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With cloud and utility computing models gaining significant momentum, data centers are
increasingly employing virtualization and consolidation as a means to support a large
number of disparate applications running simultaneously on a chip-multiprocessor
(CMP) server. In such environments, contention for shared platform resources (CPU cores,
shared cache space, shared memory bandwidth, etc.) can have a significant effect on each
virtual machine’s performance. In this paper, we investigate the shared resource conten-
tion problem for virtual machines by: (a) measuring the effects of shared platform
resources on virtual machine performance, (b) proposing a model for estimating shared
resource contention effects, and (c) proposing a transition from a virtual machine (VM)
to a virtual platform architecture (VPA) that enables transparent shared resource manage-
ment through architectural mechanisms for monitoring and enforcement. Our measure-
ment and modeling experiments are based on a consolidation benchmark (vConsolidate)
running on a state-of-the-art CMP server. Our virtual platform architecture experiments
are based on detailed simulations of consolidation scenarios. Through detailed measure-
ments and simulations, we show that shared resource contention affects virtual machine
performance significantly and emphasize that virtual platform architectures is a must for
future virtualized datacenters.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The use of virtualization for consolidation of multiple
workloads on to a single platform is growing rapidly in
datacenter environments. Virtualization offers the oppor-
tunity for better manageability, provisioning and lower
cost. Virtual machine monitors or hypervisors from
VMware [34], Xen community [36], Microsoft [18], and
others manage the virtual machines running on a single
platform and ensure that they are functionally isolated
from one another. However, from a performance stand-
point, it is expected that the performance of each of the vir-
tual machines will be significantly affected by the other
virtual machines running on the same platform. Since each
of the virtual machines can be running entirely different
operating systems and workloads, the overall performance
. All rights reserved.
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er).
behavior of consolidated scenarios will be significantly dif-
ferent from traditional commercial server workloads that
run in a dedicated mode on a platform. As virtualization
becomes ubiquitous (with emerging cloud computing
and utility computing paradigms), it is imperative that
contention for shared resources on each platform between
virtual machines is carefully studied. In addition, it is
important to be able to project the performance of individ-
ual virtual machines in order to allow datacenter adminis-
trators to appropriately manage the mapping of virtual
machines to available platforms. Finally, it is important
to be able to develop architectural techniques to ensure
that shared resources can be appropriately allocated to
virtual machines running simultaneously based on their
importance or their behavior.

The goal of our VM3 research is to measure, model and
manage shared resource contention and its implications
on virtual machine performance on a consolidated chip-
multiprocessor platform. In this paper, we will cover
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all three aspects of VM3 by answering the following
questions:

� Measure: What are the implications of shared resource
contention within the platform on virtual machine
performance?

� Model: How do we decompose the performance impact
of shared resource contention when there are multiple
resources involved and the overheads of virtualization
as well?

� Manage: For shared resources (e.g. shared cache, mem-
ory bandwidth, etc) that are not exposed to the OS or
VMM today, how can the resource management be
improved significantly?

Our measurements are based on detailed experimenta-
tion with vConsolidate (a server consolidation benchmark
[4]) on a consolidated chip-multiprocessor (CMP) server.
Our measurement experiments show how a virtual ma-
chine performance is affected when it is running with
other virtual machines on the same platform. Based on
our detailed measurement experiments, we next start to
decompose the performance effects on virtual machines
into three different categories: (a) the effect of virtualiza-
tion overheads, (b) the effects of CPU core contention over-
heads and (c) the effects of cache/memory contention
overheads. Through this decomposition, we then formulate
a modeling approach to predict the effects of these over-
heads based on offline profiling experiments. We also
show how contention overheads for transparent shared re-
sources (such as cache space and memory bandwidth) are
as big a component as virtualization or core contention
overheads. Based on this observation, we then propose a
novel resource management solution called ‘‘virtual plat-
form architectures” or VPAs. Our VPA approach essentially
allows the monitoring and allocation of transparent shared
resources (cache space and memory bandwidth) to virtual
machines (which traditionally only have control over num-
ber of cores, memory capacity and IO devices).

In our previous work, we started characterizing virtual
machine performance behavior [2] and evaluating the
impact of resource interference [16] independently. To
our knowledge, a detailed evaluation of consolidation
environments that cover measurement, modeling and
management of shared resource contention for virtual
machines has not been presented earlier. Other than this,
this paper is the first to propose a unique approach for
modeling as well as management of shared resources for
virtual machines.

The rest of this paper is organized as follows. Section 2
presents an overview of virtual machines and describes the
shared resource contention problem for consolidation sce-
narios. Section 3 presents a detailed measurement-based
analysis of virtual machine performance. Section 4 pre-
sents our decomposition and modeling approach for pre-
dicting virtual machine performance. Section 5 presents
our shared resource management approach based on a
transition from ‘‘virtual machines” to ‘‘virtual platform
architectures”. Section 6 covers related work in this area.
Section 7 summarizes the paper with our conclusions
and a direction for future work in this area.
2. Server consolidation and shared resources

In this section, we will present an overview of virtual-
ization and consolidation. We will also describe the vCon-
solidate benchmark used in this paper and the CMP
platforms considered.

2.1. Server consolidation and vconsolidate overview

Within the last decade, data centers have started
employing virtualization solutions [3,12,26,27] to consoli-
date multiple server applications on the same platform.
This was motivated by the need to (a) reduce complexity
of managing and interconnecting multiple platforms in
the datacenter, (b) improving the overall resource utiliza-
tion and total cost of ownership by sharing resources and
(c) allowing more flexibility to migrate applications and
deploy newer ones. Within the next decade, it is expected
that a significant percentage of all servers in the market-
place will be running consolidated workloads as opposed
to individual applications.

Fig. 1 illustrates the transition from an individual image
(single OS) and single server application running on a plat-
form to a virtual machine monitor (VMM) or hypervisor run-
ning multiple images (i.e. virtual machines – VMs) on a
server platform. This transition becomes especially impor-
tant as the number of cores integrated into CMP
processors [11,13] continues to increase and datacenter-
on-chip usage models [15] start to become prevalent to sup-
port cloud and utility computing models [1,8,9,19,29,31].

