranny of (exclusive) OR!

Precision OR Efficiency?

• Science view. ◮ Build clean abstractions
◮ Can we harness the Genius of AND?

Precision AND Efficiency?

• A distinction between approximation and abstraction is subjective

Our working definition

◮ Abstractions focus on precision and conciseness of modelling
◮ Approximations focus on efficiency and scalability
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An Outline of Pointer Analysis Coverage

• The larger perspective

• Comparing Points-to and Alias information Next Topic

• Flow Insensitive Points-to Analysis

• Flow Sensitive Points-to Analysis

• Pointer Analyses: An Engineer’s Landscape

• Liveness Based Points-to Analysis

• Generalizations to Heap, Arrays, Pointer Arithmetic, and Unions
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Alias Information Vs. Points-to Information

1 x = &a 1

2 b = x 2

a a
x a
b a

“x Points-to a”
denoted x֌a

a a
x a
b a

“x and b are Aliases”
denoted x ⊜ b

Symmetric
and

Reflexive

Neither
Symmetric

Nor Reflexive

• What about transitivity?

◮ Points-to: No.
◮ Alias: Depends.
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Comparing Points-to and Alias Relations (1)

Statement Memory Points-to Aliases

x = &y

x yBefore
(assume)

x yAfter

Existing

New x֌y

Existing

New Direct x ⊜&y

x = y

x y zBefore
(assume)

x y zAfter

Existing y֌z

New x֌z

Existing y ⊜&z

New Direct x ⊜ y

New Indirect x ⊜&z

• Indirect aliases. Substitute a name by its aliases for transitivity

• Derived aliases. Apply indirection operator to aliases (ignored here)

x ⊜ y ⇒ ∗x ⊜ ∗y
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Comparing Points-to and Alias Relations (2)

Statement Memory Points-to Aliases

∗x = y

Before
(assume)

x y z u

After x y z u

Existing
x֌u
y֌z

New u֌z

Existing
x ⊜&u
y ⊜&z

New Direct ∗x ⊜ y

New Indirect
u⊜&z
y ⊜ u
∗x ⊜&z

x = ∗y
x y z uBefore

(assume)

After x y z u

Existing
y֌z

z֌u

New x֌u

Existing
y ⊜&z
z ⊜&u

∗y ⊜&u

New Direct x ⊜ ∗y

New Indirect
x ⊜&u
x ⊜ z

The resulting memories look similar but are different. In the first case we have
u֌z whereas in the second case the arrow direction is opposite (i.e. z֌u).
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Comparing Points-to and Alias Relations (3)

• Points-to information records edges in the memory graph

◮ aliases of the kind x ⊜ &y
x holds the address of y

◮ other aliases can be discovered by composing edges
◮ since addresses are explicated, it can represent only those memory

locations that can be named at compile time

More compact but less general

• Alias information records paths in the memory graph

◮ paths incident on the same node
x and y hold the same address (and the address is left implicit)

◮ since addresses are implicit, it can represent unnamed memory
locations too

◮ if we have x ⊜ y then ∗x ⊜ ∗y is redundant and is not recorded

More general and more complex
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An Outline of Pointer Analysis Coverage

• The larger perspective

• Comparing Points-to and Alias information

• Flow Insensitive Points-to Analysis Next Topic

• Flow Sensitive Points-to Analysis

• Pointer Analyses: An Engineer’s Landscape

• Liveness Based Points-to Analysis

• Generalizations to Heap, Arrays, Pointer Arithmetic, and Unions
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Flow Sensitive Vs. Flow Insensitive Pointer Analysis

• Flow insensitive pointer analysis

◮ Inclusion based: Andersen’s approach
◮ Equality based: Steensgaard’s approach

• Flow sensitive pointer analysis

◮ May points-to analysis
◮ Must points-to analysis

Sep 2017 IIT Bombay

CS 618 General Frameworks: Pointer Analyses 57/178

Flow Insensitivity in Data Flow Analysis

• Assumption: Statements can be executed in any order.

• Instead of computing point-specific data flow information, summary data
flow information is computed.

The summary information is required to be a safe approximation of
point-specific information for each point.

• Killn(X ) component is ignored.

If statement n kills data flow information, there is an alternate path that
excludes n.

The control flow graph is a complete graph
(except for the Start and End nodes)
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Flow Insensitivity in Data Flow Analysis

Assuming that there are no dependent parts in Genn and Killn is ignored

0 f0 0

1 f1 1

2 f2 2 3 f3 3

i fi i

m fm m

Start

0 f0 0 1 f1 1 2 f2 2 3 f3 3 . . . i fi i . . . m fm m

End

Control flow graph Flow insensitive analysis

Function composition is replaced by function confluence
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Examples of Flow Insensitive Analyses

• Type checking/inferencing

(What about interpreted languages?)

• Address taken analysis

Which variables have their addresses taken?

• Side effects analysis

Does a procedure modify a global variable? Reference Parameter?
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Flow Insensitivity in Data Flow Analysis

Assuming Genn(X ) has dependent parts and Killn(X ) is ignored

0 f0 0

1 f1 1

2 f2 2 3 f3 3

i fi i

m fm m

Start

0 f0 0 1 f1 1 2 f2 2 3 f3 3 . . . i fi i . . . m fm m

End

Allows arbitrary compositions of flow functions in any order
⇒ Flow insensitivity
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Flow Insensitivity in Data Flow Analysis

Assuming Genn(X ) has dependent parts and Killn(X ) is ignored

0 f0 0

1 f1 1

2 f2 2 3 f3 3

i fi i

m fm m

Start

0 f0 0 1 f1 1 2 f2 2 3 f3 3 . . . i fi i . . . m fm m

End

In practice, dependent constraints are collected in a global
repository in one pass and then are solved independently

Examples of dependent parts in Gen

• Pointer analysis for statements

x = y , x = ∗y , ∗x = y
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Notation for Andersen’s and Steensgaard’s Points-to
Analysis

• Px denotes the set of pointees of pointer variable x

• Unify (x , y) unifies locations x and y

◮ x and y are treated as equivalent locations
◮ the pointees of the unified locations are also unified transitively

• UnifyPTS(x , y) unifies the pointees of x and y

◮ x and y themselves are not unified
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Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y} Px ⊇ {y}
Unify (y , z) for some z ∈ Px

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz , ∀z ∈ Py ∀z ∈ Py , UnifyPTS(x , z)

∗x = y Pz ⊇ Py , ∀z ∈ Px ∀z ∈ Px , UnifyPTS(y , z)

Andersen’s view

• x points to y

• Include y in the points-to set of x

Steensgaard’s view

• Equivalence between: All pointees of x

• Unify y and pointees of x
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Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y} Px ⊇ {y}
Unify (y , z) for some z ∈ Px

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz , ∀z ∈ Py ∀z ∈ Py , UnifyPTS(x , z)

∗x = y Pz ⊇ Py , ∀z ∈ Px ∀z ∈ Px , UnifyPTS(y , z)

Andersen’s view

• x points to pointees of y

• Include the pointees of y in the points-to set of x

Steensgaard’s view

• Equivalence between: Pointees of x and pointees of y

• Unify points-to sets of x and y
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Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y} Px ⊇ {y}
Unify (y , z) for some z ∈ Px

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz , ∀z ∈ Py ∀z ∈ Py , UnifyPTS(x , z)

∗x = y Pz ⊇ Py , ∀z ∈ Px ∀z ∈ Px , UnifyPTS(y , z)

Andersen’s view

• x points to pointees of pointees of y

• Include the pointees of pointees of y in the points-to set of x

Steensgaard’s view

• Equivalence between: Pointees of x and pointees of pointees of y

• Unify points-to sets of x and pointees of y
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Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y} Px ⊇ {y}
Unify (y , z) for some z ∈ Px

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz , ∀z ∈ Py ∀z ∈ Py , UnifyPTS(x , z)

∗x = y Pz ⊇ Py , ∀z ∈ Px ∀z ∈ Px , UnifyPTS(y , z)

Andersen’s view

• Pointees of x points to pointees of y

• Include the pointees of y in the points-to set of the pointees of x

Steensgaard’s view

• Equivalence between: Pointees of pointees of x and pointees of y

• Unify points-to sets of pointees of x and y
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Andersen’s and Steensgaard’s Points-to Analysis

Statement Andersen’s Points-to Sets Steensgaard’s Points-to Sets

x = &y Px ⊇ {y} Px ⊇ {y}
Unify (y , z) for some z ∈ Px

x = y Px ⊇ Py UnifyPTS(x , y)

x = ∗y Px ⊇ Pz , ∀z ∈ Py ∀z ∈ Py , UnifyPTS(x , z)

∗x = y Pz ⊇ Py , ∀z ∈ Px ∀z ∈ Px , UnifyPTS(y , z)

Inclusion Equality
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Inclusion Based (aka Andersen’s) Points-to Analysis:
Example 1

a = &b

Program

1

c = a2

a = &d3 a = &e4

b = a5

Node Constraint

1 Pa ⊇ {b}
2 Pc ⊇ Pa

3 Pa ⊇ {d}
4 Pa ⊇ {e}
5 Pb ⊇ Pa

Points-to Graph

a

b

c

d

• Since Pa has changed, Pc needs
to be processed again
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Inclusion Based (aka Andersen’s) Points-to Analysis:
Example 1

a = &b

Program

1

c = a2

a = &d3 a = &e4

b = a5

Node Constraint

1 Pa ⊇ {b}
2 Pc ⊇ Pa

3 Pa ⊇ {d}
4 Pa ⊇ {e}
5 Pb ⊇ Pa

Points-to Graph

a

b

c

d

e

• Observe that Pc is processed for the third time

• Order of processing the sets influences
efficiency significantly

• A plethora of heuristics have been proposed
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Inclusion Based (aka Andersen’s) Points-to Analysis:
Example 1

a = &b

Program

1

c = a2

a = &d3 a = &e4

b = a5

Node Constraint

1 Pa ⊇ {b}
2 Pc ⊇ Pa

3 Pa ⊇ {d}
4 Pa ⊇ {e}
5 Pb ⊇ Pa

Points-to Graph

a

b

c

d

e

Actually:

