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ABSTRACT

Increased response time during periods of overload on a Web server
may cause impatient users to time-out, causing the server to do un-
productive work in processing these abandoned requests. Overhead
time spent in preprocessing each request adds to the unproductive
work even for requests that are not taken up for service. This causes
the usable throughput, i.e. goodput, of the overloaded Web server
to drop drastically, while resource utilization remains at 100%. Al-
though this behaviour can be easily reproduced experimentally, ex-
isting analytical models of queues with abandonments are not able
to do so.

We present an analytical model that captures characteristics spe-
cific to networked software servers, namely, overhead processing
and contention for shared hardware resources, that is able to explain
the goodput degradation typically observed in overloaded servers.
We use this model to compare the performance of the LIFO and
FIFO queueing disciplines during overload and show that LIFO
goodput and response time are better than those of FIFO.

Categories and Subject Descriptors: C.4 [Performance of Sys-
tems]—~Modeling techniques; 1.6.5 [Simulation and Modeling]:
Model Development—~Modeling methodologies; G.3 [Probability
and Statistics|—Queueing theory

General Terms: Performance

Keywords: Web server, overload, analytical, model, LIFO, re-
source sharing, Markov chain, queueing theory

1. INTRODUCTION

A software server, such as a Web server, is said to be overloaded
if the load offered to it exceeds its maximum capacity to serve re-
quests. Unpredictable events such as breaking news or failure of
some servers in a cluster can trigger unexpected levels of service
demand. Server infrastructure, however, is usually designed for a
maximum capacity that is lower than the peak demand, to avoid
wasted capacity.

*Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WOSP’07, February 5-8, 2007, Buenos Aires, Argentina.

Copyright 2007 ACM 1-59593-297-6/07/0002 ...$5.00.

26

The ideal behavior of an overloaded server is to keep serving re-
quests at its maximum capacity, even when offered load increases
beyond its capacity. However as offered load increases, response
times increase, resulting in impatient users abandoning their re-
quests. This leads to processing of requests for which the user
timed-out before the reply was ready. Additionally there is over-
head work such as TCP connection processing, parsing and prepro-
cessing of the request by the Web server software, which must be
done even for requests that eventually time-out while waiting to be
served. This unproductive work causes the usable throughput, i.e.
goodput, of the server to reduce drastically in an overloaded state,
even though resource utilization remains at 100%. For E-commerce
Web-sites, such degradation is especially harmful, as it may lead to
significant loss in revenue, and loss of repeat customer visits.

To prevent such behavior, servers are often designed with an
overload control mechanism [20]. An overload control mechanism
aims to avoid the degradation of goodput of the server during pe-
riods of overload, and aims to maintain it at its maximum capacity
value. Several different approaches and solutions for overload con-
trol have been proposed in the literature. Schemes such as admis-
sion control [6,23] or specialized scheduling policies [4], or a com-
bination of both [2,10] have been proposed. A control-theory based
approach to overload control is described by Abdelzaher et al. [1].

The LIFO scheduling discipline has been well known to improve
throughput in overloaded telecommunication switches [9, 11, 20].
This idea of using LIFO during periods of overload has been in-
voked [8,21] in the context of Web server overload control as well.
A solution based on the use of LIFO for overload control, tailored
towards E-commerce Web servers, was proposed by Singhmar et al.
(2004) [21]. The authors implemented this mechanism and exper-
imentally showed that the use of LIFO discipline during overload
results in higher overall throughput and lower mean response time
in an overloaded state. However, their results also show that with
either of the scheduling disciplines there is a significant degrada-
tion of goodput as the server becomes overloaded.

Although these experiments offered some insight into the be-
havior of overloaded software servers, we believe there is a need
to study the behavior of these servers under overload, using ana-
Iytical models. Several existing models [15, 17] were studied for
their applicability to our scenario (i.e. overloaded Web server, with
user abandonments and LIFO scheduling discipline). Although
several existing models compare the LIFO and FIFO scheduling
disciplines, none of them are able to reproduce the observed ef-
fect of drastic goodput degradation at overload, with the resource
utilization remaining at 100%.

Our key observation is that this drastic degradation happens due
to two reasons: contention of the software server threads for the
hardware resources, and secondly, the time wasted in processing



FIFO —a—
LIFO --o--

5 . -
3 \‘9“&
7]
@ 4t ]
1%}
[}
3
g
= 3 L 4
£
5
@
32 1
]
S

1L ]

0'. 1 1 1 1 1 1

0 2 4 6 8 10 12
Offered Load in requests/sec
(@)

14

100 b

CPU Utilization (%)

20 b

0 1 1 1 1 1 1
0 2 4 6 8 10 12

Offered Load in requests/sec

14

Figure 1: Goodput degrades after reaching a peak value, as the Web server becomes overloaded. The bottleneck resource utilization
reaches and remains at 100%. Use of LIFO scheduling during overload results in higher average goodput. Experimental observations

from [21].

overhead related to the requests. Thus, in an overloaded state, re-
sponse times shoot up drastically due to software contention for
hardware resources, leading to abandonments, while the same re-
sources also spend unreasonable amount of time processing over-
head, thus significantly reducing the amount of useful work that
they can do. These are characteristics unique to software servers
that the traditional models of queues with abandonments fail to rep-
resent.

The present work develops a model of a Web server at over-
load that is built on the premise that these characteristics, namely,
the overhead processing and contention for resources must be ac-
counted for, together with other factors such as abandonments, for
proper comparison of the LIFO and FIFO scheduling disciplines.
We do this by building a layered queueing network model [19],
where two servers, one representing overhead and one represent-
ing actual processing, use a common hardware resource. Numer-
ical results show that our model is able to reproduce the goodput
degradation behavior at overload, in addition to showing that LIFO
goodput is better than FIFO at overload.

