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Abstract. Precise flow- and context-sensitive pointer analysis (FOBAjen-
erally considered prohibitively expensive for large paigs; most tools relax
one or both of the requirements for scalability. We argu¢ phecise FCPA has
been over-harshly judged—the vast majority of points-tiogpealculated by ex-
isting algorithms are never used by any client analysisamrsiormation because
they involve dead variables. We therefore formulate a FGP#eims of a joint
points-to and liveness analysis which we call L-FCPA. Welenmented a naive
L-FCPA in GCC-4.6.0 using linked lists. Evaluation on SPBO2 showed sig-
nificant increase in the precision of points-to pairs coragdo GCC's analysis.
Interestingly, our naive implementation turned out to edathan GCC's anal-
ysis for all programs under 30kLoC. Further, L-FCPA showeat fewer than
4% of basic blocks had more than 8 points-to pairs. We coedlhdt the usable
points-to information and the required context informatie small and sparse
and argue that approximations (e.g. weakening flow or corgemsitivity) are
not only undesirable but also unnecessary for performance.

1 Introduction

Interprocedural data flow analysis extends an analysissagmcedure boundaries to
incorporate the effect of callers on callees and vice-vdrsarder to comput@recise
information, such an analysis requires flow sensitivitys¢asating different informa-
tion with distinct control flow points) and context senstv(computing different in-
formation for different calling contexts). The efficienaydascalability of such an anal-
ysis is a major concern and sacrificing precision for scéitglié a common trend be-
cause the size of information could be large. Hence prease find context-sensitive
pointer analysis (FCPA) is considered prohibitively exgiea and most methods em-
ploy heuristics that relax one or both of the requirementgfficiency.

We argue that the precision and efficiency in pointer anglysied not conflict and
may actually be synergistic. We demonstrate this by fortimdaa liveness-based flow-
and context-sensitive points-to analysis (referred to-&CPA): points-to information
is computed only for the pointers that are live and the prafiag of points-to informa-
tion is restricted to live ranges of respective pointers.usstrong livenessto discover
pointers that are directly used or are used in defining patkat are strongly live. This
includes the effect of dead code elimination and is moreipedban simple liveness.

Fig. 1 provides a motivating example. Sinmain prints z, it is live atO,2 (exit of
nodel2) and hence a5 (entry of nodel2). Thusw becomes live aby and hence at



main() L
[ x=a&y Let I,,/O,, denote the entry/exn_pomt of
W= &x noden. Let (a,b) at a program point. de-
p0: ' note thata points-tob atw. Then,
pri;wt z — z is live at Og which makew live at
} Os. Hence we should computev, x)
p() in node3 and thereby(z, =) in node9.
{if () This causes: to be live because ofz
{ z=w in nodel2. Hence we should compute
p0); (z,y) innode2 and(z, y) in nodel2.
7=z — (w, ) and(z,y) should not be propa-
} gated to nodes, 6, 7 becausev, = are
) not live in these nodes.

Fig. 1. A motivating example for L-FCPA and its supergraph repres@n. The solid and dashed
edges represent intraprocedural and interproceduralaidiuw respectively.

Os resulting in the points-to paiw, x) atOs. This pair reacheg, giving the pair(z, x)

at Og. When this information reachds,, x becomes live. This liveness is propagated
to O, giving the pair(z, y). Finally, we get the paifz, y) atO,». Figures 6 and 7 give
fuller detail of the solution after formulating L-FCPA. Hewe highlight the following:

— Use of liveness. points-to pairs are computed only when the pointers bedivee

— Sparse propagation: pairs(z, y) and(w, x) are not propagated beyond the calpto
in main because they are not live.

— Flow sengitivity: points-to information is different for different contrtdbw points.

— Context sensitivity: (z, ) holds only for the inner call tp made from withinp but
not for the outer call tp made from the main procedure. Thus in spite: difeing
live at I4, (z,x) is not propagated té; but(z, y) is.

We achieve this using a data flow framework (Section 3) thatleys an interdependent
formulation for discovering strongly live pointer varialsland their pointees. We com-
pute must-points-to information from may-points-to infation without fixed-point
computation. Section 4 uses value-based termination bétcaigs for precise interpro-
cedural analysis without having to compute a prohibitivetge number of call strings.
Section 5 discusses how heap locations, stack locatiodseaords are handled. After
Section 6 (related work), Section 7 details experimentallte which suggest that the
traditional FCPA is non-scalable because it computes amds{tz) an order of magni-
tude more points-to pairs than can ever be used by a cliehtssée.g. pairs for dead
pointers), andb) a prohibitively large number of redundant contexts.

2 Background

A procedurep is represented by a control-flow graph (CFG). It has a unigqiy @ode
S,, with no predecessor and a unique exit néglewith no successor; every nodeis
reachable frons,, andE, is reachable from every. At the interprocedural level, a
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Fig. 2. Typical data flow equations for some procedpre

program is represented bysapergraph (e.g. in Fig. 1) which connects the CFGs by
interprocedural edges. A call to procedure at call sitei is split into acall node ¢; and
areturn node r; with a call edge;; — S, and a return edgg,, — r;.

