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Abstract. Precise flow- and context-sensitive pointer analysis (FCPA) is gen-
erally considered prohibitively expensive for large programs; most tools relax
one or both of the requirements for scalability. We argue that precise FCPA has
been over-harshly judged—the vast majority of points-to pairs calculated by ex-
isting algorithms are never used by any client analysis or transformation because
they involve dead variables. We therefore formulate a FCPA in terms of a joint
points-to and liveness analysis which we call L-FCPA. We implemented a naive
L-FCPA in GCC-4.6.0 using linked lists. Evaluation on SPEC2006 showed sig-
nificant increase in the precision of points-to pairs compared to GCC’s analysis.
Interestingly, our naive implementation turned out to be faster than GCC’s anal-
ysis for all programs under 30kLoC. Further, L-FCPA showed that fewer than
4% of basic blocks had more than 8 points-to pairs. We conclude that the usable
points-to information and the required context information is small and sparse
and argue that approximations (e.g. weakening flow or context sensitivity) are
not only undesirable but also unnecessary for performance.

1 Introduction

Interprocedural data flow analysis extends an analysis across procedure boundaries to
incorporate the effect of callers on callees and vice-versa. In order to computeprecise
information, such an analysis requires flow sensitivity (associating different informa-
tion with distinct control flow points) and context sensitivity (computing different in-
formation for different calling contexts). The efficiency and scalability of such an anal-
ysis is a major concern and sacrificing precision for scalability is a common trend be-
cause the size of information could be large. Hence precise flow- and context-sensitive
pointer analysis (FCPA) is considered prohibitively expensive and most methods em-
ploy heuristics that relax one or both of the requirements for efficiency.

We argue that the precision and efficiency in pointer analysis need not conflict and
may actually be synergistic. We demonstrate this by formulating a liveness-based flow-
and context-sensitive points-to analysis (referred to as L-FCPA): points-to information
is computed only for the pointers that are live and the propagation of points-to informa-
tion is restricted to live ranges of respective pointers. Weusestrong liveness to discover
pointers that are directly used or are used in defining pointers that are strongly live. This
includes the effect of dead code elimination and is more precise than simple liveness.

Fig. 1 provides a motivating example. Sincemain printsz, it is live atO12 (exit of
node12) and hence atI12 (entry of node12). Thusw becomes live atO9 and hence at



main()
{ x = &y;

w = &x;
p();
print z;

}
p()
{ if (...)

{ z = w;
p();
z = ∗z;

}
}

Sm 1

x = &y 2

w = &x 3

c1 4

r1 5

print z 6

Em 7

Sp 8

z = w9

c210

r211

z = ∗z12

Ep 13

Let In/On denote the entry/exit point of
noden. Let (a, b) at a program pointu de-
note thata points-tob atu. Then,

– z is live at O9 which makew live at
O3. Hence we should compute(w, x)
in node3 and thereby(z, x) in node9.
This causesx to be live because of∗z
in node12. Hence we should compute
(x, y) in node2 and(z, y) in node12.

– (w, x) and(x, y) should not be propa-
gated to nodes5, 6, 7 becausew, x are
not live in these nodes.

Fig. 1.A motivating example for L-FCPA and its supergraph representation. The solid and dashed
edges represent intraprocedural and interprocedural control flow respectively.

O3 resulting in the points-to pair(w, x) atO3. This pair reachesI9 giving the pair(z, x)
atO9. When this information reachesI12, x becomes live. This liveness is propagated
to O2 giving the pair(x, y). Finally, we get the pair(z, y) atO12. Figures 6 and 7 give
fuller detail of the solution after formulating L-FCPA. Here we highlight the following:

– Use of liveness: points-to pairs are computed only when the pointers becomelive.
– Sparse propagation: pairs(x, y) and(w, x) are not propagated beyond the call top

in main because they are not live.
– Flow sensitivity: points-to information is different for different controlflow points.
– Context sensitivity: (z, x) holds only for the inner call top made from withinp but

not for the outer call top made from the main procedure. Thus in spite ofz being
live at I6, (z, x) is not propagated toI6 but (z, y) is.

We achieve this using a data flow framework (Section 3) that employs an interdependent
formulation for discovering strongly live pointer variables and their pointees. We com-
pute must-points-to information from may-points-to information without fixed-point
computation. Section 4 uses value-based termination of call strings for precise interpro-
cedural analysis without having to compute a prohibitivelylarge number of call strings.
Section 5 discusses how heap locations, stack locations, and records are handled. After
Section 6 (related work), Section 7 details experimental results which suggest that the
traditional FCPA is non-scalable because it computes and stores(a) an order of magni-
tude more points-to pairs than can ever be used by a client analysis (e.g. pairs for dead
pointers), and(b) a prohibitively large number of redundant contexts.

2 Background

A procedurep is represented by a control-flow graph (CFG). It has a unique entry node
Sp with no predecessor and a unique exit nodeEp with no successor; every noden is
reachable fromSp, andEp is reachable from everyn. At the interprocedural level, a
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Forward Analysis (Outn depends onInn) Backward Analysis (Inn depends onOutn)

Inn =







BI n = Spl

m∈pred(n)

Outm otherwise

Outn = fn(Inn)

Inn = fn(Outn)

Outn =







BI n = Epl

m∈succ(n)

Inm otherwise

Fig. 2.Typical data flow equations for some procedurep.

program is represented by asupergraph (e.g. in Fig. 1) which connects the CFGs by
interprocedural edges. A call to procedurep at call sitei is split into acall node ci and
a return node ri with a call edgeci → Sp and a return edgeEp → ri.