• c does not point to any location in block 1

• a does not point b in block 5

(the method ignores the kill due to 3 and 4)

• b does not point to itself at any time
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Equality Based (aka Steensgaard’s) Points-to Analysis:
Example 1

a = &b

Program

1

c = a2

a = &d3 a = &e4

b = a5

Node Constraint

1
Pa ⊇ {b}
Unify(x , d), x ∈ Pa

2 UnifyPTS(c , a)

3
Pa ⊇ {d}
Unify(x , d), x ∈ Pa

4
Pa ⊇ {e}
Unify(x , e), x ∈ Pa

5 UnifyPTS(b, a)

Points-to Graph

a

c

b
d
e
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Equality Based (aka Steensgaard’s) Points-to Analysis:
Example 1

a = &b

Program

1

c = a2

a = &d3 a = &e4

b = a5

Node Constraint

1
Pa ⊇ {b}
Unify(x , d), x ∈ Pa

2 UnifyPTS(c , a)

3
Pa ⊇ {d}
Unify(x , d), x ∈ Pa

4
Pa ⊇ {e}
Unify(x , e), x ∈ Pa

5 UnifyPTS(b, a)

Points-to Graph

a

c

b
d
e

a

b

d

e

c

• The full blown up points-to graph
has far more edges than in the graph
created by Andersen’s method

• Far more efficient but far less precise
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Comparing Equality and Inclusion Based Analyses (2)

• Andersen’s algorithm is cubic in number of pointers

• Steensgaard’s algorithm is nearly linear in number of pointers

◮ How can it be more efficient by an orders of magnitude?
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Efficiency of Equality Based Approach

Program Andersen’s approach Steensgaard’s approach

a = &b
a = &c
b = &d
b = &c

a

b

c

d

a
b
c
d

• Andersen’s inclusion based wisdom:

◮ Add edges and let the number of successors increase

• Steensgaard’s equality based wisdom:

◮ Merge multiple successors and maintain a single successor of any
node

◮ Since a larger number of pointers treated are alike and fewer
distinctions are maintained, we get much smaller points-to graphs

◮ Efficient Union-Find algorithms to merge intersecting subsets
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Inclusion Based (aka Andersen’s) Points-to Analysis:
Example 2

n1

x = &y
y = &z
z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x
use u
use x

n4

x

Points-to Graph

y z u

Constraints on
Points-to Sets

Px ⊇ {y}
Py ⊇ {z}
Pz ⊇ {u}

∀w ∈ Pz , Pw ⊇ Py

Pz ⊇ Py

Py ⊇ {x}
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Equality Based (aka Steensgaard’s) Points-to Analysis:
Example 2

n1

x = &y
y = &z
z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x
use u
use x

n4

Steensgaard’s Points-to Graph

x y

z u

• Treat all pointees of a
pointer as “equivalent”
locations

• Transitive closure

Pointees of all
equivalent locations
become equivalent

Effective additional
constraints

Unify (x , y)
/* pointees of x */

Unify (x , z)
/* pointees of y */

Unify (x , u)
/* pointees of z */

⇒ x , y , z , u are
equivalent

⇒ Complete graph
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Tutorial Problem for Flow Insensitive Pointer Analysis (1)

Program Inclusion based Equality based

p = &q
r = &s
t = &p
u = p
∗t = r

t

u

r

p

q

s

t

u

r

p

q

s
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Tutorial Problems for Flow Insensitive Pointer Analysis (2)

Compute flow insensitive points-to information using inclusion based method as
well as equality based method

if (. . . )
p = &x;

else
p = &y;

x = &a;
y = &b;
∗p = &c;
∗y = &a;
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Tutorial Problem for Flow Insensitive Pointer Analysis (3)

Compute flow insensitive points-to information using inclusion based method as
well as equality based method

n1 b = &a; n1

n2 c = b; n2

n3 a = &b; n3 n4 a = &c ; n5

n5 a = ∗a; n6

n6 ∗b = c ; n7
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An Outline of Pointer Analysis Coverage

• The larger perspective

• Comparing Points-to and Alias information

• Flow Insensitive Points-to Analysis

• Flow Sensitive Points-to Analysis Next Topic

• Pointer Analyses: An Engineer’s Landscape

• Liveness Based Points-to Analysis

• Generalizations to Heap, Arrays, Pointer Arithmetic, and Unions
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Must Points-to Information

1 x = &a 1

2 x = &b 2 3 x = &b 3

4 x = &b 4

a a
x a
b a

a a
x a
b a
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May Points-to Information

1 x = &a 1

2 x = &b 2 3 x = &b 3

4 x = &b 4

a a
x a
b a

a a
x a
b a
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Must Alias Information

1 x = &a 1

2 b = x 2

3 x = &b 3 4 x = &b 4

5 y = b 5

a a
x a
b a
y a

a a
x a
b a
y a

a a
x a
b a
y a

x ⊜ b and b ⊜ y ⇒ x ⊜ y
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May Alias Information

1 x = &a 1

2 b = &z 2

3 b = x 3 4 y = b 4

5 y = b 5

a a
x a
b a
y a
z a

a a
x a
b a
y a
z a

a a
x a
b a
y a
z a

a a
x a
b a
y a
z a

a a
x a
b a
y a
z a

x ⊜ b and b ⊜ y 6⇒ x ⊜ y
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Strong and Weak Updates

1 x = &a 1

2
y = &b
w = &c 2

3 z = &x 3 4 z = &y 4

5
∗z = &e
∗w = &e 5

Weak update: Modification of x or y due to ∗z in block 5

Strong update: Modification of c due to ∗w in block 5

How is this concept related to May/Must nature of information?
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What About Heap Data?

• Compile time entities, abstract entities, or summarized entities

• Three options:

◮ Represent all heap locations by a single abstract heap location
◮ Represent all heap locations of a particular type by a single abstract

heap location
◮ Represent all heap locations allocated at a given memory allocation

site by a single abstract heap location

• Summarization: Usually based on the length of pointer expression

• Initially, we will restrict ourselves to stack and static data

We will later introduce heap using the allocation site based abstraction
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Lattice for May Points-to Analysis

Let P ⊆ Var be the set of pointers. Assume Var = {p, q} and P = {p}

Product View Mapping view

∅

{(p, p)} {(p, q)}

{(p, p), (p, q)}

Points-to graph as a
list of directed edges

{(p, ∅)}

{(p, {p})} {(p, {q})}

{(p, {p, q})}

Points-to graph as a
list of adjacency lists

Data flow values ⊆ P× Var

Lattice =
(
2P×Var,⊇

)
Data flow values ∈ P → 2Var

Lattice =
(
P → 2Var,⊑map

)
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Lattice for Must Points-to Analysis

Let P ⊆ Var be the set of pointers. Assume Var = {p, q, r} and P = {p}

Mapping View Set View

{
(p, ⊤̂)

}

{(p, p)} {(p, r)}{(p, q)}

{
(p, ⊥̂)

}

⊤̂

p q r

⊥̂

Component
Lattice

{
(p, p), (p, q), (p, r)

}

{(p, p)} {(p, r)}{(p, q)}

∅

Data flow values = P → Var ∪
{
⊤̂, ⊥̂

}

Lattice =
(
2P→Var∪{⊤̂,⊥̂},⊑map

) Restricted subset of P× Var

∩ can be used for ⊓

A pointer can point to at most one location

Sep 2017 IIT Bombay

CS 618 General Frameworks: Pointer Analyses 81/178

Lattice for Combined May-Must Points-to Analysis (1)

• Consider the following abbreviation of the May-Must lattice L̂

Unknown

No Must

May

abbreviated as

un

no mt

my

• For Var = {p, q}, P = {p}, the May-Must points-to lattice is the product

P× Var× L̂

◮ Some elements are prohibited because of the semantics of Must
◮ If we have (p,p,mt) in a data flow value X ∈ P× Var× L̂ , then

◮ we cannot have (p,q,un), (p,q,mt), or (p,q,my) in X
◮ we can only have (p,q,no) in X
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Lattice for Combined May-Must Points-to Analysis (2)

For Var = {p, q}, P = {p}, the May-Must points-to lattice is

{(p,p,un), (p,q,un)}

{(p,p,un),
(p,q,no)}

{(p,p,no),
(p,q,un)}

{(p,p,mt),
(p,q,un)}

{(p,p,un),
(p,q,mt)}

{(p,p,no),
(p,q,no)}

{(p,p,mt),
(p,q,no)}

{(p,p,my ),
(p,q,un)}

{(p,p,un),
(p,q,my )}

{(p,p,no),
(p,q,mt)}

{(p,p,mt),
(p,q,mt)}

{(p,p,my ),
(p,q,no)}

{(p,p,no),
(p,q,my )}

{(p,p,mt),
(p,q,my )}

{(p,p,my ),
(p,q,mt)}

{(p,p,my ),
(p,q,my )}
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Lattice for Combined May-Must Points-to Analysis (2)

For Var = {p, q}, P = {p}, the May-Must points-to lattice is

{(p,p,un), (p,q,un)}

{(p,p,un),
(p,q,no)}

{(p,p,no),
(p,q,un)}

{(p,p,mt),
(p,q,un)}

{(p,p,un),
(p,q,mt)}

{(p,p,no),
(p,q,no)}

{(p,p,mt),
(p,q,no)}

{(p,p,my ),
(p,q,un)}

{(p,p,un),
(p,q,my )}

{(p,p,no),
(p,q,mt)}

{(p,p,mt),
(p,q,mt)}

{(p,p,my ),
(p,q,no)}

{(p,p,no),
(p,q,my )}

{(p,p,mt),
(p,q,my )}

{(p,p,my ),
(p,q,mt)}

{(p,p,my ),
(p,q,my )}

Prohibited

Allowed
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Lattice for Combined May-Must Points-to Analysis (2)