Formulating Data Flow Analysis. Data flow variablesn,, andOut,, associate data
flow information with CFG node: (respectively for its entry poinf,, and exit point
0,,); they must satisfy data flow equations (Fig. 2) involvingladransfer functiong,, .
Data flow values are taken from a meet-semilattice (meeésgmts confluence and the
initial data flow value isT"). Theboundary information Bl represents the data flow infor-
mation at/s , for forward analysis an@g, for backward analysis. Its value is governed
by the semantics of the information being discovered. prtaedural analysis elimi-
nates the need for a fix&l (except for arguments to tmeain procedure) by computing
it from the calling contexts during the analysidow-insensitive approaches disregard
intraprocedural control flow for efficiency; they effectiyéreat the flow-equations as
inequationsC) and constrain all thien,, to be equal (and similarly all th@ut,,). Flow-
sensitive analyses honour control flow and keep the data flow informat@parate for
each program pointterative methods solve data flow equations by repeatedly refining
the values at each program poinstarting from a conservative initialisation of there
are various strategies for this includirgund robin sweeps angvork list methods.

The most precise data flow information at the intraprocddevel is theMeet over
Paths (MoP) solution [1,2]. However, in general, an algorithm anbest compute
the Maximum Fixed Point (MFP) solution [1, 2]; however this is possible only if it is
flow-sensitive. For distributive frameworks, e.g. liveriadle analysis, MFP and MoP
coincide; for non-distributive frameworks such as poititgnalysis, they may differ.

Pointer Analysis. Points-to relations are computed by identifying locati@asre-
sponding to the left- and right-hand sides of a pointer ass@nt and taking their
cartesian product [3, 4]. The points-to pairs of locatidreg are modified are removed.
May-points-to information at contains the points-to pairs that hold along some path
reachingn whereas must-points-to information contains the pairstibld along every
path reaching: (hence a pointer can have at most one pointee) [4]. Fig. 3 phkem
fies flow-sensitive points-to analysis. By contrast an isidn-based (Andersen) flow-
insensitive analysis [5] associatés r), (p, s), (¢,7), (r,s), (s,7) with all program
points while the weaker equality-based (Steensgaardysied6] further addgq, s).

Interprocedural Data Flow Analysis. A supergraph contains control flow paths which
violate nestings of matching call return pairs (e.g. 1-2-8-13-11 for the supergraphin
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Fig. 3. An example of flow-sensitive intraprocedural points-tolgsia.

Fig. 1). Such paths correspond to infeasible contextsinfanprocedurally valid path
is a feasible execution path containing a legal sequencalicdirad return edges.

A context-sensitive analysis retains sufficient information about calling ets to
distinguish the data flow information reaching a procedimagudifferent call chains.
This restricts the analysis to interprocedurally validhsatA context-insensitive analy-
sis does not distinguish between valid and invalid pattscgbéely merging data flow
information across calling contexts. Recursive procesihewve potentially infinite con-
texts, yet context-sensitive analysis is decidable foa dlaiv frameworks with finite
lattices and it is sufficient to maintain a finite number of s for such frameworks.
Since this number is almost always impractically large, insoatext-sensitive methods
limit context sensitivity in some way.

At the interprocedural level, the most precise data flowrmiation is theMeet over
Interprocedurally Valid Paths (IMoP) and theMaximum Fixed Point over Interprocedu-
rally Valid Paths (IMFP) [7-9]. For computing IMFP, an interprocedural methoust
be fully flow and context sensitive. Relaxing flow (contexhsitivity admits invalid
intraprocedural (interprocedural) paths; since no patbxiduded, the computed in-
formation is provably safe but could be imprecise. Some g@lesnof fully flow- and
context-sensitive methods are: the graph reachabilithatef8] and the more general
functional and full call-strings methods [7]. We use a wvariaf the full call-strings
method [10] and compute the IMFP giving the most precise adaige solution for
pointer analysis; the loss of precision due to non-distiity is inevitable.

Call-Strings Method [1,7,10]. This is a flow- and context-sensitive approach that
embeds context information in the data flow information anduees the validity of
interprocedural paths by maintaining a history of callsemis of call strings. Acall
string at noden is a sequence; c; . . . ¢;, of call sites corresponding to unfinished calls
atn and can be viewed as a snapshot of the call stack. Call-stanstruction is gov-
erned by interprocedural edges. letbe a call string reaching proceduse For an
intraprocedural edge: — n in p, o reaches. For a call edge; — S, wherec; be-
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longs top, call stringoc; reachesS,. For a return edgg&, — r; wherer; belongs to

a caller ofp there are two cases: if = o'c; theno’ reaches;; otherwises and its
data flow value is not propagateditn This ensures that data flow information is only
propagated to appropriate call sites. In a backward arsalgts¢ call string grows on
traversing a return edge and shrinks on traversing a ca#l.€due interprocedural data
flow information at node: is a function from call strings to data flow values. Merging
(M) the data flow values associated with all call strings reaghigives the overall data
flow value atn.

The original full call-strings method [7] used a pre-cated length resulting in an
impractically large number of call strings. We use valusdabtermination of call-string
construction [10]. For forward flow, call strings are paotited atS,, based on equality
of their data flow values, only one call string per partitisrpropagated, and all call
strings of the partition are regenerated=at (and the other way round for backward
flows). This constructs only the relevant call strings (€&l strings with distinct data
flow values) reducing the number of call strings significarfior finite data flow lat-
tices, we require only a finite number of call strings everhim presence of recursion.
Moreover, there is no loss of precision as all relevant ¢ghgs are constructed.