Formulating Data Flow Analysis. Data flow variablesInn andOutn associate data
flow information with CFG noden (respectively for its entry pointIn and exit point
On); they must satisfy data flow equations (Fig. 2) involving node transfer functionsfn.
Data flow values are taken from a meet-semilattice (meet represents confluence and the
initial data flow value is⊤). Theboundary information BI represents the data flow infor-
mation atISp

for forward analysis andOEp
for backward analysis. Its value is governed

by the semantics of the information being discovered. Interprocedural analysis elimi-
nates the need for a fixedBI (except for arguments to themain procedure) by computing
it from the calling contexts during the analysis.Flow-insensitive approaches disregard
intraprocedural control flow for efficiency; they effectively treat the flow-equations as
inequations (⊑) and constrain all theInn to be equal (and similarly all theOutn). Flow-
sensitive analyses honour control flow and keep the data flow information separate for
each program point.Iterative methods solve data flow equations by repeatedly refining
the values at each program pointn starting from a conservative initialisation of⊤; there
are various strategies for this includinground robin sweeps andwork list methods.

The most precise data flow information at the intraprocedural level is theMeet over
Paths (MoP) solution [1, 2]. However, in general, an algorithm canat best compute
the Maximum Fixed Point (MFP) solution [1, 2]; however this is possible only if it is
flow-sensitive. For distributive frameworks, e.g. live-variable analysis, MFP and MoP
coincide; for non-distributive frameworks such as points-to analysis, they may differ.

Pointer Analysis. Points-to relations are computed by identifying locationscorre-
sponding to the left- and right-hand sides of a pointer assignment and taking their
cartesian product [3, 4]. The points-to pairs of locations that are modified are removed.
May-points-to information atn contains the points-to pairs that hold along some path
reachingn whereas must-points-to information contains the pairs that hold along every
path reachingn (hence a pointer can have at most one pointee) [4]. Fig. 3 exempli-
fies flow-sensitive points-to analysis. By contrast an inclusion-based (Andersen) flow-
insensitive analysis [5] associates(p, r), (p, s), (q, r), (r, s), (s, r) with all program
points while the weaker equality-based (Steensgaard) analysis [6] further adds(q, s).

Interprocedural Data Flow Analysis. A supergraph contains control flow paths which
violate nestings of matching call return pairs (e.g. 1-2-3-4-8-13-11 for the supergraph in
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q = &r 1

p = q 2

p = ∗p 3

print p 4

s = q

5

r = &s 6

p = ∗p 7

Node
May analysis Must analysis

Inn Outn Inn Outn
1 ∅ (q, r) ∅ (q, r)

2
(p, r), (p, s),

(q, r), (r, s), (s, r)
(p, r), (q, r),
(r, s), (s, r)

(q, r) (p, r), (q, r)

3
(p, r), (q, r),
(r, s), (s, r)

(p, s), (q, r),
(r, s), (s, r)

(p, r),
(q, r)

(q, r)

4
(p, s), (q, r),
(r, s), (s, r)

(p, s), (q, r),
(r, s), (s, r)

(p, s),
(q, r)

(p, s), (q, r)

5
(p, r), (q, r),
(r, s), (s, r)

(p, r), (q, r),
(r, s), (s, r)

(p, r),
(q, r)

(p, r), (q, r),
(s, r)

6
(p, r), (p, s),

(q, r), (r, s), (s, r)
(p, r), (p, s),

(q, r), (r, s), (s, r)
(q, r), (q, r), (r, s)

7
(p, r), (p, s),

(q, r), (r, s), (s, r)
(p, r), (p, s),

(q, r), (r, s), (s, r)
(q, r),
(r, s)

(q, r), (r, s)

Fig. 3.An example of flow-sensitive intraprocedural points-to analysis.

Fig. 1). Such paths correspond to infeasible contexts. Aninterprocedurally valid path
is a feasible execution path containing a legal sequence of call and return edges.

A context-sensitive analysis retains sufficient information about calling contexts to
distinguish the data flow information reaching a procedure along different call chains.
This restricts the analysis to interprocedurally valid paths. Acontext-insensitive analy-
sis does not distinguish between valid and invalid paths, effectively merging data flow
information across calling contexts. Recursive procedures have potentially infinite con-
texts, yet context-sensitive analysis is decidable for data flow frameworks with finite
lattices and it is sufficient to maintain a finite number of contexts for such frameworks.
Since this number is almost always impractically large, most context-sensitive methods
limit context sensitivity in some way.

At the interprocedural level, the most precise data flow information is theMeet over
Interprocedurally Valid Paths (IMoP) and theMaximum Fixed Point over Interprocedu-
rally Valid Paths (IMFP) [7–9]. For computing IMFP, an interprocedural method must
be fully flow and context sensitive. Relaxing flow (context) sensitivity admits invalid
intraprocedural (interprocedural) paths; since no path isexcluded, the computed in-
formation is provably safe but could be imprecise. Some examples of fully flow- and
context-sensitive methods are: the graph reachability method [8] and the more general
functional and full call-strings methods [7]. We use a variant of the full call-strings
method [10] and compute the IMFP giving the most precise computable solution for
pointer analysis; the loss of precision due to non-distributivity is inevitable.

Call-Strings Method [1, 7, 10]. This is a flow- and context-sensitive approach that
embeds context information in the data flow information and ensures the validity of
interprocedural paths by maintaining a history of calls in terms of call strings. Acall
string at noden is a sequencec1c2 . . . ck of call sites corresponding to unfinished calls
atn and can be viewed as a snapshot of the call stack. Call-stringconstruction is gov-
erned by interprocedural edges. Letσ be a call string reaching procedurep. For an
intraprocedural edgem → n in p, σ reachesn. For a call edgeci → Sq whereci be-
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longs top, call stringσci reachesSq. For a return edgeEp → rj whererj belongs to
a caller ofp there are two cases: ifσ = σ′cj thenσ′ reachesrj ; otherwiseσ and its
data flow value is not propagated torj . This ensures that data flow information is only
propagated to appropriate call sites. In a backward analysis, the call string grows on
traversing a return edge and shrinks on traversing a call edge. The interprocedural data
flow information at noden is a function from call strings to data flow values. Merging
(⊓) the data flow values associated with all call strings reachingn gives the overall data
flow value atn.