In addition to the layered model for overloaded Web servers, we
also present a model for calculating the response time distribution
of the M/M/C/K/LIFO queue with abandonments. Numerical
results from the model show that in an overloaded state, the mean
response time is much higher for FIFO as compared to LIFO. The
variance of response time however, is higher for LIFO after over-
load sets in.

The rest of the paper is organized as follows. In Section 2 we
briefly motivate our work and review existing literature on the topic
of overload control. We present extended queueing models with
LIFO scheduling and abandonments, including derivation of the
response time distribution, in Section 3. Section 4 describes and
solves our layered queueing model for overloaded servers with re-
source sharing and overhead processing, and presents numerical
results. We conclude the paper in Section 5.

2. MOTIVATION AND BACKGROUND

Singhmar et al [21] had used the idea of switching to the LIFO
scheduling discipline during overload to increase the throughput
and improve the response time of Web servers at overload. They
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validated this idea experimentally, by implementing this mecha-
nism in a Web server. Fig. 1 shows the results of an experiment
where load was generated on a Web server that implements this
mechanism. The figure shows that server goodput degrades drasti-
cally during overload. Nonetheless, by switching to LIFO at over-
load, the server is able to sustain a better goodput than FIFO. Ad-
ditionally, the CPU utilization graph shows that in both cases, the
CPU continues to operate at 100%, even after the goodput degrades
to nearly 60% of its peak. Our goal is to develop an analytical
model that captures the system characteristics that result in this be-
havior.

The system characteristics that we need to represent are im-
patient users with generally distributed timeouts, multi-threaded
servers with limited buffers, whose threads contend for a shared
hardware resource (e.g. the CPU) and spend some of the request
service time in overhead processing.

Additionally, several types of server responses to user abandon-
ments must be modeled—specifically, removal of abandoned re-
quests from the buffer or server, as appropriate, must be repre-
sented. Most importantly, we would also like to analyze such a
system with the FIFO as well as LIFO scheduling disciplines, on
the basis of performance measures such as goodput and response
time.

Keeping these characteristics in mind, we introduce an aug-
mented Kendall notation in order to simplify the description of the
queueing models that we study or develop in this paper. A queueing
system in this extended notation is represented as:

A/S/C/K/P/D+T/R
where,

A, S represent the arrival process and the service time distribution
respectively,

C is the number of servers,

K is the maximum number of requests, that can either be waiting
or getting served, in the system—thus K is the sum of buffer
size and number of servers,

P is the total population of the system (defaulting to infinity),



Table 1: Comparison of related work

Work User Timeout Rs:moval of No. of Server Buffer Resource Scheduling
Type s Timed-out . . .
Reference Distribution Processes Capacity Sharing Policy
Requests
Reeser and . . .
Hariharan [18] ANA X NONE C Fixed K Time sharing FIFO
Chen and .
Mohapatra [5] ANA, EXP X NONE C Hybrid X FIFO
Dalal and PS, FIFO,
Jordan [8] ANA, SIM D, EXP NONE 1 Infinite X Greedy,
ordan LCFS-PR
Doshi and Fixed K,
Heffes [9] ANA D, EXP NONE 1 Infinite X FIFO, LIFO
Carter and .
?
Cherkasova [3] SIM D BUF ? Fixed 1024 X FIFO
Movaghar [15] ANA G BUF C Fixed K, x FIFO
Infinite
Movaghar [16] ANA G ANY 1 Fixed K, X FIFO
Infinite
Plaetal. [17] ANA PH BUF C Fixed K X FIFO, LIFO,
SIRO
Our Model ANA EXP, ERL NOIX%? UF, C Fixed K Time sharing FIFO, LIFO

D is the scheduling discipline (default being FIFO),

T is the distribution of user timeout values, which may be
one of exponential(EXP), Erlang(ERL), general(G), phase-
type(PH), deterministic(D), and

R describes removal policy of timed-out requests. It may be one
of NONE, BUF, SRV, ANY; respectively representing no re-
moval, removal from buffer only, server only or anywhere.

For example, M/M/1/10/LIFO + EXP/NONE would represent a
single server queue with Poisson arrivals and exponentially dis-
tributed service time, with a buffer size of nine and exponentially
distributed user timeouts with no removal of timed-out requests.
The queueing discipline would be LIFO with total population de-
faulting to infinity. A dot (e) in the place of a parameter indicates
that one of several choices may be used.

2.1 Existing Work

There is significant amount of literature that studies the behavior
of queueing systems along the various aspects that we outlined ear-
lier [5,8,9,15-18]. In order to compare the existing work in a struc-
tured manner, we characterize the work according to the following
features: whether the model is simulation based or analytical, the
timeout distribution assumed, the removal policy on timeout, the
number of servers, the buffer size, whether resource sharing has
been considered and the scheduling policies considered. Table 1
summarizes our comparative analysis of the existing work.

Reeser and Hariharan proposed a model [18] that takes into ac-
count blocking and queueing at various stages of processing for a
typical Web server and models the contention for the CPU. How-
ever, they do not consider the case of impatient users, or the LIFO
discipline.

A look at the scheduling policy column in Table 1 tells us
that, from the listed work, only Dalal and Jordan [8], Doshi and
Heftes [9] and Pla et al. [17] deal with some form of LIFO queue-
ing discipline. Dalal and Jordan have used a LIFO policy with
preemption of jobs (LCFS-PR). However, preemption of requests
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in service at a Web server is complex to implement and hence not
typically done.