We briefly describe value-based termination of call strifysforward analysis.
Let df (o,n) denote the data flow value for call strimgat the entry of node:. Let
df (01,S,) = df (02, S,) = v. Since data flow values are propagated along the same set
of paths fromS, to E,, df(01,S,) = df(02,S,) = df (01, Ep) = df (02, E}p). Thus,
we can propagate only one of them (Say, v)) through the body op. Let it reachE,,
as(o1,v’). Then we can regenerafe,, v’) atE, by usingdf (o1, E,) if we remember
thato, was represented by, atS,,.

Recursion createsyclic call stringsya® wherey anda are non-overlapping call
site sequences and occursi times. Since the lattice is finite and the flow functions
are monotonic, some> 0 must exist such thatf (ya**™, S,) = df (ya*,S,) where
m is theperiodicity® of the flow function fora. Henceya*+™ is represented bya*.
Sincedf (ya*+i ™ S,) = df (va*,S,),i >0, call stringya**+™ is constructed for rep-
resentation but call stringsa***™ i>1 are not constructed. Leif (ya*,E,) bewv.
Then we generateya*+™, v) in Outg, which is propagated along the sequence of re-
turn nodes thereby removing one occurrence.of hus the call string reachés, as
~a, once again to be regeneratechag’t™. This continues until the values change,
effectively computingif (ya*%™ E,), i > 1 without constructing the call strings.

3 Liveness-Based Pointer Analysis

We consider the four basic pointer assignment statements: &y, ¢ = y, x = xy,
xx = y using which other pointer assignments can be rewritten. M assume a
use x statement to model other uses of pointers (such as in condjti Discussion of
address-taken local variables and allocatimew(or malloc) is deferred to Section 5.
LetV denote the set of variables (i.e. “named locations”). Sofitbese variables
(those inP C V) can hold pointers to members éf Other members d¢ hold non-

3 ¢ is a periodic point off if f™(z) = z andf*(x) # z,0<i<m.lf m = 1, z is a fixed point
of f. See Fig. 9.12 on page 316 in [1] for a points-to analysis g@tanvherem = 2.



pointer values. These include variables of non-pointee tych a$ nt . NULL is sim-
ilarly best regarded as a membenbof- P; finally a special value *?’ iV — P denotes
an undefined location (again Section 5 discusses this f)rthe

Points-to information is a set of paifs, y) wherexz € P is the pointer of the pair
andy € V is a pointee ofr and is also referred to as the pointee of the pair. The pair
(x,?) being associated with program pointindicates that: may contain an invalid
address along some potential execution path f8pnto ».

The data flow variablekin,, and Lout,, give liveness information for statement
n while Ain,, andAout,, give may-points-to information. Must-points-to inforricat,
Uin,, andUout,,, is calculated from may-points-to. Note that liveness pggies back-
wards (transfer functions magut to in) while points-to propagates forwards.

The lattice of liveness information & = (P(P), 2) (we only track the data flow of
pointer variables) and lattice of may-points-to informatis.A = (P(P x V), D). The
overall data flow lattice is the product x .4 with partial order(l;,a1) C (I3, a2) <
(I1 C 1) A (a1 Eaz) & (I1 D12) A (a1 2 az) and havingT element((, #) and L
elementP,P x V). We use standard algebraic operations on points-to rel&tgven
relationR C P x V and X C P, define relationapplication R X = {v | u €
X A (u,v) € R} and relatiorrestriction R| = {(u,v) € R|u € X}.

Data Flow Equations. Fig. 4 provides the data flow equations for liveness-based
pointer analysis. They resemble the standard data flow ieqgadf strong liveness anal-
ysis and pointer analyses [1] except that liveness and mayspto analyses depend on
each other (hence the combined data flow is bi-directioral@fG) and must-points-to
information is computed from may-points-to information.

Since we use the greatest fixpoint formulation, the init@lue (T of the corre-
sponding lattices) i§ for both liveness and may-points-to analyses. For liveBéss
() and definedout ; for points-to analysisBl is Lin,, x {7} and definediing . This
reflects that no pointer is live on exit or holds a valid addms entry to a procedure.

Extractor Functions. The flow functions occurring in Equations (3) and (5) ese
tractor functions Def,,, Kill,,, Ref,, andPointee,, which extract the relevant pointer
variables for statement from the incoming pointer informatioAin,,. These extractor
functions are inspired by similar functions in [3, 4].

Def,, gives the set of pointer variables which a statement may fpaddPointee,,
gives the set of pointer values which may be assigned. Treis¢tv may-points-to
pairs generated for statemenareDef,, x Pointee,, (Equation 5)Ref,, computes the
variables that become live in statementConditionDef,, N Lout,, ensures thaRef,,
computes strong liveness rather than simple liveness. Asxaeption to the general
rule, x is considered live in statement: = y regardless of whether the pointees of
x are live otherwise, the pointees ofwould not be discovered. For example, given
{x=&a; y=3; =*x=y; return; }, (z,a) cannot be discovered unlesss marked
live. Hence liveness of cannot depend on whether the pointees afe live. By con-
trast, statement = xx uses the liveness gfto determine the liveness of

Kill,, identifies pointer variables that are definitely modified tafyement.. This in-
formation is used to kill both liveness and points-to infatian. For statement: = y,



Given relationR C P x V (eitherAin,, or Aout,,) we first define an auxiliary extractor function