In this paper, we study the implications of server con-
solidation by employing a recent server consolidation
benchmark called vConsolidate [4]. The vConsolidate
(vCon) benchmark consists of four key virtual machines
(VMs): (a) a compute intensive workload/application, (b)
a database workload, (c) a web server workload, and (d)
a mail server workload. To emulate a real world environ-
ment, an idle virtual machine is added to the mix since
datacenters are not fully utilized all the time. The compute
intensive VM runs a modified version of SPECjbb2005 [28].
Typically SPECjbb2005 is a cpu intensive workload that
consumes as much cpu as it possibly can. However, in this
vCon environment, SPECjbb has been modified to consume
roughly 75% of the cpu or so, by inserting random sleeps
every few milliseconds. The database virtual machine runs
Sysbench [30], which is an OLTP workload executing trans-
actions against a MySQL database. The web server VM runs
Webbench [35] which uses Apache webserver. The mail
server virtual machine runs Microsoft Exchange workload
that executes transactions on Outlook with 500 users
logged in simultaneously. A vConsolidate configuration as
described above with four active VMs and an idle VM com-
prises a consolidated stack unit (CSU). Fig. 2 illustrates a
single CSU configuration. The vCon benchmark also defines
various profiles – we have chosen a profile that is a mix of
32-bit and 64-bit VMs including 3 Linux VMs and 2 Win-
dows VMs. The SPECjbb VM (linux 64 bit) has 2 vcpus
and 2 GB memory, Sysbench VM (linux 64 bit) has 2 vcpus
and 1.5 GB memory, Webbench (32 bit linux) is assigned 2
vcpus and 1.5 GB memory and Mail (32 bit Windows) VM
has 1vcpu and 1 GB memory. The idle VM is given 1 vcpu
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Fig. 1. Towards virtualization and consolidation on CMP Servers.

Fig. 2. vConsolidate benchmark components.
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and 0.4 GB memory. The entire configuration is on a pri-
vate switched subnet with two clients generating traffic
for the Webserver workload and one client generating traf-
fic for the exchange/mail workload. All VMs run on plat-
forms with intel virtualization technology [12,32].

2.2. The VM3 shared resource problem

As the server consolidation continues to gain momen-
tum, datacenter administrators need to start considering
the performance implications of virtualization and server
consolidation when making decisions on assigning virtual
machines to servers, and capacity planning for resource
provisioning. While CMP platforms provide abundant
hardware parallelism to achieve server consolidation, run-
ning multiple workloads simultaneously introduces con-
tention for shared resources in the platform. A typical
CMP processor today consists of multiple cores with one
or more shared last-level caches within the processor.
Dynamic contention for available cores, shared cache re-
sources and shared memory bandwidth (as shown in
Fig. 3) provides better resource usage efficiency, but also
introduces performance isolation concerns for the system
administrator and data center manager. Without a careful
understanding of the effects of resource contention
between virtual machines within each platform, it
becomes very difficult to satisfy service level agreements
that are provided to the customer for their hosted
application.

Our VM3 research was motivated by this key concern of
efficient shared resource management within each plat-
form in the datacenter. In this paper, we describe the three
key components of our VM3 research, effectively covering
‘‘measurement”, ‘‘modeling” and ‘‘management” of shared
resource implications on individual virtual machine per-
formance (see Fig. 4). Measurement (offline in this paper)
allows us to understand the performance slowdown effects
of consolidation on virtual machine performance. Modeling
(offline in this paper) allows us to decompose the perfor-
mance slowdown into virtualization effects, CPU core con-
tention effects and shared platform resource (cache,
memory in this paper) contention effects. Management
(online) attempts to improve the current shared resource
management approach. Today, VM-based approaches can
only control visible shared resources such as cores, mem-
ory capacity and I/O devices. In this paper, we show that
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extending virtual machines into virtual platform architec-
ture (VPA) that encompass the ability to monitor and guide
the allocation of traditionally transparent shared resource
(cache, memory in this paper) is very important. In the
next few sections, we will cover our experimentation on
each aspect of VM3 in significant detail.

3. Measuring resource contention effects

In this section, we first present our measurement meth-
odology and then describe the effects of virtualization and
consolidation on virtual machine performance. In particu-
lar, we study the shared resource contention effects on vir-
tual machine performance.

3.1. Measurement platform and evaluation tools

Our measurement-based evaluation was conducted on
a dual-socket VT-enabled Intel server platform that has
two processor sockets (the latest Intel Xeon 5400 series)
and is populated with 16 GB of memory. Within each pro-
cessor socket, there are four cores running at 2.8 GHz. Each
pair of cores share a 6 MB cache, adding up to a total of
12 MB on each socket. Fig. 5 illustrates this measurement
platform configuration. For our experimentation, to have
a saturated platform in consolidated mode, we disabled
one pair of cores on each socket and ran our experiments
on the remaining four cores. On this platform, we run
vConsolidate on top of Xen 3.1. Commonly available tools
with Xen such as sar, xentop, xm info, xentrace have been
used to get details such as cpu usage from each VM. To get
architectural metrics such as CPI (cycles per instruction)
and MPI (misses per instruction) we used a tool that reads
processor performance counters.
LLC   LLC   LLC   LLC   

Memory

Disabled Disabled 

Fig. 5. Measurement architecture/configuration.
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3.2. Measurement results and analysis

To measure the effects of consolidation, we ran the fol-
lowing configurations: (a) an individual virtual machine
(SPECjbb) running alone, (b) the SPECjbb virtual machine
running pairwise with each of the other virtual machines
that are in vConsolidate and (c) the vConsolidate configura-
tion with all virtual machines running together. Fig. 6
presents the data for SPECjbb2005 and shows how the per-
formance, CPI and MPI change from when it runs alone to
when it runs with another workload (pairwise) versus
when it runs with all other virtual machines in consolida-
tion. In Fig. 6a, the shared last-level caches are 6 MB in size
each. In Fig. 6b, the shared last-level caches are 4 MB in size
each. Let’s start by analyzing the data in Fig. 6b. When
SPECjbb2005 virtual machine runs with another SPEC-
jbb2005 virtual machine, we find that each virtual machine
suffers about a 19% loss in performance because it contends
for shared cache space and memory bandwidth (but not for
cores). When SPECjbb2005 runs with Sysbench or with
Webbench, the effect is lower in significance. However,
when it runs with all virtual machines within vConsolidate,
we find that it loses more than 35% in performance due to
both core and cache/memory interference.