Doshi and Heffes provide a detailed comparison [9] of various
queueing disciplines in a single server case and show that LIFO
based schemes perform well under certain conditions when cus-
tomers randomly abandon their requests while waiting for service.
They however, do not consider multiple servers, resource sharing,
or request removal on abandonment.

More recently, Pla et al. [17] and Movaghar [15, 16] have stud-
ied and solved models that involve queueing with impatient cus-
tomers. As can be seen from Table 1, these models are quite
general, and capture most of the characteristics that we require.
Although they do not consider resource sharing, or overhead pro-
cessing, they serve as building blocks for the different parts of the
queueing network model that we propose in Section 4. The char-
acteristics of our model are summarized in the last row of Table 1.
In the next section, we describe these models and our extensions to
them, in detail.

3. THE M/M/C/K QUEUE WITH LIFO AND
ABANDONMENTS

Movaghar’s work provides us with analysis for queues with im-
patient customers with deadlines until beginning of service [15]
and till the end of service [16], with FIFO queueing discipline.
Thus, using our notation, Movaghar gives us results for the
M/M/C/K/FIFO+ G/BUF andthe M/M/C/K/FIFO +
G/ANY queueing models. However, it is assumed in the
M/M/C/K/FIFO + G/BU F model that customers stop being
impatient when they start receiving service. We use Movaghar’s
results for the M/M/C/K/FIFO + G/ANY for modeling one
of the queues, in the layered queueing network model presented in
Section 4.

The model described by Pla et al., considers phase-type distri-
bution for timeouts, the LIFO scheduling discipline and removal
of abandoned requests from the buffer. Thus, in our notation,
they give us results for the M /M /C/K/FIFO+ PH/BUF and
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Figure 2: Markov chain for M /M/C/K/ e + EX P/BUF model.

M/M/C/K/LIFO + PH/BUF models. Here too, however,
customers stop being impatient when they start receiving service.

We adapt Pla’s model to our requirement as follows: first, we
allow users to abandon even while their requests are in service and
continue to occupy the server. Such requests, on completion do not
count towards the goodput of the server.

Second, we use the tagged customer approach [14], to
numerically calculate the response time distribution for the
M/M/C/K/e + EXP/BUF model.

Third, we consider two special cases of the phase-type distribu-
tion for timeouts, namely the exponential and the Erlang distribu-
tion. This allows us to create and solve a simpler Markov chain
model which represents the queueing system. Thus, we solve the
M/M/C/K/e + EXP/BUF, M/M/C/K/e + ERL/BUF
and the M/M/C/K/ e + ERL/NON E models. These are the
basic models of an overloaded Web server, used later as building
blocks for our overhead-aware layered model with resource shar-
ing.

In the following subsections, we first introduce our simplest
model, i.e., the M/M/C/K/e+ EX P/BUF queue, and analyze
it for its goodput and response time distribution. We then derive the
goodput for the M/M/C/K/ e + ERL/BUF queueing model.

3.1 The M/M/C/K/e + EXP/BUF model

Figure 2 depicts the Markov chain for a M/M/C/K/ e +
EXP/BUF system. User timeouts have a EX P(-y) distribution.
A state of this Markov chain consists of the total number of re-
quests, ¢, in the buffer and servers combined. Thus 0 < ¢ < K.
Also let A be the mean arrival rate and p be the mean service rate.
Thus if 7r; is the steady-state probability of being in state ¢, then the
throughput of this system is given by [22]:

c K
A:Zium—k Z Cum;
i=1

i=C+1
The probability Prap, that a request that is being serviced has
been abandoned by the user before completion of service, is given

€y

by:
g
Paap — <7) @)
AT Ny

Therefore, the goodput is:
Acoop = A (1 — Ppap) (3
(sz +C Z 7TL> )

1=C+1

Clearly, this model is the same for both LIFO and FIFO schedul-
ing disciplines. Thus, for exponentially distributed user timeouts,
the goodput of LIFO and FIFO is the same. However, the re-
sponse time characteristics—specifically, the distribution of re-
sponse time—are known to differ. In the following, we derive the
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response time distribution of this queueing model, using the well-
known tagged customer approach [14].

3.1.1 Response Time Distribution

The Markov chain described above was an ergodic Markov
chain, solved at steady state, which gave us the means to obtain the
goodput of the queueing system. Now we use the tagged-customer
approach [14] to build a Markov chain that can be solved to give
us the repose time distribution of a customer. This Markov chain
represents the evolution of a tagged customer from the time that it
arrives in the queue till it exits the system in one of three possible
states:

Buffer Timeout: Timeout occurs while request is in buffer and re-
quest is removed from the system.

Unsuccessful Completion: Service finishes, but does not con-
tribute to goodput. This will happen when user times-out
while request is being served.

Successful Completion: Service finishes before user times-out.
Adds to the goodput of the system.

Three absorbing states exist in this Markov chain, one corre-
sponding to each of the exit states described above. The response
time for the tagged customer is modelled as the time to absorption
in this chain, given some initial starting state.

A non-absorbing state (I, m) of such a tagged customer Markov
chain for the M/M/C/K/ e +EXP/BUF system consists of
the current number of requests [, and the position m of the tagged
customer in the system. For this Markov chain, all C' servers are
assigned a position number 0 and buffer positions are numbered 1
to N, where N = K —C, with 1 being the head of the queue. Thus
0<I<Kand0<m<Il-C.