For Var = {p, q}, P = {p}, the May-Must points-to lattice is

{(p,p,un), (p,q,un)}

{(p,p,un),
(p,q,no)}

{(p,p,no),
(p,q,un)}

{(p,p,no),
(p,q,no)}

{(p,p,mt),
(p,q,no)}

{(p,p,my ),
(p,q,un)}

{(p,p,un),
(p,q,my )}

{(p,p,no),
(p,q,mt)}

{(p,p,my ),
(p,q,no)}

{(p,p,no),
(p,q,my )}

{(p,p,my ),
(p,q,my )}
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Lattice for Combined May-Must Points-to Analysis (2)

For Var = {p, q}, P = {p}, the May-Must points-to lattice is

{(p,p,un), (p,q,un)}

{(p,p,un),
(p,q,no)}

{(p,p,no),
(p,q,un)}

{(p,p,no),
(p,q,no)}

{(p,p,mt),
(p,q,no)}

{(p,p,my ),
(p,q,un)}

{(p,p,un),
(p,q,my )}

{(p,p,no),
(p,q,mt)}

{(p,p,my ),
(p,q,no)}

{(p,p,no),
(p,q,my )}

{(p,p,my ),
(p,q,my )}
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May and Must Analysis for Killing Points-to Information (1)

May Points-to Analysis

• (a, b) should be in
MayIn5

Holds along path 1-3-4

• Block 4 should not kill
(a, b)

• Possible if pointee set of
c is ∅ (Use MustIn4)

• However, MayIn4
contains (c , a)

1 a=&b 1

2 c=&a 23 c=d 3

4 ∗c=&e 4

5 ∗c=e 4

Must Points-to Analysis

• (a, b) should not be in
MustIn5

Does not hold along path
1-2-4

• Block 4 should kill (a, b)

• Possible if pointee set of
c is {a} (Use MayIn4)

• However, MustIn4
contains (a, b)

For killing points-to information through indirection,

• Must points-to analysis should identify pointees of c using MayIn4

• May points-to analysis should identify pointees of c using MustIn4
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May and Must Analysis for Killing Points-to Information (2)

• May Points-to analysis should remove a May points-to pair

◮ only if it must be removed along all paths

Kill should remove only strong updates

⇒ should use Must Points-to information

• Must Points-to analysis should remove a Must points-to pair

◮ if it can be removed along any path

Kill should remove all weak updates

⇒ should use May Points-to information
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Discovering Must Points-to Information from May Points-to
Information

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

a ? b ?

c ? e ?

c ?

a b e

c ?

a b e

c a b e

?

• BI. every pointer points to “?”

• Perform usual may points-to
analysis

• Since c has multiple pointees, it
is a MAY relation

• Since a has a single pointee, it
is a MUST relation
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Relevant Algebraic Operations on Relations (1)

• Let P ⊆ Var be the set of pointer variables

• May-points-to information: A =
〈
2P×Var,⊇

〉

• Standard algebraic operations on points-to relations

Given relation R ⊆ P× Var and X ⊆ P,

◮ Relation application R X = {v | u ∈X ∧ (u, v) ∈R}
(Find out the pointees of the pointers contained in X )

◮ Relation restriction (R |X ) R |X = {(u, v) ∈ R | u ∈ X}
(Restrict the relation only to the pointers contained in X by
removing points-to information of other pointers)
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Relevant Algebraic Operations on Relations (2)

Let
Var = {a, b, c , d , e, f , g , ?}
P = {a, b, c , d , e}
R = {(a, b), (a, c), (b, d), (c , e), (c , g), (d , a), (e, ?)}
X = {a, c}

Then,
R X = {v | u ∈X ∧ (u, v) ∈R}

= {b, c , e, g}
R |X = {(u, v) ∈ R | u ∈ X}

= {(a, b), (a, c), (c , e), (c , g)}
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Points-to Analysis Data Flow Equations

Ainn =





Var×{?} n is Startp⋃

p∈pred(n)

Aoutp otherwise

Aoutn =
(
Ainn −

(
Killn × Var

))
∪
(
Defn × Pointeen

)

• Ain/Aout: sets of mAy points-to pairs

• Killn, Defn, and Pointeen are defined in terms of Ainn
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Points-to Analysis Data Flow Equations

Ainn =





Var×{?} n is Startp⋃

p∈pred(n)

Aoutp otherwise

Aoutn =
(
Ainn −

(
Killn × Var

))
∪
(
Defn × Pointeen

)

• Ain/Aout: sets of mAy points-to pairs

• Killn, Defn, and Pointeen are defined in terms of Ainn

Pointers that are
defined (i.e. pointers in
which addresses are

stored)

Pointees (i.e. locations
whose addresses are

stored)

Pointers whose
points-to relations should

be removed
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Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}
x = y {x} {x} A{y}
x = ∗y {x} {x} A(A{y} ∩ P)

∗x = y A{x} ∩ P Must(A){x} ∩ P A{y}
other ∅ ∅ ∅

Values defined in terms of Ainn (denoted A)
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Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}
x = y {x} {x} A{y}
x = ∗y {x} {x} A(A{y} ∩ P)

∗x = y A{x} ∩ P Must(A){x} ∩ P A{y}
other ∅ ∅ ∅

Values defined in terms of Ainn (denoted A)

Pointees of y in
Ainn are the targets of

defined pointers

Sep 2017 IIT Bombay

CS 618 General Frameworks: Pointer Analyses 89/178

Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}
x = y {x} {x} A{y}
x = ∗y {x} {x} A(A{y} ∩ P)

∗x = y A{x} ∩ P Must(A){x} ∩ P A{y}
other ∅ ∅ ∅

Values defined in terms of Ainn (denoted A)

Pointees of those
pointees of y in Ainn which

are pointers
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Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}
x = y {x} {x} A{y}
x = ∗y {x} {x} A(A{y} ∩ P)

∗x = y A{x} ∩ P Must(A){x} ∩ P A{y}
other ∅ ∅ ∅

Values defined in terms of Ainn (denoted A)

Pointees of
x in Ainn receive new

addresses
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Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}
x = y {x} {x} A{y}
x = ∗y {x} {x} A(A{y} ∩ P)

∗x = y A{x} ∩ P Must(A){x} ∩ P A{y}
other ∅ ∅ ∅

Must(R) =
⋃

z∈P

{z} ×
{

{w} R{z} = {w} ∧ w 6= ?

∅ otherwise

Values defined in terms of Ainn (denoted A)Strong update using
must-points-to information

computed from Ainn

Find out
must-pointees of

all pointers
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Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}
x = y {x} {x} A{y}
x = ∗y {x} {x} A(A{y} ∩ P)

∗x = y A{x} ∩ P Must(A){x} ∩ P A{y}
other ∅ ∅ ∅

Must(R) =
⋃

z∈P

{z} ×
{

{w} R{z} = {w} ∧ w 6= ?

∅ otherwise

Values defined in terms of Ainn (denoted A)Strong update using
must-points-to information

computed from Ainn

z has a single pointee
w in must-points-to

relation
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Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}
x = y {x} {x} A{y}
x = ∗y {x} {x} A(A{y} ∩ P)

∗x = y A{x} ∩ P Must(A){x} ∩ P A{y}
other ∅ ∅ ∅

Must(R) =
⋃

z∈P

{z} ×
{

{w} R{z} = {w} ∧ w 6= ?

∅ otherwise

Values defined in terms of Ainn (denoted A)Strong update using
must-points-to information

computed from Ainn

z has no pointee
in must-points-to

relation
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Extractor Functions for Points-to Analysis

Defn Killn Pointeen

use x ∅ ∅ ∅
x = &a {x} {x} {a}
x = y {x} {x} A{y}
x = ∗y {x} {x} A(A{y} ∩ P)

∗x = y A{x} ∩ P Must(A){x} ∩ P A{y}
other ∅ ∅ ∅

Must(R) =
⋃

z∈P

{z} ×
{

{w} R{z} = {w} ∧ w 6= ?

∅ otherwise

Values defined in terms of Ainn (denoted A)

Pointees of y in
Ainn are the targets of

defined pointers
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An Example of Flow Sensitive May Points-to Analysis

n1

x = &y
y = &z
z = &u

n1

Assume that
the program is
type correct

n2 ∗z = y n2 n3 z = y n3

n4 ∗u = &x n4

n5 ∗y = &y n5

x y z u ?

x y z u ?

x y z u ? x y z u ?

x y z u x y z u ?

x y z u ?

Weak Update

x y z u ?

x y z u ?

Strong Update
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Tutorial Problems for Flow Sensitive Pointer Analysis (2)

Compute May and Must points-to information

if (. . . )
p = &x;

else
p = &y;

x = &a;
y = &b;
∗p = &c;
∗y = &a;
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Non-Distributivity of Points-to Analysis

May Points-to Must Points-to

n1 ∗x = y n1

n2 x = &z n2 n3 y = &w n3

n4 ∗x = y n4

n1 ∗x = y n1

n2
b = &c
c = &d n2 n3

b = &e
e = &d n3

n4 a = ∗b n4

z֌w is spurious a֌d is missing
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An Outline of Pointer Analysis Coverage

• The larger perspective

• Comparing Points-to and Alias information

• Flow Insensitive Points-to Analysis

• Flow Sensitive Points-to Analysis

• Pointer Analyses: An Engineer’s Landscape Next Topic

• Liveness Based Points-to Analysis

• Generalizations to Heap, Arrays, Pointer Arithmetic, and Unions
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An Example of Flow Insensitive May Points-to Analysis

n1

x = &y
y = &z
z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x
use u
use x

n4

Andersen’s Points-to Graph

x y z u

Steensgaard’s Points-to Graph

x y

z u
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An Example of Flow Sensitive May Points-to Analysis

n1

x = &y
y = &z
z = &u

n1
For simplicity,
we ignore the
BI with “?”

n2 ∗z = y n2 n3 z = y n3

n4

y = &x
use u
use x

n4

∅

x y z u

x y z u x y z u

x y z u x y z

x y z u

x y z u
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Context Sensitivity in Interprocedural Analysis

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

c d

c d

a b××
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Context Sensitivity in Interprocedural Analysis

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

c d

c d

c d× ×
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Context Sensitivity in Interprocedural Analysis