The performance loss can be attributed to core, cache
[5] and memory interference as follows. The cache and
memory interference results in CPI increase, whereas the
core contention results in CPU utilization reduction per vir-
tual machine. SPECjbb2005 CPI increases by 40% (implying
a performance loss of 30% using the estimation models
presented in next section) due to consolidation. To further
decompose this performance loss into cache interference
and memory interference independently, we measured
the memory latency increase to be 10% when going from
SPECjbb running alone to SPECjbb running in consolidated
mode (resulting in a � 5% performance loss). The remain-
ing gap in performance ð� 25%Þ is attributed to cache
interference. Fig. 6a shows similar effects on a 6 MB cache.
Table 1 shows the additional impact of core interference
based on the cpu utilization loss during consolidation.
The cpu utilization (in %) is shown in Table 1 and the core
interference contributes to about 7–9% of the performance
loss (labeled as Delta).

We have also done similar experiments with Sysbench
and Webbench to understand the effects of virtual cache
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solidation (two different cache size configurations).



Table 1
Core interference impact.

Cpu (%) Alone In vCon Delta (%)

JBB(6 M) 133 121 9
JBB (4 M) 137 127 7
JBB(3 M) 144 130 9
JBB(2 M) 154 140 9
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Fig. 7. VM performance sensitivity to cache size.
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asymmetry (but do not present the data for brevity). Over-
all, we find that virtual asymmetry due to cache interfer-
ence has significant impact on each VM’s performance.

Since we showed that shared cache interference affects
virtual machine performance significantly, we next studied
the performance sensitivity of the SPECjbb virtual machine
to different cache sizes. Fig. 7 shows the comparison of the
overall performance, the CPI and the MPI as a function of
the last-level cache (LLC) size (varied as 6 MB, 4 MB,
3 MB, 2 MB). As can be seen in the figure, SPECjbb is quite
cache sensitive with the overall performance increasing by
as much as 50% as cache size is increased from 2 MB to
6 MB. The performance improvement is reflected in CPI
reduction (close to 40%) and the MPI reduction (by as much
as 55%). The data also shows (as expected) that the benefits
of increasing cache size is higher when going from 2 MB to
3 MB as opposed when increasing from 4 MB to 6 MB.

The above measurement data shows the overheads of
core and cache contention on virtual machine performance
when consolidated on a CMP platform. The next key chal-
lenge is to be able to accurately decompose the resource
contention overheads to predict the extent to shared re-
source contention needs to be managed in consolidated
CMP servers. In the next section, we present a modeling
approach to decompose the resource contention overheads
(core and cache primarily) and show that it is possible to
estimate the performance effects with a reasonable degree
of accuracy.

4. Modeling resource contention effects

To model the implications of consolidation, we start by
proposing a decomposition model that consists of three
major components: (a) virtualization overheads, (b) core
contention overheads and (c) shared cache contention
overheads. Fig. 8 illustrates such a decomposition model
that allows us to estimate the potential performance loss
when a virtual machine is consolidated with other virtual
machines.

Typically, the performance of a workload (like SPECjbb)
is measured in transactions per second (the specific metric
for SPECjbb is business operations per second or BOPS).
This performance is a function of the number of cores,
the core utilization, the core frequency, the CPI and the
pathlength (instructions per transaction) as follows:

Transactions=s ¼ Core Util � Core Freq � No: of cores
CPI � Pathlength

The effects of consolidation affect core utilization (due to
core contention), CPI (due to platform resource contention
such as cache space) and potentially pathlength (if addi-
tional virtualization overheads occur). Our decomposition
model attempts to capture these overheads with core con-
tention and platform resource contention being the focus
for this paper.

4.1. Estimating core contention effects

When running a virtual machine alone on the platform,
all the cores in the platform are available to this virtual
machine. However, when consolidating this virtual ma-
chine with other virtual machines, the contention for
CPU cores will affect the available cores. To predict the re-
duced core utilization, we propose the following simple
estimation model:

� Measure each virtual machine’s core utilization when
running alone (let’s call it VMx-Alone-Util).

� Scale down this core utilization based on the total utili-
zation of all virtual machines running alone and the
number of available physical CPUs as follows:
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VMx � Const�Util

¼min VMx �Alone�Util;
VMx � Alone�Util � PhysicalCPUs

VMall Alone Util

� �
:

� Estimated performance loss from core contention as
follows:
140%

160%

180% SJBB None SJBB SJBB SJBB SYSB SJBB WEBB
Core Contention Per f Loss ¼ 1� VMx � Cons� Util
VMx � Alone� Util

:

For the vConsolidate measurement, we applied the estima-
tion model to platforms configured with different cache
sizes (2 MB, 3 MB, 4 MB, 6 MB) as described earlier in Sec-
tion 3.2. For the estimation model, the utilization was mea-
sured with the VMs running alone and per-VM utilization
in consolidated case along with the core contention perfor-
mance loss was calculated using the expressions above.
We also instrumented the Xen VMM to measure the actual
utilization of the SPECjbb virtual machine and compare it
to the estimated utilization. Table 2 shows the utilization
(in %) as well as the accuracy (computed as relative error).
For example, the estimated utilization is 1.1 cores (110%
utilization) for a 6MB configuration, whereas the measured
utilization is 1.21 cores (121%) for the same configuration.
With such a simplistic model, we find that the error is
around 10% or less. It should be noted that such a model
can be improved significantly by carefully examining the
Xen scheduler and applying weights to virtual machines
based on the parameters used for scheduling decisions.
We have applied this model to another commercial virtual
machine monitor (as well) and find that it comes reason-
ably close (much like Xen).

4.2. Estimating shared cache contention effects

As described in Section 3.2, the other significant factor
for loss in performance for a workload running in consoli-
dation is shared cache interference. Interference in cache is
directly related to space contention in cache and its effects
on cache miss rate for each of the virtual machines. To esti-
mate cache miss rate increase due to consolidation, we
propose the following model (for a pair of cores sharing
cache):

� Estimate how often VMx will run with another VMy

simultaneously on the same shared cache (since there
are two cores sharing the cache) in the target platform.
Table 2
Estimating the core utilization.