Arrivals, service completions and timeouts from the buffer will
be similar to the ergodic Markov chain described earlier. To find
the time-dependent probabilities P ., (t) for the tagged customer
chain, we need the initial state probabilities. These probabilities
can be obtained from the steady-state probabilities 7; from the er-
godic chain. Then for LIFO and FIFO we have the following non-
zero starting state probabilities:

pLIFO gy _ 172;;7 for1<I<C,m=0
Gmy) (0) = ¢ =7F _
iy forC<I<K,m=1
K
PEIFO () — E;;{, for1<I<C,m=0
(t.m) L forC<I<K,m=1-C

We define Pcoop(t) as the probability of being in the success-
ful completion absorbing state at time ¢; this is then the cumulative
distribution function (CDF) of the response time of a successfully
completed request. Similarly, we define Peap(t) and Pr(t) as
the CDFs of time to unsuccessful completion and buffer timeout
respectively. The probability of a given request eventually ending
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up in each of the absorbing states is given by:

Pgoop = tlglolo Pcoop(t), Peap = tlinolo Ppap(t),

Pr = lim Pr(t).  (5)

One can evaluate the tagged-customer Markov chain with ab-
sorbing states described above using a tool like SHARPE [7] to ob-
tain the CDF of response time of requests that finish in each of the
absorbing states. Results depicted in Fig. 3(a) show the conditional
CDF of time to successful completion of a request (which counts
towards goodput of the system). From the figure, it can be seen
that about 65% of successfully completed requests have a response
time less than or equal to 1.0s for LIFO, whereas this value is only
about 10% for FIFO. Additionally, the 90" percentile values for
the conditional response time of successful requests for LIFO and
FIFO are 2.0s and 3.2s respectively.

Figures 3(b) and 3(c) show the mean and the variance, respec-
tively, of the response time distribution of successful requests for
increasing offered load. We can see that both LIFO and FIFO have
nearly the same means up to the point at which offered load reaches
1, after which, the mean response time of FIFO continues to in-
crease, while that of LIFO flattens out earlier, at a lesser value. The
variance of the LIFO response time is, however, much more than
that of FIFO, after overload. Due to the higher variance in LIFO,
out of the requests that are taken up for service, a larger fraction
avoids getting abandoned and hence P ap is lower.

Thus we see that with exponential timeouts, even though the
goodput is the same in both LIFO and FIFO, the response time
distribution of requests for LIFO is significantly better than that for
FIFO.

3.2 The M/M/C/K/e + ERL/e model

An important aspect of the model of an overloaded server is the
distribution of timeouts. Here we refer to the variable user time-
outs rather than machine/browser timeouts that are usually fixed
at a large value. From Table 1, we observe that authors have as-
sumed fixed [3], exponential [9], phase-type [17] or general distri-
bution [15, 16] for user timeouts.

Experience suggests that most users will wait for some minimum
amount of time before abandoning their requests leading to a non-
zero value for the most probable timeout duration. This is contrary
to the well-known fact that the mode of an exponential distribution
is at zero. In order to model user timeouts more realistically, we
choose an Erlang distribution for user timeouts. The mode for an
Erlang(R, \) distribution is at %, which is a non-zero value for
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R > 2. This is in agreement with the reasoning given above. For
the sake of simplicity, we evaluate our model for the case of R = 2.

We solve this M/M/C/K/ e + ERL/e model for BUF and
NON E removal policies. BU F' represents removal of timed-out
requests only from the buffer, while NON E implies that timed-out
requests leave the system only after receiving full service irrespec-
tive of where the request is when the user times out. Thus NONE
represents an extreme case where there is no possibility of unpro-
ductive work being removed from the system.

For this system, the Markov chains for LIFO and FIFO process-
ing will be different since the customers may be in different stages
of impatience and hence their position is a part of the system state.
The mean delay of each exponential stage is set to 1/ R~ such that
the overall mean user timeout of R impatience stages is

1 1
R(—=)=-.
(R7> 0

In order to completely describe the state of the system with this
Erlang(R, R~y) timeout distribution, we need to keep track of the
impatience stage r, that each request is currently in, where 1 <
r<R.

A state of the Markov chain for this M/M/C/K/e + ERL/e
system is denoted as s = (ix—1,...,%0), S € S where S is the
state space of the CTMC. Each ¢, where 0 < k£ < K, represents
the state of a position in the servers or queue. Here subscripts 0 to
(C — 1) represent servers and C' to (K — 1) are queue positions.
The possible values of the state, i, of the position k are

0, position k is empty,
k=17, impatience stage of request, 1 < r < R,
—1, user timed out, but request still in system.

For example, a state (0,0,0,1,2, —1) for C=3, K=6 signifies an
empty queue, one server with a request in first stage of impatience,
one in the second stage and the third serving a request from a timed-
out user.

Rules for construction of the Markov chain are as follows. Tran-
sitions in the internal state ¢, of a position in the system are only
possible in the order: 0 -1 —-2 — ... - (R—1) - R — —1.
The difference in the LIFO and FIFO scheduling is captured by the
way arrivals are enqueued. If no server is free, and there is at least
one position empty in the queue, an arrival occurs as follows. In
case of LIFO queueing discipline, the arriving request will join at
the head of the queue, with all existing requests in the queue being
pushed back one position. For FIFO, it will join at the back of the
queue.



The infinitesimal generator matrix Q = [gz,.s] of this CTMC can
be constructed from the following rules. Let [ = (ix—1,...,%0)
be the current state and J = (jx—1,-..,jo) be the resultant state
after the transition. Also let p be the position under consideration,
where 0 < p < K. The head of the queue is at position C' and let
the first empty position at the back of the queue be denoted by B.
Then Vij, such that I € S, we have the following.