The original full call-strings method [7] used a pre-calculated length resulting in an
impractically large number of call strings. We use value-based termination of call-string
construction [10]. For forward flow, call strings are partitioned atSp based on equality
of their data flow values, only one call string per partition is propagated, and all call
strings of the partition are regenerated atEp (and the other way round for backward
flows). This constructs only the relevant call strings (i.e.call strings with distinct data
flow values) reducing the number of call strings significantly. For finite data flow lat-
tices, we require only a finite number of call strings even in the presence of recursion.
Moreover, there is no loss of precision as all relevant call strings are constructed.

We briefly describe value-based termination of call stringsfor forward analysis.
Let df (σ, n) denote the data flow value for call stringσ at the entry of noden. Let
df (σ1,Sp) = df (σ2,Sp) = v. Since data flow values are propagated along the same set
of paths fromSp to Ep, df (σ1,Sp) = df (σ2,Sp) ⇒ df (σ1,Ep) = df (σ2,Ep). Thus,
we can propagate only one of them (say〈σ1, v〉) through the body ofp. Let it reachEp

as〈σ1, v
′〉. Then we can regenerate〈σ2, v

′〉 at Ep by usingdf (σ1,Ep) if we remember
thatσ2 was represented byσ1 at Sp.

Recursion createscyclic call stringsγαi whereγ andα are non-overlapping call
site sequences andα occursi times. Since the lattice is finite and the flow functions
are monotonic, somek≥0 must exist such thatdf (γαk+m,Sp) = df (γαk,Sp) where
m is theperiodicity3 of the flow function forα. Henceγαk+m is represented byγαk.
Sincedf (γαk+i·m,Sp) = df (γαk,Sp), i>0, call stringγαk+m is constructed for rep-
resentation but call stringsγαk+i·m, i>1 are not constructed. Letdf (γαk,Ep) be v.
Then we generate〈γαk+m, v〉 in OutEp

which is propagated along the sequence of re-
turn nodes thereby removing one occurrence ofα. Thus the call string reachesEp as
γαk, once again to be regenerated asγαk+m. This continues until the values change,
effectively computingdf (γαk+i·m,Ep), i>1 without constructing the call strings.

3 Liveness-Based Pointer Analysis

We consider the four basic pointer assignment statements:x = &y, x = y, x = ∗y,
∗x = y using which other pointer assignments can be rewritten. We also assume a
use x statement to model other uses of pointers (such as in conditions). Discussion of
address-taken local variables and allocation (new or malloc) is deferred to Section 5.

Let V denote the set of variables (i.e. “named locations”). Some of these variables
(those inP ⊂ V ) can hold pointers to members ofV . Other members ofV hold non-

3 x is a periodic point off if fm(x) = x andf i(x) 6= x, 0<i<m. If m = 1, x is a fixed point
of f . See Fig. 9.12 on page 316 in [1] for a points-to analysis example wherem = 2.

5



pointer values. These include variables of non-pointer type such asint. NULL is sim-
ilarly best regarded as a member ofV −P; finally a special value ‘?’ inV −P denotes
an undefined location (again Section 5 discusses this further).

Points-to information is a set of pairs(x, y) wherex ∈ P is the pointer of the pair
andy ∈ V is a pointee ofx and is also referred to as the pointee of the pair. The pair
(x, ?) being associated with program pointn indicates thatx may contain an invalid
address along some potential execution path fromSp to n.

The data flow variablesLinn and Loutn give liveness information for statement
n while Ainn andAoutn give may-points-to information. Must-points-to information,
Uinn andUoutn, is calculated from may-points-to. Note that liveness propagates back-
wards (transfer functions mapout to in) while points-to propagates forwards.

The lattice of liveness information isL = 〈P(P),⊇〉 (we only track the data flow of
pointer variables) and lattice of may-points-to information isA = 〈P(P × V ),⊇〉. The
overall data flow lattice is the productL ×A with partial order〈l1, a1〉 ⊑ 〈l2, a2〉 ⇔
(l1 ⊑ l2) ∧ (a1 ⊑ a2) ⇔ (l1 ⊇ l2) ∧ (a1 ⊇ a2) and having⊤ element〈∅, ∅〉 and⊥
element〈P,P × V 〉. We use standard algebraic operations on points-to relations: given
relationR ⊆ P × V andX ⊆ P, define relationapplication R X = {v | u ∈
X ∧ (u, v) ∈R} and relationrestriction R|X = {(u, v) ∈ R | u ∈ X}.

Data Flow Equations. Fig. 4 provides the data flow equations for liveness-based
pointer analysis. They resemble the standard data flow equations of strong liveness anal-
ysis and pointer analyses [1] except that liveness and may-points-to analyses depend on
each other (hence the combined data flow is bi-directional ina CFG) and must-points-to
information is computed from may-points-to information.

Since we use the greatest fixpoint formulation, the initial value (⊤ of the corre-
sponding lattices) is∅ for both liveness and may-points-to analyses. For livenessBI is
∅ and definesLoutEp

; for points-to analysis,BI is Linn × {?} and definesAinSp
. This

reflects that no pointer is live on exit or holds a valid address on entry to a procedure.

Extractor Functions. The flow functions occurring in Equations (3) and (5) useex-
tractor functions Defn, Killn, Refn andPointeen which extract the relevant pointer
variables for statementn from the incoming pointer informationAinn. These extractor
functions are inspired by similar functions in [3, 4].