SPECjbb 6 MB 4 MB 3 MB 2 MB

Est 110 119 123 124
Meas 121 127 130 140
% Error �9% �6% �5% �11%

Table 3
Execution probability of two VMs running cores sharing a last-level cache.

SJBB (%)

Pairwise execution (%) SJBB(Meas) 19%
SJBB (Est) 23%
This is a straightforward probability exercise based on
the utilizations of each of the VMs (in Table 2). Table 3 pre-
sents the fraction of SPECjbb VM’s execution time that it
spends running with another virtual machine contending
on a shared cache. In the table Dom0 represented privi-
leged administrative Domain0 in Xen. This domain assists
other guest domain in starting and can have direct access
to system hardware. For example, a SPECjbb virtual CPU
runs with a SysBench virtual CPU sharing the same shared
cache for an estimated 30% of its overall execution. On the
other hand, it spends an estimated 23% of its overall execu-
tion time running with the other SPECjbb virtual cpu.

� Estimate VMx’s effective cache size and MPI when run-
ning with VMy.

We define VMx’s effective cache size as the average
cache space occupied by VMx when sharing cache with an-
other VMy. To achieve this, we can run pairwise measure-
ments of each of the virtual machines and compare the L2
MPI to that when the virtual machine is running alone.
Fig. 9 shows the effect of SPECjbb’s MPI normalized to
when it was running alone. As shown in Fig. 9, for a
4 MB cache configuration, one SPECjbb virtual CPU’s MPI
increases by as much as 50% when running with another
SPECjbb virtual CPU, whereas it increases by 40% and 20%
when running with Sysbench and Webbench virtual CPUs,
respectively.

� Estimate VMx’s effective cache size or MPI in consoli-
dated mode.

In order to estimate the overall MPI increase when
consolidated with multiple virtual machines (i.e. vConsoli-
date configuration), we need to take the net effect of
individual MPI increases shown above weighted by the
execution time fraction also shown before. Based on this
approach, Table 4 shows that the estimated MPI (for SPEC-
jbb) comes reasonably close to the measured MPI during
consolidation.

The cache contention effect can also be translated to
prediction of effective cache size by looking up the cache
SysB (%) Webb (%) Mail (%) Dom0 (%)

35% 35% 1% 10%
30% 29% 3% 7%
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Fig. 9. Estimating MPI increase from pairwise execution.



Table 4
Overall cache contention effect for consolidation.

SJBB 6 M 4 M 3 M 2 M

Meas 0.0053 0.0070 0.0088 0.0111
Est 0.0050 0.0064 0.0087 0.0117

SPECjbb MPI 
running alone vs running consolidated
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Fig. 10. SPECjbb cache occupancy analysis.

Table 5
Overall performance estimation accuracy.

SPECjbb 6 MB 4 MB 3 MB 2 MB

% Error in performance est. 1% 4% �4% 1%
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size based on offline MPI profiling experiments. For exam-
ple, Fig. 10 shows the MPI of SPECjbb running alone and in
consolidated mode as a function of cache size. By analyzing
the miss rate curve (for 6 MB and 4 MB), we find effective
cache size (3.2 MB and 2.5 MB), respectively.

4.3. Combining the core and cache contention effects

Above, the performance loss due to core contention and
the due to shared cache contention was derived. Taking
these two into account, we can predict the performance
loss due to consolidation. Table 5 shows the accuracy in
overall performance prediction. As shown in the table,
the performance prediction accuracy is well within 10%
with simple models proposed for core and cache conten-
tion alone.

We expect that this simple model proposed in the paper
can be enhanced significantly by considering the
following:

� Extending the core contention model based on sched-
uler heuristics implemented in the VMM.

� Extending cache size prediction accuracy by integrating
cache size monitoring hardware in the platform.

� Incorporating other shared resource contention
overheads such as memory bandwidth contention,
multi-threading, etc.

� Although not discussed in this paper, predicting the
effects of virtualization based on the type of virtualiza-
tion technology available (such as [27,33,36]) and the
type of virtualization employed by the VMM (para-vir-
tualization, binary translation[33], etc.) is important.
We have now discussed the measurement and model-
ing potential for virtualization datacenters with an empha-
sis on shared resource contention implications. In the next
section, we will now cover how shared resources such as
cache space and memory bandwidth can be better man-
aged to provide better performance isolation and perfor-
mance differentiation.
5. Managing resource contention with VPA

In this section, we propose virtual platform architec-
tures (VPAs) as an approach to resource management for
performance isolation in datacenter servers employing vir-
tualization for consolidation.
5.1. Virtual platform architecture (VPA) overview

A virtual platform architecture is defined as an exten-
sion to a virtual machine that includes performance-criti-
cal shared resources that are currently invisible to the
VMM. Today, a virtual machine consists of number of cores
(or virtual cpus), memory capacity and I/O devices (for
storage, networking, etc). A VPA includes additional shared
resources such as last-level cache space, memory band-
width, power, etc. In this paper, we experiment with vir-
tual platform architectures that enable monitoring and
enforcement of cache space and memory bandwidth
(Fig. 11). Monitoring and enforcement of fine-grained re-
sources such as cache space and memory bandwidth re-
quires a unique interaction between the architecture and
the operating system. While we limit our discussion to
cache and memory bandwidth monitoring and enforce-
ment, the framework proposed is extensible to accommo-
date other shared resources such as power, TLB, etc., in
the platform. In the following subsections, we will describe
the architectural support as well as the OS support re-
quired to achieve VPA management for performance isola-
tion in datacenter servers.
5.2. Monitoring virtual platform architectures

Major components of VPA monitoring architecture is
shown in Fig. 12. In this paper, VPA monitoring tries to
achieve two purposes: (a) allows monitoring of transpar-
ent resources such as shared cache space on a per VPA ba-
sis and (b) reduces the overhead of monitoring by
implementing a central monitoring agent in the platform
that can automatically log cache space and memory band-
width per VPA identity. In order to achieve this, the key
components of the solution are:

� VPA identities: Each platform will support the monitoring
of resources on a per VPA-ID basis. This VPA-ID is pro-
vided to the platform by the OS/VMM. As a result, it is
required that the OS/VMM maintain a VPA-ID per appli-
cation or virtual machine. Since the number of VPA-IDs
are finite (for example: 64), it is also required that the
VMM recycles these IDs amongst the active VMs (for
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example: 128) using recycling/sampling techniques. The
sampling technique to achieve this is fairly trivial and
will be described in more detail in the evaluation section.