Arrival in server: gy = Aforp = min{z |0 <z < C,i; =

0} where
. i, fork#p
Ik =
1, fork=p
Arrival in queue (LIFO): ¢r.; = X for p = C and LIFO
scheduling where
ik, for0<k<C
Jk=R1k_1, forC<k< K
1, fork=p
Arrival in queue (FIFO): ¢;.; = X for p = B and FIFO
scheduling where
. ik, fork#p
Ik =
1, fork=p

Service completion: ¢; ; = p for 0 < p < C where

ic, fork =p
), fork #p, 0<k<C
TEZ NV iegr, forC <k < (K —2)

0, fork= (K —1)

Change in impatience stage: q;.; = 7 for0 < p < K,1 <

r < R where
KT
Jk B ip+17

User timeout: ¢r 7 = yr for 0 < p < K and ERL/NONE
abandonments where

ik,

E=0
qr,; = yr for0 < p < C and ERL/BU F abandonments
where

KT

k=40

gr,; = vr for C < p < K, ERL/BUF abandonments
where

for k # p
fork=p

fork # p
fork=p

fork #p
fork=p

forO0<k<p
k1, forp <k < (K —2)
0, fork= (K —1)

ikv

Figure 4 shows the Markov chain for a M/M/1/2 ¢ +
ERL/BUF system. Arrivals are EX P()), service time distri-
bution is EX P() and timeout distribution is Erlang(2,2v). In
the figure, ~; signifies transitions from I stage of impatience to II
stage and 2 refers to transitions from II stage of impatience to a
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Figure 4: Markov chain for a M/M/1/2/ ¢ + ERL/BUF
system. User timeouts have Erlang(2,2v) distribution. v; =
Y2 = 2y

timed-out state. The values of 1 and 2 are equal to twice the mean
rate of timeout . Note that the buffer size of 1, used in Fig. 4 for
simplicity of chain, is a special case where LIFO and FIFO chains
turn out to be identical as there is only one buffer location.

The Markov chain can be solved using a solver like PRISM [13]
or SHARPE [7] to obtain the steady-state probabilities 75 of being
in a state s € S. The probability fractions of an incoming request
getting blocked (Pg), timed-out and removed (Pr), successful ser-
vice completion (Pcoop), and unsuccessful service completion
(PpAp) can then be derived as follows.

For any given state s € S, let Rr(s) be the rate at which requests
time-out and are removed from the system, in state s. Let Rc(s)
be the total completion rate of requests, of which Rpap(s) is the
rate of completion of abandoned requests. To write the expressions
for these rates, we first define a function ®,. as follows: for any
position i, € s, where 0 < k < K,

1

D, (i) = ’

(ik) {07

Also, let S, C S be defined as:
K—1

Sn = {5|5€S, (K— Z‘Po(ik)) Zﬂ} 7
k=0

Now, we can express the rates Ry (s), Rc(s) and Rpap(s) for
s € Sand ix € s as follows:

for ir =
oriy =1 ©)

forix # r

Rr(s) = 7r i: P r(ix)
k=C
Cc—1
Re(s) = p <C -3 ‘1>0(ik)>
Cc—-1 =
RBAD(S) = M Z q)—l(ik) (8)
k=0
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Figure 5: Comparison of throughput, goodput and probabilities of a request getting blocked (Pg), timed-out & removed (Pr),
completed but user has timed-out (Pz 4 p) or completed successfully (Pcoop) for two removal policies. 1/ = 2.0s, 11 = 1.0 request/s.

Using Equations (6)—(8), we define
Ap=2A Z s, Apap = ZRBAD(S)ﬂ's,

sESK SES
Ar = ZRT(S)WS, Ac = ZRc(S)ﬂ's. (9)
seS seS

Then, if ) is the rate of incoming requests, we have:

A = A+ Ar+Ac
= Ap+Ar+Apap + Acoop (10)

From Eq. (10) and (9) we can get the required probabilities,
throughput and goodput as

A Ac— A
PBADZﬂ, pGOOD:wy
A A
A A
PBZTB7 PT:TT7 Agoop = Ac —Apap. (11)

We use the above equations to derive numerical results for
a M/M/3/10/ ¢ + ERL/e system, for the FIFO and LIFO
scheduling disciplines and for the BUF and NONFE cases for
request removals (Fig. 5). Results for both models (BUF' as
well as NON E) show that, though the raw throughput (A¢) does
not show much difference between FIFO and LIFO, the goodput
Acoop is better for LIFO when the server is overloaded. Further-
more, for the NON E case the goodput for both LIFO and FIFO
is worse than that of BU F, and the difference between throughput
and goodput is also more significant.

The better goodput for LIFO can be explained by observing the
probability fraction charts in Fig. 5(a). Recall that the probability
of a request completing successfully is given by Paoop = 1 —
Pp — Pr — Ppap. Goodput for LIFO turns out to be better than
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FIFO primarily because Pgap (i.e. the probability of unsuccessful
completion) is lower for LIFO, while Pg + Pr is the same for both
LIFO and FIFO.

Results for the NON E case (Fig. 5(b)) are similar to the BU F’
case; they show that the blocking probability Pg is almost the same
for both LIFO and FIFO for all levels of offered load (and Pr is O
as their are no removals). The goodput, however, is better for LIFO
as Ppap is lower for LIFO during overload.

3.3 Model Summary

From the analysis of the basic M /M /C /K /e+e /e model of an
overloaded server, we can conclude that although non-exponential
user timeout distribution is necessary to explain the better goodput
performance of LIFO as compared with FIFO at overload, LIFO
shows better response time characteristics than FIFO at overload,
even with exponential timeouts.