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

c d

c d

a b c d

We will revisit this concept and
study it in details in the fourth
module (interprocedural data
flow analysis) of the course
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Context Sensitivity in the Presence of Recursion

Starts

Ci

Ri

Ends

call (c)

return (r)

stop
calling (s)

• Paths from Starts to Ends should
constitute a context free language cnsrn

• Many interprocedural analyses treat
cycle of recursion as an SCC and
approximate paths by a regular language
c∗sr∗

• We do not know any practical points-to
analysis that is fully context sensitive

Most context sensitive approaches

◮ either do not consider recursion, or
◮ do not consider recursive pointer

manipulation (e.g. “p = p → n”),
or

◮ are context insensitive in recursion
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Context Sensitivity in the Presence of Recursion

Starts

Ci

Ri

Ends

call (c)

return (r)

stop
calling (s)

• Paths from Starts to Ends should
constitute a context free language cnsrn

• Many interprocedural analyses treat
cycle of recursion as an SCC and
approximate paths by a regular language
c∗sr∗

• We do not know any practical points-to
analysis that is fully context sensitive

Most context sensitive approaches

◮ either do not consider recursion, or
◮ do not consider recursive pointer

manipulation (e.g. “p = p → n”),
or

◮ are context insensitive in recursion

We will revisit this concept and
study it in details in the fourth
module (interprocedural data
flow analysis) of the course

Sep 2017 IIT Bombay



CS 618 General Frameworks: Pointer Analyses 98/178

Pointer Analysis: An Engineer’s Landscape

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity
Increases

FI=

FI⊆

FISSA

FSNoKill

FS

CI CIObjSens CSRecIns CS

Over Crowed Area

Still
Vacant

Data Structures: BDDs, probabilistic
Methods: parallel, on demand, randomized

Refinement: Levelwise, bootstrapping
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Pointer Analysis: An Engineer’s Landscape

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity
Increases

FI=

FI⊆

FISSA

FSNoKill

FS

CI CIObjSens CSRecIns CS

Over Crowed Area

Still
Vacant

Data Structures: BDDs, probabilistic
Methods: parallel, on demand, randomized

Refinement: Levelwise, bootstrapping

That’s the
corner we are trying to

occupy :-)
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An Outline of Pointer Analysis Coverage

• The larger perspective

• Comparing Points-to and Alias information

• Flow Insensitive Points-to Analysis

• Flow Sensitive Points-to Analysis

• Pointer Analyses: An Engineer’s Landscape

• Liveness Based Points-to Analysis Next Topic

• Generalizations to Heap, Arrays, Pointer Arithmetic, and Unions
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Our Motivating Example for FCPA

n1

x = &y
y = &z
z = &u

n1
For simplicity,
we ignore the
BI with “?”

n2 ∗z = y n2 n3 z = y n3

n4

y = &x
use u
use x

n4

∅

x y z u

x y z u x y z u

x y z u x y z

x y z u

x y z u
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yIs All This Information Useful?y

n1

x = &y
y = &z
z = &u

n1
For simplicity,
we ignore the
BI with “?”

n2 ∗z = y n2 n3 z = y n3

n4

y = &x
use u
use x

n4

∅

x y z u

x y z u

x y z u

x y z u

x y z ux y z u

x y z u
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The L and P of LFCPA

Mutual dependence of liveness and points-to information

• Define points-to information only for live pointers

• For pointer indirections, define liveness information using points-to
information
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The F and C of LFCPA

• Use call strings method for full flow and context sensitivity

• Use value contexts for efficient interprocedural analysis

[Khedker-Karkare-CC-2008, Padhye-Khedker-SOAP-2013]
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Use of Strong Liveness

• Simple liveness considers every use of a variable as useful

• Strong liveness checks the liveness of the result before declaring the
operands to be live

• Strong liveness is more precise than simple liveness
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Extractor Functions for LFCPA

Defn Killn Pointeen
Refn

Defn ∩ Loutn 6= ∅ otherwise

use x ∅ ∅ ∅ {x} {x}
x = &a {x} {x} {a} ∅ ∅
x = y {x} {x} A{y} {y} ∅
x = ∗y {x} {x} A(A{y} ∩ P) {y} ∪ A{y} ∩ P ∅
∗x = y A{x} ∩ P Must(A){x} ∩ P A{y} {x , y} {x}
other ∅ ∅ ∅ ∅ ∅

Unchanged from earlier points-to analysis Generation of strong liveness

• Lin/Lout: set of Live pointers, Ain/Aout: sets of mAy points-to pairs

• Refn, Killn, Defn, and Pointeen are defined in terms of Ainn
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Extractor Functions for LFCPA

Defn Killn Pointeen
Refn

Defn ∩ Loutn 6= ∅ otherwise

use x ∅ ∅ ∅ {x} {x}
x = &a {x} {x} {a} ∅ ∅
x = y {x} {x} A{y} {y} ∅
x = ∗y {x} {x} A(A{y} ∩ P) {y} ∪ A{y} ∩ P ∅
∗x = y A{x} ∩ P Must(A){x} ∩ P A{y} {x , y} {x}
other ∅ ∅ ∅ ∅ ∅

Unchanged from earlier points-to analysis Generation of strong liveness

Pointers that
become live

Defined pointers must
be live at the exit for
the read pointers to

become live

Some pointers
are unconditionally

live
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Extractor Functions for LFCPA

Defn Killn Pointeen
Refn

Defn ∩ Loutn 6= ∅ otherwise

use x ∅ ∅ ∅ {x} {x}
x = &a {x} {x} {a} ∅ ∅
x = y {x} {x} A{y} {y} ∅
x = ∗y {x} {x} A(A{y} ∩ P) {y} ∪ A{y} ∩ P ∅
∗x = y A{x} ∩ P Must(A){x} ∩ P A{y} {x , y} {x}
other ∅ ∅ ∅ ∅ ∅

Unchanged from earlier points-to analysis Generation of strong liveness

x is
unconditionally

live
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Extractor Functions for LFCPA

Defn Killn Pointeen
Refn

Defn ∩ Loutn 6= ∅ otherwise

use x ∅ ∅ ∅ {x} {x}
x = &a {x} {x} {a} ∅ ∅
x = y {x} {x} A{y} {y} ∅
x = ∗y {x} {x} A(A{y} ∩ P) {y} ∪ A{y} ∩ P ∅
∗x = y A{x} ∩ P Must(A){x} ∩ P A{y} {x , y} {x}
other ∅ ∅ ∅ ∅ ∅

Unchanged from earlier points-to analysis Generation of strong liveness

y is live
if defined pointers

are live
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Extractor Functions for LFCPA

Defn Killn Pointeen
Refn

Defn ∩ Loutn 6= ∅ otherwise

use x ∅ ∅ ∅ {x} {x}
x = &a {x} {x} {a} ∅ ∅
x = y {x} {x} A{y} {y} ∅
x = ∗y {x} {x} A(A{y} ∩ P) {y} ∪ A{y} ∩ P ∅
∗x = y A{x} ∩ P Must(A){x} ∩ P A{y} {x , y} {x}
other ∅ ∅ ∅ ∅ ∅

Unchanged from earlier points-to analysis Generation of strong liveness

y and its
pointees in Ainn are
live if defined pointers

are live

Sep 2017 IIT Bombay

CS 618 General Frameworks: Pointer Analyses 105/178

Extractor Functions for LFCPA

Defn Killn Pointeen
Refn

Defn ∩ Loutn 6= ∅ otherwise

use x ∅ ∅ ∅ {x} {x}
x = &a {x} {x} {a} ∅ ∅
x = y {x} {x} A{y} {y} ∅
x = ∗y {x} {x} A(A{y} ∩ P) {y} ∪ A{y} ∩ P ∅
∗x = y A{x} ∩ P Must(A){x} ∩ P A{y} {x , y} {x}
other ∅ ∅ ∅ ∅ ∅

Unchanged from earlier points-to analysis Generation of strong liveness

y is live
if defined pointers

are live

x is
unconditionally

live
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Deriving Must Points-to for LFCPA

For ∗x = y , unless the pointees of x are known

• points-to propagation should be blocked

• liveness propagation should be blocked

to ensure monotonicity

Must(R) =
⋃

x∈P

{x} ×





Var R{x} = ∅ ∨ R{x} = {?}
{y} R{x} = {y} ∧ y 6= ?

∅ otherwise
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LFCPA Data Flow Equations

Loutn =





∅ n is Endp⋃

s∈succ(n)

Lins otherwise

Linn =
(
Loutn − Killn

)
∪ Refn

Ainn =





Linn×{?} n is Startp
 ⋃

p∈pred(n)

Aoutp



∣∣∣∣∣∣
Linn

otherwise

Aoutn =

((
Ainn −

(
Killn ×Var

))
∪
(
Defn × Pointeen

))∣∣∣∣
Loutn

• Lin/Lout: set of Live pointers

• Ain/Aout: definitions remain unchanged except for restriction to liveness
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LFCPA Data Flow Equations

Loutn =





∅ n is Endp⋃

s∈succ(n)

Lins otherwise

Linn =
(
Loutn − Killn

)
∪ Refn

Ainn =





Linn×{?} n is Startp
 ⋃

p∈pred(n)

Aoutp



∣∣∣∣∣∣
Linn

otherwise

Aoutn =

((
Ainn −

(
Killn ×Var

))
∪
(
Defn × Pointeen

))∣∣∣∣
Loutn

• Lin/Lout: set of Live pointers

• Ain/Aout: definitions remain unchanged except for restriction to liveness

Refn defined
in terms of Ainn

and Loutn

Killn defined
in terms of Ainn
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LFCPA Data Flow Equations

Loutn =





∅ n is Endp⋃

s∈succ(n)

Lins otherwise

Linn =
(
Loutn − Killn

)
∪ Refn

Ainn =





Linn×{?} n is Startp
 ⋃

p∈pred(n)