� VPA register in each core: In order for the OS/VMM to
indicate a VPA-ID to the platform, we introduce a new
CPU register in the architectural context for each hard-
ware thread/core. When a VPA is scheduled on the core,
the OS/VMM is required to restore the ID of the VPA by
storing that value from memory to the VPA register.

� VPA monitoring agent: The VPA monitoring agent keeps
track of time spent on the core, cache space consumed
and memory bandwidth consumed by the VPA-ID in a
monitoring table. Every time a new VPA-ID is scheduled
on to a core, the VPA monitoring agent receives a mes-
sage from the core so that it knows when to start and
stop accounting for a VPA-ID. Although the VPA moni-
toring agent can be potentially located anywhere in
the die, proximity to shared resources should be kept
under consideration.
(i) Cache occupancy monitoring: Since cache maintains

persistent state, the monitoring of cache state is more
difficult than core or memory utilization. For main-
taining occupancy of cache per VPA-ID, we need to
tag each cache line with the VPA-ID. In order to do
so, we ensure that every cache line is associated with
the VPA-ID. This can be easily done because the VPA
monitoring agent already knows (through core utili-
zation accounting) which VPA-ID is running on which
core. Alternatively, it is also possible to include the
VPA-ID in every memory request that looks up the
cache. One of the key challenges with maintaining a
VPA-ID per cache line is the overhead in terms of
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number of bits and die area. For example, maintain-
ing 64 VPA-IDs requires 6 bits per cache line of 64
bytes which amounts of � 1% overhead in number
of additional bits. In order to reduce this overhead
further, we employ set sampling [24,37] to reduce
the overhead significantly. By tagging less than 10%
of the sets in the cache, we can reduce the overhead
down to 0.1% but retain a 90+% accuracy which is
more that sufficient for monitoring purposes.
Through our own detailed experiments, we will actu-
ally show that >95% accuracy is possible with less
than 5% of the sets tagged in the cache. This makes
VPA cache occupancy monitoring more viable. Once
a sampled line is tagged in the cache, the cache occu-
pancy count maintained in the monitoring table is
essentially incremented when a new line is allocated
for VPA-ID and decremented when an existing line is
evicted from the cache.

(ii) Memory bandwidth monitoring: Memory bandwidth
monitoring is relatively straightforward when the
monitoring agent is in the last-level cache (LLC).
Since memory bandwidth is consumed on all LLC
misses and writebacks, the VPA monitoring agent
can keep track of bytes consumed during the period
of time that a VPA-ID was running. When a VPA-ID is
de-scheduled from the core, the total number of
bytes are divided by core time and recorded in the
table.

� Access to the monitoring table: The last step for VPA
monitoring is to allow the OS/VMM or other manage-
ment software access to the data stored in the moni-
toring table. Traditionally software reads performance
monitoring counters in order to access the processor
data related to performance events. Following the
same approach, it is straightforward to map entries
in the table to similar architectural performance mon-
itoring registers so that the OS/VMM can read it at any
time. To make it simpler for the OS/VMM to specify
which data is of interest, we also support an event
description register in each hardware thread. The event
description register can be programmed to specify (a)
VPA-ID of interest, (b) event of interest (occupancy vs
memory bandwidth). Once specified, the core sends a
request to read the monitoring table and provides the
appropriate data. Although useful for individual que-
ries, a key limitation of such an approach is its intru-
sive behavior: (a) the monitoring counters have to be
programmed and read individually and (b) the moni-
toring counters may have to be read very often. To
address this problem, we also allow the OS/VMM to
specify a physical memory address of a log buffer in
a register so that the monitoring agent dump the
entire table in memory (using a DMA-like operation).
It is the responsibility of the OS/VMM software to save
or process the log buffer as it gets full. The log buffer
also allows out-of-band access for management utili-
ties. Since the log buffer will be read and updated very
infrequently (at a time scale larger than one scheduling
quantum), the performance overhead of this mecha-
nism is negligible.
5.3. Enforcing virtual platform architectures

Another important part of the VPA architecture is the
capability of resource enforcement. For providing perfor-
mance isolation across VMs, it is important to be able to
enforce a specified resource usage per VPA-ID. Today,
VMMs can enforce the time spent by a VM on a core and
number of cores used by making scheduler changes. How-
ever, there is no control provided for allocating shared
cache and memory bandwidth appropriately on a per-VM
basis. Researchers have attempted to address this issue
by incorporating cache and memory partitioning schemes
[14,16,17,21–23,21]. In this paper, we adopt a class-of-ser-
vice based cache and memory allocation mechanism for
VPA enforcement with emphasis on supporting a small
number of classes of service. The premise behind this
choice is that (a) partitioning cache and memory resources
across too many VPAs is complex to implement, (b) parti-
tioning cache and memory resources across too many VPAs
will negatively affect throughput because of the loss of
shared resource use and (c) most importantly, it is ex-
pected that the datacenter global management policy can
ensure that only a small number of applications that re-
quire isolation are mapped onto any given platform.

The key components of enforcing virtual platform archi-
tectures for cache/memory subsystems are as follows:

� Class of service ID: The OS/VMM is required to associate
each VPA with a class of service ID (VPA-CoS-ID) in order
to enforce cache and memory allocation. The platform
will support a finite number of CoS-IDs that an OS/
VMM can discover & choose from.

� VPA register in each core: The OS/VMM can indicate the
class-of-service for a VPA when scheduling it on the core
by storing that value into the VPA register. It should be
noted that VPA register for VPA-CoS-ID indication
(enforcement) and VPA-ID indication (monitoring) can
be the same. The performance overhead of writing one
register in the core is negligible since it is done infre-
quently (only on a context switch).