We also see that though the basic model predicts goodput re-
ducing to a fraction of raw throughput as the system becomes over-
loaded, it is still unable to explain the observed drastic drop (Fig. 1)
and the subsequent flattening-out of goodput during overload. In
the next section we present our layered queueing network model
based on the models developed in this section, which captures the
specific behavior of software servers, namely overhead processing,
and hardware resource sharing.

4. LAYERED MODEL WITH OVERHEAD
AND RESOURCE SHARING

In a Web server, there are many overheads that must be incurred
even before actual processing can start. This includes factors such
as the TCP connection setup time and the request preprocessing
that happens at the root listener thread in a Web server [21]. This
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Figure 6: High-level model of the processing of a request at
a server. Overhead (OHD) and application (APP) processing
stages contend for the shared bottleneck resource.

thread is typically responsible for receiving the HTTP request from
the client, parsing, possibly carrying out security checks, and fi-
nally enqueueing it to wait for a worker thread to become available.
Many Web servers (e.g. Sun Java Web System, IBM WebSphere)
are based on a variant of this design. This overhead adds to the
unproductive work being done by the CPU, which is the bottleneck
resource for dynamic requests.

In our proposed model, the listener and worker threads are mod-
elled as separate queueing systems or stages. The processing by
the listener thread represents the overhead processing, while the
processing by the worker threads represents the “useful” process-
ing (henceforth termed as the application processing). While this
abstraction is grounded in reality, it is true that part of the process-
ing at the application stage may also be classified as “overhead”
(e.g. paging, swapping, context switching overheads incurred at
this stage). However, we make a simplifying assumption of club-
bing together all the overhead in a single initial overhead stage.
Both these servers share the underlying bottleneck resource—thus
it is a layered queueing network model (Fig. 6).

The overhead and application stages are represented using the
queueing system models developed in the previous sections. The
threads of these stages are in turn customers for the CPU queueing
system. In the rest of this section, we provide details of this model
and present numerical results.

4.1 Model Description

Figure 6 shows a high-level representation of our model of a net-
worked software server. The three main components of this picture
are the overhead (OHD) processing stage, the application (APP)
processing stage in the software layer, and the shared resource in
the hardware layer.

We consider the CPU to be the bottleneck resource, even though
similar mechanisms may be applied to any known bottleneck re-
source. We thus have a two-layer model with the OHD and
APP processing on the software layer and the CPU at the device
layer [19]. The choice of the specific model for each block of the
picture is made on the basis of the characteristics of that block.
For example, if CPU and network I/O are significant in a system,
then only the device model inside the shared resource block (Fig. 6)
need be changed. Since in this paper we are taking the example of
a Web server with CPU as the bottleneck resource, our choice of
specific models is as follows.

4.1.1 Overhead and Application Stages

The overhead (OHD) processing block represents overheads that
need to be incurred for a request to be serviced by the Web server.
The server in the OHD block represents the single listener thread.
The queue in front of this server is essentially the TCP listen-queue.
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This queue is at the operating system level and is processed with the
FIFO queueing discipline. Also, the timeout distribution here is as-
sumed to be exponential to simplify analysis since we do not use
LIFO at this queue. If, at any time, a timeout occurs in the OHD
stage and the client closes the connection, the processing is aborted
and the request is removed from the system. This is feasible since
most of the system state is limited to the listener thread itself. A
M/M/1/K/FIFO + EXP/ANY queueing system is thus ap-
propriate for this block of processing. We use the model described
by Movaghar [16] to represent this queue. In case a system has
multiple listener threads, a M/M/C/K/FIFO + EXP/ANY
queueing system may be used, the rest of the analysis remains the
same. However, we have not considered such a case in this paper.

The processing done by the worker thread is denoted as the ap-
plication (APP) processing. In case of a request for static content,
this is equivalent to reading a file from storage and sending it to
the user. Serving of the file can be aborted at any stage, should
a client timeout occur. Strategies for doing this have been sug-
gested by Carter and Cherkasova [3]. However, in this paper, we
are concentrating on the case of requests for dynamically gener-
ated content, where the CPU is the bottleneck resource. To serve
such a request, a scripting engine' is invoked to parse the input data
and carry out the actual processing (database lookups, calls to other
subsystems, calculations, etc.) required to generate the reply. A re-
quest for dynamic content is usually not aborted and removed from
the system once it enters service at the APP processing block due
to the way a typical Web server handles requests for dynamic con-
tent. Once the scripting engine has been invoked, it is not aborted
until the processing is complete to avoid loss of system state pos-
sibly created in different sub-systems. Thus, while timed-out re-
quests may be removed from buffer, removal from server is not
possible. Hence the possible request removal policies for this stage
are BUF and NONE. Since there are multiple worker threads,
a M/M/C/K model with (BUF’) or without (NON E) removal
of timed-out requests is appropriate for the APP part. The models
M/M/C/K/ e + ERL/e discussed in Section 3.2 can be used
for the APP block.

A detailed view of the model, using the M /M /C/K/FIFO +
EXP/ANY queue for the OHD stage and a M/M/C/K/ e
+ERL/e queue for the APP stage, is shown in Fig. 7. A request
entering the system may leave from various points in the system.
These possible points of exit and their respective probabilities are
depicted in Fig. 7.

The notation used in the figure, and the various parameters of the
model are explained in detail below.

4.1.2 Notation and Model Parameters

The parameters of the model depicted in Fig. 7 and related per-
formance metrics are described below.

Arn is the mean request arrival rate at the server.

Aomp is the mean request rate offered to the overhead part.
AoHD = AIN.

Aorp, Aapp are the mean throughputs of OHD and APP stages
respectively.

Aapp isthe mean request rate offered to the APP part. This is the
same as Aoxp.