V.  R{z} =0V R{z}={7}
{ {v} R{z}={y}Ay#? (e

¢  otherwise

Must(R) = | J{z} x

zeP

Extractor functions for statement(Def,,, Kill,,, Ref,, C P; Pointee,, C V)
Notation: we assume that y € P anda € V. A abbreviate®\in,,.
Stmt. Def,, Kill,, . Refn _ Pointee,,
if Def, N Lout,, # 0]|Otherwise
use 0 0 {=} {z} 0
z=&a| {z} {z} 0 0 {a}
c=y| Az} {z} {y} 0 Ay}
z=xy| {z} {z} {y} U (A{y} NP) 0 |AA{y}NP)
¢ =y |A{z} NP [Must(A){z} NP {z,y} {z} A{y}
other 0 0 0 0 0
Data Flow Values: Lin,,Lout, C P Ain,,Aout, CP xV
0 nisE,
Lout, = U Lin, otherwise 2
sesucc(n)
Lin, = (Lout, — Kill,,) U Ref,, 3)
Lin, x {?} nisS,
Alny, = ( U Aoutp> otherwise @)
pepred(n) Lin"
Aout, = ((Ain,, — (Kill, xV)) U (Def,, x Pointee,,)) |Loutn (5)

Fig. 4. Intraprocedural formulation of liveness-based pointexysis.

Kill,, depends orin,, filtered using the functioMust. When no points-to information
for x is available, the statemert = y marks all pointers as killed; this theoretically
reflects the need fdill,, to be anti-monotonic and practically that unreachable or C-
undefined code is analysed liberally. When the points-trinftion forz is non-empty,
Must performs aveak update or astrong update according to the number of pointées
whenz has multiple pointees we employ weak update as we cannotrtarcerhich
one will be modified because may point to different locations along different exe-
cution paths reaching. By contrast, wherr has a single pointeether than ‘?’, it
indicates thatr points to the same location along all execution paths regehiand a
strong update can be performed. HavBigbeLin,, x {7} completes this: if there is a
definition-free path frons,, to statement, the pair(z, ?) will reachn and so a pair
(x, z) reachingn cannot be incorrectly treated as a must-points-to pair.

4 Or whetherz is a summary node (see Section 5). Here we ignore summargnode
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Fig. 5. Intraprocedural liveness-based points-to analysis optbgram in Fig. 3. Shaded boxes
show the liveness and points-to information suffixed/bgnd A respectively.

The above discussion ill,, andMust justifies why must-points-to analysis need
not be performed as an interdependent fixed-point computf4i 1]. Given pointer,
a single points-to paifz, y) with y # ? inAin,, or Aout,,, guarantees thatpoints toy.
Conversely multiple may-points-to pairs associated witheans that its must-points-to
information is empty. Hence must-points-to information can be extracted from-may
points-to information byJin,, = Must(Ain,,) andUout,, = Must(Aout,,). Note that
generallyUin,, C Ain,, andUout,, C Aout,,; the only exception would be for nodes
that are not reached by the analysis because no pointer bagduend to be live. For
such nodeslin,,, Uout,, areP x V whereadin,,, Aout,, aref); this matches previous
frameworks and correspondsitust being anti-monotonic (see above).

Motivating Example Revisited. Fig. 5 gives the result of liveness-based pointer anal-
ysis for our motivating example of Fig. 3. After the first raliof liveness analysis
followed by points-to analysis, we discover pégir, ) in Ains. Thusr becomes live
requiring a second round of liveness analysis. This theblesaliscovering the points-
to pair (r, s) in node 6. A comparison with traditional may-points-to ais& (Fig. 3)
shows that our analysis eliminates many redundant painpsits.

5 This is more general than a similar concept for flow-seresiill in [11]. See Section 6.



Correctness. The following two claims are sufficient to establish soursiné:) the
flow functions in our formulation are monotonic (Theoremdr)d(b) for every use of
a pointer, the points-to information defined by our formiglatcontains all addresses
that it can hold at run time at a given program point (TheorgnP@int(a) guarantees
MFP computation at the intraprocedural level; at the imeepdural level, the full call-
strings method ensures IMFP computation; pdintguarantees that MFP (or IMFP)
contains all usable pointer information.

Theorem 1. The function Must is anti-monotonic hence the transfer functions Lin,,,
Lout,,, Ain,, and Aout,, in Fig. 4 are monaotonic.

Theorem 2. If z € P holds the address of z € (V — {?}) along some execution path
reaching noden, then z € Ref,, = (z, z) € Ain,,.

4 Interprocedural Liveness-Based Pointer Analysis

When our intraprocedural liveness-based points-to aisaly$fted to the interprocedu-
ral level using the call-strings methddn,,, Lout,, andAin,,, Aout,, become functions
of contexts written as sets of paiis, {),! € £ and(o,a), a € Awhereo is a call string
reaching noder. Finally, the overall values ohin,,, Aout,, are computed by merging
(M) the values along all call strings.

Matching Contexts for Liveness and Points-to Analysis.Since points-to information
should be restricted to live ranges, it is propagated albagall strings constructed dur-
ing liveness analysis. In the presence of recursion, we reag additional call strings
for which liveness information may not yet be available. Soases can be resolved by
using the existing call strings as explained below. &gdenote an acyclic call string
and leto,. = va' be a cyclic call string (see Section 2). Then for livenessyasis

— The partitioning information for every, is available because eithés,, =) has
reached node in procedure or o, has been represented by some other call string.