Defn gives the set of pointer variables which a statement may modify andPointeen

gives the set of pointer values which may be assigned. Thus the new may-points-to
pairs generated for statementn areDefn × Pointeen (Equation 5).Refn computes the
variables that become live in statementn. ConditionDefn ∩ Loutn ensures thatRefn
computes strong liveness rather than simple liveness. As anexception to the general
rule, x is considered live in statement∗x = y regardless of whether the pointees of
x are live otherwise, the pointees ofx would not be discovered. For example, given
{x=&a; y=3; *x=y; return;}, (x, a) cannot be discovered unlessx is marked
live. Hence liveness ofx cannot depend on whether the pointees ofx are live. By con-
trast, statementy = ∗x uses the liveness ofy to determine the liveness ofx.

Killn identifies pointer variables that are definitely modified by statementn. This in-
formation is used to kill both liveness and points-to information. For statement∗x = y,

6



Given relationR ⊆ P × V (eitherAinn or Aoutn) we first define an auxiliary extractor function

Must(R) =
⋃

x∈P

{x} ×







V R{x} = ∅ ∨R{x} = {?}
{y} R{x} = {y} ∧ y 6= ?
∅ otherwise

(1)

Extractor functions for statementn (Defn,Killn,Refn ⊆ P; Pointeen ⊆ V )
Notation: we assume thatx, y ∈ P anda ∈ V . A abbreviatesAinn.

Stmt. Defn Killn
Refn Pointeen

if Defn ∩ Loutn 6= ∅ Otherwise

use x ∅ ∅ {x} {x} ∅

x = &a {x} {x} ∅ ∅ {a}

x = y {x} {x} {y} ∅ A{y}

x = ∗y {x} {x} {y} ∪ (A{y} ∩ P) ∅ A(A{y} ∩ P)

∗x = y A{x} ∩ P Must(A){x} ∩ P {x, y} {x} A{y}

other ∅ ∅ ∅ ∅ ∅

Data Flow Values: Linn, Loutn ⊆ P Ainn,Aoutn ⊆ P × V

Loutn =







∅ n is Ep
⋃

s∈succ(n)

Lins otherwise (2)

Linn = (Loutn − Killn) ∪ Refn (3)

Ainn =















Linn×{?} n is Sp




⋃

p∈pred(n)

Aoutp





∣

∣

∣

∣

∣

∣

Linn

otherwise
(4)

Aoutn = ((Ainn − (Killn×V )) ∪ (Defn×Pointeen)) |Loutn (5)

Fig. 4. Intraprocedural formulation of liveness-based pointer analysis.

Killn depends onAinn filtered using the functionMust. When no points-to information
for x is available, the statement∗x = y marks all pointers as killed; this theoretically
reflects the need forKilln to be anti-monotonic and practically that unreachable or C-
undefined code is analysed liberally. When the points-to information forx is non-empty,
Must performs aweak update or astrong update according to the number of pointees4:
whenx has multiple pointees we employ weak update as we cannot be certain which
one will be modified becausex may point to different locations along different exe-
cution paths reachingn. By contrast, whenx has a single pointeeother than ‘?’, it
indicates thatx points to the same location along all execution paths reachingn and a
strong update can be performed. HavingBI beLinn × {?} completes this: if there is a
definition-free path fromSp to statementn, the pair(x, ?) will reachn and so a pair
(x, z) reachingn cannot be incorrectly treated as a must-points-to pair.

4 Or whetherx is a summary node (see Section 5). Here we ignore summary nodes.
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q = &r 1

p = q 2

p = ∗p 3

print p 4

s = q 5

r = &s 6

p = ∗p 7

{}L, {}A

{q}L, {(q, r)}A

{q}L, {(q, r)}A

{q}L, {(q, r)}A

{q}L, {(q, r)}A
{p, q}L, {(q, r)}A

{q}L, {(q, r)}A

{p, q}L, {(p, r), (q, r)}A

{p, q}L, {(q, r)}A

{q}L, {(q, r)}A

{p, q}L, {(p, r), (q, r)}A

{q}L, {(q, r)}A

q = &r 1

p = q 2

p = ∗p 3

print p 4

s = q 5

r = &s 6

p = ∗p 7

{}L, {}A

{q, r}L, {(q, r), (r, s)}A

{q}L, {(q, r)}A

{q}L, {(q, r)}A

{q}L, {(q, r)}A
{p, q}L, {(p, s), (q, r)}A

{q}L, {(q, r)}A

{p, q, r}L, {(p, r), (q, r), (r, s)}A

{p, q}L, {(p, s), (q, r)}A

{q, r}L, {(q, r), (r, s)}A

{p, q, r}L, {(p, r), (q, r), (r, s)}A

{q, r}L, {(q, r)}A

First round of liveness and points-to Second round of liveness and points-to

Fig. 5. Intraprocedural liveness-based points-to analysis of theprogram in Fig. 3. Shaded boxes
show the liveness and points-to information suffixed byL andA respectively.

The above discussion ofKilln andMust justifies why must-points-to analysis need
not be performed as an interdependent fixed-point computation [4, 1]. Given pointerx,
a single points-to pair(x, y) with y 6= ? inAinn or Aoutn, guarantees thatx points toy.
Conversely multiple may-points-to pairs associated withx means that its must-points-to
information is empty.5 Hence must-points-to information can be extracted from may-
points-to information byUinn = Must(Ainn) andUoutn = Must(Aoutn). Note that
generallyUinn ⊆ Ainn andUoutn ⊆ Aoutn; the only exception would be for nodes
that are not reached by the analysis because no pointer has been found to be live. For
such nodesUinn,Uoutn areP × V whereasAinn,Aoutn are∅; this matches previous
frameworks and corresponds toMust being anti-monotonic (see above).

Motivating Example Revisited. Fig. 5 gives the result of liveness-based pointer anal-
ysis for our motivating example of Fig. 3. After the first round of liveness analysis
followed by points-to analysis, we discover pair(p, r) in Ain3. Thusr becomes live
requiring a second round of liveness analysis. This then enables discovering the points-
to pair (r, s) in node 6. A comparison with traditional may-points-to analysis (Fig. 3)
shows that our analysis eliminates many redundant points-to pairs.