'A scripting engine (for instance an interpreter for scripting lan-
guages like Perl, PHP, Python, shell) is typically an entity external
to the core of the Web server.
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Komp, Kapp are the maximum number of requests in the OHD
and APP parts, including the ones in service.

Capp is the number of worker (APP) threads/processes in the
server.

ToHD, TApp are the mean service time requirements of a request
at the OHD and APP parts, given exclusive access to the
CPU.

TouDs Tapp are the mean service time requirements of a request
at the OHD and APP parts, after compensating for CPU shar-
ing.

Pp,yups Papp are the probabilities of a request being blocked
at the OHD and APP stages.

For users who become impatient and abandon a request, we have
the following parameters and metrics.

Ty 1is the mean user timeout duration, and
~ is the average impatience rate defined as 1/7p.

Pryypy Prapp are the probabilities of a request being timed-out
and removed from the system for the OHD and APP stages.

P ap 1isthe probability that a request was successfully completed,
but the customer had abandoned the request while it was re-
ceiving service at the APP stage. This adds to ‘bad process-
ing’ and does not count towards the usable throughput (i.e.
goodput).

Acoop is the goodput of the system, and is expressed as
Aapp (1 — Pgap).

Ucpu,UcpPugoop are the total utilization level of the CPU, and
the “good” utilization of the CPU, respectively.

4.1.3 Shared CPU: Layered Model

The CPU is the bottleneck resource and all active
threads/processes in the system have to contend for the CPU.
To model this contention, we use a time sharing model for the
shared CPU. According to this model, the service time require-
ments of each active thread, namely Tomp and Tapp are linearly
scaled up by a factor (ncpyu) equal to the average number of
active threads in the system. It has been shown [18] that such a
linear scaling model is more accurate as compared to a standard
Processor Sharing (PS) model with non-linear scaling [12].
Context-switching time is assumed to be negligible.

This is a layered model with the service times at the OHD and
APP queues being the response time of the respective thread from
the shared CPU [19]. The linear scaling is applied to obtain the
inflated service time requirements 75,z p and 74 p p as follows:

ToHp = NCPU TOHD (12)

’
Tapp = MNCPU TAPP (13)
ncpy = max(l,noap +naprp) (14)

and by applying Little’s Law to just the servers (not including
queues) in both OHD and APP processing stages, we get

!/
noup = Aorp TOHD

= AoHD (1_PBOHD _PTOHD)TIOHD 15)
napp = Aapp Tapp
=Xapp (1 = Pp,pp — Prapp) Tapp- (16)

The required probabilities are obtained from a solution of the re-
spective stage models. In the next subsection, we describe the pro-
cedure of solving this layered queueing model.

4.2 Solving the Model

We are interested in the throughput performance metrics of the
system to be able to explain the observed goodput drop and bet-



ter performance of LIFO during periods of overload. The inter-
dependence of 75 p, ncpu, and nomp (and similarly for APP)
is evident from Eq. (12)-(16). Hence, this model is solved itera-
tively starting with the supplied initial values of Torp, Tapp and
ncpu = 1.

Algorithm 1 Iterative Solution of Twwo-Stage Shared-CPU Model

Inputs: A\rv, Toup, Conp = 1, Koup, Tapp, Carp,
Kapp, vy

AOHD — AIN
!

ToHD “ TOHD
!

Tapp < TAPP

repeat
From Eq. (17) and (18)

(PB()HD7PT()HD) - OHD*MODEL()‘OHD7T(,)HD7
Coup,Koup,~y)

Aorp «+ Morp (1 = Peogp — Pronp)
Aapp — Aoup
From Eq. (11),
(Ppapps Prapp, Peap) — APP_MODEL(Aapp,

/
Tapp,Caprp, Kapp,)

Aapp —Aapp (1 = Ppapp — Prapp)

CPU_LINEAR_SCALING :
noup <— Noup T(/)HD

napp < Aapp Tapp

nepy «— max(l,nogp +napp)

Ucpu <+ MAoup Toup + Aapp Tapp

"
TOHD < MCPU TOHD
"
TApPpP < NMCPU TAPP
A~ |thpp — T
APP APP

! 1"
TOHD *~ TOHD
! 1
TAPP “ TAPP
until A < ¢

Acoop «— Aapp (1 — Ppap)
Ucpugoop — Acoop Tapp

! /
Outputs: Acoop, Toup, Tapp> NcpPU, PBoyps Proyp:
Paowps PBapp> Prapp, PBaD, Aorp, Aapp, Ucpu

Algorithm 1 outlines the iterative solution process of our two-
stage, shared-resource model. In the iterative solution there are
two steps OHD_MODEL and APP_MODEL that solve the
individual models for the OHD and APP parts. Using each of the
sub-models, we need to determine the probabilities of an incoming
request blocking, getting timed out and removed, or completing
unsuccessfully. These probabilities are then used to determine the
throughput and goodput at each stage. In each successive itera-
tion, the linear scaling model for CPU sharing is used to update the
scaled-up service time requirement (75 p, Tapp) Of each stage.
The OHD _MODEL and APP_MODEL steps are discussed

35

below. The algorithm terminates when the error value, A, between
successive iterations falls below a predefined limit e.

4.2.1 OHD Stage Model Solution

Weusethe M/M/1/K/FIFO+EXP/ANY model (removal
of timed-out customers till end of service) to represent the OHD
stage. The solution to this queueing model is available from results
published by Movaghar [16] as follows.