— Letdf (ya',n) differfor 0 < i < k butletdf (ya*,n) = df (ya**7,n), 7 > 0 (the
periodicitym for liveness analysis is 1). Then the partitioning inforimais avail-
able for onlyya* andya**! becauseya*7, j > 1 are not constructed.

Consider a call string’ reaching node during points-to analysis. i’ is an acyclic
call string then its partitioning information and henceliégness information is avail-
able. If o’ is a cyclic call stringyo?, its liveness information may not be available if it
has not been constructed for liveness. In such a situatiés sufficient to locate the
longestya!, I < i among the call strings that have been created and use iteetige
information. This effect is seen below in our motivating exde.

Motivating Example Revisited. For brevity, let/,, andO,, denote the entry and exit
of noden. In the first round of liveness (Fig. 6} becomes live afls as (), z)r,
reache®;3, I13, O12, I12, 011 as{c1, z) ., becomesc; cq, z) 1, atI11, reache®,5 and
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Fig. 6. Liveness and points-to information (subscripted witrand A) after the first round of
interprocedural analysis. For brevity, set of live varesbhre represented as strings aficahd
‘}" are omitted. Multiple call strings with the same data floueaare separated by a /.

gets represented Hy., z) .. Hence(cica, ) 1, is not propagated within the body pf
(c1e9, 2) 1, is regenerated dg, becomesey, z) 1, atlo, becomese;, w), atly. At Os,
it combines with{cy, z);, propagated fronl;3 and becomes$c;, w z) 1. Thusc;cs is
regenerated a1 co, w z)p, atls. {c1,w z) 1, reache®), and becomeé\, w z), atly.

In the first round of points-to analysis (Fig. 6), since live atl;, Bl = (), (z,7))a.
(A, (w,x))a is generated aDs. Thus (cy, (w, ), (z,7))a reachesls. This becomes
(c1, (w,x), (z,2))a at Oy and reaches a&icsa, (w, x), (2,2))a at Is. Sincez is not
live at Iy, {cic2, (w,x))a is propagated tdy. This causesgcicace, (w, ), (z,x))a tO
be generated &?,, which reacheg, and is represented ly; 2, (w, ), (2, x))a. This
is then regenerated &8, cocs, (2, 2))4 atO13 because only is live atO;3. Note that
we do not have the liveness information alangsc. but we know (from above) that it
is identical to that along; co. We get{cicz, (2, x))a and{cy, (z,x))a atOq;. Since we
have no points-to information far, we get{c; c2, 04 and({cy, P4 atOs,.

We leave it for the reader to verify that, in the second roufid.(7), = becomes
live at I» due toz = xz, reache®D, and causes), (x,y))a to be generated. As a
consequence, we gét, y) atI1». Note that(z, z) cannot reacHs along any interpro-
cedurally valid path. The invocation graph method [3] whislgenerally considered
the most precise flow- and context-sensitive metlogs compute(z, z) at Is. This
shows that it is only partially context-sensitive. L-CFPAmMore precise than [3] not
only because of liveness but also because it is fully corgensitive.
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(e1/cica/crcaca, )L (e1/cicz, (z,y))a
* |

:

(A : A (2, 9)) {ar/are2)r <CI|, -
3 <C1/C1C27x>L <Cl, (.’E,y»A
N\, )L N (z,9))a 10 e |
4! (C1C2/C1C2C2,$>L (6162, (33, y)>A
{e1, )1, (c1, (z,y))a ,

(crea/crcace, )L — {cic2, (z,9), (2,9))a

e m
T ler/eres, o c1, (2,Y), (2,
(A (2,9))a Lo *z< | (z,9): (7, 9))a

6| print (crez,2)1
o <c1,<xiy>,<z,y>>A

(crea/cicaca, )L (c1/cica, (2,9), (2,))a

Fig. 7. Second round of liveness and points-to analysis to comprferencing liveness and the
resulting points-to information. Only the additional infeation is shown.

5 Heaps, Escaping Locals and Records

Each data location statically specified in a program is atraftdocation and may cor-
respond to multiple actual locations. It may be explicifhgsified by taking the address
of a variable or implicitly specified as the resultrev or malloc. For interprocedural
analysis, we categorise all abstract locations as showigir8F

Defineinterprocedural locations as those abstract locations which are accessible
in multiple contexts reaching a given program point or whasta flow values depend
(via a dataflow equation) on another interprocedural locatThese are the locations
for which interprocedural data flow analysis is requirecbliall variables and heap lo-
cations are interprocedural locations. For pointer anmslyslocal variabler becomes
an interprocedural location if its address escapes theedroe containing it, or there is
an assignment = y orx = *xz with y, z or one ofz’s pointees being an interprocedural
location. Interprocedural locations for liveness analygse similarly identified.

Itis easy to handle different instances of a local varialiictvis not an interproce-
dural location (even if its address is taken). To see howrdtival variables are handled,
consider a local variable which becomes interprocedural from assignment y or
x = *z as in the previous paragraph. Since call strings store kbrénsitive data flow
values ofy and z, they also distinguish between instancescoffhose data flow val-
ues may differ. Thus, call strings inherently support pednterprocedural analysis of
global variables and locals (even interprocedural localg)se addresses do not escape
(the entry “No” for the latter category in Fig. 8 indicates that interprdaeal analysis
is either not required or is automatically supported by-staihgs method without any
special treatment).