5 This is more general than a similar concept for flow-sensitive kill in [11]. See Section 6.
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Correctness. The following two claims are sufficient to establish soundness:(a) the
flow functions in our formulation are monotonic (Theorem 1),and(b) for every use of
a pointer, the points-to information defined by our formulation contains all addresses
that it can hold at run time at a given program point (Theorem 2). Point(a) guarantees
MFP computation at the intraprocedural level; at the interprocedural level, the full call-
strings method ensures IMFP computation; point(b) guarantees that MFP (or IMFP)
contains all usable pointer information.

Theorem 1. The function Must is anti-monotonic hence the transfer functions Linn,
Loutn, Ainn and Aoutn in Fig. 4 are monotonic.

Theorem 2. If x ∈ P holds the address of z ∈ (V − {?}) along some execution path
reaching node n, then x ∈ Refn ⇒ (x, z) ∈ Ainn.

4 Interprocedural Liveness-Based Pointer Analysis

When our intraprocedural liveness-based points-to analysis is lifted to the interprocedu-
ral level using the call-strings method,Linn, Loutn andAinn,Aoutn become functions
of contexts written as sets of pairs〈σ, l〉, l ∈ L and〈σ, a〉, a ∈ A whereσ is a call string
reaching noden. Finally, the overall values ofAinn,Aoutn are computed by merging
(⊓) the values along all call strings.

Matching Contexts for Liveness and Points-to Analysis.Since points-to information
should be restricted to live ranges, it is propagated along the call strings constructed dur-
ing liveness analysis. In the presence of recursion, we may need additional call strings
for which liveness information may not yet be available. Such cases can be resolved by
using the existing call strings as explained below. Letσa denote an acyclic call string
and letσc = γαi be a cyclic call string (see Section 2). Then for liveness analysis:

– The partitioning information for everyσa is available because either〈σa, x〉 has
reached noden in procedurep orσa has been represented by some other call string.

– Let df (γαi, n) differ for 0 ≤ i ≤ k but letdf (γαk, n) = df (γαk+j , n), j > 0 (the
periodicitym for liveness analysis is 1). Then the partitioning information is avail-
able for onlyγαk andγαk+1 becauseγαk+j , j > 1 are not constructed.

Consider a call stringσ′ reaching noden during points-to analysis. Ifσ′ is an acyclic
call string then its partitioning information and hence itsliveness information is avail-
able. Ifσ′ is a cyclic call stringγαi, its liveness information may not be available if it
has not been constructed for liveness. In such a situation, it is sufficient to locate the
longestγαl, l < i among the call strings that have been created and use its liveness
information. This effect is seen below in our motivating example.

Motivating Example Revisited. For brevity, letIn andOn denote the entry and exit
of noden. In the first round of liveness (Fig. 6),z becomes live atI6 as 〈λ, z〉L,
reachesO13, I13, O12, I12, O11 as〈c1, z〉L, becomes〈c1c2, z〉L atI11, reachesO13 and
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〈c1, (z, ?)〉A
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〈λ, ∅〉A
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〈c1, wz〉L
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〈c1, z〉L

〈c1, z〉L

〈c1/c1c2, z〉L

〈c1, (w, x), (z, ?)〉A
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〈c1/c1c2, (z, x)〉A

〈c1c2/c1c2c2, (z, x)〉A

〈c1/c1c2, ∅〉A

〈c1, (z, ?)〉A
〈c1c2/c1c2c2, (z, x)〉A

Fig. 6. Liveness and points-to information (subscripted withL andA) after the first round of
interprocedural analysis. For brevity, set of live variables are represented as strings and ‘{’ and
‘}’ are omitted. Multiple call strings with the same data flow value are separated by a ‘/’.

gets represented by〈c1, z〉L. Hence〈c1c2, z〉L is not propagated within the body ofp.
〈c1c2, z〉L is regenerated atI8, becomes〈c1, z〉L atI10, becomes〈c1, w〉L atI9. At O8,
it combines with〈c1, z〉L propagated fromI13 and becomes〈c1, w z〉L. Thusc1c2 is
regenerated as〈c1c2, w z〉L at I8. 〈c1, w z〉L reachesO4 and becomes〈λ,w z〉L at I4.

In the first round of points-to analysis (Fig. 6), sincez is live atI1, BI = 〈λ, (z, ?)〉A.
〈λ, (w, x)〉A is generated atO3. Thus 〈c1, (w, x), (z, ?)〉A reachesI8. This becomes
〈c1, (w, x), (z, x)〉A at O9 and reaches as〈c1c2, (w, x), (z, x)〉A at I8. Sincez is not
live at I9, 〈c1c2, (w, x)〉A is propagated toI9. This causes〈c1c2c2, (w, x), (z, x)〉A to
be generated atO10 which reachesI9 and is represented by〈c1c2, (w, x), (z, x)〉A. This
is then regenerated as〈c1c2c2, (z, x)〉A atO13 because onlyz is live atO13. Note that
we do not have the liveness information alongc1c2c2 but we know (from above) that it
is identical to that alongc1c2. We get〈c1c2, (z, x)〉A and〈c1, (z, x)〉A atO11. Since we
have no points-to information forx, we get〈c1c2, ∅〉A and〈c1, ∅〉A atO12.

We leave it for the reader to verify that, in the second round (Fig. 7),x becomes
live at I12 due toz = ∗z, reachesO2 and causes〈λ, (x, y)〉A to be generated. As a
consequence, we get(z, y) at I12. Note that(z, x) cannot reachI6 along any interpro-
cedurally valid path. The invocation graph method [3] whichis generally considered
the most precise flow- and context-sensitive method,does compute(z, x) at I6. This
shows that it is only partially context-sensitive. L-CFPA is more precise than [3] not
only because of liveness but also because it is fully context-sensitive.
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Fig. 7.Second round of liveness and points-to analysis to compute dereferencing liveness and the
resulting points-to information. Only the additional information is shown.