� Class of service mapping to cache/memory: The OS/VMM
can indicate the mapping of a class-of-service to the
platform through a configuration sequence. This config-
uration sequence can be static (upon boot time) or
dynamic (preferred approach use in this paper). The
configuration sequence essentially modifies a set of reg-
isters associated with each component (cache CoS config
registers and memory CoS config registers in this paper)
to indicate the enforcement required per class of service.
This will be described below along with the enforcement
approach.

� Class of service enforcement incache/memory: Based on the
cache and memory CoS registers, the cache and memory
subsystem enforces space in the cache and bandwidth in
the memory subsystem appropriately. While this is
implementation dependent, our approach in this paper
is as follows: We adopt a counter-based enforcement
approach for cache and bandwidth-reservation for mem-
ory as described previously by Iyer et al. in [16]. For cache
enforcement, the cache CoS config register contains the
cache occupancy threshold that the VPA should not
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exceed. In order to enforce this, we modify the replace-
ment policy to take into the account the current occu-
pancy of the class of service in the class. This
enforcement is done on a per cache basis (as opposed to
on a per set basis) in order to avoid set imbalance issues.
For memory bandwidth enforcement, the memory CoS
config register contains the bandwidth weight for this
particular application. The memory controller maintains
N different request queues to support N classes of service.
The memory controller schedules DRAM based on the
bandwidth weights and thereby ensures that over a dura-
tion of time the ratio of bandwidth provided to the clas-
ses of service are equivalent to the ratio of weights.
5.4. Simulation experiments of server consolidation

The measurement experiments described earlier in Sec-
tion 3 were intended to show the interference effects and
performance/resource usage and there by motivate re-
source management for transparent cache/memory re-
sources. However, since the measurement platform does
not have any VPA monitoring and/or enforcement support,
we resorted to simulation experiments to evaluate the va-
lue and usage of these capabilities.

We employed several multi-threaded server workload
traces (8-thread traces of TPC-C, SPECjbb2005, SAP SD/2T
and SPECjappserver2004) to drive platform simulations
that consist of core models, cache models and memory
subsystem models. These workloads were chosen because
they represent server benchmarks for back-end database
workloads, Java application server workloads and enter-
prise resource planning workloads. The cache and memory
subsystem models supported VPA monitoring and enforce-
ment and the simulator included a central agent model
that maintained the monitoring table. Although we em-
ployed a trace-driven approach, we ensured that the
scheduling of these traces mimicked a typical through-
put-based VMM scheduler.

In the platform simulator, we had support for several
new capabilities for this work including: (a) support for
mapping all threads of the same server workload with a
unique VPA-ID, (b) support for mapping all threads of the
same server workload with the same class of service IDs,
(c) support for a central monitoring agent and monitoring
table, (d) ability to log the occupancy and memory band-
width from the monitoring agent, (e) ability to enforce
cache occupancy and memory bandwidth, (f) ability to
tag sampled sets in the cache with VPA-IDs and (g) ability
to support several heuristics to sample running applica-
tions by mapping to finite VPA-IDs.

The results from the following set of simulation
experiments will be described in the next section to high-
light the value of VPA-based performance isolation and
management:

(a) A simple heuristic that efficiently uses a finite set of
VPA-IDs and recycles them across a large number of
VPAs.

(b) A set sampling approach to monitoring cache occu-
pancy and memory bandwidth with high degree of
accuracy.
(c) VPA monitoring in a cluster of servers, each running
a customer virtual machine (TPCC) along with a
varying number of other VMs.

(d) VPA enforcement using full isolation mode in a clus-
ter of servers, each running a customer virtual
machine (TPCC) along with a varying number of
other VMs.

(e) VPA enforcement and monitoring using partial
isolation.

These experiments are conducted on a server architec-
ture consisting of eight physical cores sharing an 8 M cache
and 16 GB of peak memory bandwidth. The number of
software threads (within virtual machines) range from 4
to 24 and these are scheduled and de-scheduled on the
eight physical cores based on the behavior of a through-
put-oriented scheduler. We expect that the results from
these experiments effectively highlight the value of VPA
monitoring and enforcement effectively for performance
isolation in datacenter servers.

5.5. Simulation-based evaluation of VPA monitoring

VPA monitoring depends heavily on the use of a finite
number of VPA-IDs and sampling techniques in the VMM
to map VPA-IDs to different applications at different times.
Our first set of simulation experiments study the efficacy of
simple heuristics to achieve this.

5.5.1. Recycling VPA-IDs and sampling VPAs
The heuristics that we experimented with can be ex-

plained as follows:

� Simple time multiplexing (STM): The most naı̈ve approach
is to essentially use a simple time multiplexing tech-
niques. For example, let’s assume that there are 25 VPAs
and only eight VPA-IDs supported by the platform. This
simple time multiplexing approach essentially picks
eight VPAs out of 25 at a time and assigns it to eight
unique VPA-IDs for a while. The sampling duration
was chosen to be several typical time quanta (roughly
100 ms or more for instance). After the first eight VPAs
are done with their sampling duration, the eight VPA-
IDs are then recycled to the next eight VPAs out of the
remaining 17, and so on. The key problem with such
an approach is that the VPA-IDs in the cache are not
wiped clean before the VPA-IDs are recycled. One poten-
tial solution is to support a hardware flush capability.
However, this is not practical due to the number of tags
that will need to be invalidated and its resulting stall
time overheads. It is possible that the STM (without a
hardware flush) results in reasonable accuracy if the
running applications wipe out the cache within a short
time.

� Gaps-in-time multiplexing (GTM): In order to address the
problem cases (within the previous approach) wherein
the applications do not touch much cache at all and as
a result stale data from old VPAs are associated with
the new VPAs, we introduce a gaps-in-time multiplex-
ing, where we introduce a time gap between the VPA-
ID recycling where all running VPAs are assigned a spare
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VPA-ID that ends up acting like an approach that wipes
the previous VPA-IDs from the cache. For example, for
the same 25 VPAs and 8 VPA-IDs, let’s add a spare
VPA-ID (a 9th one) that the hardware allows the VMM
to choose for ‘‘wiping”. If the first set of eight VPAs are
chosen with eight unique VPA-IDs for a sampling dura-
tion and then it is followed by a gap duration where
all VPAs are assigned the 9th ID, the cache will get filled
with almost all cache lines that have the 9th VPA-ID as
the ID. Now, when the eight VPA-IDs are recycled after
the gap duration to another eight VPAs, the issue of stale
data will not occur. This method essentially enables a
flush functionality without stalling the execution.