11



Global Local Variable Heap a”pcatior
Issue Variabld  Address Address does| atagiven
escapes not escape source line
How many instances can existP Single |Arbitrarily many| Arbitrarily many|Arbitrarily many
Can a given instance be accesse
in multiqple calling contexts? Yes Yes No Yes
Number of instances accessiblé\t most| p it i itrar
ata given program point? one Arbitrarily many] At most one |Arbitrarily many
Is interprocedural data flow *
analysis required? Yes Yes No Yes
Is a summary node required? | No Yes No Yes

Fig. 8. Categorisation of data locations for interprocedural fianalysis

Since the number of accessible instances of heap locatimh$oaals whose ad-
dresses escape is not boundedk need to create summary nodes for them. Itis difficult
to distinguish between instances which are accessibldfereit contexts. Hence cre-
ating a summary node implies that the data flow values aredstmntext insensitively
(but flow sensitively) by merging values of all instancesemsible at a given program
point. A consequence of this decision is that strong updaitdbese abstract locations
are prohibited; this is easily engineeredWyst returningd for summary-node pointees
which is consistent with the requirementddifi,, /Uout,, computation.

Recall that Equation 1 does not treat ‘?’ as a summary node.ddpends on the
language-defined semantics of indirect writes via uniliéga pointers. In C (because
the subsequent program behaviour is undefined) or Javaudead ‘NullPointerEx-
ception’) it is safe to regarilust as returning all possible values when only ‘?’ occurs.
Alternatively, were the semantics to allow subsequent ¢odie executed in a defined
manner, then ‘?’ needs to be treated as a summary node ddtisatreturnsi and in-
direct writes kill nothing (in general this results in reédmptimisation possibilities).

Ourimplementation treats an array variable as a singlaseatiable with weak up-
date (no distinction is made between different index valugsck-allocated structures
are handled field-sensitively by using the offsets of fieltisap-allocated structures are
also handled field sensitively where possible. Functionieos are handled as in [3].

6 Related Work

The reported benefits of flow and context sensitivity for pairanalysis have been
mixed in literature [12—15] and many methods relax them fiiciency [5, 6, 11, 16]. It
has also been observed that an increase in precision caukhie efficiency [17, 11].
Both these aspects have been studied without the benefieoiss, partially explain-
ing marginal results. Some methods lazily compute poinferimation on demand [18—
21]. By contrast, L-FCPA does not depend on a client anaysigroactively computes
the entire usable pointer information. If there are many aeas, repeated incremental
computations could be rather inefficient [22]. Efficient eding of information by us-
ing BDDs [23] has been an orthogonal approach of achievifigjerfcy. Although the

6 Local variables whose addresses escape may belong toivegurscedures.
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usable pointer information discovered by L-FCPA is smaltarding it flow sensitively
in a large program may benefit from BDDs.

The imprecision caused by flow insensitivity can be pastiatitigated by using
SSA representation which enables a flow-insensitive metinadmpute flow-sensitive
information for local scalar variables. For pointers, theential properties of SSA can
only be guaranteed for top-level pointers whose addresetisaken. Some improve-
ments are enabled by Factored SSA [24] or Hashed SSA [25jelpitesence of global
pointer variables or multiple indirections, the advantagESSA are limited unless in-
terleaved rounds of SSA construction and pointer analysiparformed [26, 27]. A re-
cent method introduces flow-sensitive kill in an otherwisg/finsensitive method [11].

Full context sensitivity can be relaxed in many ways: using a context-insensitive
approach(b) using a context-sensitive approach for non-recursiveigrustof a pro-
gram but merging data flow information in the recursive i (e.g. [3,27-29]), or
(¢) using limited depth of contexts in both recursive and naursive portions (e.g. the
k-limited call-strings method [7] or [23]). Most contextrsstive approaches that we
are aware of belong to categofy). Our fully context-sensitive approach generalises
partially context-sensitive approaches suclolgsct-sensitivity [30, 12, 17] as follows.
For an objectr and its method, a (virtual) callz. f(eq, ..., e,) is viewed as the call
(x.f-in_vtab)(&x, €1, ..., e,). Thus object identification reduces to capturing the flow
of values which is inherently supported by full flow and comtensitivity.

We highlight some key ideas that have not been covered aBoweemoisation-
based functional approach enumerates partial transfetifuns [28] whereas an al-
ternative functional approach constructs full transferctions hierarchically in terms
of pointer indirection levels [27]. The invocation-graphsed approach unfolds a call
graph in terms of call chains [3]. Finally, a radically diféat approach begins with
flow- and context-insensitive information which is refingdtematically to restrict it to
flow- and context-sensitive information [29]. These applws merge points-to infor-
mation in recursive contexts (categg) above). Fig. 9.6 (page 305) in [1] contains
an example for which a method belonging to cateddiyor (¢) above cannot compute
precise result—the pointer assignments in the recursianngding part undo the effect
of the pointer assignments in the part that builds up recarand the overall function
is an identity function. When all recursive calls receive same (merged) information,
the undo effect on the pointer information cannot be capture

Finally, many investigations tightly couple analysis dfieation and implementa-
tion; by contrast our formulation maintains a clean sepamdietween the two and does
not depend on intricate procedural algorithms or ad-hodémpntation for efficiency.

7 Implementation and Empirical Measurements

We implemented L-FCPA and FCPA in GCC 4.6.0 using the GCQO's Miime Op-
timisation (LTO) frameworK. We executed them on various programs from SPEC
CPU2006 and CPU2000 Integer Benchmarks on a machine withBLR&W with

8 64-bit Intel i7-960 CPUs running at 3.20GHz. We comparedattrformance of three

" They can be downloaded from http://www.cse.iitb.ac.iofigdex.php?page=lipta.