Let p,, be the probability of having n requests at the OHD stage
where 0 < n < Konp. Also let porp = 1/76 5 p- Then p, is
derived from a special case of [16] as:

n AOHD
_ =1 poap+iv
- K j X :

L+ i wonntm
Thus the probabilities of blocking and timing out at the OHD stage,
respectively, are:

DPn

Peoyp = PKoup 17

Koup—1 HOHD
P =1- — E n——————— (18
Tonp PKonp n—0 P HOHD + (n+1)'y ( )

4.2.2 APP Stage Model Solution

The APP stage is modelled as a M/M/C/K/ e + ERL/e
queueing system, with removal of abandoned requests from the
buffer (BU F') or without any removal (NON E). The input to the
APP stage is assumed to be a Poisson stream with rate Aapp. The
distribution of service times at the CPU is EX P(uapp) where
papp = 1/74pp. The Markov chain for this model has already
been discussed in Section 3.2. Thus the probabilities Pp,pp,
Pr,., and Ppap are obtained from a solution of the Markov
chain as described earlier (Eq. (11)).

4.3 Results and Discussion for Complete
Model

We now present results for the complete layered model with
shared CPU and overhead processing, while using LIFO and FIFO
at the APP stage, from Algorithm 1.

Fig. 8 shows results for a case where the OHD stage model is
M/M/1/101/FIFO+EXP/ANY and 1o p =0.2s. The APP
stage modelis M /M /3/13/e+ERL/NONE with Tapp = 1.0s.
User timeouts have a Erlang(2, 27) distribution where T5=2.0s.

The throughput vs. offered load graph in Fig. 8(a) shows that in
the region where the server is overloaded, i.e. normalized offered
load (p) > 1, LIFO shows a better goodput as compared to FIFO
discipline. This graph also clearly depicts that there is a sudden
drop and subsequent flattening-out of the goodput, to about 60%
of its peak value for FIFO, as p increases beyond 1. Figure 8(c)
also shows the fraction of time that the CPU spends in useful work
(Ucpugoop)- As can be seen clearly, initially (when p < 1),
the CPU spends most of its time doing useful work while when
p > 1, even though the utilization of the CPU is at 100%, the frac-
tion of time spent in productive work is only about 40-50%. Thus
the sharp degradation of goodput while the bottleneck resource re-
mains fully utilized, as was experimentally observed in Fig. 1, is
reproduced by this model.

The Web server becomes overloaded when the CPU becomes
saturated with work and the processing time of each stage gets in-
flated (Eq. (12) and (13)) as offered load increases further. This
increase in service time requirement causes delays in the process-
ing of requests and the impatient users start abandoning requests.
These abandoned requests may be processed by the server and con-
tribute to the unproductive work. Fig. 8(b) shows the increase
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Tapp = 1.0s. The degradation & flattening of goodput, and better performance of LIFO are clearly observed.

in probabilities of blocking at APP queue, timeout in the OHD
queue and unproductive service. Thus when overloaded, good-
put degrades since the CPU is busy doing unproductive work in-
cluding the overhead processing and users are abandoning requests
(Fig. 8(b), PBaD & Pr, > respectively).

The degradation of goodput ‘flattens out’, as offered load in-
creases, when the queue of one of the stages fills up and it starts
blocking. This is observed at around the p = 1.5 point in Fig. 8
where P, ., becomes significant. Figure 8(d) depicts the good-
put curves for LIFO and FIFO disciplines with varying values of
mean user timeout duration. The peak goodput, as well as the value
at which it flattens out, increases with increasing patience in users.

Note that in the results presented here, the values of some in-
put parameters of the model (e.g. Komp=101, Capp=3, and
K app=13) are chosen to illustrate the behavior of interest, and
are scaled down from values typically found in servers (e.g.
Koup=1024, C4pp=50, and Kapp=200). Use of such large
buffer sizes and number of servers leads to state space explosion of
the Markov chain models. Our focus in this paper has been to qual-
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itatively reproduce the experimentally observed behaviour with a
tractable model, hence the scaled-down values.

5. CONCLUSION

We presented an analytical model of a software server that ex-
plains the drastic drop in goodput as offered load exceeds system
capacity. The model captures the ‘flattening-out’ of goodput as load
is increased further. Our model specifically addresses the fact that
various threads of the server compete with each other for access to
the shared resource, leading to non-linear increase in response time
in an overloaded state. A novel feature of this model is that the
overhead involved in processing of a request is explicitly accounted
for separately from the actual application processing. These fac-
tors, coupled with impatience in users, give results that produce the
experimentally observed trend.

We also analyzed, in detail, the impact of using LIFO queueing
discipline when the server is overloaded. We saw that the use of
LIFO does, in fact, provide a higher goodput when user timeouts
are not exponential. We further analyzed the difference in perfor-



mance between FIFO and LIFO disciplines by obtaining response
time distributions. This analysis showed that even for exponential
distributions, the response time characteristics of LIFO are better
than those of FIFO.

In the present work, we concentrated on Web servers serving
requests for dynamically generated content where the CPU be-
comes the bottleneck resource. However, this may be extended to
other bottleneck resources and software servers with an appropriate
choice of OHD, APP and resource sharing models.

The solution of our model, being based on repeatedly solving a
multi-dimensional Markov chain, suffers from the state-space ex-
plosion problem that may limit its direct application as an online
prediction tool. Nevertheless the model provides insights into the
dynamics of an overloaded server and will aid in the analysis and
development of overload control strategies.

Future work involves integration of more sub-models such as
SIRO, priority-based preemptive scheduling for the OHD and APP
parts and round robin, context-switching time sensitive models for
resource sharing. We are also working on an application of such
a model in self-tuned overload control mechanisms that suggest
changes in configuration parameters to maintain high goodput dur-
ing overload.
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