Aoutp



∣∣∣∣∣∣
Linn

otherwise

Aoutn =

((
Ainn −

(
Killn ×Var

))
∪
(
Defn × Pointeen

))∣∣∣∣
Loutn

• Lin/Lout: set of Live pointers

• Ain/Aout: definitions remain unchanged except for restriction to liveness

Ainn and Aoutn
are restricted to
Linn and Loutn
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LFCPA Data Flow Equations

Loutn =





∅ n is Endp⋃

s∈succ(n)

Lins otherwise

Linn =
(
Loutn − Killn

)
∪ Refn

Ainn =





Linn×{?} n is Startp
 ⋃

p∈pred(n)

Aoutp



∣∣∣∣∣∣
Linn

otherwise

Aoutn =

((
Ainn −

(
Killn ×Var

))
∪
(
Defn × Pointeen

))∣∣∣∣
Loutn

• Lin/Lout: set of Live pointers

• Ain/Aout: definitions remain unchanged except for restriction to liveness

BI
restricted to
live pointers
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Motivating Example Revisited

• For convenience, we show complete sweeps of liveness and points-to
analysis repeatedly

• This is not required by the computation

• The data flow equations define a single fixed point computation
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First Round of Liveness Analysis and Points-to Analysis

n1

x = &y
y = &z
z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x
use u
use x

n4

{u, x}

{u, x}{u, x}

{z} {u, x}
Strong liveness:
y is not made
live because z
is not live
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First Round of Liveness Analysis and Points-to Analysis

n1

x = &y
y = &z
z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x
use u
use x

n4

L
iv
en
es
s
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{z} {u, x}

{u, x , z}

{u}
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First Round of Liveness Analysis and Points-to Analysis

n1

x = &y
y = &z
z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x
use u
use x

n4

P
o
in
ts
-t
o
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{z} {u, x}

{u, x , z}

{u} u ?

x y z u ?

x y u ?

x y u ?

z u

??

x y u ?
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Second Round of Liveness Analysis and Points-to Analysis

n1

x = &y
y = &z
z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x
use u
use x

n4

L
iv
en
es
s
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{u, x}

{u} u ?

x y u ?

x y u ?

{x , y ,z}

{u, x , y ,z} x y z u ?

z u

x y u ?
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Second Round of Liveness Analysis and Points-to Analysis

n1

x = &y
y = &z
z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x
use u
use x

n4

P
o
in
ts
-t
o
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{u, x}

{u} u ?

x y u ?

x y u ?

{x , y ,z}

{u, x , y ,z} x y z u ?

x y z u

x y z u

x y z u ?
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LFCPA Implementation

• LTO framework of GCC 4.6.0

• Naive prototype implementation

(Points-to sets implemented using linked lists)

• Implemented FCPA without liveness for comparison

• Comparison with GCC’s flow and context insensitive method

• SPEC 2006 benchmarks
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Analysis Time

Program kLoC
Call
Sites

Time in milliseconds
L-FCPA

FCPA GPTA
Liveness Points-to

lbm 0.9 33 0.55 0.52 1.9 5.2
mcf 1.6 29 1.04 0.62 9.5 3.4
libquantum 2.6 258 2.0 1.8 5.6 4.8
bzip2 3.7 233 4.5 4.8 28.1 30.2
parser 7.7 1123 1.2×103 145.6 4.3×105 422.12
sjeng 10.5 678 858.2 99.0 3.2×104 38.1
hmmer 20.6 1292 90.0 62.9 2.9×105 246.3
h264ref 36.0 1992 2.2×105 2.0×105 ? 4.3×103
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Unique Points-to Pairs

Program kLoC
Call
Sites

Unique points-to pairs

L-FCPA FCPA GPTA

lbm 0.9 33 12 507 1911
mcf 1.6 29 41 367 2159
libquantum 2.6 258 49 119 2701

bzip2 3.7 233 60 210 8.8×104

parser 7.7 1123 531 4196 1.9×104

sjeng 10.5 678 267 818 1.1×104

hmmer 20.6 1292 232 5805 1.9×106

h264ref 36.0 1992 1683 ? 1.6×107
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Points-to Information is Small and Sparse
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LFCPA Observations

• Usable pointer information is very small and sparse

• Data flow propagation in real programs seems to involve only a small
subset of all possible data flow values

• Earlier approaches reported inefficiency and non-scalability because they
computed far more information than the actual usable information
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LFCPA Conclusions

• Building quick approximations and compromising on precision may not be
necessary for efficiency

• Building clean abstractions to separate the necessary information from
redundant information is much more significant

Our experience of points-to analysis shows that

◮ Use of liveness reduced the pointer information . . .
◮ which reduced the number of contexts required . . .
◮ which reduced the liveness and pointer information . . .

• Approximations should come after building abstractions rather than before
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LFCPA Lessons: The Larger Perspective

exhaustive
computation

computation
restricted
to usable
information

incremental
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed? Client
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LFCPA Lessons: The Larger Perspective

exhaustive
computation

computation
restricted
to usable
information

incremental
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed? Algorithm, Data Structure
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LFCPA Lessons: The Larger Perspective

exhaustive
computation

computation
restricted
to usable
information

incremental
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed? Algorithm, Data Structure

Avoid computing some values because

• they have been computed before, or

• they can just be “adjusted”, or

• they are equivalent to some other values

E.g. Value based termination of call strings,
Work list based methods, BDDs
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LFCPA Lessons: The Larger Perspective

exhaustive
computation

computation
restricted
to usable
information

incremental
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed? Definition of Analysis
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LFCPA Lessons: The Larger Perspective

exhaustive
computation

computation
restricted
to usable
information

incremental
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed? No One!
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LFCPA Lessons: The Larger Perspective

exhaustive
computation

computation
restricted
to usable
information

incremental
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed?
These seem orthogonal
and may be used together
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Tutorial Problems for FCPA and LFCPA

• Perform may points-to analysis by deriving must info using “?” in BI

• Perform liveness based points-to analysis

1 b = &a 1

2 c = b 2

3 a = &b 3 4 a = &c 4

5 a = ∗a 5

6 ∗b = c 6

7 use c 7

y = &z1

z=&w2

x=&u3 x=&v 4

t = ∗y5

∗x = t6

use u7
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An Outline of Pointer Analysis Coverage

• The larger perspective

• Comparing Points-to and Alias information

• Flow Insensitive Points-to Analysis

• Flow Sensitive Points-to Analysis

• Pointer Analyses: An Engineer’s Landscape

• Liveness Based Points-to Analysis

• Generalizations to Heap, Arrays, Pointer Arithmetic, and Unions

Next Topic

Sep 2017 IIT Bombay

CS 618 General Frameworks: Pointer Analyses 120/178

Original LFCPA Formulation

Data flow equations
Lin/Lout, Ain/Aout

Extractors for
statements
Def,Kill,Ref,Pointee

Extractors for
pointer expressions
lval , rval , deref , ref

Lattices
2P×Var, 2P

Named locations

Variables Var, Pointers P,
Allocation Sites H ,
Fields F , pF , npF ,
Offsets C
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Formulating Generalizations in LFCPA

Data flow equations
Lin/Lout, Ain/Aout

Extractors for
statements
Def,Kill,Ref,Pointee

Extractors for
pointer expressions
lval , rval , deref , ref

Lattices
2S×T , 2S

Named locations

Variables Var, Pointers P,
Allocation Sites H ,
Fields F , pF , npF ,
Offsets C
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Generalization for Heap and Structures

• Grammar.

α := malloc | &β | β
β := x | β.f | β → f | ∗β

where α is a pointer expression, x is a variable, and f is a field

• Memory model: Named memory locations. No numeric addresses

S = P ∪ H ∪ Sp (source locations)
T = Var ∪ H ∪ Sm ∪ {?} (target locations)
Sp = R×npF∗× pF (pointers in structures)
Sm = R×npF∗×(pF∪npF ) (other locations in structures)
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Named Locations for Pointer Expressions

typedef struct B

{ ...

struct B *f;

} sB;

typedef struct A

{ ...

struct B g;

} sA;

sA *a;

sB *x, *y, b;

1. a = (sA*) malloc

(sizeof(sA));

2. y = &a->g;

3. b.f = y;

4. x = &b;

5. y.f = &x;

6. return x->f->f;

x

a

y

f
b

g

f

o1

Pointer
Expression

l-value r-value

x x b
x → f b.f o1.g .f
x → f → f o1.g .f b
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L- and R-values of Pointer Expressions

lval(α,A) =





{σ} (α ≡ σ) ∧ (σ ∈ Var)
{σ.f | σ ∈ lval(β,A)} α ≡ β.f

{σ.f | σ ∈ rval(β,A), σ 6=?} α ≡ β → f

{σ | σ ∈ rval(β,A), σ 6=?} α ≡ ∗β
∅ otherwise

rval(α,A) =





lval(β,A) α ≡ &β

{oi} α ≡ malloc ∧ oi = get heap loc()

A(lval(α,A) ∩ S) otherwise
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Defining Extractor Functions

• Pointer assignment statement lhsn = rhsn

Defn = lval(lhsn,Ainn)

Killn = lval (lhsn,Must(Ainn))

Refn =

{
deref (lhsn,Ainn) Defn ∩ Loutn = ∅
deref (lhsn,Ainn) ∪ ref (rhsn,Ainn) otherwise

Pointeen = rval(rhsn,Ainn)

• Use α statement

Defn = Killn = Pointeen = ∅
Refn = ref (α,Ainn)

• Any other statement

Defn = Killn = Refn = Pointeen = ∅
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Extensions for Handling Arrays and Pointer Arithmetic

• Grammar.