5 Heaps, Escaping Locals and Records

Each data location statically specified in a program is an abstract location and may cor-
respond to multiple actual locations. It may be explicitly specified by taking the address
of a variable or implicitly specified as the result ofnew or malloc. For interprocedural
analysis, we categorise all abstract locations as shown in Fig. 8.

Define interprocedural locations as those abstract locations which are accessible
in multiple contexts reaching a given program point or whosedata flow values depend
(via a dataflow equation) on another interprocedural location. These are the locations
for which interprocedural data flow analysis is required. Global variables and heap lo-
cations are interprocedural locations. For pointer analysis, a local variablex becomes
an interprocedural location if its address escapes the procedure containing it, or there is
an assignmentx = y orx = ∗z with y, z or one ofz’s pointees being an interprocedural
location. Interprocedural locations for liveness analysis are similarly identified.

It is easy to handle different instances of a local variable which is not an interproce-
dural location (even if its address is taken). To see how other local variables are handled,
consider a local variablex which becomes interprocedural from assignmentx = y or
x = ∗z as in the previous paragraph. Since call strings store context-sensitive data flow
values ofy andz, they also distinguish between instances ofx whose data flow val-
ues may differ. Thus, call strings inherently support precise interprocedural analysis of
global variables and locals (even interprocedural locals)whose addresses do not escape
(the entry “No∗” for the latter category in Fig. 8 indicates that interprocedural analysis
is either not required or is automatically supported by call-strings method without any
special treatment).
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Issue Global
Variable

Local Variable Heap allocation
at a given
source line

Address
escapes

Address does
not escape

How many instances can exist?Single Arbitrarily many Arbitrarily many Arbitrarily many
Can a given instance be accessed
in multiple calling contexts? Yes Yes No Yes

Number of instances accessible
at a given program point?

At most
one Arbitrarily many At most one Arbitrarily many

Is interprocedural data flow
analysis required? Yes Yes No∗ Yes

Is a summary node required? No Yes No Yes

Fig. 8.Categorisation of data locations for interprocedural pointer analysis

Since the number of accessible instances of heap locations and locals whose ad-
dresses escape is not bounded,6 we need to create summary nodes for them. It is difficult
to distinguish between instances which are accessible in different contexts. Hence cre-
ating a summary node implies that the data flow values are stored context insensitively
(but flow sensitively) by merging values of all instances accessible at a given program
point. A consequence of this decision is that strong updateson these abstract locations
are prohibited; this is easily engineered byMust returning∅ for summary-node pointees
which is consistent with the requirements ofUinn/Uoutn computation.

Recall that Equation 1 does not treat ‘?’ as a summary node. This depends on the
language-defined semantics of indirect writes via uninitialised pointers. In C (because
the subsequent program behaviour is undefined) or Java (because of ‘NullPointerEx-
ception’) it is safe to regardMust as returning all possible values when only ‘?’ occurs.
Alternatively, were the semantics to allow subsequent codeto be executed in a defined
manner, then ‘?’ needs to be treated as a summary node so thatMust returns∅ and in-
direct writes kill nothing (in general this results in reduced optimisation possibilities).

Our implementation treats an array variable as a single scalar variable with weak up-
date (no distinction is made between different index values). Stack-allocated structures
are handled field-sensitively by using the offsets of fields.Heap-allocated structures are
also handled field sensitively where possible. Function pointers are handled as in [3].

6 Related Work

The reported benefits of flow and context sensitivity for pointer analysis have been
mixed in literature [12–15] and many methods relax them for efficiency [5, 6, 11, 16]. It
has also been observed that an increase in precision could increase efficiency [17, 11].
Both these aspects have been studied without the benefit of liveness, partially explain-
ing marginal results. Some methods lazily compute pointer information on demand [18–
21]. By contrast, L-FCPA does not depend on a client analysisand proactively computes
the entire usable pointer information. If there are many demands, repeated incremental
computations could be rather inefficient [22]. Efficient encoding of information by us-
ing BDDs [23] has been an orthogonal approach of achieving efficiency. Although the

6 Local variables whose addresses escape may belong to recursive procedures.
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usable pointer information discovered by L-FCPA is small, recording it flow sensitively
in a large program may benefit from BDDs.

The imprecision caused by flow insensitivity can be partially mitigated by using
SSA representation which enables a flow-insensitive methodto compute flow-sensitive
information for local scalar variables. For pointers, the essential properties of SSA can
only be guaranteed for top-level pointers whose address is not taken. Some improve-
ments are enabled by Factored SSA [24] or Hashed SSA [25]. In the presence of global
pointer variables or multiple indirections, the advantages of SSA are limited unless in-
terleaved rounds of SSA construction and pointer analysis are performed [26, 27]. A re-
cent method introduces flow-sensitive kill in an otherwise flow-insensitive method [11].

Full context sensitivity can be relaxed in many ways:(a) using a context-insensitive
approach,(b) using a context-sensitive approach for non-recursive portions of a pro-
gram but merging data flow information in the recursive portions (e.g. [3, 27–29]), or
(c) using limited depth of contexts in both recursive and non-recursive portions (e.g. the
k-limited call-strings method [7] or [23]). Most context-sensitive approaches that we
are aware of belong to category(b). Our fully context-sensitive approach generalises
partially context-sensitive approaches such asobject-sensitivity [30, 12, 17] as follows.
For an objectx and its methodf, a (virtual) callx.f(e1, . . . , en) is viewed as the call
(x.f in vtab)(&x, e1, . . . , en). Thus object identification reduces to capturing the flow
of values which is inherently supported by full flow and context sensitivity.