� LRU or LOU allocation of IDs: Another approach is to allo-
cate an ID one at a time. In this approach, the key issue is
which ID to be recycled when we run out of VPA-IDs. We
test two techniques (an LRU policy which picks the vic-
tim VPA-ID to be the one that was least recently allo-
cated into the core or an LOU policy which picks the
victim VPA-ID to be the one that has the least occupancy
in the cache).

Our simulation experiments (see Table 6) show that the
simple time multiplexing (STM) technique (25 VPAs with
eight VPA-IDs) has an error ranging from 6% to 10% when
compared to full accounting (25 VPAs with 25 unique
VPA-IDs). This error is not too significant because server
workloads that we used are very cache-intensive and
quickly wipe the cache anyway within a short time dura-
tion. The gaps-in-time approach (GTM) improves the error
rate significantly by reducing it to less than 3%. For the ser-
ver workloads we tested, we found that the LRU/LOU pol-
icies also show an error rate close to the GTM techniques
(with the LOU marginally better than the LRU). Overall,
we note that the gaps-in-time multiplexing technique is
most suitable for all cases, especially when there are sev-
eral workloads that are not cache-intensive and some that
are cache-intensive.

5.5.2. Set sampling accuracy
Our next experiment was conducted to test the number

of sets we need to sample to have high accuracy in occu-
pancy and miss rate. Fig. 13 shows the data for an 8MB
cache with 8192 sets and a set sampling size varied from
8 to 512. There were 32 server threads run on 8 physical
cores and each thread was treated as a VPA. The lines in
the chart represent the % error at various set sampling sizes
for the 32 application threads. The bold line is the average
error rate across all these threads.

From the figure, we find that a very small set sampling
size (128 sets which is less than 1% of the 8192 sets) is suf-
ficient for greater than 98% accuracy in occupancy moni-
toring. As we increase the number of set sampling, the
Table 6
Recycling/sampling accuracy.

Behavior

STM No. stale data elimination
GTM Stale data elimination by wiping
LRU/LOU Effect of stale data minimized by picking appropri
error rate reduces. A few threads show a small increase
in error rate when going from 32 to 64 sets. This occurs
when hot sets for these workloads are chosen for set sam-
pling. Previous work has also shown that a small set sam-
ple size is more than sufficient for high accuracy [37] in
miss rate comparison. As a result, we were satisfied that
a small set sampling structure is sufficient for the rest of
our monitoring experiments.

The next set of experiments was conducted to under-
stand the benefits of VPA monitoring. In this experiment,
we ran a varying number of VPAs on eight homogeneous
servers. In each of the eight servers, there was one
4-threaded server workload that was held constant,
whereas all other server workloads varied in the number
of workloads as well as the number of threads within each
workload. Table 7 summarizes the configurations on each
of the servers.

Fig. 14 shows the resource usage and performance im-
pact of running an instance of a customer VPA on each of
the eight servers with different other VPAs running simul-
taneously. Fig. 14(a) shows the cache occupancy moni-
tored using the VPA monitoring scheme described earlier.
As can be observed, the cache occupancy reduces from
100% in the case where the VPA is running alone down to
23% when running on a heavily loaded server. The average
cache occupancy across all eight servers is 40%. This value
would be used by the OS/VMM (or any other management
software) to determine the need for enforcement based on
its VPA configuration, since it indicates the average value
across all of the servers that the customer VPA was running
on. Fig. 14(b) shows the memory bandwidth associated
with the customer VPA. The memory bandwidth consumed
varies from 0.8 to 1.5 GB/s per thread for this VPA. Running
together with other VPAs increases the number of misses
(due to contention) as well as reduces the performance.
However, since the increase in number of misses is much
more than the reduction in performance, the overall mem-
ory bandwidth consumption increases. Fig. 14(c) shows
the core utilization as a percentage of 8 cores used by the
Error rate

6–10% error rate (varies significantly)
2–3% error rate (not much variation)

ate candidates 3–4% error rate (not much variation)



Table 7
Workload configuration across eight servers.

Config
label

VPAs & Threads

4 T 1 VPA (4 TPCC threads)
8 T 1 VPA (4 TPCC threads) + 1 VPA (4 SJBB threads)
10 T 1 VPA (4 TPCC threads) + 1 VPA (3 SJBB threads) + 1 VPA (3 SJAS

threads)
12 T 1 VPA (4 TPCC threads) + 1 VPA (4 SJBB threads) + 1 VPA (4 SJAS

threads)
18 T 1 VPA (4 TPCC threads) + 1 VPA (7 SJBB threads) + 1 VPA (7 SJAS

threads)
20 T 1 VPA (4 TPCC threads) + 1 VPA (8 SJAS threads) + 1 VPA (8 SAP

threads)
22 T 1 VPA (4 TPCC threads) + 1 VPA (4 SJBB threads) + 1 VPA (8 SJAS

threads) + 1 VPA (6 SAP threads)
25 T 1 VPA (4 TPCC threads) + 1 VPA (6 SJBB threads) + 1 VPA (8 SJAS

threads) + 1 VPA (7 SAP threads)
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customer application during the execution. As the server
gets more heavily loaded, the core utilization for the cus-
tomer VPA reduces significantly as expected. Fig. 14(d)
shows the impact of cache occupancy reduction and mem-
ory bandwidth increase on the IPC (Instructions per Cycle)
for the customer VPA. The IPC reduces by as much as 35%
due to the reduced resource usage. Overall, Fig. 14(e)
shows the performance impact which is a multiplicative
effect of the decrease in core utilization and the decrease
in IPC.