α := malloc | &β | β | &β + e
β := x | β.f | β → f | ∗β | β[e] | β + e

• Memory model: Named memory locations. No numeric addresses

◮ No address calculation
◮ R-values of index expressions retained for each dimension

If rval(x) = 10, then lval(a.f [5][2 + x ].g) = a.f .5.12.g
◮ Sizes of the array elements ignored

S = P ∪ H ∪ Gp (source locations)
T = Var ∪ H ∪ Gm ∪ {?} (target locations)
Gp = R×(C ∪ npF )∗ × (C ∪ pF ) (pointers in aggregates)
Gm = R×(C ∪ npF )

∗ × (C ∪ pF ∪ npF ) (locations in aggregates)
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Extending L-Value Computation to Arrays and Pointer
Arithmetic

• Pointer arithmetic does not have an l-value

• For handling arrays

◮ evaluate index expressions using evale and accumulate offsets
◮ if e cannot be evaluated at compile time, evale = ⊥eval

(i.e. array accesses in that dimension are treated as index-insensitive)

lval(α,A) =





{σ} (α ≡ σ) ∧ (σ ∈ Var)
{σ.f | σ ∈ lval(β,A)} α ≡ β.f

{σ.f | σ ∈ rval(β,A), σ 6=?} α ≡ β → f

{σ | σ ∈ rval(β,A), σ 6=?} α ≡ ∗β
{σ.evale | σ ∈ lval(β,A)} α ≡ β[e]

∅ otherwise
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Extending R-Value Computation to Arrays and Pointer
Arithmetic

For handling pointer arithmetic

• If the r-value of the pointer is an array location, add evale to the offset

• Otherwise, over-approximate the pointees to all possible locations

rval(α,A) =





lval(β,A) α ≡ &β

{oi} α ≡ malloc ∧ oi = get heap loc()

T (α ≡ β + e)∧
(∃σ ∈ rval(β,A), σ 6≡ σ′.c , σ′ ∈ T , c ∈ C )⋃

{σ.(c + evale)} (α ≡ β + e)∧
(σ.c ∈ rval(β,A)) ∧ (c ∈ C )

A(lval(α,A) ∩ S) otherwise
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Motivating Example for Heap Liveness Analysis

If the while loop is not executed even once.

1 w = x // x points to ma

2 while (x.data < max)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data

HeapStack

x

z

w

y

a

p

q

b

i

c

f
g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

a

i

m
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Motivating Example for Heap Liveness Analysis

If the while loop is executed once.

1 w = x // x points to ma

2 while (x.data < max)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data

HeapStack

x

z

w

y

a

p

q

b

i

c

f
g

h

d

e

j

m

k

l

n

o

lptr

rp
tr
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r

lptr
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lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

b

f
h
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Motivating Example for Heap Liveness Analysis

If the while loop is executed twice.

1 w = x // x points to ma

2 while (x.data < max)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data

HeapStack

x

z

w

y

a
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i

c

f
g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

c
e
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The Moral of the Story

• Mappings between access expressions and l-values keep changing

• This is a rule for heap data

For stack and static data, it is an exception!

• Static analysis of programs has made significant progress for stack and
static data.

What about heap data?

◮ Given two access expressions at a program point, do they have the
same l-value?

◮ Given the same access expression at two program points, does it have
the same l-value?

Sep 2017 IIT Bombay

CS 618 General Frameworks: Heap Reference Analysis 131/178

Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }
x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null
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Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }
x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

yy

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr
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Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }
x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack
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While loop is executed once
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Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }
x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack
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While loop is executed twice
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Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }
x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack
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Node i is live but link a → i is nullified
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Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }
x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack
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• The memory address that x holds when the
execution reaches a given program point is
not an invariant of program execution

• Whether we dereference lptr out of x or
rptr out of x at a given program point is an
invariant of program execution

• A static analysis can discover only some
invariants
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Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }
x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack
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Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }
x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

Sep 2017 IIT Bombay

CS 618 General Frameworks: Heap Reference Analysis 133/178

Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }
x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

New access expressions are created.
Can they cause exceptions?
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An Overview of Heap Reference Analysis

• A reference (called a link) can be represented by an access path.

Eg. “x → lptr → rptr”

• A link may be accessed in multiple ways

• Setting links to null

◮ Alias Analysis. Identify all possible ways of accessing a link

◮ Liveness Analysis. For each program point, identify “dead” links
(i.e. links which are not accessed after that program point)

◮ Availability and Anticipability Analyses. Dead links should be
reachable for making null assignment.

◮ Code Transformation. Set “dead” links to null
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Assumptions

For simplicity of exposition

• Java model of heap access

◮ Root variables are on stack and represent references to memory in
heap.

◮ Root variables cannot be pointed to by any reference.

• Simple extensions for C++

◮ Root variables can be pointed to by other pointers.

◮ Pointer arithmetic is not handled.
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Key Idea #1 : Access Paths Denote Links

x

z

w

y

a

p

q

b

i

c

f
g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

lptr

rptr

lptr

rptr

lptr

lptr

rptr

lptr

rptr

lptr

a

i

m

b

f
h

• Root variables : x , y , z

• Field names : rptr, lptr

• Access path : x rptr lptr

Semantically, sequence of “links”

• Frontier : name of the last link

• Live access path : If the link
corresponding to its frontier is
used in future
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What Makes a Link Live?

Assuming that a statement must be executed, if nullifying a link read in the
statement can change the semantics of the program, then the link is live.

Reading a link for accessing the contents of the
corresponding target object:

Example
Objects
read

Live access
paths

sum = x .rptr.data x ,O1,O2 x , x rptr
if (x .rptr.data < sum) x ,O1,O2 x , x rptr

Stack

Heap

w x y z

lptr

rptr
data

lptr

rptr

data

lptr

rptr
data

O1

O2

O3
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What Makes a Link Live?

Assuming that a statement must be executed, if nullifying a link read in the
statement can change the semantics of the program, then the link is live.

Reading a link for copying the contents of the
corresponding target object:

Example
Objects
read

Live access
paths

y = x .rptr x ,O1 x , x .rptr

Stack

Heap

w x y z

lptr

rptr
data

lptr

rptr

data

lptr

rptr
data

O1

O2

O3
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What Makes a Link Live?

Assuming that a statement must be executed, if nullifying a link read in the
statement can change the semantics of the program, then the link is live.

Reading a link for copying the contents of the
corresponding target object:

Example
Objects
read

Live access
paths

y = x .rptr x ,O1 x , x .rptr
x .lptr = y x ,O1, y x , y

Stack

Heap

w x y z

lptr

rptr
data

lptr

rptr

data

lptr

rptr
data

O1

O2

O3
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What Makes a Link Live?

Assuming that a statement must be executed, if nullifying a link read in the
statement can change the semantics of the program, then the link is live.

Reading a link for comparing the address of the
corresponding target object:

Example
Objects
read

Live access
paths

if (x .lptr == null) x ,O1 x , x lptr

Stack

Heap

w x y z

lptr

rptr
data

lptr

rptr

data

lptr

rptr
data

O1

O2

O3

Sep 2017 IIT Bombay

CS 618 General Frameworks: Heap Reference Analysis 137/178

What Makes a Link Live?

Assuming that a statement must be executed, if nullifying a link read in the
statement can change the semantics of the program, then the link is live.

Reading a link for comparing the address of the
corresponding target object:

Example
Objects
read

Live access
paths

if (x .lptr == null) x ,O1 x , x lptr
if (y == x .lptr) x ,O1, y x , x lptr, y

Stack

Heap

w x y z

lptr

rptr
data

lptr

rptr

data

lptr

rptr
data

O1

O2

O3
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Liveness Analysis

Statement

Statement

Statement involving
memory references

Statement

Statement

Live Access Paths

Live Access Paths

Effect of the statement on
the access paths

Program Semantic Information
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Key Idea #2 : Transfer of Access Paths

x = x.n

x

r

p qn

s

r

x

p

r

q

s

r

n

. . . = x.r.d

{x , x r}

Analysis

Generated {x , x n, x n r}
Killed {x , x r}

x after the assignment is same
as x n before the assignment
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Key Idea #3 : Liveness Closure Under Link Aliasing

x = y

. . . = x.n.d

x

y

z c

a b

d

n

r

x and y are node aliases

x .n and y .n are link aliases

x n is live ⇒ y n is live

Nullifying y n will have the
side effect of nullifying x n
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Explicit and Implicit Liveness

x = y

. . . = x.n.d

x

y

z c

a b

d

n

r
x n is live ⇒ y n is live

y n is implicitly live
x n is explicitly live
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Key Idea #4: Aliasing is Required with Explicit Liveness

1 x = y 1

2 x.p = t 2

3 y = y.p 3

4 use y.q.d 4

Explicit Liveness

{y , y q}

{y , y p, y p q}

{x , y , y p, y p q }
y

x

t

q

y

x

t

p q

y

x

t

p q

Effect of Aliasing
y p ≡ x p

y p q ≡ x p q

Required Liveness

{y , y q}

{y , y p, y p q}

{x , y , t, t q }

Spurious

Missing
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Key Idea #4: Aliasing is Required with Explicit Liveness

1 x = y 1

2 x.p = t 2

3 y = y.p 3

4 use y.q.d 4

Explicit Liveness

{y , y q}

{y , y p, y p q}

{x , y , y p, y p q }
y

x

t

q

y

x

t

p q

y

x

t

p q

Effect of Aliasing
y p ≡ x p

y p q ≡ x p q

Required Liveness

{y , y q}

{y , y p, y p q}

{x , y , t, t q }

Spurious

Missing

The need of link alias closure of LHS

• Transferring liveness to RHS (soundness)

• Killing liveness (precision)

Link alias closure of RHS can be computed later
for implicit liveness
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Notation for Defining Flow Functions for Explicit Liveness

• Basic entities

◮ Variables u, v ∈ Var
◮ Pointer variables w , x , y , z ∈ P ⊆ Var
◮ Pointer fields f , g , h ∈ pF

◮ Non-pointer fields a, b, c , d ∈ npF

• Additional notation

◮ Sequence of pointer fields σ ∈ pF ∗ (could be ǫ)

◮ Access paths ρ ∈ P× pF ∗

Example: {x , x f , x f g}
◮ Summarized access paths rooted at x or x σ for a given x and σ

◮ x ∗ = {x σ | σ ∈ pF∗}
◮ x σ ∗ = {x σ σ′ | σ′ ∈ pF ∗}
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Data Flow Equations for Explicit Liveness Analysis

Inn =
(
Outn − Killn(Outn)

)
∪ Genn(Outn)

Outn =




BI n is End⋃
s∈succ(n)

Ins otherwise
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Flow Functions for Explicit Liveness Analysis

Let A denote May Aliases at the exit of node n

Statement n Genn(X ) Killn(X )

x = y {y σ | x σ ∈ X} x ∗
x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗
x = null ∅ x ∗
other ∅ ∅
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Flow Functions for Explicit Liveness Analysis

Let A denote May Aliases at the exit of node n

Statement n Genn(X ) Killn(X )

x = y {y σ | x σ ∈ X} x ∗
x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗
x = null ∅ x ∗
other ∅ ∅

May link aliasing for soundness Must link aliasing for precision
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Flow Functions for Explicit Liveness Analysis

Let A denote May Aliases at the exit of node n

Statement n Genn(X ) Killn(X )

x = y {y σ | x σ ∈ X} x ∗
x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗
x = null ∅ x ∗
other ∅ ∅

• Why is y /∈ Genn(X ) for x .f = y when x /∈ X?