We highlight some key ideas that have not been covered above.A memoisation-
based functional approach enumerates partial transfer functions [28] whereas an al-
ternative functional approach constructs full transfer functions hierarchically in terms
of pointer indirection levels [27]. The invocation-graph-based approach unfolds a call
graph in terms of call chains [3]. Finally, a radically different approach begins with
flow- and context-insensitive information which is refined systematically to restrict it to
flow- and context-sensitive information [29]. These approaches merge points-to infor-
mation in recursive contexts (category(b) above). Fig. 9.6 (page 305) in [1] contains
an example for which a method belonging to category(b) or (c) above cannot compute
precise result—the pointer assignments in the recursion unwinding part undo the effect
of the pointer assignments in the part that builds up recursion and the overall function
is an identity function. When all recursive calls receive the same (merged) information,
the undo effect on the pointer information cannot be captured.

Finally, many investigations tightly couple analysis specification and implementa-
tion; by contrast our formulation maintains a clean separation between the two and does
not depend on intricate procedural algorithms or ad-hoc implementation for efficiency.

7 Implementation and Empirical Measurements

We implemented L-FCPA and FCPA in GCC 4.6.0 using the GCC’s Link Time Op-
timisation (LTO) framework.7 We executed them on various programs from SPEC
CPU2006 and CPU2000 Integer Benchmarks on a machine with 16 GB RAM with
8 64-bit Intel i7-960 CPUs running at 3.20GHz. We compared the performance of three

7 They can be downloaded from http://www.cse.iitb.ac.in/grc/index.php?page=lipta.
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Program kLoC
Call
Sites

Time in milliseconds Unique points-to pairs
L-FCPA

FCPA GPTA L-FCPA FCPA GPTA
LivenessPoints-to

lbm 0.9 33 0.55 0.52 1.9 5.2 12 507 1911
mcf 1.6 29 1.04 0.62 9.5 3.4 41 367 2159
libquantum 2.6 258 2.0 1.8 5.6 4.8 49 119 2701

bzip2 3.7 233 4.5 4.8 28.1 30.2 60 210 8.8×104

parser 7.7 1123 1.2×103 145.64.3×105 422.12 531 4196 1.9×104

sjeng 10.5 678 858.2 99.0 3.2×104 38.1 267 818 1.1×104

hmmer 20.6 1292 90.0 62.9 2.9×105 246.3 232 5805 1.9×106

h264ref 36.0 1992 2.2×105 2.0×105 ? 4.3×103 1683 ? 1.6×107

Table 1.Time and unique points-to pairs measurements. For h264ref,FCPA ran out of memory.

methods: L-FCPA, FCPA and GPTA (GCC’s points-to analysis).Both L-FCPA and
FCPA are flow and context sensitive and use call strings with value-based termination.
L-FCPA uses liveness whereas FCPA does not. GPTA is flow and context insensitive
but acquires partial flow sensitivity through SSA.

Since our main goal was to find out if liveness increases the precision of points-to
information, both L-FCPA and FCPA are naive implementations that use linked lists and
linear searches within them. Our measurements confirm this hypothesis beyond doubt,
but we were surprised by the overall implementation performance because we had not
designed for time/space efficiency or scalability. We were able to run naive L-FCPA on
programs of around 30kLoC but not on the larger programs.

Table 1 presents the computation time and number of points-to pairs whereas Ta-
bles 2 and 3 present measurements of points-to information and context information
respectively. To measure the sparseness of information, wecreated four buckets of the
numbers of points-to pairs and call strings: 0, 1–4, 5–8 and 9or more. We counted
the number of basic blocks for each bucket of points-to information and the number of
functions for each bucket of context information. Our data shows that:

– The usable pointer information is(a) rather sparse (64% of basic blocks have 0
points-to pairs), and(b) rather small (four programs have at most 8 points-to pairs
and in other programs, 9+ points-to pairs reach fewer than 4%basic blocks). In
contrast, GPTA computes an order-of-magnitude-larger number of points-to pairs
at each basic block (see the last column in Table 1).

– The number of contexts required for computing the usable pointer information is
(a) rather sparse (56% or more basic blocks have 0 call strings),and(b) rather small
(six programs have at most 8 call strings; in other programs,9+ call strings reach
less than 3% basic blocks). Thus, contrary to the common apprehension, context in-
formation need not be exponential in practice. Value-basedtermination reduces the
number of call strings dramatically [10] and the use of liveness enhances this effect
further by restricting the computation of data flow values tothe usable information.
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Total No. and percentage of basic blocks (BBs) for points-to (pt) pair counts
Program no. of 0 pt pairs 1-4 pt pairs 5-8 pt pairs 9+ pt pairs

BBs L-FCPA FCPA L-FCPA FCPA L-FCPA FCPA L-FCPA FCPA

lbm 252 229 61 23 82 0 66 0 43
(90.9%)(24.2%) (9.1%) (32.5%) (26.2%) (17.1%)

mcf 472 356 160 116 2 0 1 0 309
(75.4%)(33.9%) (24.6%) (0.4%) (0.2%) (65.5%)

libquantum 1642 1520 793 119 796 3 46 0 7
(92.6%)(48.3%) (7.2%) (48.5%) (0.2%) (2.8%) (0.4%)

bzip2 2746
2624 1085 118 12 3 12 1 1637

(95.6%)(39.5%) (4.3%) (0.4%) (0.1%) (0.4%) (0.0%) (59.6%)
9+ pt pairs in L-FCPA: Tot 1, Min 12, Max 12, Mean 12.0, Median 12, Mode 12

sjeng 6000 4571 3239 1208 12 221 41 0 2708
(76.2%)(54.0%) (20.1%) (0.2%) (3.7%) (0.7%) (45.1%)

hmmer 14418
13483 8357 896 21 24 91 15 5949

(93.5%)(58.0%) (6.2%) (0.1%) (0.2%) (0.6%) (0.1%) (41.3%)
9+ pt pairs in L-FCPA: Tot 6, Min 10, Max 16, Mean 13.3, Median 13, Mode 10

parser 6875
4823 1821 1591 25 252 154 209 4875

(70.2%)(26.5%) (23.1%) (0.4%) (3.7%) (2.2%) (3.0%) (70.9%)
9+ pt pairs in L-FCPA: Tot 13, Min 9, Max 53, Mean 27.9, Median 18, Mode 9

h264ref 21315
13729 ? 4760 ? 2035 ? 791 ?