5.6. Simulation-based evaluation of VPA enforcement

From the monitoring experiments, we observed that the
occupancy for the customer VPA was between 25% (2 MB)
and 40% (3.2 MB) for all servers where other VPAs were
also running simultaneously. Our first enforcement exper-
iment essentially attempts to enforce cache occupancy to a
minimum of 3 MB at all times. This is done to support an
enforcement model where the customer requires a mini-
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Fig. 14. VPA monitoring: resource usage and performance
mum cache resource of 3 MB (� 37:5% of 8 MB). In order
to enforce this requirement, we essentially set this VPA
to a class of service mapped to 100% threshold (high prior-
ity class) and all other VPAs running on the same platform
are mapped to a class of service that is either mapped to a
50% threshold (medium priority class) or a 12.5% threshold
(low priority class). Since the sum of the medium and low
priority class can never exceed 62.5%, the high priority
class will get a minimum 37.5% cache space at all times.
It should be noted that this 37.5% is reserved even when
the VPA belonging to this class is de-scheduled from the
core and is waiting to be re-scheduled. As a result, when
it is re-scheduled, it enjoys the luxury of a warm cache that
is a minimum of 3 MB in size. Fig. 15 shows the benefit of
this form of full isolation labeled as QoS_1. As shown in
Fig. 15a, the cache occupancy for the customer VPA of
interest is always higher than 37.5% in all cases. As a result
of this 37.5% minimum occupancy enforcement, the miss
rate also improves as shown in Fig. 15b. Overall, the perfor-
mance in term of IPC shown in Fig. 15c improves by 10–
20% as a result of this enforcement.

The second enforcement experiment labeled as QoS_2
in Fig. 15 is an optimization over full isolation called partial
isolation. In full isolation, it is required that only one appli-
cation be allowed to have full access to the cache since any
interference from another application of a different class
cannot guarantee a pre-specified occupancy at all times.
In partial isolation, we allow scenarios where a server runs
two VPAs at the high priority class with 100% access
threshold. This improves the cache space usage, but could
cause problems at times when the two VPAs contend sig-
nificantly and cause one of them to get occupancy lower
than the specification. As a result, we employ this partial
isolation approach for a probabilistic enforcement model
by monitoring how often the cache occupancy violates
the minimum threshold. For example, if the probability
of occurrence remains below the probability specified in
the contract (say 20% as an example), then the two VPAs
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are allowed to run on the same platform. Otherwise, the
global policy manager will be notified so that it can re-dis-
tribute these applications on to different servers or full iso-
lation is adopted on the same server.

As an example, Fig. 15 shows the effect of having more
than one VPA running in some cases (chosen as 10 T, 18 T,
25 T at random) at high priority along with the customer
VPA of interest. From the figure, it can be noticed that
although some other VPAs were also run at high priority,
the cache occupancy reduces below 37.5% only for one sce-
nario (i.e. 25 T) by just a little bit (36.3% instead of 37.5%).
The probability of occurrence in this case is 12.5% (which is
below the 20% requirement).

6. Related work

Related work in this area is as follows. Recently there
have been a few studies on measurement and characteriza-
tion of consolidation effects. For example, Cherkasova [6]
measure the CPU and IO overheads of virtualization. Jerger
et al. [7] have recently studied the degree of sharing in ca-
ches and the implications of different scheduling policies
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on consolidation environments. In this paper, we not only
measure the impact of shared resource contention, but we
also present a decomposition model to identify the impli-
cations of core contention versus cache contention in con-
solidation environments.

Several researchers have also observed the problem of
cache/memory interference [14,16,17,20–23,25] and have
proposed resource partitioning techniques to either im-
prove overall throughput, provide fairness or provide
QoS. In this paper, we adopt the partitioning techniques
to create virtual platform architecture. Our focus, however,
in this paper is to understand the use of VPAs for shared re-
source management and performance isolation in consoli-
dation scenarios. We have shown that this requires both
VPA monitoring as well as VPA enforcement.

In terms of VPA, the closest work that has some resem-
blance to virtual platform architecture is from Nesbit et al.
in [22]. It is important to note that VPMs do not consider
resource monitoring and a closed loop management with
enforcement as a usage model. The VPA-ID approach and
CoS-ID approach distinguishes the VPA approach signifi-
cantly from the VPA approach. In addition we find that
employing both monitoring and enforcement techniques
is necessary for an efficient performance management
solution for the datacenter. Some hardware architectures
and software virtualization packages [10,34] provide knobs
to fine tune allocation of platform resources at thread, pro-
cess and VM levels.
7. Conclusions and future work

In this paper we presented our VM3 research on mea-
suring modeling and managing shared resources and its
implications on virtual machine performance. Through de-
tailed measurements using a realistic consolidation bench-
mark (vConsolidate), we show that contention for shared
resource have a significant impact on virtual machine per-
formance and thereby raises performance isolation con-
cerns in virtualized datacenters. We also showed that
modeling the impact of shared resource contention can
help decompose the overheads in terms of the different
shared resources in the platform.

We then showed that a virtual platform architecture
abstraction that extends the virtual machine approach with
monitoring and enforcement of cache space and memory
bandwidth is an absolute necessity for managing shared re-
sources well and providing performance isolation in con-
solidated virtualized data center environments. We also
showed how a VPA solution requires a careful interaction
between the OS and the hardware architecture to achieve
an efficient solution. The VPA monitoring is achieved using
a set of finite VPA-IDs managed by the operating system
and provided to the platform. The VPA enforcement is
achieved using a smaller set of class-of-service IDs that
the OS assigns to a VPA and is enforced by the hardware
when indicated. We described the interfaces between the
architecture and the OS/VMM to achieve both monitoring
and enforcement efficiently. To evaluate VPA, we employed
simulation techniques. We showed that the recycling/sam-
pling heuristics to manage VPA-ID to VPA mapping is fairly
trivial. We also showed that the use of set sampling can re-
duce the overhead VPA-ID monitoring while maintaining a
high accuracy in terms of reported occupancy. Finally, we
performed several monitoring and enforcement experi-
ments to show that the VPA abstraction works well for
the consolidation scenarios in today’s datacenters.

Future work in this area is as follows. The VM3 approach
of measuring, modeling and managing shared resources
can be automated and made more dynamic based on the
load conditions in the platform locally as well as globally
within the datacenter. In addition, we expect that adding
the effect of other resources (power for instance) is quite
important. The VPA approach allows us to add other re-
sources quite effectively and we believe that this will open
up exciting opportunities for efficient resource manage-
ment in datacenters in the future.
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