If 6 ∃ x ∈ Outn, we can do dead code elimination

• Why is y /∈ Genn(X ) for x = y .f when x σ /∈ X?

If 6 ∃ x σ ∈ Outn, we can do dead code elimination

• Why is x /∈ Genn(X ) for x .f = y?

◮ If 6 ∃ x f σ ∈ Outn, we can do dead code elimination
◮ If ∃ x f σ ∈ Outn, then ∃ x ∈ Outn

It will not be killed, so no need of x ∈ Genn
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Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

{x , x r}

{x , x n, x n r}

y

x
n

r r r

y

x
n

r r r
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Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

{x , x n, x n r}

Anticipability of Heap References: An All Paths problem

{x , x r} ∩ {x , x n, x n r}
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Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

{x}

{x , x n}
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Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

Liveness of Heap References: An Any Path problem

{x , x r} ∪ {x , x n, x n r}

{x , x n, x n n, x n r , x n n r}
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Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

Liveness of Heap References: An Any Path problem

{x , x n, x n r , x n n r , x n · · · n r}

{x , x r , x n, x n r , x n · · · n r}

Infinite Number of Unbounded Access Paths
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Key Idea #5: Using Graphs as Data Flow Values

Analysis x = x .n

. . . = x .r .d
x rr

x n r

n
n r

x n r

n
n r

Finite Number of Bounded Structures
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Key Idea #6 : Include Program Point in Graphs

1 x = x.n

{x , x n, x n n, x n n n, . . .}

Different occurrences of n’s in an access path are

Indistinguishable

(pattern of subsequent dereferences remains same)

Access Graph : x n1 nn

1 x = x.n

2 . . .= x.n.r.d

{x , x n, x n n, x n n r}

Different occurrences of n’s in an access path are

Distinct
(pattern of subsequent dereferences could be distinct)

Access Graph : x n1 n2 r2n n r
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Inclusion of Program Point Facilitates Summarization

1 x = x.r 1

2 x = x.n.d 2 3 x = x.r 3

4 x = x.n.d 4

G4x n4
nG4 x n4

n

G3

x r3 n4
r n

G2

x n4

n2

n
n

G1

x

n2

r3 n4
r n

n

n

Analysis

G1 = G2 ⊎ G3
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Inclusion of Program Point Facilitates Summarization

Analysis 1 x = x .n 1

2 . . . = x .r .d 2

Iteration #1

x r2
r

x r2
r

x n1
n r2

r
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Inclusion of Program Point Facilitates Summarization

Analysis 1 x = x .n 1

2 . . . = x .r .d 2
x r2

r

Iteration #2

x n1
n r2

r

r

x n1
n r2

r

n
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Inclusion of Program Point Facilitates Summarization

Analysis 1 x = x .n 1

2 . . . = x .r .d 2
x r2

r

Iteration #3

x n1
n r2

r

n

x n1
n r2

r

r

n
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Access Graph and Memory Graph

x .l = y .r 1

if (x .l .n == y .r .n) 2

Program Fragment Memory Graph

x

y

l

r

n

Access Graphs

x l2 n2
l n

y r2 n2
r n

• Memory Graph: Nodes represent locations and edges represent
links (i.e. pointers).

• Access Graphs: Nodes represent dereference of links at
particular statements. Memory locations are implicit.
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Lattice of Access Graphs

• Finite number of nodes in an access graph for a variable

• ⊎ induces a partial order on access graphs

⇒ a finite (and hence complete) lattice

⇒ All standard results of classical data flow analysis can be extended to
this analysis.

Termination and boundedness, convergence on MFP, complexity etc.
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Access Graph Operations

• Union. G ⊎ G ′

• Path Removal

G ⊖ R removes those access paths in G which have ρ ∈ R as a prefix

• Factorization (/)

• Extension

Sep 2017 IIT Bombay

CS 618 General Frameworks: Heap Reference Analysis 154/178

Defining Factorization

Given statement x .n = y , what should be the result of transfer?

Live AP Memory Graph Transfer Remainder

x n r x

y

n r
y r

r (LHS is contained in
the live access path)

x n x

y

n r
y

ǫ (LHS is contained in
the live access path)

x x

y

n r
no transfer

?? (LHS is not contained
in the live access path)
Quotient is empty
So no remainder
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Semantics of Access Graph Operations

• P (G) is the set of all paths in graph G

• P (G ,M) is the set of paths in G terminaing on nodes in M

• S is the set of remainder graphs

• P (S) is the set of all paths in all remainder graphs in S

Operation Access Paths

Union G3 = G1 ⊎ G2 P (G3) ⊇ P (G1) ∪ P (G2)

Path Removal G2 = G1 ⊖ X
P (G2) ⊇ P (G1) −
{ρ σ | ρ ∈ X , ρ σ ∈ P (G1)}

Factorization S = G1/ρ P (S) = {σ | ρ σ ∈ P (G1)}

Extension

G2 = (G1,M)# ∅ P (G2) = ∅

G2 = (G1,M)# S
P (G2) ⊇ P (G1) ∪
{ρ σ | ρ ∈ P (G1,M), σ ∈ P (S)}
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Semantics of Access Graph Operations

• P (G) is the set of all paths in graph G

• P (G ,M) is the set of paths in G terminaing on nodes in M

• S is the set of remainder graphs

• P (S) is the set of all paths in all remainder graphs in S

Operation Access Paths

Union G3 = G1 ⊎ G2 P (G3) ⊇ P (G1) ∪ P (G2)

Path Removal G2 = G1 ⊖ X
P (G2) ⊇ P (G1) −
{ρ σ | ρ ∈ X , ρ σ ∈ P (G1)}

Factorization S = G1/ρ P (S) = {σ | ρ σ ∈ P (G1)}

Extension

G2 = (G1,M)# ∅ P (G2) = ∅

G2 = (G1,M)# S
P (G2) ⊇ P (G1) ∪
{ρ σ | ρ ∈ P (G1,M), σ ∈ P (S)}

σ represents remainder
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Access Graph Operations: Examples

Program Access Graphs Remainder
Graphs

1 x = x .l 1

2 y = x .r .d 2

g1
x

g2
x r2

g3
x l1

g4
x l1 r2

g5
x l1 r2

g6
x l1 r2

rg1
r2

rg2
l1 r2

Union Path Removal Factorisation Extension

g3 ⊎ g4= g4
g2 ⊎ g4= g5
g5 ⊎ g4= g5
g5 ⊎ g6= g6

g6 ⊖ {x l}= g2
g5 ⊖ {x}= EG

g4 ⊖ {x r}= g4
g4 ⊖ {x l}= g1

g2/x = {rg1}
g5/x = {rg1, rg2}

g5/x r = {ǫRG}
g4/x r = ∅

(g3, {l1})# {rg1}= g4
(g3, {x , l1})# {rg1, rg2}= g6

(g2, {r2})# {ǫRG}= g2
(g2, {r2})# ∅= EG
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Access Graph Operations: Examples

Program Access Graphs Remainder
Graphs

1 x = x .l 1

2 y = x .r .d 2

g1
x

g2
x r2

g3
x l1

g4
x l1 r2

g5
x l1 r2

g6
x l1 r2

rg1
r2

rg2
l1 r2

Union Path Removal Factorisation Extension

g3 ⊎ g4= g4
g2 ⊎ g4= g5
g5 ⊎ g4= g5
g5 ⊎ g6= g6

g6 ⊖ {x l}= g2
g5 ⊖ {x}= EG

g4 ⊖ {x r}= g4
g4 ⊖ {x l}= g1

g2/x = {rg1}
g5/x = {rg1, rg2}

g5/x r = {ǫRG}
g4/x r = ∅

(g3, {l1})# {rg1}= g4
(g3, {x , l1})# {rg1, rg2}= g6

(g2, {r2})# {ǫRG}= g2
(g2, {r2})# ∅= EG

Remainder is empty Quotient is empty
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Data Flow Equations for Explicit Liveness Analysis: Access
Graphs Version

Inn =
(
Outn ⊖ Killn(Outn)

)
⊎ Genn(Outn)

Outn =




BI n is End⊎
s∈succ(n)

Ins otherwise

• Inn, Outn, and Genn are access graphs

• Killn is a set of access paths
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Flow Functions for Explicit Liveness Analysis: Access Paths
Version

Let A denote May Aliases at the exit of node n

Statement n Genn(X ) Killn(X )

x = y {y σ | x σ ∈ X} x ∗
x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗
x = null ∅ x ∗
other ∅ ∅
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Flow Functions for Explicit Liveness Analysis: Access Paths
Version

Let A denote May Aliases at the exit of node n

Statement n Genn(X ) Killn(X )

x = y {y σ | x σ ∈ X} x ∗
x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗
x = null ∅ x ∗
other ∅ ∅

May link aliasing for soundness Must link aliasing for precision
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Flow Functions for Explicit Liveness Analysis: Access Graphs
Version

• A denotes May Aliases at the exit of node n

• mkGraph(ρ) creates an access graph for access path ρ

Statement n Genn(X ) Killn(X )

x = y mkGraph(y)#(X/x) {x}
x = y .f mkGraph(y f )#(X/x) {x}

x .f = y mkGraph(y)#

( ⋃
z∈A(x)