(64.4%) (22.3%) (9.5%) (3.7%)
9+ pt pairs in L-FCPA: Tot 44, Min 9, Max 98, Mean 36.3, Median 31, Mode 9

Table 2.Liveness restricts the analysis to usable pointer information which is small and sparse.

The significant increase in precision achieved by L-FCPA suggests that a pointer anal-
ysis need not compute exponentially large information. We saw this sub-exponential
trend in programs of up to around 30kLoC and anticipate it might hold for larger pro-
grams too—because although reachable pointer informationmay increase significantly,
usable information need not accumulate and may remain distributed in the program.

A comparison with GPTA shows that using liveness reduces theexecution time
too—L-FCPA outperforms GPTA for most programs smaller than30kLoC. That a flow-
and context-sensitive analysis could be faster than flow- and context-insensitive analysis
came as a surprise to us. In hindsight, this is possible because the information that
we can gainfully use is much smaller than commonly thought. Note that a flow- and
context-insensitive analysis cannot exploit the small size of usable pointer information
because it is small only when considered flow and context sensitively.

The hypothesis that our implementation suffers because of linear search in linked
lists was confirmed by an accidental discovery: in order to eliminate duplicate pairs
in GPTA, we used our linear list implementation of sets from L-FCPA which never
adds duplicate entries. The resulting GPTA took more than anhour for thehmmerpro-
gram instead of the original 246.3 milliseconds! Another potential source of inefficiency
concerns the over-eager liveness computation to reduce thepoints-to pairs in L-CFPA:
a new round of liveness is invoked when a new points-to pair for y is discovered for
x = ∗y putting on hold the points-to analysis. This explains the unusually large time
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Total No. and percentage of functions for call-string counts
Program no. of 0 call strings 1-4 call strings 5-8 call strings 9+ call strings

functionsL-FCPA FCPA L-FCPA FCPA L-FCPA FCPA L-FCPA FCPA

lbm 22 16 3 6 19 0 0 0 0
(72.7%)(13.6%) (27.3%)(86.4%)

mcf 25 16 3 9 22 0 0 0 0(64.0%)(12.0%) (36.0%)(88.0%)

bzip2 100 88 38 12 62 0 0 0 0(88.0%)(38.0%) (12.0%)(62.0%)

libquantum 118 100 56 17 62 1 0 0 0
(84.7%)(47.5%) (14.4%)(52.5%) (0.8%)

sjeng 151 96 37 43 45 12 15 0 54
(63.6%)(24.5%) (28.5%)(29.8%) (7.9%) (9.9%) (35.8%)

hmmer 584 548 330 32 175 4 26 0 53
(93.8%)(56.5%) (5.5%) (30.0%) (0.7%) (4.5%) (9.1%)

parser 372
246 76 118 135 4 63 4 98

(66.1%)(20.4%) (31.7%)(36.3%) (1.1%) (16.9%) (1.1%) (26.3%)
9+ L-FCPA call strings: Tot 4, Min 10, Max 52, Mean 32.5, Median 29, Mode 10

h264ref 624
351 ? 240 ? 14 ? 19 ?

(56.2%) (38.5%) (2.2%) (3.0%)
9+ L-FCPA call strings: Tot 14, Min 9, Max 56, Mean 27.9, Median 24, Mode 9

Table 3.Context information for computing usable pointer information is small and sparse.

spent in liveness analysis compared to points-to analysis for programsparserandsjeng.
The number of rounds of analysis required for these programswas much higher than in
other programs of comparable size. Finally, GCC’s LTO framework has only two op-
tions: either to load no CFG or to load all CFGs at the same time. Since the size of the
entire program could be large, this affects the locality andhence the cache behaviour.

8 Conclusions and Future Work

We have described a data flow analysis which jointly calculates points-to and live-
ness information. It is fully flow- and context-sensitive and uses recent refinements
of the call-strings approach. One novel aspect of our approach is that it is effectively
bi-directional (such analysis seem relatively rarely exploited).

Initial results from our naive prototype implementation were impressive: unsurpris-
ingly our analysis produced much more precise results, but by an order of magnitude (in
terms of the size of the calculated points-to information).The reduction of this size al-
lowed our naive implementation also to run faster than GCC’spoints-to analysis at least
for programs up to 30kLoC. This is significant because GCC’s analysis compromises
both on flow and context sensitivity. This confirms our beliefthat the usable pointer
information is so small and sparse that we can achieve both precision and efficiency
without sacrificing one for the other. Although the benefit ofprecision in efficiency has
been observed before [17, 11], we are not aware of any study that shows the sparseness
and small size of points-to information to this extent.
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We would like to take our work further by exploring the following:

– Improving our implementation in ways such as: using efficient data structures (vec-
tors or hash tables, or perhaps BDDs); improving GCC’s LTO framework to allow
on-demand loading of individual CFGs instead of loading thecomplete supergraph;
and experimenting with less-eager strategies of invoking liveness analysis.

– Exploring the reasons for the 30kLoC speed threshold; perhaps there are ways in
practice to partition most bigger programs (around loosely-coupled boundaries)
without significant loss of precision.

– We note that data flow information often only slightly changes when revisiting a
node compared to the information produced by the earlier visits. Hence, we plan to
explore incremental formulations of L-FCPA.

– GCC passes hold alias information in a per-variable data structure thereby using
the same information for every occurrence of the variable. We would like to change
this to use point-specific information computed by L-FCPA and measure how client
analyses/optimisations benefit from increased precision.
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