13



Call Time in milliseconds Unique points-to pairs

Program |KLOC| i d  L-FCPA FCPA | GPTA |L-FCPAIFCPA| GPTA
LivenessPoints-tq

lom 09 33 0.55 0.52 1.9 5.2 12| 507] 1911
mcf 1.6 29 1.04 0.62 9.5 3.4 41| 367] 2159
libquantum 2.6| 258 2.0 1.8 5.6 4.8 490 119 2701
bzip2 3.7| 233 45 4.8 28.1  30.2 60| 210/8.8x10*
parser 7.7/111231.2x10%| 145.64.3x10°| 422.12 531| 41961.9x10*
sjeng 10.5 678 858.2 99.03.2x10% 38.1 267| 8181.1x10*
hmmer 20.61292  90.0 62.92.9x10°| 246.3 232| 58051.9x10°
h264ref 36.019922.2x10°|2.0x 10° ?  |4.3x10%°| 1683 ? |1.6x107

Table 1. Time and unique points-to pairs measurements. For h2G3@#A ran out of memory.

methods: L-FCPA, FCPA and GPTA (GCC's points-to analysigjth L-FCPA and
FCPA are flow and context sensitive and use call strings vatherbased termination.
L-FCPA uses liveness whereas FCPA does not. GPTA is flow antéxbinsensitive
but acquires partial flow sensitivity through SSA.

Since our main goal was to find out if liveness increases theigion of points-to
information, both L-FCPA and FCPA are naive implementaithrat use linked lists and
linear searches within them. Our measurements confirm tgisthesis beyond doubt,
but we were surprised by the overall implementation pertoroe because we had not
designed for time/space efficiency or scalability. We wdnle o run naive L-FCPA on
programs of around 30kLoC but not on the larger programs.

Table 1 presents the computation time and number of poinpsirs whereas Ta-
bles 2 and 3 present measurements of points-to informatidncantext information
respectively. To measure the sparseness of informatioey@ated four buckets of the
numbers of points-to pairs and call strings: 0, 1-4, 5-8 amd Shore. We counted
the number of basic blocks for each bucket of points-to imfation and the number of
functions for each bucket of context information. Our détteves that:

— The usable pointer information &) rather sparse (64% of basic blocks have 0
points-to pairs), angb) rather small (four programs have at most 8 points-to pairs
and in other programs, 9+ points-to pairs reach fewer tharbd%ic blocks). In
contrast, GPTA computes an order-of-magnitude-largerbarrof points-to pairs
at each basic block (see the last column in Table 1).

— The number of contexts required for computing the usablatpoinformation is
(a) rather sparse (56% or more basic blocks have 0 call striagdjp) rather small
(six programs have at most 8 call strings; in other progr&ngall strings reach
less than 3% basic blocks). Thus, contrary to the commorelgpision, context in-
formation need not be exponential in practice. Value-baésedination reduces the
number of call strings dramatically [10] and the use of le@emenhances this effect
further by restricting the computation of data flow valueg®usable information.
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Total | No. and percentage of basic blocks (BBs) for points-to (pi) pounts
Program | no. of Optpairs | 1-4ptpairs | 5-8ptpairs 9+ pt pairs
BBs |L-FCPA| FCPA |L-FCPA| FCPA [L-FCPA] FCPA [L-FCPA| FCPA

229] 61| 23] 82 66 43
tom 2521 90.9%)(24.2%) (9.1%) (32.5% 01(26.2% 0l (17.1%

356 160| 116] 2 1 309
mcf 4712| (75.4%) (33.9%) (24.6%) (0.4%)  °| 0.2%)  °|(65.5%
. 1520] 793 119] 796 3] 46 7
libquantum 1642/ g5 5os) (48.3%) (7.29)(48.5%) (0.2%) (2.8%)  °| (0.4%)
. 2624] 1085] 118 12 3 12 1] 1637
bzip2 2746|(95.6%) (39.5%) (4.3%) (0.4%) (0.1%) (0.4%) (0.0%)(59.6%

9+ pt pairs in L-FCPA: Tot 1, Min 12, Max 12, Mean 12.0, Medi&) Mode 12

. 4571| 3239| 1208 12 221 41 2708
sjeng 60001 76 205) (54.006) (20.1%) (0.2%) (3.7%) (0.7%)  ©|(45.1%

13483| 8357 896 21 24 91 15| 5949
hmmer 14418/ (93.5%)(58.0%) (6.2%) (0.1%) (0.2%) (0.6%) (0.1%)(41.3%
9+ pt pairs in L-FCPA: Tot 6, Min 10, Max 16, Mean 13.3, Medi&8) Mode 10
4823| 1821| 1591 25 252 154 209| 4875

parser 6875 (70.2%)(26.5%) (23.1%) (0.4%) (3.7%) (2.2%) (3.0%)(70.9%
9+ pt pairs in L-FCPA: Tot 13, Min 9, Max 53, Mean 27.9, MedigB) Mode 9

13729 5 4760 5 2035 5 791 5

h264ref 21315|(64.4% ) (22.3% ’ (9.5%) ’ (3.7%) ’

9+ pt pairs in L-FCPA: Tot 44, Min 9, Max 98, Mean 36.3, Medidah ®ode 9

Table 2. Liveness restricts the analysis to usable pointer infalmnathich is small and sparse.