(X/(z f ))

)
{z f | z ∈ Must(A)(x)}

x = new ∅ {x}
x = null ∅ {x}
other ∅ ∅
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Liveness Analysis of Example Program: Ist Iteration

1 w = x 1

x l4 l6

x l4 l6

2 while (x.data < max) 2

x l4 l6

3 x = x.rptr 3

EG

EG

4 y = x.lptr 4

x l4 l6

5 z = New class of z 5

x y l6

6 y = y.lptr 6

x y l6 z

7 z.sum = x.data + y.data 7

x y z
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Liveness Analysis of Example Program: 2nd Iteration

1 w = x 1

x r3 l4 l6

x r3 l4 l6

2 while (x.data < max) 2

x r3 l4 l6

3 x = x.rptr 3

x r3 l4 l6

x l4 l6

4 y = x.lptr 4

x l4 l6

5 z = New class of z 5

x y l6

6 y = y.lptr 6

x y l6 z

7 z.sum = x.data + y.data 7

x y z
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Liveness Analysis of Example Program: 3rd Iteration

1 w = x 1

x r3 l4 l6

x r3 l4 l6

2 while (x.data < max) 2

x r3 l4 l6

3 x = x.rptr 3

x r3 l4 l6

x r3 l4 l6

4 y = x.lptr 4

x l4 l6

5 z = New class of z 5

x y l6

6 y = y.lptr 6

x y l6 z

7 z.sum = x.data + y.data 7

x y z
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Liveness Analysis of Example Program: 4th Iteration

1 w = x 1

x r3 l4 l6

x r3 l4 l6

2 while (x.data < max) 2

x r3 l4 l6

3 x = x.rptr 3

x r3 l4 l6

x r3 l4 l6

4 y = x.lptr 4

x l4 l6

5 z = New class of z 5

x y l6

6 y = y.lptr 6

x y l6 z

7 z.sum = x.data + y.data 7

x y z
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Tutorial Problem for Explicit Liveness (1)

Construct access graphs at the entry of block 1 for the following programs

A B C

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

D E F

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

4 y = x .r 4

x = x .n1

x = x .n2 x = x .l 3

Use x .r .d4

x = x .n1

x = x .n2 x = x .l 3

y = x .r4

5 Use x .r .d 5
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Tutorial Problem for Explicit Liveness (1)

Construct access graphs at the entry of block 1 for the following programs

A B C

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

D E F

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

4 y = x .r 4

x = x .n1

x = x .n2 x = x .l 3

Use x .r .d4

x = x .n1

x = x .n2 x = x .l 3

y = x .r4

5 Use x .r .d 5

Why are the access
graphs for programs
B and D identical?
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Tutorial Problem for Explicit Liveness (1)

Construct access graphs at the entry of block 1 for the following programs

A B C

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

D E F

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

4 y = x .r 4

x = x .n1

x = x .n2 x = x .l 3

Use x .r .d4

x = x .n1

x = x .n2 x = x .l 3

y = x .r4

5 Use x .r .d 5

The final magic!!

Rotate each picture
anti-clockwise by 90o and
compare it with its access graph

The structure of access graph of
variable x is identical to the
control flow structure between
pointer assignments of x
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Tutorial Problem for Explicit Liveness (2)

• Unfortunately the student who constructed these access graphs forgot to
attach statement numbers as subscripts to node labels and has misplaced
the programs which gave rise to these graphs

• Please help her by constructing CFGs for which these access graphs
represent explicit liveness at some program point in the CFGs

x l l r

r

y
l l

r

r l
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Tutorial Problem for Explicit Liveness (3)

• Compute explicit liveness for the program.

• Are the following access paths live at node 1?
Show the corresponding execution sequence
of statements

P1 : y m l
P2 : y l n m
P3 : y l n l
P4 : y n l n

x = z1

x=y .l2

x .n=y .m3

y=x .n4

use x .d5
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Which Access Paths Can be Nullified?

• Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable)

for each reference field f of the object pointed to by ρ

if ρ f is not live at p then

Insert ρ f = null at p subject to profitability

• For simple access paths, ρ is empty and f is the root variable name.

Can be safely
dereferenced

Consider link
aliases at p

Cannot be hoisted and is
not redefined at p
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Availability and Anticipability Analyses

• ρ is available at program point p if the target of each prefix of ρ is
guaranteed to be created along every control flow path reaching p.

• ρ is anticipable at program point p if the target of each prefix of ρ is
guaranteed to be dereferenced along every control flow path starting at p.

• Finiteness.

◮ An anticipable (available) access path must be anticipable (available)
along every paths. Thus unbounded paths arising out of loops cannot
be anticipable (available).

◮ Due to “every control flow path nature”, computation of anticipable
and available access paths uses ∩ as the confluence. Thus the sets
are bounded.

⇒ No need of access graphs.
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Availability Analysis of Example Program

1 w = x 1

∅

∅

2 while (x.data < max) 2

{x}

3 x = x.rptr 3

{x}

∅
4 y = x.lptr 4

{x}

5 z = New class of z 5

{x}

6 y = y.lptr 6

{x , z}

7 z.sum = x.data + y.data 7

{x , z}

{x , y , z}
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Anticipability Analysis of Example Program

1 w = x 1

{x}

{x}

2 while (x.data < max) 2

{x}

3 x = x.rptr 3

{x , x rptr }

{x}
4 y = x.lptr 4

{x , x lptr, x lptr lptr }

5 z = New class of z 5

{x , y , y lptr }

6 y = y.lptr 6

{x , y , y lptr, z}

7 z.sum = x.data + y.data 7

{x , y , z}

∅
Sep 2017 IIT Bombay
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Live and Accessible Paths

1 w = x 1

x r3 l4 l6

x r3 l4 l6 {x}

{x}

2 while (x.data < max) 2

x r3 l4 l6

{x}

3 x = x.rptr 3

x r3 l4 l6

x r3 l4 l6

{x , x rptr }

{x}

4 y = x.lptr 4

x l4 l6

{x , x lptr, x lptr lptr }

5 z = New class of z 5

x y l6 {x , y , y lptr }

6 y = y.lptr 6

x y l6 z{x , y , y lptr, z}

7 z.sum = x.data + y.data 7

x y z {x , y , z}

{x , y , z}
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Creating null Assignments from Live and Accessible Paths

1 w = x 1

y = z = null

2 while (x.data < max) 2

w = null

3 x = x.rptr 3

x.lptr = null

4 y = x.lptr 4

x.rptr = x.lptr.rptr = null
x.lptr.lptr.lptr = null
x.lptr.lptr.rptr = null

5 z = New class of z 5

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

6 y = y.lptr 6

z.lptr = z.rptr = null

7 z.sum = x.data + y.data 7

y.lptr = y.rptr = null

x = y = z = null
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The Resulting Program

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }
x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null
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Overapproximation Caused by Our Summarization

1 t = x .p 1

2 t.p = new 2

3 x = x .p 3

4 x . . . . 4

x
p1

p3

x p3 t

x p3

xx
p1

p3

• The program allocates x p in one
iteration and uses it in the next
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Overapproximation Caused by Our Summarization

1 t = x .p 1

2 t.p = new 2

3 x = x .p 3

4 x . . . . 4

x
p1

p3

x p3 t

x p3x p3
p1

p3

xx
p1

p3

• The program allocates x p in one
iteration and uses it in the next

• Only x p p is live at Out2
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Overapproximation Caused by Our Summarization

1 t = x .p 1

2 t.p = new 2

3 x = x .p 3

4 x . . . . 4

x
p1

p3

x p3 t

x p3x p3 p1

xx
p1

p3

x

t

p p p

Out1

• The program allocates x p in one
iteration and uses it in the next

• Only x p p is live at Out2

• x p p is live at Out2

x p p p is dead at Out2

• First p used in statement 3

Second p used in statement 4

• Third p is reallocated
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Overapproximation Caused by Our Summarization

1 t = x .p 1

2 t.p = new 2

3 x = x .p 3

4 x . . . . 4

x
p1

p3

x p3 t

x p3x p3 p1

xx
p1

p3

Second occurrence of a dereference
does not necessarily mean an
unbounded number of repetitions!

x

t

p
p

Out2

• The program allocates x p in one
iteration and uses it in the next

• Only x p p is live at Out2

• x p p is live at Out2

x p p p is dead at Out2

• First p used in statement 3

Second p used in statement 4

• Third p is reallocated
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Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8
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Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
x r4

n6 n7

n5
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Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n2
n6 r8

n3
x r4

n6 n7

n5 x
n2

n3

r4
n5

n6
n7

r8

Out1

x r4
n5

n6
n7

r8

f1
(
In2 ⊎ In4

)

remove x n ∗ due to
the assignment in node 1

x r4
n6 n7

n5

f1(In2) ⊎ f1(In4)
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Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n2
n6 r8

n3
x r4

n6 n7

n5 x
n2

n3

r4
n5

n6
n7

r8

Out1

x r4
n5

n6
n7

r8

f1
(
In2 ⊎ In4

)

remove x n ∗ due to
the assignment in node 1

x r4
n6 n7

n5

f1(In2) ⊎ f1(In4)

f1
(
In2 ⊎ In4

)
⊏ f1

(
In2

)
⊎ f1

(
In4

)

Access path x r n r (shown in blue color) is
a spurious access path that arises due to ⊎ and
is not removed by the assignment in node 1.
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Issues Not Covered

• Precision of information

◮ Cyclic Data Structures
◮ Eliminating Redundant null Assignments

• Properties of Data Flow Analysis:

Monotonicity, Boundedness, Complexity

• Interprocedural Analysis

• Extensions for C/C++

• Formulation for functional languages

• Issues that need to be researched: Good alias analysis of heap
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BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Summary
Heap Data

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory
Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

?

ProfilingStatic
Analysis
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Conclusions

• Unbounded information can be summarized using interesting insights

◮ Contrary to popular perception, heap structure is not arbitrary

Heap manipulations consist of repeating patterns which bear a close
resemblance to program structure

Analysis of heap data is possible despite the fact that the mappings
between access expressions and l-values keep changing
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