The significant increase in precision achieved by L-FCPAgests that a pointer anal-
ysis need not compute exponentially large information. Al this sub-exponential
trend in programs of up to around 30kLoC and anticipate ithfepld for larger pro-
grams too—because although reachable pointer informataynincrease significantly,
usable information need not accumulate and may remairtdigtd in the program.

A comparison with GPTA shows that using liveness reducesieeution time
too—L-FCPA outperforms GPTA for most programs smaller tB@kLoC. That a flow-
and context-sensitive analysis could be faster than flodhcantext-insensitive analysis
came as a surprise to us. In hindsight, this is possible lsecthe information that
we can gainfully use is much smaller than commonly thougloteNhat a flow- and
context-insensitive analysis cannot exploit the smak sizusable pointer information
because it is small only when considered flow and contexitbeiy.

The hypothesis that our implementation suffers becausme#d search in linked
lists was confirmed by an accidental discovery: in order tmiehte duplicate pairs
in GPTA, we used our linear list implementation of sets froArCPA which never
adds duplicate entries. The resulting GPTA took more thamoam for thehmmenpro-
gram instead of the original 246.3 milliseconds! Anothaemtial source of inefficiency
concerns the over-eager liveness computation to reduqeoihes-to pairs in L-CFPA:
a new round of liveness is invoked when a new points-to paiyfis discovered for
x = *y putting on hold the points-to analysis. This explains thaaurally large time
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Total No. and percentage of functions for call-string counts

Program |no. of 0 call strings | 1-4 call strings| 5-8 call strings| 9+ call strings
functiongL-FCPA| FCPA [L-FCPA| FCPA |L-FCPA| FCPA |L-FCPA| FCPA

16 3 6 19
om 22 (72.7%) (13.6%) (27.3%) (86.4% 0 0 0 0
mcf 25|, 16 3 9 22 0 0 0 0

(64.0%) (12.0%) (36.0%) (88.0%
88| 38| 12| 62
(88.0%) (38.0%) (12.0%) (62.0% 0 0 0 0
100] 56| 17| 62 1
(84.7%) (47.5%) (14.4%) (52.5%) (0.8%)

bzip2 100

libgquantum 118 0 0 0

. 96| 37| 43| 45| 12| 15 54
sieng 1511 63.6%) (24.5%) (28.5%)(29.8%) (7.9%) (9.9%)  °|(35.8%
548 330 32| 175 4l 26 53
hmmer 584 93.8%)(56.5%) (5.5%)(30.0%) (0.7%) (4.5%)  °| (9.1%)
246] 76| 118] 135 4| 63 ACE
parser 372 (66.1%) (20.4%) (31.7%)(36.3%) (L.19%)(16.9%) (L.1%)(26.3%
9+ L-FCPA call strings: Tot 4, Min 10, Max 52, Mean 32.5, Maui29, Mode 10

B/ 240] 4] 9]

h264ref 624|(56.2%)  |@385%) | 22%) ° | 3.0%)

9+ L-FCPA call strings: Tot 14, Min 9, Max 56, Mean 27.9, Meui24, Mode 9

Table 3.Context information for computing usable pointer inforioatis small and sparse.

spentin liveness analysis compared to points-to analgsigrbgramgparseandsjeng

The number of rounds of analysis required for these progreassamuch higher than in
other programs of comparable size. Finally, GCC’s LTO frewméx has only two op-
tions: either to load no CFG or to load all CFGs at the same.tBimce the size of the
entire program could be large, this affects the locality hedce the cache behaviour.

8 Conclusions and Future Work

We have described a data flow analysis which jointly caleslgioints-to and live-
ness information. It is fully flow- and context-sensitivedanses recent refinements
of the call-strings approach. One novel aspect of our ampragathat it is effectively
bi-directional (such analysis seem relatively rarely ekpt).

Initial results from our naive prototype implementationrev@npressive: unsurpris-
ingly our analysis produced much more precise results,ahtorder of magnitude (in
terms of the size of the calculated points-to informatidiie reduction of this size al-
lowed our naive implementation also to run faster than G@Giats-to analysis at least
for programs up to 30kLoC. This is significant because GC@&ysis compromises
both on flow and context sensitivity. This confirms our betledt the usable pointer
information is so small and sparse that we can achieve beattigion and efficiency
without sacrificing one for the other. Although the benefiprdcision in efficiency has
been observed before [17,11], we are not aware of any stadghiows the sparseness
and small size of points-to information to this extent.
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We would like to take our work further by exploring the followg:

Improving our implementation in ways such as: using effictiata structures (vec-
tors or hash tables, or perhaps BDDs); improving GCC’s LTankework to allow
on-demand loading of individual CFGs instead of loadingthmplete supergraph;
and experimenting with less-eager strategies of invokiremkess analysis.

— Exploring the reasons for the 30kLoC speed threshold; parbizere are ways in

practice to partition most bigger programs (around looselypled boundaries)
without significant loss of precision.

— We note that data flow information often only slightly chasgehen revisiting a

node compared to the information produced by the earliésvidence, we plan to
explore incremental formulations of L-FCPA.

— GCC passes hold alias information in a per-variable datecttre thereby using

the same information for every occurrence of the variablewuld like to change
this to use point-specific information computed by L-FCPA areasure how client
analyses/optimisations benefit from increased precision.
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